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1. Structures algébriques

1.1. Groupes, définitions et exemples.

Définition 1.1.1. Un groupe est un ensemble muni d’une loi de composition ∗ : G×G→

G, qui envoie (a, b) 7→ a ∗ b, tel que les conditions suivantes sont vérifiées:

• (associativité de la loi de composition) a∗ (b∗ c) = (a∗ b)∗ c pour tous a, b, c ∈ G.

• (existence de l’élément neutre à gauche) Il existe e ∈ G tel que e ∗ g = g pour

tout g ∈ G.

• (existence des inverses à gauche) Pour tout g ∈ G, il existe g∗ ∈ G tel que

g∗ ∗ g = e.

Conséquences directes de la définition: Soit (G, ∗) un groupe avec e ∈ G l’élément neutre

à gauche.

(1) Grâce à l’associativité, on écrira a ∗ b ∗ c sans parenthèses sans que cela entrâıne une

ambigüıté quelconque.

(2) Soit g ∈ G. On montre que g∗, l’inverse à gauche de g, est aussi un inverse à droite:

on a

(g∗)∗ ∗ g∗ ∗ g ∗ g∗ = (g∗)∗ ∗ e ∗ g∗ = (g∗)∗ ∗ g∗ = e.

Aussi,

(g∗)∗ ∗ g∗ ∗ g ∗ g∗ = e ∗ g ∗ g∗ = g ∗ g∗.

On a donc l’égalité g ∗ g∗ = e, et g∗ est un inverse à droite de g.

(3) L’élément e est également un élément neutre à droite: En effet, pour tout g ∈ G,

g ∗ e = g ∗ g∗ ∗ g = e ∗ g = g.

(4) L’élément e est unique: Si f ∈ G satisfait aussi f ∗ g = g pour tout g ∈ G, on a

f ∗ e = e car f est un élément neutre à gauche, et f ∗ e = f car e est un élément

neutre à droite (cf point (3)). Donc e = f .

(5) L’élément g∗ est unique. (à faire en exercice) On utilisera la notation g−1 pour

désigner cet élément (l’inverse de g).
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(6) Simplification, à gauche et à droite: pour tous a, b, c ∈ G, on a a ∗ b = a ∗ c =⇒ b = c.

En effet:

a ∗ b = a ∗ c =⇒ a−1 ∗ a ∗ b = a−1 ∗ a ∗ c =⇒ b = c.

De même,

a ∗ b = c ∗ b =⇒ a = c.

(7) Pour tous a, b ∈ G, (a ∗ b)−1 = b−1 ∗ a−1 et (a−1)−1 = a. (Exercice.)

Définition 1.1.2. 1. Un groupe (G, ∗) dans lequel la loi de composition est commutative,

c’est-à-dire que pour tous a, b ∈ G on a a ∗ b = b ∗ a, est appelé groupe abélien. Si G

n’est pas abélien, on dit que G est non abélien.

2. Soit G un groupe. On appelle l’ordre de G le cardinal de G, noté, comme pour les

ensembles, |G|, ou Card(G).

Notation 1.1.3. Soit G un groupe.

1. On écrira souvent ab pour a ∗ b dans un groupe où la loi n’est pas précisée.

2. Si G est abélien, on utilisera parfois la notation + pour désigner la loi de composition,

0 pour l’élément neutre et −g pour l’inverse de g ∈ G.

3. Soient g ∈ G et m ∈ Z. On écrit gm pour désigner
g · · · g, (m copies de g), si m > 0

g−1 · · · g−1, (|m| copies de g−1), si m < 0

e si m = 0

On vérifie que pour tous ℓ, n ∈ Z, on a gℓgn = gℓ+n et (gℓ)n = gℓn. Si le groupe est

abélien et qu’on utilise la notation additive, on écrit mg et −mg à la place de gm et

g−m.

Exemples 1.1.4. Voici quelques exemples de groupes.

1. (Z,+)

2. (R \ {0}, ·)

3. Soit X un ensemble non vide. On note Bij(X) = {f : X → X, f est bijective},

l’ensemble des applications bijectives de X dans X. On munit Bij(X) d’une loi de
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composition ◦ : Bij(X)×Bij(X) → Bij(X), qui est la composition d’applications et on

vérifie que (Bij(X), ◦) est un groupe.

4. Cas particulier: prenonsX = {1, 2 . . . , n} dans l’exemple précédent. On appelle Bij(X)

le groupe des permutations de l’ensemble X, ou le groupe symétrique de degré n, et ce

groupe est souvent noté Sn, Symn, ou simplement Sn. C’est un groupe d’ordre n!. On

indique ici une des façons de représenter les éléments de Sn. On donne un tableau dans

la première ligne duquel on trouve les entiers 1, 2, . . . , n dans l’ordre croissant, et dont

la deuxième ligne donne les images, dans l’ordre, de ces éléments par la permutation.

Donc, pour σ ∈ Sn, on écrit

σ =

 1 2 3 · · · n

σ(1) σ(2) σ(3) · · · σ(n)

 .

Par exemple, si n = 3, le groupe S3 comprend les 6 permutations :

l’élément neutre e =

1 2 3

1 2 3

 , σ1 =

1 2 3

2 1 3

 , σ2 =

1 2 3

1 3 2

 ,

σ3 =

1 2 3

3 2 1

 , σ4 =

1 2 3

2 3 1

 , et σ5 =

1 2 3

3 1 2

 .

On note que σ1σ2 = σ4 ̸= σ5 = σ2σ1, et donc S3 est un groupe non abélien.

5. Le groupe dit “trivial” qui consiste en un seul élément, G = {e}.

6. Les entiers modulo n:

Fixons un nombre naturel n ∈ N, n ̸= 0. On définit une relation sur Z:

pour tous a, b ∈ Z, on dit que a ∼ b si et seulement si n divise b − a, c’est-à-dire

qu’il existe m ∈ Z tel que b− a = nm.

Assertion: ∼ est une relation d’équivalence sur Z:

• (réflexive) Pour tout a ∈ Z, a ∼ a puisque a− a = 0 = n · 0.

• (symétrique) Pour a, b ∈ Z, si a ∼ b, on a b− a = nm pour un certain m ∈ Z, et

donc a− b = n(−m) et par conséquent b ∼ a.
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• (transitive) Pour a, b, c ∈ Z, si a ∼ b et b ∼ c, alors il existe m, ℓ ∈ Z tel que

b− a = mn et c− b = ℓn, et donc c− a = c− b+ b− a = ℓn+mn = (ℓ+m)n et

a ∼ c.

On note a la classe d’équivalence de a, c’est-à-dire a = {b ∈ Z | a ∼ b}. Pour

b ∈ Z tel que a ∼ b, on écrit a ≡ b mod n, on dit que a est congru à b modulo n,

et on appelle la classe d’équivalence de a la classe de congruence de a modulo n. On

écrit Z/nZ pour désigner l’ensemble des classes d’équivalence de Z par rapport à cette

relation.

On remarque que la notation a a un défaut, dans le sens où le n n’y apparâıt pas.

Si on souhaite travailler avec des classes de congruence modulo différents entiers, on

utilisera la notation [a]n pour indiquer la classe de a modulo n.

Proposition 1.1.5. Card(Z/nZ) = n

Preuve. Pour chaque entier a ∈ Z, la division euclidienne de a par n donne l’existence

de q, r ∈ Z avec 0 ≤ r < n et a = qn + r. Donc n divise a − r = qn et a ∼ r. On

déduit que Z/nZ = {0, 1, . . . , n− 1}, et pour tous 0 ≤ r < s < n, on a 0 < s− r < n,

et donc r ̸= s. □

Structure de groupe de Z/nZ: On munit Z/nZ d’une loi de composition qui lui

donnera la structure de groupe abélien.

Pour a, b ∈ Z, on pose a + b := a+ b. Il faut montrer que l’association (a, b) 7→

a + b = a+ b définit une application de Z/nZ × Z/nZ → Z/nZ. Il est clair que

a+ b ∈ Z/nZ.

Supposons que a = a′ et b = b′ pour a, a′, b, b′ ∈ Z. Donc il existe ℓ,m ∈ Z tels que

a−a′ = ℓn et b−b′ = mn. Alors (a+b)−(a′+b′) = (a−a′)+(b−b′) = ℓn+mn = (ℓ+m)n

et donc, a+ b = a′ + b′. L’application + est bien définie. Nous avons donc une loi de

composition sur Z/nZ. On vérifie aisément l’associativité de la loi (qui suit directement

de l’associativité de l’addition dans Z). L’élément neutre est 0, et l’inverse de a, pour

a ∈ Z, est l’élément −a = n− a.

1.2. Sous-groupes.
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Définition 1.2.1. Soit G un groupe. Une partie H de G est un sous-groupe de G si

la loi de composition restreinte à H munit H d’une structure de groupe. Si H est un

sous-groupe de G, on écrit H ≤ G.

Proposition 1.2.2. Soit G un groupe et H ⊆ G une partie de G. Alors H est un

sous-groupe de G si et seulement si les conditions suivantes sont vérifiées:

(i) H est non vide.

(ii) Pour tous h, k ∈ H, on a hk ∈ H.

(iii) Pour tout h ∈ H, on a h−1 ∈ H.

Preuve. Tout d’abord, on suppose que H est un sous-groupe de G. Comme H possède un

élément neutre, H est non vide. Aussi, comme la loi de composition de G se restreint à

une loi de composition sur H, pour tous h, k ∈ H, l’image de la loi (h, k) 7→ hk appartient

à H. Maintenant, on montre que l’élément neutre de H, eH , est égal à e, l’élément neutre

de G. En effet, nous avons eHe = eH = eHeH et par simplification à gauche on obtient

que e = eH . Maintenant, pour h ∈ H, soit h∗ ∈ H tel que h∗h = eH = e. On a aussi

h−1h = e et par simplification à droite, on obtient que h∗ = h−1 et h−1 ∈ H.

Maintenant, supposons que les conditions (i), (ii) et (iii) soient vérifiées. On montre

que la restriction de la loi de composition sur G au sous-ensemble H munit H d’une

structure de groupe. On a par (ii) que pour tous h, k ∈ H, hk ∈ H. Cela veut dire que

l’image de la loi de composition G×G → G de tout couple (a, b) ∈ H ×H appartient à

H. Donc la restriction définit bien une loi de composition sur H. La loi est associative

car c’est déjà le cas dans G. Par (i), il existe h ∈ H. Par (iii), h−1 ∈ H et par (ii),

hh−1 = e ∈ H. Donc H possède un élément neutre, notamment e, l’élément neutre de G,

et par (iii), H possède les inverses. □

Exemples 1.2.3. Voici quelques exemples de sous-groupes.

1. Soit G un groupe quelconque. Alors H = {e} et H = G sont des sous-groupes de G.

2. {1,−1} ≤ (R \ {0}, ·).

3. H = {entiers pairs} ≤ (Z,+).

4. Soit G = Z/6Z. Alors H = {0, 2, 4} est un sous-groupe. (Y en a-t-il d’autres?)
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5. Soit G = S3, le groupe symétrique de degré 3. AlorsH = {e, σ4, σ5} est un sous-groupe

de G (voir la notation introduite dans l’exemple 1.1.4(4)).

6. Soit G un groupe. On pose Z(G) := {z ∈ G |za = az pour tout a ∈ G}, le centre de

G. On montre que Z(G) est un sous-groupe de G. (exercice)

1.3. Morphismes de groupes.

Définition 1.3.1. (1) Soient (G1, ·), (G2, ∗) des groupes. Un homomorphisme (ou

simplement morphisme) de groupes de G1 dans G2 est une application ϕ : G1 →

G2, telle que ϕ(x · y) = ϕ(x) ∗ ϕ(y) pour tous x, y ∈ G1.

(2) Un endomorphisme d’un groupe G est un homomorphisme de groupes ϕ : G→ G.

