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Corrigé 4
1 octobre

A cette série, vous pouvez rendre pour correction l’exercice 5. Il faut le donner à un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 8 octobre.

Exercice 1. Soit z ∈ C, z = x + yi, pour x, y ∈ R. On définit le conjugué complexe de z, noté z̄, comme suit :
z̄ = x− yi. Montrer que l’application f : C → C donnée par f(z) = z̄ est un homomorphisme d’anneaux.

Exercice 2. Soit z ∈ C, z = x + yi, pour x, y ∈ R. On définit le module de z, un nombre réel, noté |z| par

|z| =
√
x2 + y2 ∈ R. Vérifier les propriétés suivantes :

(a) zz = |z|2

(b) Pour z ̸= 0, on a z−1 = z
|z|2 .

(c) Pour z ̸= 0, on a z−1 = z−1.

(d) |z1 · z2| = |z1| · |z2|

Exercice 3. Utiliser l’exercice 1. pour montrer que si z ∈ C est une racine du polynôme p(x) ∈ R[x] alors z̄ est aussi
une racine de p.

Exercice 4. Soit z une variable. Résoudre dans C l’équation suivante:

z − 3i

2z + 1
=

4 + 3i

2− i

Exercice 5. (a) Soit ϕ : R[t] → C l’application d’évaluation en i, c’est-à-dire que pour tout p ∈ R[t], ϕ(p) = p(i).
On admet que ϕ est un morphisme d’anneaux et en particulier un morphisme de groupes de (R[t],+) dans (C,+).
Trouver le sous-groupe ker(ϕ)

(b) Soit ei : C[t] → C l’application d’évaluation en i. Trouver ker(ei).

Exercice 6. Vérifier que pour tout c̄ ∈ F3 on a c̄3 − c̄ = 0̄, et de même que dans F5 on a b̄5 − b̄ = 0̄ pour tout b̄ ∈ F5.
Montrer que le polynôme t3 − t ∈ F3[t] est scindé et que le polynôme t5 − t ∈ F5[t] est scindé.

Exercice 7. Dans chacun des cas suivants, l’ensemble V est-il un K-espace vectoriel pour la loi évidente d’addition
et la multiplication scalaire donnée?

a) K = C, V = C2 et λ(x, y) = (Re(λ)x,Re(λ)y) pour λ ∈ C et (x, y) ∈ V .

b) K = R, V = R2 et λ(x, y) = (λx, λ2y) pour λ ∈ R et (x, y) ∈ V .

c) K = F2, V = F2
2 et λ(x, y) = (λx, λ2y) pour λ ∈ F2 et (x, y) ∈ V .

d) K = R, V = {f ∈ R[t] | f(a) = 0} pour a ∈ R fixé et la multiplication scalaire au sens usuel.

e) K = R, V = {f ∈ R[t] | f(−a) = −f(a) ∀a ∈ R} et la multiplication scalaire au sens usuel.

Exercice 8. Dans chacun des cas suivants, l’ensemble V est-il un K-espace vectoriel (pour les lois évidentes d’addition
et de multiplication scalaire)?

a) K = R, V = {f : R → R | f(n) ≥ 0, ∀ n ∈ Z},

b) K = R, V = {a+ bt ∈ R[t] | a, b ∈ R},

c) K = C, V = {f ∈ C[t] | f(0) ∈ R},

d) K = R, V = {f ∈ C[t] | f(0) ∈ R}.



Exercice 9. On pose A l’ensemble des fonctions de R dans R dont la dérivée est définie sur R, donc A ⊂ F(R,R),
l’anneau des fonctions de R dans R (comme défini en cours). Alors comme la somme de deux fonctions dérivables est
dérivable, le produit de deux fonctions dérivables l’est aussi, et la fonction f(x) = 1 pour tout x ∈ R est également
dérivable, A est un anneau unitaire avec les lois de + et · héritées de F(R,R). On considère l’application D : A →
F(R,R), donnée par D(f) = f ′, c’est-à-dire, D est l’application qui associe à une fonction f sa dérivée.

1. Montrer que D est un homomorphisme de groupes du groupe (A,+) dans le groupe (F(R,R),+).

2. Montrer que D n’est pas un homomorphisme d’anneaux entre les anneaux (F(R,R),+, ·) et (A,+, ·).

Exercice 10 (Facultatif). Soient d, n ∈ Z avec d ≥ 1 et n ≥ 1 où d est un diviseur de n (c’est-à-dire que n est un
multiple entier de d). Pour cet exercice on ecrira ā pour un élément de Z/dZ et [b] pour un élément de Z/nZ, pour
bien distinguer à quel ensemble chaque élément appartient. Montrer que l’application

f : Z/nZ → Z/dZ, donnée par f([b]) = b̄

est bien définie. Ensuite, montrer que f est un morphisme d’anneaux.

Exercice 11 (Facultatif). On définit une loi de composition ∗ sur l’ensemble E = R \ {0} comme suit : pour tout
x, y ∈ E on a x ∗ y = |x|y.

(i) Montrer que ∗ est associative.

(ii) Montrer qu’il existe un élément neutre e à gauche pour ∗, c’est-à-dire qu’il existe e ∈ E tel que e ∗ b = b pour
tout b ∈ E.

(iii) Montrer qu’il n’existe aucun élément neutre à droite.

(iv) Montrer que tout élément a ∈ E possède un inverse à droite, c’est-à-dire qu’il existe a′ ∈ E tel que a ∗ a′ = e, où
e est l’élément neutre à gauche trouvé dans (ii).

On remarque donc que (E, ∗) n’est pas un groupe et que l’existence d’une loi de composition associative, d’un élément
neutre à gauche et des inverses à droite n’est pas suffisant pour définir une structure de groupe.


