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Série 5
8 octobre

Notation: Soit p un nombre premier. On note Fp le corps fini à p éléments et écrira simplement a pour ā, pour un
élément ā de Fp.
On fixe un corps K.
On écrira Mn(K) pour Mn×n(K).

A cette série, vous pouvez rendre pour correction l’exercice 7. Il faut le donner à un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 15 octobre.

Exercice 1. Parmi les parties suivantes de R4, préciser lesquelles sont des sous-espaces vectoriels de R4.

a) {(x, y, z, t) ∈ R4 | 3x− y − 2z + 3t = 0}.

b) {(x, y, z, t) ∈ R4 | 3x− y − z = 0 et z − t = 1}.

c) {(x, y, z, t) ∈ R4 | x2 − y2 = 0}.

d) {(x, y, z, t) ∈ R4 | (x, y, z, t) = (−a+ b, 2a+ 3b, −2a, −b) pour a, b ∈ R}.

Exercice 2. Soit F(R,R) le R-espace vectoriel des applications de R vers lui-même. Les sous-ensembles suivants
sont-ils des sous-espaces vectoriels de F(R,R)?

a) L’ensemble des fonctions qui sont continues sur l’intervalle ]0, 1[.

b) L’ensemble des fonctions qui s’annulent sur l’intervalle [0, 1].

c) L’ensemble des fonctions continues valant 1 en 0.

d) L’ensemble des fonctions f : R → R telles que f(x+ 2) = f(x) pour tout x ∈ R.

Exercice 3. Soit V un K-espace vectoriel avec sous-espaces vectoriels W1,W2 ⊂ V .

a) Démontrer que W1 +W2 est un sous-espace vectoriel de V .

b) Démontrer que W1 ∩W2 est un sous-espace vectoriel de V .

c) Donner un exemple dans V = R2 de sous-espaces vectoriels W1 et W2 tels que W1 ∪W2 n’est pas un sous-espace
vectoriel de V .

d) Donner un exemple dans V = R2 de sous-espaces vectoriels W1 et W2 tels que W1∪W2 est un sous-espace vectoriel
de V .

e) Donner un exemple dans V = R3 de trois sous-espaces vectoriels W1,W2,W3 tels que le sous-espace W1+W2+W3

n’est pas la somme directe des sous-espaces W1,W2,W3.

f) Soient W1, . . . ,Wr des sous-espaces vectoriels de V . Montrer que W1+ · · ·+Wr est un sous-espace vectoriel de V .

Exercice 4. (a) Dans le F3-espace vectoriel M2×3(F3), montrer que

Vect (

(
1 2 1
0 1 0

)
,

(
1 1 1
1 0 1

)
,

(
−1 0 2
1 −2 1

)
) = Vect (

(
2 2 2
2 0 2

)
,

(
0 2 0
1 2 1

)
).

(b) Soit V = R[t]≤2. Déterminer si le sous-espace vectoriel W = Vect (t2 − 2, t2 + t, 2t2 + t+ 2) est égal à V et pareil
pour U = Vect (t2 − 2, t2 + t, 2t2 + t− 2).

(c) Vrai ou faux : Vect (tk | k ≥ 1) = K[t].

Exercice 5. Soient K un corps et K[t]≤d l’espace vectoriel des polynômes de degré au plus d à coefficients dans K.
Soit λ ∈ K fixé. Soient U = K[t]≤2 et V = {b1t+ λb3t

3 + λ2b4t
4 | b1, b3, b4 ∈ K}.



a) Montrer que U et V sont des sous-espaces vectoriels de K[t]≤4.

b) Calculer U ∩ V , U ∪ V et U + V .

c) Montrer que U ∪V n’ est pas un sous-espace vectoriel de K[t]≤4 sauf pour une valeur spécifique de λ (à trouver).

Exercice 6. a) Une matrice A = (Aij) ∈ Mn(C) est dite scalaire s’il existe d ∈ C tel que

Aij =

{
0 si i ̸= j,
d si i = j.