(3) Un isomorphisme entre deux groupes G1 et G2 est un homomorphisme de groupes

bijectif.

(4) Un automorphisme d’un groupe G est un endomorphisme bijectif de G.

(5) S’il existe un isomorphisme de groupes ϕ : G1 → G2, on dit que G1 est isomorphe

à G2 et on écrit G1
∼= G2.

Exemples 1.3.2. Voici quelques exemples de morphismes de groupes.

1. Soit G un groupe. Alors l’application identité id : G → G est un morphisme de

groupes, tout comme l’application ϕ : G→ {e}.

2. Soit H =


1 2 3

2 3 1

 ,

1 2 3

3 1 2

 ,

1 2 3

1 2 3


 ≤ S3. On définit ϕ : Z/3Z → H

par ϕ(0) = e, ϕ(1) =

1 2 3

2 3 1

 et ϕ(2) =

1 2 3

3 1 2

. On vérifie que ϕ est un

isomorphisme de groupes.

3. ϕ : Z → (R \ {0}, ·) et ϕ(m) = (
√
2)m.

4. ϕ : Z → Z/nZ et ϕ(m) = m.

Lemme 1.3.3. Soit ϕ : G1 → G2 un morphisme de groupes de (G1, ·) dans (G2, ∗), et

soit a ∈ G1. Alors

(i) ϕ(eG1
) = eG2

, où eGi
est l’élément neutre de Gi pour i = 1, 2,

(ii) ϕ(a−1) = ϕ(a)−1
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(iii) Pour n ∈ Z, ϕ(an) = ϕ(a)n.

Preuve. (i) Pour tout a ∈ G1, eG2 ∗ ϕ(a) = ϕ(a) = ϕ(eG1 · a) = ϕ(eG1) ∗ ϕ(a). La

simplification à droite donne le résultat. Les énoncés (ii) et (iii) sont laissés en exercice.

□

1.3.1. Morphismes et sous-groupes.

Définition 1.3.4. Le noyau d’un homomorphisme de groupes ϕ : G1 → G2 est l’ensemble

ker(ϕ) = {x ∈ G1 | ϕ(x) = eG2}.

On désigne l’image de ϕ par im (ϕ) = {ϕ(g) | g ∈ G1} ⊆ G2.

Proposition 1.3.5. Soit ϕ : G1 → G2 un homomorphisme de groupes. On a

(i) ker(ϕ) ≤ G1, et

(ii) im (ϕ) ≤ G2.

Preuve. (i) exercice.

(ii) Comme G1 est non vide et ϕ est une application de G1 dans G2, im (ϕ) est non

vide. Soient maintenant a, b ∈ im (ϕ), et x, y ∈ G1 tels que ϕ(x) = a et ϕ(y) = b. Alors

ab = ϕ(x)ϕ(y) = ϕ(xy). Comme G1 est un groupe, xy ∈ G1 et ϕ(xy) ∈ im (ϕ). De même,

on a que x−1 ∈ G1 et, de ce fait, a−1 = ϕ(x)−1 = ϕ(x−1) ∈ im (G1), où la dernière égalité

provient du Lemme 1.3.3. Par conséquent, im (ϕ) ≤ G2. □

Exemple 1.3.6.

Soit n ∈ N, n ≥ 1 et soit ϕ : Z → Z/nZ le morphisme défini par ϕ(a) = a. Alors

ker(ϕ) = {a ∈ Z | a = 0} = {a ∈ Z | n divise a} = nZ.

1.4. Anneaux.

Définition 1.4.1. Un anneau unitaire (A,+, ·) est un ensemble muni de deux lois de

composition + et · :

(†)
+ : A×A → A · : A×A → A

(a, b) 7→ a+ b (a, b) 7→ a · b
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satisfaisant les axiomes suivants :

(1) (A,+) est un groupe abélien.

(2) a · (b · c) = (a · b) · c ∀a, b, c ∈ A. (associativité de ·)

(3) il existe 1A ∈ A tel que 1A · a = a · 1A = a∀a ∈ A. (élément neutre pour ·)

(4) (a+ b) · c = (a · c) + (b · c) ∀a, b, c ∈ A. (distributivité I)

(5) a · (b+ c) = (a · b) + (a · c) ∀a, b, c ∈ A. (distributivité II)

Cachée dans (†), la stabilité des lois de composition est une propriété essentielle d’un

anneau.

Remarque 1.4.2. Soit (A,+, ·) un anneau unitaire.

(1) On écrira souvent ab à la place de a · b, et on parlera de la “multiplication” dans A.

(2) Un ensemble A muni de deux lois de composition + et ·, qui satisfont les axiomes (1),

(2), (4) et (5) s’appelle un anneau. Nous ne considérerons que les anneaux unitaires

ici, et nous nous permettons de parler simplement des anneaux quand nous voulons

dire anneaux unitaires.

(3) On écrit 0 pour l’élément neutre par rapport à +, et −a pour l’inverse de a par

rapport à +, pour tout a ∈ A. Pour l’opération +, on parlera de “l’addition” dans A.

(4) Les inverses multiplicatifs n’existent pas nécessairement. Pour a ∈ A, s’il existe b ∈ A

tel que ab = 1A = ba, on dit que a est inversible et que b est l’inverse de a. Et souvent,

on écrit b = a−1.

(5) Si pour tous a, b ∈ A, on a ab = ba, alors on dit que A est un anneau commutatif.

(6) Convention. On suppose que 1A ̸= 0, et donc que A ̸= {0}.

Exemples 1.4.3. • (Z,+, ·), (Q,+, ·), (R,+, ·), où + et · sont les opérations usuelles,

sont des anneaux commutatifs.

• Soit nZ = {nz : z ∈ Z} pour n ∈ N et n ≥ 1 (avec la multiplication et l’addition

usuelles de nombres réels). Alors, (nZ,+, ·) n’est pas un anneau pour n ≥ 2, car

il ne possède aucun élément neutre pour la multiplication.

• Soit E un ensemble non vide et (A,+, ·) un anneau. On définit

App(E,A) :=
{
f | f est une application de E vers A

}
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et les opérations

(f + g)(x) := f(x) + g(x), (f · g)(x) := f(x)g(x).

Alors, (App(E,A),+, ·) est un anneau (non commutatif, siA est non commutatif).

• Soit n ∈ N et n ≥ 2. On munit l’ensemble Z/nZ des entiers modulo n d’une

deuxième loi de composition: on associe à la paire (a, b) l’élement ab. Il faut

vérifier que cette association définit bien une application de Z/nZ × Z/nZ dans

Z/nZ, donnée par (a, b) 7→ ab. Il est clair que ab ∈ Z/nZ. Maintenant, on suppose

que pour a, a′, b, b′ ∈ Z, on a a = a′ et b = b′, c’est-à-dire, qu’il existe k, ℓ ∈ Z tels

que a′ = a+ nk et b′ = b+ nℓ. On considère a′b′ − ab = (a+ nk)(b+ nℓ)− ab =

ab+ nℓa+ nkb+ n2kℓ− ab = n(ℓa+ kb+ nkℓ). On déduit que n divise a′b′ − ab,

et par la définition de Z/nZ, on a ab = a′b′, ce qui montre que nous avons une

application bien définie · : Z/nZ×Z/nZ → Z/nZ donnée par (a, b) 7→ a · b := ab.

Les autres axiomes de la définition 1.4.1 sont faciles à vérifier. (Z/nZ,+, ·) est

donc un anneau commutatif.

Lemme 1.4.4. Soit (A,+, ·) un anneau. Alors,

(i) 0 · a = a · 0 = 0 pour tout a ∈ A,

(ii) (−a)b = a(−b) = −(ab) pour tous a, b ∈ A,

(iii) (−a)(−b) = ab pour tous a, b ∈ A.

Preuve.

(i) Par l’axiome de distributivité I,

0 · a = 0 · a+ 0 = 0 · a+ 0 · a+ (−(0 · a)) = (0 + 0) · a+ (−(0 · a)) = 0 · a+ (−(0 · a)) = 0.

De la même manière, on montre que a · 0 = 0.

(ii) Par les axiomes de distributivité I+II et la partie (i) du lemme,

ab+ (−a)b = (a+ (−a))b = 0 · b = 0
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et

ab+ a(−b) = a(b+ (−b)) = a · 0 = 0.

Maintenant, par l’unicité des inverses additifs, on a que (−a)b = −(ab) et a(−b) =

−(ab).

(iii) Ici, on applique (ii) deux fois et on utilise le fait que −(−a) = a pour obtenir

(−a)(−b) = −(a(−b)) = −(−(ab)) = ab.

Le lemme 1.4.4 permet d’écrire −ab sans ambigüıté.

Définition 1.4.5. Soient (A,+, ·) et (B,⊕,⊙) deux anneaux, avec éléments neutres

1A, 1B , respectivement, par rapport à ·, et ⊙. Un morphisme d’anneaux est une applica-

tion f : A→ B telle que

f(a+ b) = f(a)⊕ f(b), f(a · b) = f(a)⊙ f(b), ∀a, b ∈ A,

et

f(1A) = 1B .

Si de plus f est bijective, on dit que f est un isomorphisme d’anneaux et que les anneaux

(A,+, ·) et (B,⊕,⊙) sont isomorphes. On note (A,+, ·) ∼= (B,⊕,⊙), ou plus simplement

A ∼= B (en tant qu’anneaux).

Définition 1.4.6. Soit (A,+, ·) un anneau et U ⊆ A. On dit que (U,+, ·) est un sous-

anneau de A si

(i) (U,+) est un sous-groupe de (A,+),

(ii) si a, b ∈ U alors a · b ∈ U ,

(iii) L’élément neutre multiplicatif 1A de A appartient à U .

Lemme 1.4.7. Soient (A,+, ·) un anneau et U ⊆ A. Alors, les assertions suivantes sont

équivalentes:

(i) (U,+, ·) est un sous-anneau de (A,+, ·)

(ii) 1A ∈ U , et pour tous a, b ∈ U , on a a− b ∈ U et a · b ∈ U .
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Preuve. (i) ⇒ (ii) découle de la définition d’un sous-anneau.

(ii) ⇒ (i) Comme 1A ∈ U , U est non vide et comme 1A − 1A = 0, on a que 0 ∈ U . Si

b ∈ U alors −b = 0− b ∈ U . Si a, b ∈ U , alors a+ b = a− (−b) ∈ U . Donc (U,+) est un

sous-groupe de (A,+). Si a, b ∈ U , alors a · b ∈ U d’après (ii) et donc (U,+, ·) est bien

un sous-anneau de (A,+, ·).

1.5. Corps, corps finis. Un corps est un anneau unitaire commutatif dans lequel tout

élément non nul est inversible par rapport à la loi de composition ·.

Définition 1.5.1. Un corps (K,+, ·) est un anneau unitaire (avec l’élément neutre mul-

tiplicatif 1) avec K ̸= {0} tel que:

(i) K est commutatif, c’est-à-dire que pour tous a, b ∈ K, on a a · b = b · a.

(ii) pour tout a ∈ K \ {0}, il existe a−1 ∈ K tel que a · a−1 = a−1 · a = 1.

On remarque que (K,+, ·) est un corps si et seulement si (K,+) et (K \ {0}, ·) sont

des groupes abéliens et (a+ b) · c = a · c+ b · c pour tous a, b, c ∈ K.

Une liste de tous les axiomes d’un corps (K,+, ·) :

(1) a+ b ∈ K, a · b ∈ K ∀a, b ∈ K. (stabilité)

(2) a+ b = b+ a, ∀a, b ∈ K. (commutativité+)

(3) a+ (b+ c) = (a+ b) + c, ∀a, b, c ∈ K. (associativité+)

(4) Il existe 0 ∈ K tel que 0 + a = a pour tout a ∈ K. (élément neutre+)

(5) Pour tout a ∈ K, il existe −a ∈ K tel que a+ (−a) = 0. (inverse+)

(6) a · b = b · a, ∀a, b ∈ K. (commutativité·)

(7) a · (b · c) = (a · b) · c, ∀a, b, c ∈ K. (associativité·)

(8) Il existe 1 ∈ K tel que 1 · a = a pour tout a ∈ K. (élément neutre·)

(9) Pour tout a ∈ K \ {0}, il existe a−1 ∈ K tel que a · a−1 = 1. (inverse·)

(10) (a+ b) · c = a · c+ b · c, ∀a, b, c ∈ K. (distributivité I)

(11) a · (b+ c) = a · b+ a · c, ∀a, b, c ∈ K. (distributivité II)

En fait, la commutativité de · implique que les deux lois de distributivité I et II sont

équivalentes.

Exemples :
12



• (Q,+, ·), (R,+, ·), où + et · sont les opérations usuelles, sont des corps.

• (Z,+, ·) n’est pas un corps parce qu’il n’y a pas d’inverse multiplicatif en général.

Un morphisme (isomorphisme) de corps est simplement un morphisme (isomorphisme)

des anneaux sous-jacents.

Proposition 1.5.2. Soit n ∈ N, n ≥ 2. Si n est premier, alors tout élément de Z/nZ

différent de 0 est inversible.

Preuve. On suppose n = p un nombre premier. Soit maintenant a ∈ Z tel que a ̸= 0.

Alors p ne divise pas a et donc pgcd(a, p) = 1. Par l’identité de Bézout, il existe c, d ∈ Z

tels que ac+ pd = 1. Donc ac− 1 = −pd, p divise ac− 1, et on déduit que ac ≡ 1 mod p.

Par conséquent, ac = 1 et a est inversible.

Corollaire 1.5.3. Soit p ∈ N un nombre premier. Alors l’anneau Z/pZ est un corps.

Notation 1.5.4. On écrit Fp pour désigner le corps fini Z/pZ.

1.6. Le corps des nombres complexes. Un nombre complexe est une paire ordonnée

(couple) (x, y) où x, y ∈ R. En définissant l’unité imaginaire i, on écrit

x+ iy

au lieu de (x, y). L’ensemble des nombres complexes se note

C = {x+ iy : x, y ∈ R}.

Quelques conventions : Soit z = x+ iy ∈ C.

• On note x = Re(z) et on dit que x est la partie réelle de z.

• On note y = Im(z) et on dit que y est la partie imaginaire de z.

• Si y = 0, il est usuel d’identifier le nombre complexe z avec le nombre réel x, et

on dit que z est réel. De plus, on n’écrit pas le terme i0.

• Si x = 0, on dit que z est imaginaire pur ou totalement imaginaire, et on n’écrit

pas le terme 0 dans l’expression 0 + iy.

• Si y = ±1, on écrit x± i (au lieu de x+ i(±1)).
13



On définit une loi + (addition des nombres complexes) et une loi · (multiplication des

nombres complexes) sur C :

+ : C× C → C, (x1 + iy1) + (x2 + iy2) := (x1 + x2) + i(y1 + y2),

· : C× C → C, (x1 + iy1) · (x2 + iy2) := (x1x2 − y1y2) + i(x1y2 + y1x2).

Exemple 1.6.1. On a

(1 + i) + (−2 + i) = −1 + 2i

et

(1 + i)(−2 + i) = −3− i.

Comme (C,+) hérite des propriétés de (R,+), on voit que (C,+) est un groupe abélien.

L’élément neutre est 0 = 0 + 0i, et l’inverse additif de z = x+ iy ∈ C est −z := −x− iy.

On définit la soustraction des nombres complexes par

z1 − z2 := z1 + (−z2) = (x1 − x2) + i(y1 − y2).

C’est laborieux de vérifier directement les propriétés de la multiplication. Néanmoins,

on peut montrer:

Théorème 1.6.2. L’ensemble C muni des opérations + et · définies ci-dessus est un

corps.

On constate que i2 = i · i = −1. Cela suffit pour retrouver la loi de multiplication :

(x1 + iy1) · (x2 + iy2) = x1x2 + iy1x2 + ix1y2 + i2y1y2

= x1x2 + iy1x2 + ix1y2 − y1y2

= (x1x2 − y1y2) + i(x1y2 + y1x2).

Remarque 1.6.3. Grâce au théorème précédent, on a que la multiplication est commu-

tative, et on peut écrire aussi bien x+iy que x+yi car iy = (0+i)·(y+i0) = (y+i0)·(0+i)

Définition 1.6.4. Le conjugué d’un nombre complexe z = x+iy est le nombre complexe

z défini par z := x− iy.
14



Lemme 1.6.5. Soient z1, z2, z ∈ C. Alors,

(i) z1 + z2 = z1 + z2

(ii) z1 · z2 = z1 · z2

(iii) z = z

(iv) Re(z) = 1
2 (z + z)

(v) Im(z) = 1
2i (z − z).

Preuve. Les preuves de ces propriétés sont des exercices faciles.

Les parties (i)–(iii) du lemme 1.6.5 impliquent que la conjugaison est un isomorphisme

du corps (C,+, ·) dans lui-même.1

Définition 1.6.6. Le module d’un nombre complexe z = x+iy est le nombre réel positif

|z| défini par |z| :=
√
x2 + y2.

Lemme 1.6.7. Soient z1, z2, z ∈ C. Alors,

(i) zz = |z|2

(ii) z−1 = z
|z|2 (z ̸= 0)

(iii) z−1 = z−1 (z ̸= 0)

(iv) |z1 · z2| = |z1| · |z2|

(v) |z1+z2| ≤ |z1|+ |z2| avec égalité si et seulement si il existe α ≥ 0 tel que z1 = αz2

ou z2 = αz1.

Preuve. (i). zz = (x+ iy)(x− iy) = x2 + y2 + i(xy − yx) = x2 + y2 = |z|2.

(ii) découle de (i) et (iii) découle de (ii).

(iv). En utilisant le lemme 1.6.5 et la commutativité de la multiplication complexe, on

obtient

|z1 · z2|2 = z1 · z2 · z1 · z2 = z1 · z2 · z1 · z2 = z1 · z1 · z2 · z2 = |z1|2 · |z2|2.

1Un isomorphisme d’une structure algébrique dans elle-même est dit automorphisme.
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(v). L’inégalité découle de

|z1 + z2|2 = (z1 + z2)(z1 + z2) = (z1 + z2)(z1 + z2)

= |z1|2 + z2z1 + z1z2 + |z2|2 = |z1|2 + 2Re(z1z2) + |z2|2

≤ |z1|2 + 2 |z1||z2|+ |z2|2 = |z1|2 + 2 |z1||z2|+ |z2|2 = (|z1|+ |z2|)2.

On a utilisé le fait que le module est toujours supérieur ou égal à la partie réelle. L’inégalité

ci-dessus devient une égalité si Re(z1z2) = |z1z2|, c-à-d si β = z1z2 est réel positif. Si

z2 = 0, on a bien z2 = αz1 avec α = 0. Si z2 ̸= 0, alors

z1z2z2 = βz2 ⇒ z1 =
βz2
|z2|2

= αz2 avec α =
β

|z2|2
≥ 0.

La réciproque est évidente.

La division d’un nombre complexe z1 par un nombre complexe z2 ̸= 0 est définie par

z1/z2 := z1z
−1
2 . D’après le lemme 1.6.7 (ii), on a

z1
z2

=
z1z̄2
|z2|2

.

Par exemple,

2 + 3i

1 + i
=

(2 + 3i)(1− i)

1 + 1
=

5 + i

2
=

5

2
+

1

2
i.

1.6.1. Plan complexe et forme polaire. On note que nous n’utiliserons pas la matière de

ce paragraphe ni du paragraphe §1.7 dans le cours d’algèbre linéaire ce semestre, mais ce

sera repris dans les cours de physique et d’analyse.

Par définition, les nombres complexes C sont des couples de nombres réels. Pour cette

raison, tout nombre complexe correspond uniquement à un vecteur dans le plan R2 (qu’on

appelera ici plan complexe). La somme des nombres complexes correspond à la somme

des vecteurs, et la conjugaison correspond à la réflexion par rapport à l’axe réel, voir

figure 1.
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Figure 1. L’addition et le conjugué dans la plan complexe.

Soit z = x+ iy ∈ C \ {0}. En notant r =
√
x2 + y2 > 0 la longueur, et θ = arctan y

x ∈

]− π, π] l’angle du vecteur (x, y) dans la plan complexe, on peut écrire

(x, y) = (r cos θ, r sin θ).

Ainsi, on a

z = x+ iy = r cos θ + ir sin θ = r(cos θ + i sin θ),

où θ est défini à 2kπ près avec k ∈ Z. On l’appelle la forme polaire de z. L’angle

θ = arg(z) est l’argument de z.

Par les identités trigonométriques, la forme polaire permet de multiplier facilement

deux nombres complexes:

z1z2 = ρ1(cosφ1 + i sinφ1) · ρ2(cosφ2 + i sinφ2)

= ρ1ρ2
(
cos(φ1 + φ2) + i sin(φ1 + φ2)

)
.(1)

Alors, le produit z1z2 représente géométriquement une multiplication de la longueur de

z1 par ρ2 et une rotation anti-horaire de z1 d’angle φ2.

Lemme 1.6.8 (Formule de Moivre). Pour tous r > 0, θ ∈ R et n ∈ N, on a

(
r(cos θ + i sin θ)

)n
= rn

(
cos(nθ) + i sin(nθ)

)
.
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Preuve. Par récurrence utilisant (1).

1.7. La fonction exponentielle complexe.

Définition 1.7.1. Pour z = x+ iy ∈ C, on définit

ez = exp(z) := ex(cos y + i sin y) = eRez(cos(Imz) + i sin(Imz))

où ex est la fonction exponentielle réelle usuelle.

Propriétés de l’exponentielle:

(1) |ez| = ex = eRez

(2) arg(ez) = Imz (à 2kπ près avec k ∈ Z)

(3) si Imz = 0, on a ez = eRez

(4) ez+2kπi = ex
(
cos(y + 2kπ) + i sin(y + 2kπ)

)
= ez pour tout k ∈ Z

(5) ew+z = ew · ez pour tous w, z ∈ C

La formule d’Euler s’écrit, pour θ ∈ R,

eiθ = cos θ + i sin θ.

En particulier pour θ = π on obtient l’identité d’Euler

eiπ + 1 = 0.

1.8. Anneaux de polynômes. Soit (A,+, ·) un anneau (nous utiliserons la juxtaposi-

tion pour indiquer la loi de composition · dans A).

Soit A(N) l’ensemble des suites ordonnées (a0, a1, . . .) d’éléments de A avec ai ̸= 0 pour

un nombre fini de i, autrement dit

A(N) := {(a0, a1, . . .) | ai ∈ A pour tout i et {i ≥ 0 | ai ̸= 0} est fini}.

On note que deux suites (a0, a1, . . .), (b0, b1, . . .) sont égales si et seulement si ai = bi pour

tout i ≥ 0.

On définit deux lois de composition ⊕ et ∗ sur A(N):
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(a0, a1, . . .)⊕ (b0, b1, . . .) := (a0 + b0, a1 + b1, . . .);

(a0, a1, . . .) ∗ (b0, b1, . . .) := (c0, c1, . . .), où cm =
∑

i+j=m

aibj pour m ≥ 0.

Soient M ∈ N tel que ai = 0 pour i > M , et N ∈ N tel que bj = 0 pour j > N . Alors

am + bm = 0 pour m > max{M,N}, et cm = 0 pour m > M +N , car pour tous i, j avec

i+ j = m > M +N , soit on a i > M soit on a j > N . On a donc soit ai = 0, soit bj = 0.

Par conséquent (a0, a1, . . .)⊕ (b0, b1, . . .) ∈ A(N) et (a0, a1, . . .) ∗ (b0, b1, . . .) ∈ A(N).