Montrer que l’ensemble V des matrices scalaires est un sous-espace vectoriel de Mn(C).

b) On définit la trace d’une matrice A = (Aij) ∈ Mn(C) par Tr(A) =
∑n

i=1 Aii. Montrer que l’ensemble W des
matrices de trace nulle est un sous-espace vectoriel de Mn(C).

c) Montrer que Mn(C) = V ⊕W .

d) Considérons maintenant l’espace vectoriel M3(F3) et posons V le sous-espace vectoriel des matrices scalaires dans
M3(F3) et W le sous-espace vectoriel de M3(F3) des matrices à traces nulles. (On admet que ces deux sous-
ensembles sont des sous-espaces. Les preuves données pour (a) et (b) ne dépendent pas du corps C.) Montrer
que M3(F3) ̸= V ⊕W .

Exercice 7. Soit V = U ⊕W une somme directe de K-espaces vectoriels avec W = Vect (w), où w ∈ W est non nul.

a) Pour chaque y ∈ U , posons Wy = Vect (y + w). Montrer que Wy est un supplémentaire de U dans V .

b) Soit y′ ∈ U et Wy′ = Vect (y′ +w). Montrer que Wy = Wy′ si et seulement si y = y′. (Cela montre que tous les
Wy sont différents (lorsque y varie dans U) donc qu’il y a beaucoup de supplémentaires de U dans V .)

Exercice 8. Soit K1 ⊂ K2 deux corps avec les mêmes opérations d’addition et de multiplication. Soit V un K2-espace
vectoriel. On a l’application f : K2 × V → V qui définit la multiplication par scalaire, f(α, v) = αv. Montrer que V
est aussi un K1-espace vectoriel où on prend l’addition déjà donnée et avec la multiplication par scalaire donnée par
K1 × V → V , (β, v) 7→ f(β, v) = βv, c’est-à-dire que l’on restreint la multiplication par scalaire au plus petit corps
K1.

Exercice 9. Soit X = {
(
a ib
0 d

)
| a, b, d ∈ R} ⊂ M2×2(C). On définit l’addition usuelle des éléments de X (vus

comme des éléments du C-espace vectoriel M2×2(C)).

(a) Montrer que X n’est pas un sous-espace vectoriel de M2×2(C).

(b) Comme dans l’exercice précédent, M2×2(C) est un R-espace vectoriel. Montrer que X est un sous-espace vectoriel
du R-espace vectoriel M2×2(C).

La matière des deux exercices suivants sera reprise, utilisée et élaborée dans vos cours d’analyse et de physique. La
formule de Moivre sera éventuellement utile aussi dans la résolution d’équations polynomiales dans le cours d’algèbre
linéaire avancée II. Par contre, nous n’en aurons pas besoin ce semestre.

Exercice 10. On considère le point (x, y) ∈ R2 \ {(0, 0)}. En notant r =
√

x2 + y2 > 0, la longueur du segment entre
(0, 0) et le point (x, y), et θ = arctan y

x ∈] − π, π] l’angle entre l’axe des abscisses positives et le vecteur associé au
point (x, y), on peut écrire

(x, y) = (r cos θ, r sin θ).

Ainsi, on a
z = x+ iy = r cos θ + ir sin θ = r(cos θ + i sin θ),

où θ est défini à 2kπ près avec k ∈ Z. On l’appelle la forme polaire de z. L’angle θ = Arg(z) est l’argument de z.



Soit z1, z2 ∈ C deux nombres complexes, avec |zi| = ρi et Arg(zi) = φi pour i = 1, 2.

(a) Montrer que |z1z2| = ρ1ρ2.

(b) Montrer (en utilisant les identités trigonométriques) que Arg(z1z2) = Arg(z1) + Arg(z2), c’est-à-dire que

z1z2 = ρ1(cosφ1 + i sinφ1) · ρ2(cosφ2 + i sinφ2)

= ρ1ρ2
(
cos(φ1 + φ2) + i sin(φ1 + φ2)

)
. (1)

Remarque
La récurrence sur n peut être utilisée pour établir la Formule de Moivre: Pour tous r > 0, θ ∈ R et n ∈ N on a(

r(cos θ + i sin θ)
)n

= rn
(
cos(nθ) + i sin(nθ)

)
.

Exercice 11. La fonction exponentielle complexe permet de faire une représentation plus compacte des nombres
complexes.

Définition
Pour z = x+ iy ∈ C on définit

ez = exp(z) := ex(cos y + i sin y)

où ex est la fonction exponentielle réelle usuelle.

Montrer que ew+z = ew · ez pour tous w, z ∈ C