On note que (A(N),⊕) est un groupe abélien avec élément neutre 0 = (0, 0, . . .), l’inverse

de (a0, a1, . . .) est (−a0,−a1, . . .), et l’associativité et la commutativité de ⊕ sont héritées

de celles de A.

L’élément neutre pour ∗:

(1, 0, 0, . . .) ∗ (a0, a1, . . .) = (c0, c1, . . .) avec cm =
∑

i+j=m

biaj

où b0 = 1 et bi = 0 pour i > 0. Donc cm = b0am = am pour tout m ≥ 0, d’où

(1, 0, 0, . . .) ∗ (a0, a1, . . .) = (a0, a1, . . .)

et de même pour (a0, a1, . . .) ∗ (1, 0, 0, . . .). L’élément neutre pour ∗ est alors (1, 0, 0, . . .).

On vérifie maintenant l’associativité de ∗:

Soient ai, bi, di ∈ A, et posons cℓ =
∑

i+j=ℓ aibj pour ℓ ≥ 0. Alors

((a0, a1, . . .) ∗ (b0, b1, . . .)) ∗ (d0, d1, . . .) = (c0, c1, . . .) ∗ (d0, d1, . . .) = (f0, f1, . . .),

où

fm =
∑

ℓ+k=m

cℓdk =
∑

ℓ+k=m

(
∑

i+j=ℓ

aibj)dk =
∑

i+j+k=m

(aibj)dk

=
∑

i+j+k=m

ai(bjdk) =
∑

i+r=m

ai(
∑

j+k=r

bjdk).

On pose (b0, b1, . . .) ∗ (d0, d1, . . .) = (s0, s1, . . .), alors sr =
∑

j+k=r bjdk et on déduit que

(a0, a1, . . .) ∗ ((b0, b1, . . .) ∗ (d0, d1, . . .)) = (a0, a1, . . .) ∗ (s0, s1, . . .) = (g0, g1, . . .), où
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gm =
∑

i+r=m aisr pour m ≥ 0, c’est-à-dire gm = fm, ce qui établit l’associativité de ∗.

On laisse la vérification des propriétés de distributivité comme exercice.

Notation 1.8.1. On écrit

• 0 = (0, 0, . . .)

• t := (0, 1, 0, 0, . . .)

• 1 = (1, 0, 0, . . .)

• pour a ∈ A, a = (a, 0, 0, . . .)

On remplace ∗ par ·, ou simplement par la juxtaposition d’éléments, et ⊕

par +. Enfin, on désigne l’anneau (AN,⊕, ∗) par A[t]; on l’appelle l’anneau des

polynômes à coefficients dans A (voir Proposition 1.8.2).

Conséquences de cette nouvelle notation:

(1) Pour a ∈ A, (a, 0, 0, . . .) = a · 1 = a.

(2) Pour a ∈ A, (0, a, 0, 0, . . .) = (a, 0, 0, . . .) ∗ (0, 1, 0, . . .) = at.

(3) Pour m ∈ N, m ≥ 1, (0, 0, . . . , 1, 0, 0, . . .) = tm où la valeur 1 est à la (m + 1)-ième

place.

(4) Pour ai ∈ A, i ∈ N et ak = 0 pour tout k > m, on a (a0, a1, . . .) = a0 + a1t+ a2t
2 +

· · ·+ amt
m.

Proposition 1.8.2. L’ensemble A[t], avec + et ·, est un anneau. Si A est commutatif,

alors A[t] est commutatif. L’application ϕ : A → A[t] définie par ϕ(a) = (a, 0, 0, . . .) est

un morphisme d’anneaux injectif.

Remarque 1.8.3. Etant donné le morphisme ϕ de la proposition précédente, on identifie

A avec ϕ(A), et A devient un sous-anneau de l’anneau de polynômes A[t].

Définition 1.8.4. Soit A un anneau.

(1) Soit f = a0 + a1t+ · · ·+ amt
m ∈ A[t] avec am ̸= 0. On dit que f est de degré m, et

on écrit deg(f) = m. On pose deg(0) = −∞.

(2) Pour f ∈ A[t], si deg(f) = m et am = 1, on dit que f est unitaire.

(3) Si deg(f) = 0, ou si f = 0, on dit que f est un polynôme constant.
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1.8.1. Polynômes à coefficients dans un corps. Si K est un corps, en particulier (K,+, ·)

est un anneau commutatif, on sait d’après la proposition 1.8.2 que l’ensemble des polynômes

à coefficients dans K, muni de l’addition et de la multiplication des polynômes, est un

anneau commutatif.

Définition 1.8.5. Soit K un corps, sous-anneau d’un anneau A. Soit p ∈ K[t] avec

p(t) = a0 + a1t + · · · + ant
n. L’évaluation de p en s ∈ A, notée p(s), est l’élément de A

suivant:

a0 + a1 · s+ · · ·+ an · sn, où sj := s · s · · · s︸ ︷︷ ︸
j fois

.

On peut montrer (et ici on admettra) que l’application d’évaluation en c, p 7→ p(c) est

un morphisme d’anneaux de K[t] dans A.

Exemple 1.8.6.
Soient K = R, A = C, p(t) = t2 + 1 ∈

R[t].

p(i) = i2 + 1 = −1 + 1 = 0

p(i + 1) = (i + 1)2 + 1

= i2 + 2i + 1 + 1 = 2i + 1

Définition 1.8.7. Soit K un corps, sous-anneau d’un anneau A. Un élément c ∈ A

s’appelle une racine de p ∈ K[t] si p(c) = 0.

Théorème 1.8.8 (division euclidienne des polynômes). Soient p, q ∈ K[t] avec q ̸= 0.

Alors, il existe un unique couple de polynômes g, r ∈ K[t] tels que

p = gq + r avec deg r < deg q.

Preuve. (Facultative)

Existence. Par récurrence sur n = deg p. Si n < deg q, alors g = 0 et r = p

conviennent. (A noter que ceci inclut le cas p = 0.) Supposons le résultat montré pour

tout polynôme de degré strictement inférieur à n et n ≥ m := deg q. On pose

p(t) = a0 + a1t+ · · ·+ ant
n, q(t) = b0 + b1t+ · · · bmtm.
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Posons f(t) = p(t)− an/bm · tn−mq(t), alors deg f < n. Par hypothèse de récurrence, on

a

f = g1q + r avec deg r < deg q.

Alors,

p(t) = g1(t)q(t) + r +
an
bm

· tn−mq(t) =
(
g1(t) +

an
bm

· tn−m︸ ︷︷ ︸
=:g(t)

)
q(t) + r,

où g, r possèdent les propriétés demandées.

Unicité. Si p = g1q + r1 = g2q + r2, alors

(g1 − g2)q = r2 − r1 avec deg(r2 − r1) < deg q.

Si g1 − g2 ̸= 0,

deg((g1 − g2)q) = deg(g1 − g2) + deg q ≥ deg q,

ce qui est absurde. Donc g1 = g2, et par suite r1 = r2.

Corollaire 1.8.9. Soient p ∈ K[t] et c ∈ K. Alors c est une racine de p si et seulement

si t− c divise p (sans reste), c-à-d p(t) = g(t)(t− c) pour un certain g ∈ K[t].

Preuve. L’assertion découle du théorème 1.8.8 en posant q(t) = t− c et en utilisant le

fait que l’évaluation en c est un morphisme d’anneaux..

Définition 1.8.10. On dit qu’un polynôme p ∈ K[t] de degré n ≥ 1 est scindé si

p(t) = α(t− c1)(t− c2) · · · (t− cn), α, c1, . . . , cn ∈ K.

Théorème 1.8.11 (Théorème fondamental de l’algèbre). Tout polynôme à coefficients

dans C est scindé.

Preuve. Admis sans preuve.

Remarque 1.8.12. La suite et la fin de ce chapitre seront utilisées au deuxième semestre,

et par conséquent, ne sont pas couvertes au premier semestre.

Vocabulaire: Soient p, q ∈ K[t] avec q ̸= 0. On dit
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• que q divise p,

• que q est un diviseur de p,

• que p est divisible par q, ou

• que p est un multiple de q,

si le reste de la division de p par q est nul.

Définition 1.8.13. Un polynôme p ∈ K[t] est dit irréductible (sur K) si

(i) deg p ≥ 1

(ii) les seuls diviseurs de p sont les polynômes de degré 0 (les polynômes constants)

et c · p(t) avec c ∈ K \ {0}.

Exemples :

(1) Tout polynôme de degré 1 est irréductible.

(2) Le polynôme t2 + 1 ∈ R[t] est irréductible.

(3) Le polynôme at2 + bt+ c ∈ R[t] est irréductible si et seulement si b2 − 4ac < 0.

Théorème 1.8.14. Tout polynôme p ∈ K[t] de degré ≥ 1 peut s’écrire de manière unique

(à permutation des facteurs près)

(2) p = α g1g2 · · · gr où α ∈ K

et gi, i = 1, . . . , r, sont des polynômes irréductibles unitaires.

Preuve. (Facultative)

Sans perte de généralité, on peut supposer que p soit unitaire.

Existence. Si p est irréductible, on obtient directement (2). Sinon, on peut écrire

p = p1p2, où p1, p2 sont des polynômes de degré strictement inférieur à deg p. Ainsi, on

obtient (2) par la récurrence.

Unicité. Soit p = g1g2 · · · gr = h1h2 · · ·hs, où hi, i = 1, . . . , s, sont des polynômes

irréductibles unitaires. Comme h1 est irréductible, h1 divise un des gi. Mais, comme gi

est aussi irréductible, h1 = gi. Soit σ une permutation avec σ(1) = i. Alors,

r∏
j=1

j ̸=σ(1)

gj = h2h3 · · ·hs.
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En continuant de cette manière, on obtient r = s et l’existence d’une permutation σ telle

que hi = gσ(i), i = 1, . . . , r.
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2. Espaces vectoriels

2.1. Définitions, premières propriétés, exemples.

Définition 2.1.1. Soit K un corps. Un K-espace vectoriel est un ensemble V muni de

deux lois:

• une loi dite interne V × V → V ,

(u, v) 7→ u+ v,

• une loi dite externe K × V → V ,

(λ, v) 7→ λ · v (ou simplement λv),

qui satisfont les conditions suivantes:

i) (V,+) est un groupe abélien,

ii) pour tous λ, µ ∈ K et v ∈ V , (λ+ µ) · v = λ · v + µ · v,

iii) pour tous λ, µ ∈ K et v ∈ V , (λµ) · v = λ · (µ · v),

iv) pour tous λ ∈ K et v, w ∈ V , λ · (v + w) = λ · v + λ · w, et

v) 1 · v = v (ici 1 = 1K).

Les éléments de V s’appellent les vecteurs et les éléments de K s’appellent les scalaires.

On parle de l’addition ou la somme pour u+v et de la multiplication par un scalaire pour

λv. On notera l’élément neutre du groupe (V,+) par 0 (ou 0V si nécessaire) et l’inverse

de v ∈ V par −v.

Exemples 2.1.2 (Quelques exemples). 1. Soit V le produit cartésien K × · · · × K (n

fois), qu’on notera V = Kn. On munit V d’une structure de groupe via

(x1, . . . , xn) + (y1, . . . , yn) := (x1 + y1, . . . , xn + yn),

pour tous xi, yi ∈ K, 1 ≤ i ≤ n. On définit une loi externe, la multiplication par un

scalaire, comme suit:

pour tous λ ∈ K et (x1, . . . , xn) ∈ V , on a

λ · (x1, . . . , xn) := (λx1, . . . , λxn).

On vérifie que V est un K-espace vectoriel.
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2. Soit K[t] l’anneau de polynômes à coefficients dans K. Alors (K[t],+) est un groupe

abélien et on définit une loi externe, la multiplication par un scalaire, comme suit :

pour λ ∈ K et f ∈ K[t], f(t) = ant
n + an−1t

n−1 + · · ·+ a1t+ a0, on pose

(λ · f)(t) := λ · f(t) = λant
n + λan−1t

n−1 + · · ·+ λa1t+ λa0

3. Soit X un ensemble et soit F(X,K) l’ensemble des applications de X dans K. Alors

F(X,K) est un anneau. En particulier, (F(X,K),+) est un groupe abélien avec

l’addition définie par (f + g)(x) = f(x) + g(x), pour tous f, g ∈ F(X,K) et pour tout

x ∈ X. On définit une loi externe, la multiplication par un scalaire, par :

pour tout λ ∈ K et pour tout f ∈ F(X,K), (λ · f)(x) = λ · f(x), pour tout x ∈ X.

On vérifie que F(X,K) est un K-espace vectoriel.

4. Une matrice n × m à coefficients dans K est un tableau à n lignes et m colonnes

constitué d’éléments de K:

A =



a11 a12 · · · a1m

a21 a22 · · · a2m
...

... · · ·
...

an1 an2 · · · anm


.

On appelle les aij les composantes de la matrice A ou les coefficients de A. Les

indices (i, j) indiquent la ligne et la colonne à l’intersection desquelles se trouve la

composante aij . On écrit A = (aij). On pose Mn×m(K) l’ensemble des matrices

n×m à coefficients dans K et on définit une loi interne + et une loi externe · comme

suit: soient A,B ∈ Mn×m(K), avec A = (aij) et B = (bij) et soit encore λ ∈ K. On

définit l’application

+ :Mn×m(K)×Mn×m(K) →Mn×m(K)

(A,B) 7→ A+B,
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où (A + B)ij = aij + bij , pour tous 1 ≤ i ≤ n et 1 ≤ j ≤ m, et la multiplication par

un scalaire:

· : K ×Mn×m(K) →Mn×m(K)

(λ,A) 7→ λ ·A,

où (λ ·A)ij = λ · aij , pour tous 1 ≤ i ≤ n et 1 ≤ j ≤ m.

Quelques conséquences directes de la Définition 2.1.1:

Proposition 2.1.3. Soient λ ∈ K et v ∈ V . On dénote par 0V l’élément neutre de V

et par 0 l’élément neutre par rapport à l’addition dans K, c’est-à-dire le scalaire 0 ∈ K.

On a

a) λ · 0V = 0V .

b) 0 · v = 0V .

c) Si λ · v = 0V , alors soit λ = 0, soit v = 0V .

d) (−λ) · v = λ · (−v) = −(λ · v).

Preuve. (a) λ · 0V = λ · (0V + 0V ) = λ · 0V + λ · 0V . On simplifie à gauche (ce qui est

possible dans un groupe) et on obtient 0V = λ · 0V .

(b) 0 · v = (0 + 0) · v = 0 · v + 0 · v et on conclut comme dans (a).

(c) Supposons λ · v = 0V et que λ ̸= 0. Alors il existe λ−1 ∈ K (l’inverse multiplicatif)

et on a

λ−1 · (λ · v) = (λ−1λ) · v = 1K · v = v.

Mais aussi λ−1 · (λ · v) = λ−1 · 0V = 0V , par (a). Donc v = 0V .

(d) On calcule (−λ) · v + λ · v = (−λ + λ) · v = 0 · v = 0V , par (b). Par l’unicité des

inverses dans un groupe, (−λ) · v = −(λ · v). De façon similaire, on a λ · (−v) + λ · v =

λ · (−v + v) = λ · 0V = 0V et on conclut comme avant. □

2.2. Sous-espaces vectoriels. On fixe un corps K.
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Définition 2.2.1. Soit V un K-espace vectoriel. Une partie W de V s’appelle un sous-

espace vectoriel (ou simplement un sous-espace) de V si les restrictions des deux lois +

et · à W font de W un K-espace vectoriel.

Pour qu’une partie W ⊂ V soit un sous-espace, il faut que

• W soit non vide,

• pour tous w1, w2 ∈W on a w1+w2 ∈W et −w1 ∈W (stable par + et l’existence

des inverses), et

• pour tous λ ∈ K et w ∈ W , on a λ · w ∈ W (stable par la multiplication par un

scalaire).

En fait, la proposition suivante démontre qu’on peut remplacer ces trois conditions par

deux conditions et que ces deux conditions sont suffisantes pour assurer que W est un

sous-espace.

Proposition 2.2.2. Soit V un K-espace vectoriel, et soit W une partie de V . Alors W

est un sous-espace de V si et seulement si

1. W ̸= ∅, et

2. pour tout λ ∈ K et pour tous w1, w2 ∈W , on a λw1 + w2 ∈W .

Preuve. La nécessité des conditions a été discutée ci-dessus.

Supposons que W ⊂ V soit une partie non vide de V qui satisfait à la condition 2.

Comme W est non vide, il existe w ∈ W . Prenons λ = −1 et appliquons la condition 2.

On trouve (−1) · w + w = −w + w = 0V ∈ W . Donc W possède l’élément neutre. Aussi

pour w1, w2 ∈W , on a 1 ·w1 +w2 = w1 +w2 ∈W , et −w1 = (−1) ·w1 + 0V ∈W . Donc

W est stable par l’addition et possède les inverses. La condition 2. implique que W est

stable par multiplication par les scalaires (prendre w2 = 0V ). Donc (W,+) est un groupe

abélien muni de la loi externe K ×W →W , (λ,w) → λ ·w. Les conditions ii), iii), iv) et

v) dans la définition d’un K-espace vectoriel sont satisfaites, car elles le sont déjà dans

V . □

Exemples 2.2.3. 1. Soit V un K-espace vectoriel, et soient v1, . . . , vr ∈ V . Posons

Vect (v1, . . . , vr) := {λ1v1 + · · ·+ λrvr | λi ∈ K pour 1 ≤ i ≤ r}.
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On vérifie que Vect (v1, . . . , vr) est un sous-espace vectoriel de V , appelé le sous-espace

de V engendré par v1, . . . , vr.

2. Soit V un K-espace vectoriel. Soit X ⊆ V une partie de V . On pose

Vect (X) =
⋂

W∈S
W, où S = {U | U un sous-espace de V avec X ⊆ U},

l’intersection de tous les sous-espaces de V qui contiennent le sous-ensemble X. On

l’appelle le sous-espace engendré par X. On vérifie que Vect (X) est bien un sous-

espace et dans les exercices vous montrerez que Vect (X) = {0} si X = ∅ et si X ̸= ∅

alors

Vect (X) := {λ1v1 + · · ·λrvr | r ∈ N, vi ∈ X,λi ∈ K pour 1 ≤ i ≤ r}.

3. Soit A = (aij) ∈Mm×n(K). On pose un système d’équations :
a11x1 + a12x2 + · · · + a1nxn = 0

...
...

...

am1x1 + am2x2 + · · · + amnxn = 0

On dit que (α1, . . . , αn) ∈ Kn est une solution du système si pour tout 1 ≤ t ≤ m

on a

at1α1 + · · ·+ atnαn = 0.

L’ensemble des solutions du système forme un sous-espace vectoriel de Kn

D’autres exemples sont développés en cours.

2.3. Comment former de nouveaux sous-espaces à partir d’autres sous-espaces.

Définition 2.3.1. Soient W1 et W2 deux sous-espaces d’un K-espace vectoriel V . La

somme W1 +W2 est l’ensemble {u+ w | u ∈W1, w ∈W2}.

Lemme 2.3.2. Soient W1, W2, V comme dans la définition précédente. Alors

(a) W1 +W2 est un sous-espace vectoriel de V .

(b) W1 ∩W2 est un sous-espace vectoriel de V .
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Preuve. Exercice. □

Définition 2.3.3. Soient W1, W2, V comme dans la définition précédente. On dit qu’un

sous-espace U de V est la somme directe de W1 et W2 si

• U =W1 +W2, et

• W1 ∩W2 = {0}.

Dans le cas où U est la somme directe de W1 et W2, on écrit U =W1 ⊕W2.

On peut généraliser cette définition au cas de plus de deux sous-espaces:

Définition 2.3.4. Soient W1, . . . ,Wt des sous-espaces vectoriels d’un K-espace vectoriel

V .

(a) On dénote par W1 + · · ·+Wt l’ensemble {x1 + · · ·+ xt | xi ∈ Wi, ∀1 ≤ i ≤ t}. On

écrit
t∑

i=1

xi = x1 + · · ·+ xt.

(b) On dit qu’un sous-espace U de V est la somme directe de W1, . . . ,Wt si

• U =W1 + · · ·+Wt, et

• Wi ∩ (
∑

j ̸=iWj) = {0} pour tout 1 ≤ i ≤ t.

On démontre (par récurrence par exemple) que W1 + · · · + Wt est un sous-espace

vectoriel de V . Si U est la somme directe des Wi, 1 ≤ i ≤ t, on écrit U =W1 ⊕ · · · ⊕Wt.

Théorème 2.3.5. (Caractérisation des sommes directes) Soient W1, . . . ,Wt, U des sous-

espaces vectoriels d’un K-espace vectoriel V avec Wi ⊆ U pour tout 1 ≤ i ≤ t. Les

conditions suivantes sont équivalentes:

(1) U =W1 ⊕ · · · ⊕Wt.

(2) Chaque vecteur u ∈ U s’écrit de façon unique comme w1 + · · · + wt avec wi ∈ Wi

pour tout 1 ≤ i ≤ t.

Preuve. (1)=⇒(2): Chaque vecteur u ∈ U s’écrit comme u = w1 + · · ·+wt pour certains

wi ∈ Wi, 1 ≤ i ≤ t, car U = W1 + · · · + Wt. Supposons que u = w1 + · · · + wt =

y1 + · · · + yt, pour certains wi, yi ∈ Wi, 1 ≤ i ≤ t. Alors pour chaque 1 ≤ i ≤ t, on a

wi − yi = (y1 − w1) + · · · + (yi−1 − wi−1) + (yi+1 − wi+1) + · · · + (yt − wt). Ce vecteur
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appartient à la fois à Wi et à la somme
∑

j ̸=iWj et par la définition de la somme directe,

l’intersection de ces deux sous-espaces est l’ensemble {0}. On déduit que wi = yi pour

tout 1 ≤ i ≤ t et par conséquent l’écriture est unique.

(2)=⇒(1): Comme Wi ⊆ U pour tout i et que U est un sous-espace de V , on a

W1 + · · ·+Wt ⊆ U . Par hypothèse, pour tout u ∈ U , u = w1 + · · ·+wt ∈W1 + · · ·+Wt

et on déduit que U = W1 + · · · +Wt. Supposons que x ∈ Wi ∩ (
∑

j ̸=iWj). Alors d’une

part, x = 0 + 0 · · ·+ x+ 0 + · · ·+ 0, où le terme x est dans le sous-espace Wi, et d’autre

part x = w1 + w2 + · · · + wi−1 + 0 + wi+1 + · · · + wt pour certains wj ∈ Wj . Comme

l’écriture est unique, on déduit que x = 0. □
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3. Bases et dimensions

On fixe un corps K et V un K-espace vectoriel.

3.1. Dépendance et indépendance linéaire.

Définition 3.1.1. a) Soient v1, . . . , vr ∈ V . Une combinaison linéaire de v1, . . . , vr est

un vecteur v ∈ V de la forme v = λ1v1 + · · · + λrvr, pour λi ∈ K. On dit que v

est une combinaison linéaire de v1, . . . , vr et que λ1, . . . , λr sont les coefficients de la

combinaison linéaire.

b) Une partie X de V s’appelle un système générateur, ou une partie génératrice de V ,

si V = Vect (X). Si X ̸= ∅, X est une partie génératrice de V si et seulement si tout

v ∈ V est une combinaison linéaire de vecteurs dans X.

Exemples 3.1.2. 1. Dans l’espace vectoriel K[t], l’ensemble {1, t, t2, . . . } est un système

générateur.

2. Dans l’espace vectoriel K3, {(1, 0, 0), (0, 1, 0), (0, 0, 1)} est un système générateur, où

1 désigne 1K .

3. Dans l’espace vectoriel R3, {(1, 1, 0), (0, 1, 0), (0, 0, 2), (1, 0, 1)} est un système générateur.

On souhaite préciser la notion d’une partie génératrice minimale.

Définition 3.1.3. (1) Soient v1, . . . , vr ∈ V . On dit que v1, . . . , vr sont liés, ou

linéairement dépendants, s’il existe λ1, . . . , λr ∈ K, non tous nuls, avec λ1v1 +

· · ·+ λrvr = 0.

(2) Une partie X de V est dite liée, ou linéairement dépendante, s’il existe v1, . . . , vt ∈

X distincts qui sont liés.

On a le critère utile suivant:

Proposition 3.1.4. Soient v1, . . . , vr ∈ V , r ≥ 2 vecteurs distincts. Alors v1, . . . , vr sont

linéairement dépendants si et seulement si l’un des vi est une combinaison linéaire des

autres.
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Preuve. Supposons que v1, . . . , vr sont linéairement dépendants. Alors il existe λ1, . . . , λr ∈

K, non tous nuls, tels que λ1v1 + · · ·+ λrvr = 0. Supposons que λi ̸= 0. On a

vi = λ−1
i (−

∑
j ̸=i

λjvj).

En particulier vi est une combinaison linéaire des vj , j ̸= i.

Réciproquement, si l’un des vi est une combinaison linéaire des vj , j ̸= i, on a vi =∑
j ̸=i αjvj pour des αj ∈ K et on déduit que vi−

∑
j ̸=i αjvj = 0, c’est-à-dire, les vecteurs

v1, . . . , vr sont linéairement dépendants. □

Il y a une notion opposée à la dépendance linéaire:

Définition 3.1.5. (1) Soient v1, . . . , vr ∈ V distincts. On dit que v1, . . . , vr sont

libres, ou linéairement indépendants, si v1, . . . , vr ne sont pas liés.

(2) Une partie X de V est dite libre, ou linéairement indépendante, si toute partie

finie {v1, . . . , vr} ⊆ X de r vecteurs distincts est libre.

Remarque 3.1.6. Les r vecteurs distincts v1, . . . , vr sont libres si et seulement si toute

égalité λ1v1 + · · ·+ λrvr = 0 pour des scalaires λi ∈ K, implique que λi = 0 pour tout i.

Exemples 3.1.7. 1. L’ensemble vide ∅ ⊆ V est libre.

2. Dans l’espace vectoriel K[t], la partie {1, t, t2, · · · } est une partie libre.

3. Dans F(R,R), l’ensemble {ex, sinx, x2} est un ensemble de vecteurs linéairement

indépendants.

4. Soit F un corps avec K ⊆ F . Alors (F,+) est un groupe abélien et aussi un K-espace

vectoriel par rapport à la loi externe :

K × F → F, (α, β) 7→ αβ ∈ F.

Si on prendK = R et F = C, alors les vecteurs 1, i ∈ C sont linéairement indépendants.

3.2. Base.

Définition 3.2.1. Une partie X de V s’appelle une base si les deux conditions suivantes

sont satisfaites:
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• X est une partie génératrice de V , et

• X est une partie libre.

On démontre la proposition suivante.

Proposition 3.2.2. Soit V un K-espace vectoriel, V ̸= {0}. Une partie X de V est

une base de V si et seulement si pour tout v ∈ V , v ̸= 0, il existe x1, . . . , xt ∈ X et

λ1, . . . , λt ∈ K \ {0}, uniquement déterminés tels que v = λ1x1 + · · ·+ λtxt.

Preuve. Supposons que X est une base de V . Par définition, X est une partie génératrice

et donc tout v ∈ V est une combinaison linéaire de vecteurs dans X. On doit montrer

l’unicité de l’expression. Supposons que pour v ∈ V , on a

v = α1x1 + · · ·αtxt = β1y1 + · · ·+ βryr,

où αi, βj ∈ K et xi, yj ∈ X. En rajoutant des termes à coefficients nuls, on peut supposer

que

v = γ1u1 + · · ·+ γmum = δ1u1 + · · ·+ δmum,

où γi, δi ∈ K et ui ∈ X pour 1 ≤ i ≤ m. On a donc que

m∑
i=1

(γi − δi)ui = 0.

Mais comme X est libre cela implique que γi = δi pour tout i et donc les deux expressions

sont identiques. En particulier, l’ensemble des ui avec γi ̸= 0 et l’ensemble des uj avec

δj ̸= 0 sont les mêmes. On déduit que l’ensemble {x1, . . . , xt} et les scalaires α1, . . . , αt

sont uniquement déterminés.

Supposons maintenant que tout v ∈ V , v ̸= 0 s’écrit de manière unique comme combi-

naison linéaire d’éléments de X. En particulier, X est un système générateur pour V et

comme V ̸= {0}, X n’est pas vide et il existe x ∈ X, x ̸= 0. On note aussi que le vecteur

nul n’appartient pas à X car sinon pour x ∈ X, x ̸= 0, on a 1 · x = 1 · x + 1 · 0, ce qui

contredit l’unicité de l’expression.
34



Maintenant supposons que
∑m

i=1 αixi = 0 pour αi ∈ K et xi ∈ X. On suppose que

αi ̸= 0 pour tout i. On a donc

−αixi =

m∑
j=1,j ̸=i

αjxj

et par l’unicité de l’ecriture on déduit que ce vecteur est le vecteur nul. Mais cela veut

dire que αixi = 0. Comme αi ̸= 0 on déduit que xi = 0, une contradiction. Donc tout α

vaut 0 et X est libre. Cela montre que X est une base de V . □

Remarque 3.2.3. Le résultat précédent permet de compter les éléments d’un espace

vectoriel sur un corps fini. Soit K un corps fini à pa éléments (p un nombre premier,

a ∈ Z, a ≥ 1). Si V est un K-espace vectoriel avec base {v1, . . . , vm} alors V possède

exactement (pa)m = pam éléments.

Corollaire 3.2.4. Supposons {f1, . . . , fn} est une base de V . Alors V = Vect (f1)⊕· · ·⊕

Vect (fn).

Preuve. Exercice. □

Définition 3.2.5. Soit B = {v1, . . . , vn} une base de V . Les composantes, ou co-

ordonnées, d’un vecteur v ∈ V par rapport à la base B sont les λi ∈ K tels que

v =
∑n

i=1 λivi.

Définition 3.2.6. L’espace vectoriel V est dit de dimension finie si V possède un système

générateur fini.

Théorème 3.2.7 (l’existence d’une base). Soit V un K-espace vectoriel de dimension

finie, avec une partie génératrice finie S ⊆ V . Soit L ⊆ S une partie libre. Alors il existe

une base B de V avec L ⊆ B ⊆ S.

Preuve. Si V = {0}, alors L = ∅ et l’ensemble B = ∅ satisfait au résultat. On suppose

maintenant que V ̸= {0}.

Soit B une partie libre incluse dans S, contenant L, et maximale sous les conditions

d’être libre et de contenir L. Si B = S alors B est libre et génératrice, donc une base de

V .
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Si B ̸= S, soit x ∈ S \ B. Alors B ∪ {x} est plus grand que B et contient L. Par la

maximalité de B, on a que B ∪ {x} n’est pas libre. Par conséquent, il existe λx ∈ K et

{λγ | γ ∈ B} ⊆ K non tous nuls tels que

λxx+
∑
γ∈B

λγγ = 0.

Comme B est libre, λx ̸= 0. On déduit que

x = −λ−1
x (

∑
γ∈B

λγγ).

Par conséquent, tout élément dans S \B est une combinaison linéaire des éléments de B.

Soit maintenant v ∈ V . Comme S est une partie génératrice, v =
∑

s∈S css pour

certains cs ∈ K. Donc

v =
∑
s∈B

css+
∑

s∈S\B

css.

Par l’argument qui précède, pour s ∈ S \B, nous pouvons écrire s =
∑

b∈B asbb et enfin,

nous avons que

v =
∑
s∈B

css+
∑

s∈S\B

cs(
∑
b∈B

asbb),

une combinaison linéaire d’éléments de B. Donc B est une partie génératrice et libre de

V , donc une base de V . □

Corollaire 3.2.8. Soit V un K-espace vectoriel de dimension finie. Alors V possède une

base finie.

Preuve. Par Définition 3.2.6, il existe un système générateur fini, disons S. On prend

L = ∅ dans le théorème précédent. □

Théorème 3.2.9. Soit V un K-espace vectoriel de dimension infinie. Alors V possède

une base.

Nous admettrons ce résultat sans démonstration. La preuve demande la mise en place

du lemme de Zorn, ce que nous ne ferons pas dans ce cours. Pour une preuve, vous pouvez

consulter le polycopié de D. Kressner, §4.3.1, pages 61-63.
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Théorème 3.2.10 (de la dépendance linéaire). Soit V un K-espace vectoriel de dimen-

sion finie. Soit S = {f1, . . . , fn} un système générateur (où S = ∅ si n = 0). Si p > n,

tout ensemble de p vecteurs {v1, . . . , vp} est linéairement dépendant. Autrement dit, si

L = {w1, . . . , wq} est une partie libre dans V , alors q ≤ n

Preuve. Soit p un entier avec p > n. On procède par récurrence sur n. Si n = 0, alors

V = Vect (∅) = {0} et tout ensemble non vide de vecteurs de V contient le vecteur nul

et est donc linéairement dépendant. On traite aussi le cas n = 1: Ici, V = Vect (f1) =

{λf1 | λ ∈ K}, et p > 1. Prenons v1, v2 ∈ V , vi = λif1, pour λi ∈ K, i = 1, 2.

Si v1 = 0, alors v1 et v2 sont linéairement dépendants. Si v1 ̸= 0, alors λ1 ̸= 0 et

0 = −λ2λ−1
1 (λ1f1) + λ2f1 = −λ2λ−1

1 v1 + v2 et v1 et v2 sont linéairement dépendants.

Supposons maintenant que n ≥ 2 et que le résultat est vérifié pour tout espace vectoriel

W avec un système générateur de moins que n vecteurs.

PosonsW := Vect (f1, . . . , fn−1). Tout vecteur dans v ∈ V s’écrit comme v = w+αfn,

pour w ∈W et α ∈ K. En particulier, nous avons

v1 = w1 + α1fn

v2 = w2 + α2fn
...

...

vp = wp + αpfn,

pour wi ∈W,αi ∈ K, 1 ≤ i ≤ p.

Si αi = 0 pour tout i, alors vi ∈W pour tout i et par l’hypothèse de récurrence sur n,

{v1, . . . , vp} est un ensemble de vecteurs linéairement dépendants de W et donc de V .

Supposons donc que α1 ̸= 0 (sans perte de généralité). Dans ce cas, nous avons

fn = α−1
1 (v1 − w1). On trouve par substitution que vi = wi + αiα

−1
1 (v1 − w1), pour

1 ≤ i ≤ p, ce qui implique que

vi − αiα
−1
1 v1 = wi − αiα

−1
1 w1 ∈W.

Nous avons les vecteurs

v2 − α2α
−1
1 v1, v3 − α3α

−1
1 v1, . . . , vp − αpα

−1
1 v1,
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qui appartiennent à W = Vect (f1, . . . , fn−1). S’il y a des répétitions dans cette liste de

vecteurs, c’est-à-dire si vj−αjα
−1
1 v1 = vk−αkα

−1
1 v1 pour j ̸= k, alors on a vj−αjα

−1
1 v1−

vk+α3α
−1
1 v1 = 0V et les vecteurs v1, . . . , vp sont linéairement dépendants. Si ces vecteurs

sont distincts, nous avons p − 1 vecteurs dans W et p − 1 > n − 1. Par l’hypothèse de

récurrence, ces vecteurs sont linéairement dépendants. Il existe λ2, λ3, . . . , λn ∈ K, non

tous nuls, tels que

λ2(v2 − α2α
−1
1 v1) + λ3(v3 − α3α

−1
1 v1) + · · ·+ λp(vp − αpα

−1
1 v1) = 0.

Donc −(λ2α2α
−1
1 + λ3α3α

−1
1 + · · · + λpαpα

−1
1 )v1 +

∑p
j=2 λjvj = 0, une relation de

dépendance. Donc {v1, . . . , vp} est un ensemble de vecteurs linéairement dépendants. □

3.3. Dimension.

Théorème 3.3.1 (de la dimension). Soit V un K-espace vectoriel de dimension finie.

Alors toutes les bases de V sont finies et possèdent le même nombre d’éléments.

Preuve. Soit S un système générateur fini (qui existe par la définition de dimension finie).

Par le Thm. 3.2.7, il existe une base B ⊆ S finie (prendre L = ∅ dans le théorème).

Soit maintenant B′ une autre base de V , donc un ensemble libre. Par le Thm. 3.2.10,

Card(B′) ≤ Card(B). En particulier, B′ est finie. Pour compléter la preuve, on échange

les rôles de B et B′ pour obtenir que Card(B) ≤ Card(B′). □

Définition 3.3.2. Le cardinal d’une base dans un K-espace vectoriel V de dimension

finie s’appelle la dimension de V et se note dim(V ).

Exemples 3.3.3. La dimension de l’espace V = {0} est 0. La dimension de K est égale

à 1 et plus généralement, dim(Kn) = n. L’espace vectoriel K[t] n’est pas de dimension

finie.

Proposition 3.3.4 (Critère de la dimension finie et infinie). Soit V un K-espace vectoriel.

(a) L’espace vectoriel V est de dimension infinie si et seulement si pour tout n ∈ N, il

existe une partie libre L de V de cardinal n.

(b) L’espace vectoriel V est de dimension finie si et seulement s’il existe m ∈ N tel que

toute partie de V de cardinal m est liée.
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Preuve. Les deux affirmations étant équivalentes, il suffit de montrer (b).

Supposons que V est de dimension finie dim(V ) = n. Prenons m = n + 1. Par le

Thm. 3.2.10, toute partie de m éléments est liée.

Maintenant supposons qu’il existe m ∈ N tel que toute partie de V de cardinal m est

liée, et par conséquent, toute partie d’au moins m éléments est liée. Soit L ⊆ V une

partie libre maximale (c’est-à-dire qui n’est incluse dans aucune partie libre de V à part

elle-même). On montre que V = Vect (L). Par les remarques précédentes, card(L) < m.

Soit v ∈ L, alors v ∈ Vect (L). Prenons maintenant v ∈ V \L. PosonsW = Vect (L∪{v}).

L’espaceW est un espace de dimension finie, car engendré par L∪{v}. Par le Thm. 3.2.7,

il existe une base B de W , avec L ⊆ B ⊆ L∪ {v}. Donc W = Vect (B). Mais L maximal

pour la propriété d’être libre implique L = B et par conséquent v ∈ Vect (L). Donc

V = Vect (L), comme voulu. □

Théorème 3.3.5 (complétion en une base). Soit V un K-espace vectoriel de dimension

finie et soit L une partie libre de V .

(a) L’ensemble L est fini et card(L) ≤ dimV .

(b) L’ensemble L peut être complété en une base de V , c’est-à-dire, il existe une base B

de V avec L ⊆ B.

(c) Si Card(L) = dimV , alors L est une base de V .

Preuve. Soit dim(V ) = n et soit B une base de V .

(a) Par le Thm 3.2.10, si une partie libre L possède au moins m éléments distincts,

alors m ≤ Card(B). Donc L est fini et Card(L) ≤ Card(B) = dimV .

(b) On a que B ∪ L est un système générateur de V , car B l’est. Aussi, L ⊆ B ∪ L.

Par le Thm. 3.2.7, il existe une base B′ de V avec L ⊆ B′ ⊆ B ∪ L.

(c) Par (b), il existe une base B′ avec L ⊆ B′. Mais Card(B′) = dimV par le

Thm. 3.3.1. Donc Card(L) = Card(B′) et L = B′ est une base de V . □

Théorème 3.3.6 (extraction d’une base). Soit V un K-espace vectoriel de dimension

finie et S ⊆ V un système générateur fini de V .

(a) dimV ≤ card(S).

(b) On peut extraire de S un sous-ensemble qui est une base de V .
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(c) Si Card(S) = dimV , alors S est une base de V .

Preuve. Par le théorème de la dépendance linéaire, tout ensemble de vecteurs avec plus

que card(S) vecteurs est lié. Donc une base possède au plus card(S) vecteurs, ce qui

montre (a). L’affirmation de (b) se déduit du théorème de l’existence d’une base en

prenant L = ∅. Enfin, supposons que card(S) = dimV . Par (b), il existe une base B de

V avec B ⊆ S. Mais le théorème de la dimension montre que card(B) = dimV . Comme

dimV = card(S) par hypothèse, on a que B = S et donc S est une base de V . □

Théorème 3.3.7 (des sous-espaces). Soit V un K-espace vectoriel de dimension finie,

et soit W un sous-espace vectoriel de V .

(a) L’espace vectoriel W est de dimension finie.

(b) dimW ≤ dimV .

(c) Toute base de W peut être complétée en une base de V .

(d) Si dimW = dimV , alors W = V .

Preuve. (a) et (b) Posons n = dimV . Alors par le théorème de la dépendance linéaire,

toute partie de n+1 éléments de W est liée. Donc par le critère de la dimension finie, W

est de dimension finie. Enfin, comme toute partie de n + 1 éléments de W est liée, une

base de W contient au plus n éléments et donc dimW ≤ n.

(c) Soit B′ une base de W . On peut la compléter en une base B de V , B′ ⊆ B, car B′

est libre.

(d) Si dimW = dimV , on a B′ = B et on déduit que Vect (B) = Vect (B′) et V =

W . □

Théorème 3.3.8 (du supplémentaire). Soit V un K-espace vectoriel de dimension finie

et soit W un sous-espace vectoriel de V . Alors il existe un sous-espace U de V tel que

V =W ⊕ U et dimV = dimW + dimU .

Preuve. Soit B′ une base de W , qu’on complète en une base B de V , B′ = {e1, . . . , em}

et B = {e1, . . . , em, em+1, . . . , en}. Posons U = Vect (em+1, . . . , en). Alors U ∩W = {0}

et U +W = V . □
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Définition 3.3.9. (1) Pour V ,W et U comme ci-dessus, on appelle U un supplémentaire

de W dans V .

(2) Pour V et W comme ci-dessus, si dimV = n et dimW = m, alors on appelle n−m

la codimension de W dans V et on note codimV (W ) = n−m.

Théorème 3.3.10 (formule des dimensions). Soient W1 et W2 deux sous-espaces vecto-

riels d’un K-espace vectoriel V . Supposons W1 et W2 de dimension finie. Alors

dim(W1 +W2) = dimW1 + dimW2 − dim(W1 ∩W2).

Preuve. Soit {u1, . . . , ut} une base de W1∩W2. On la complète tout d’abord en une base

{u1, . . . , ut, w1, . . . , ws} de W1 et aussi en une base {u1, . . . , ut, v1, . . . , vr} de W2. On

montre que

S = {u1, . . . , ut, w1, . . . , ws, v1, . . . , vr}

est une base de W1 +W2, et donc

dim(W1 +W2) = t+ s+ r = (t+ s) + (t+ r)− t = dimW1 + dimW2 − dim(W1 ∩W2).

Système générateur: soit v ∈ W1 + W2, v = x + y, x ∈ W1, y ∈ W2. Alors x =∑
αiui +

∑
βjwj et y =

∑
γiui +

∑
δjvj et x+ y ∈ Vect (S).

Indépendance linéaire: Supposons que
∑
αiui +

∑
βjwj +

∑
γkvk = 0, pour certains

αi, βj , γk ∈ K. Posons u =
∑
αiui, w =

∑
βjwj et v =

∑
γkvk, d’où u+w+v = 0. On a

donc u+w = −v et ce vecteur est à la fois un vecteur dansW1 et aussi un vecteur dansW2,

donc v ∈ W1 ∩W2. On déduit que v =
∑
δiui. Mais cela entrâıne que

∑
δiui =

∑
γivi,

et
∑
δiui −

∑
γivi = 0. Par l’indépendance linéaire de {u1, . . . , ut, v1, . . . , vr} on déduit

que δi = 0 = γi pour tout i et donc v = 0.

Ensuite on a que 0 = v = u + w =
∑
αiui +

∑
βiwi. Par l’indépendance linéaire de

{u1, . . . , ut, w1, . . . , ws}, αi = 0 = βi pour tout i. Donc S est libre.

Comme nous avons montré que S est un système générateur, S est une base de W1 +

W2. □

Corollaire 3.3.11. SoientW1, . . . ,Wt des sous-espaces vectoriels d’un K-espace vectoriel

V . Supposons Wi de dimension finie pour tout i et aussi W1 + · · ·+Wt =W1 ⊕ · · ·⊕Wt.
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Alors

dim(W1 + · · ·+Wt) =

t∑
i=1

dimWi.
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4. Applications linéaires

On fixe un corps K. Soient V et W deux K-espaces vectoriels.

4.1. Définitions, exemples.

Définition 4.1.1. Une application φ : V →W est dite K-linéaire si

i) φ est un homomorphisme de groupes (pour l’addition), et

ii) φ(λv) = λφ(v), pour tous λ ∈ K et v ∈ V .

iii) Une application K-linéaire de V dans V est aussi appelée un endomorphisme de V .

iv) Une applicaiton K-linéaire de V dans W qui est bijective s’appelle un isomorphisme

de V dans W ou bien entre V et W . Et s’il existe un isomorphisme, ϕ : V → W on

dit que V et W sont isomorphes.

S’il est clair que nous parlons du corps K, on dit simplement une application linéaire.

Donc φ : V →W est une application K-linéaire si et seulement si

i) φ(u+ v) = φ(u) + φ(v), pour tous u, v ∈ V , et

ii) φ(λv) = λφ(v), pour tous λ ∈ K et v ∈ V .

Ces deux conditions se résument en une seule:

(1) φ(λu+ v) = λφ(u) + φ(v), pour tous λ ∈ K et u, v ∈ V .

On a les propriétés suivantes:

Proposition 4.1.2. Soit φ : V → W une application K-linéaire. On note 0V , respec-

tivement 0W , pour l’élément neutre de V , respectivement W .

(1) On a φ(0V ) = 0W (car φ est un morphisme de groupes).

(2) φ(λ1v1 + · · ·+ λtvt) = λ1φ(v1) + · · ·+ λtφ(vt), pour tous λi ∈ K et vi ∈ V (par

récurrence sur t).

Comme chaque élément de v s’écrit de manière unique comme une combinaison linéaire

des éléments d’une base B de V , l’application linéaire φ est entièrement déterminée par

ses images de la base B, et il suffit de connâıtre les valeurs de φ sur la base B pour

connâıtre l’application φ.
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On donne plusieurs exemples en cours. Mais un exemple qui en englobe plusieurs

autres est le suivant:

Exemple 4.1.3. Soit V = Kn et W = Km. On fixe des scalaires aij pour 1 ≤ i ≤ m et

1 ≤ j ≤ n. On définit une application φ : V →W par

φ(x1, . . . , xn) = (

n∑
j=1

a1jxj , . . . ,

n∑
j=1

amjxj),

pour (x1, . . . , xn) ∈ V . C’est-à-dire, chaque coordonnée de φ(v) est une combinaison

linéaire des coordonnées de v. Vérifions que φ est bien K-linéaire.

Soient (x1, . . . , xn), (y1, . . . , yn) ∈ V et λ ∈ K.

φ(λ(x1, . . . , xn) + (y1, . . . , yn)) = φ(λx1 + y1, . . . , λxn + yn)

= (

n∑
j=1

a1j(λxj + yj), . . . ,

n∑
j=1

amj(λxj + yj))

= (λ

n∑
j=1

a1jxj +

n∑
j=1

a1jyj , . . . , λ

n∑
j=1

amjxj +

n∑
j=1

amjyj)

= λ(

n∑
j=1

a1jxj , . . . ,

n∑
j=1

amjxj) + (

n∑
j=1

a1jyj , . . . ,

n∑
j=1

amjyj)

= λφ(x1, . . . , xn) + φ(y1, . . . , yn).

Ceci montre que φ est bien K-linéaire.

4.2. Opérations sur les applications K-linéaires.

Définition 4.2.1. Soient V,W deux K-espaces vectoriels et φ : V → W , ψ : V → W

deux applications K-linéaires.

(1) On définit la somme de φ et ψ comme étant l’application φ + ψ : V → W ,

(φ+ ψ)(v) = φ(v) + ψ(v). On vérifie que φ+ ψ est une application K-linéaire.

(2) Pour λ ∈ K, on définit l’application λ · φ : V → W par (λ · φ)(v) = λ · φ(v). On

vérifie que λ ·φ est une application K-linéaire. (Par la suite, on laissera tomber le

‘point’ entre le scalaire λ et l’application φ et on notera cette nouvelle application

simplement par λφ.)
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(3) On dénote par L(V,W ) l’ensemble des applications K-linéaire de V dans W .

(4) On utilisera aussi la notation EndK(V ) pour désigner leK-espace vectoriel L(V, V ).

On montre facilement:

Proposition 4.2.2. Soient V et W deux K-espaces vectoriels. On munit L(V,W ) de

l’addition et la multiplication scalaire définies ci-dessus. Alors L(V,W ) est un K-espace

vectoriel.

On peux aussi composer les applications linéaires:

Proposition 4.2.3. (1) Soient φ : V →W et ψ :W → U deux applications K-linéaires

de K-espaces vectoriels V,W,U . Alors l’application ψ ◦ φ : V → U est une application

K-linéaire.

(2) Si φ est bijective, alors l’application inverse, qu’on dénote par φ−1, est une applica-

tion K-linéaire φ−1 :W → V .

Preuve. Pour (1), on prend λ ∈ K et x, y ∈ V . On a (ψ ◦ φ)(λx+ y) = ψ(φ(λx+ y)) =

ψ(λφ(x)+φ(y)), car φ est K-linéaire. Et ensuite, ψ(λφ(x)+φ(y)) = λψ(φ(x))+ψ(φ(y)),

car ψ est K-linéaire. Mais ce dernier est précisément λ(ψ ◦ φ)(x) + (ψ ◦ φ)(y).

Pour (2), on se rappelle que l’application inverse φ−1 est définie comme suit: pour

tout w ∈W , il existe un unique v ∈ V avec φ(v) = w. On pose φ−1(w) = v. (C’est bien

défini par la bijectivité de φ.)

Maintenant, soient x, y ∈ W et λ ∈ K. Donc x = φ(u) et y = φ(v) pour certains

u, v ∈ V . Alors

φ−1(λx+ y) = φ−1(λφ(u) + φ(v)) = φ−1(φ(λu+ v)),

car φ est K-linéaire. Ensuite, on a

φ−1(φ(λu+ v)) = (φ−1 ◦ φ)(λu+ v) = λu+ v = λφ−1(x) + φ−1(y),

ce qui montre que φ−1 est K-linéaire. □

4.3. Noyau, image et le théorème du rang.
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Définition 4.3.1. Soit φ : V → W une application K-linéaire. L’image de φ est

l’ensemble

im (φ) = {w ∈W | ∃v ∈ V avec w = φ(v)}.

On vérifie que im (φ) est un sous-espace vectoriel de W .

Définition 4.3.2. Si im (φ) est de dimension finie, alors dim(imφ) s’appelle le rang de

φ.

Définition 4.3.3 (Rappel). Soit φ : V →W une application K-linéaire. Le noyau de φ

est l’ensemble

ker(φ) = {v ∈ V |φ(v) = 0}.

C’est exactement le même ensemble qu’on a défini pour un morphisme de groupes.

On vérifie aussi que ker(φ) est un sous-espace vectoriel de V (on sait déjà que c’est

un sous-groupe du groupe (V,+)). La proposition suivante montre que le noyau de φ

détermine si φ est injective.

Proposition 4.3.4 (Critère d’injectivité). Soit φ : V → W une application K-linéaire.

Alors φ est injective si et seulement si ker(φ) = {0V }.

Preuve. On suppose tout d’abord que φ est injective. Alors si v ∈ kerφ, par définition,

on a que φ(v) = 0W . Mais comme φ(0V ) = 0W aussi, l’injectivité de φ implique que

v = 0V . On conclut que ker(φ) = {0V }.

Supposons maintenant que kerφ = {0V }. Soient v, w ∈ V et supposons que φ(v) =

φ(w). On a

φ(v)− φ(w) = 0W ce qui implique que φ(v − w) = 0W .

Par conséquent v − w ∈ kerφ et par hypothèse v − w = 0V . On déduit que v = w et φ

est bien injective. □

On aimerait un critère aussi clair pour déterminer si une application K-linéaire est

surjective. Comme im (φ) est un sous-espace vectoriel, si W est de dimension finie, φ

est surjective si et seulement si dim(im (φ)) = rang(φ) = dimW . Le théorème suivant

montre comment utiliser le noyau pour calculer le rang de φ.
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Théorème 4.3.5 (Théorème du rang). Soit φ : V → W une application K-linéaire.

Supposons V de dimension finie. Alors

dim(V ) = dim(ker(φ)) + dim(im (φ)) = dim(ker(φ)) + rang(φ).

Preuve. Comme V est de dimension finie, ker(φ) est aussi de dimension finie. On

choisit une base {e1, . . . , em} de ker(φ) et on la complète en une base B de V , B =

{e1, . . . , em, em+1, . . . , en}. On montre que S = {φ(em+1), . . . , φ(en)} est une base de

im (φ), ce qui donne dim(kerφ) + dim(imφ) = m+ (n−m) = n = dimV .

Tout d’abord on montre que S est un ensemble libre: supposons que αm+1φ(em+1) +

· · · + αnφ(en) = 0, pour certains αi ∈ K. Par la linéarité de φ, on a que 0 =

φ(αm+1em+1 + · · · + αnen). On déduit que αm+1em+1 + · · · + αnen ∈ ker(φ). On peut

alors écrire αm+1em+1 + · · ·+αnen = β1e1 + · · ·+βmem, pour certains βj ∈ K. Mais en-

suite on obtient que β1e1+ · · ·+βmem−αm+1em+1−· · ·−αnen = 0. Par l’indépendance

linéaire de la base B, αi = 0 = βj pour tous i, j et donc S est libre.

On montre que S est un système générateur de im (φ). Soit w ∈ im (φ). Alors il existe

v ∈ V avec φ(v) = w. On écrit v =
∑n

i=1 λiei. Maintenant, on a φ(v) = φ(
∑n

i=1 λiei) =∑n
i=1 λiφ(ei). Ce dernier est égal à

∑n
i=m+1 λiφ(ei), car φ(ej) = 0 pour j ≤ m. On a

alors que

w = φ(v) =

n∑
i=m+1

λiφ(ei) ∈ Vect (φ(em+1), . . . , φ(en)),

et S = {φ(em+1), . . . , φ(en)} est un système générateur de im (φ). □

Un corollaire direct de ce résultat est

Théorème 4.3.6 (Critère de bijectivité). Soit φ : V →W une application K-linéaire et

supposons V de dimension finie.

(1) Si φ est bijective, alors W est aussi de dimension finie et dimV = dimW .

(2) Si W est aussi de dimension finie et dimV = dimW , alors φ est bijective ⇔ φ

est injective ⇔ φ est surjective.

Preuve. (Bon exercice à faire soi-même) □
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On conclut avec un dernier exemple d’application linéaire qui nous sera utile par la

suite:

Définition 4.3.7. Soit V un K-espace vectoriel avec sous-espaces U et W tels que V =

U ⊕W . La projection sur W le long de U est l’application linéaire π : V → W définie

par π(u+ w) = w, pour tous u ∈ U et w ∈W .

Comme chaque v ∈ V s’écrit de manière unique sous la forme v = u + w, cette

application est bien définie et on vérifie que π est K-linéaire. De plus im (π) = W et

ker(π) = U .

Mais attention: comme il y a beaucoup de supplémentaires différents de W dans V , il

y a beaucoup de projections différentes sur W , selon le supplémentaire choisi U .

4.4. Le groupe linéaire général. Posons EndK(V ) = L(V, V ) (les endomorphismes de

V ). Alors EndK(V ) est un sous-ensemble des applications de V dans V . Définissons

également le groupe Bij(V ), l’ensemble des applications bijectives de V dans V . On pose

GL(V ) = EndK(V ) ∩ Bij(V ), les applications linéaires bijectives de V dans V . Alors

la propositon 4.2.3 montre que GL(V ) est un groupe avec comme opération binaire la

composition d’applications. Ce groupe s’appelle le groupe général linéaire sur V . Nous

considérons quelques sous-groupes dans les exemples suivants et dans les exercices.

Remarque 4.4.1. Il y a une confusion dans la littérature avec la notation End(V ), car

(V,+) est un groupe abélien avec la loi de composition +. Dans ce contexte, End(V ) =

{ϕ : V → V | ϕ(u+ v) = ϕ(u) + ϕ(v)}, l’ensemble des morphismes de groupe de V dans

V . C’est pour cela que nous adopterons la notation EndK(V ) pour l’ensemble L(V, V ).

Malheureusement, on voit aussi dans la littérature End(V ) utilisé pour L(V, V ).

Pour éviter cette confusion dans le cours, je vais utiliser la notation L(V, V ) pour

désigner l’ensemble des applications K-linéaires de V dans V .
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5. Matrices

On fixe un corps K.

5.1. Algèbres des matrices.

Définition 5.1.1. Soient A ∈ Mn×m(K) et B ∈ Mm×ℓ(K). On définit le produit A · B

(ou simplement AB) comme étant la matrice C ∈Mn×ℓ(K) telle que pour i = 1, ..., n et

j = 1, ..., l :

Cij = Ai1B1j +Ai2B2j + · · ·+AimBmj =

m∑
k=1

AikBkj .

(On multiplie successivement les coefficients le long de la i-ème ligne de A et la j-ème

colonne de B et on additionne.)

Attention: Le produit AB n’est défini que si le nombre de colonnes de A est égal au

nombre de lignes de B. En particulier, il arrive que AB soit défini et que BA ne soit pas

défini.

Quelques premières propriétés découlent de cette définition:

(1) Associativité: Pour toutes A ∈ Mp×q(K), B ∈ Mq×m(K), et C ∈ Mm×r(K), on

a (AB)C = A(BC).

(2) Distributivité: Pour toutes A,B,D ∈ Mn×m(K) et C,E, F ∈ Mm×ℓ(K), on a

(A+B)C = AC +BC et D(E + F ) = DE +DF .

(3) Matrice identité: Soit In =



1 0 · · · 0

0 1 · · · 0

0 0 1 · · ·
...

...
...

...

0 0 · · · 1


, c’est-à-dire, In est la matrice

n× n telle que

(In)ij =


1 si i = j,

0 sinon .

Alors pour toute A ∈Mn×m(K) et pour toute B ∈Mm×n(K), on a BIn = B et

InA = A.

Preuve. Pour (1), on compare les coefficients ij des matrices A(BC) et (AB)C.
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((AB)C)ij =

m∑
k=1

(AB)ikCkj =

m∑
k=1

(

q∑
ℓ=1

AiℓBℓk)Ckj =

m∑
k=1

q∑
ℓ=1

(AiℓBℓk)Ckj .

Et aussi

(A(BC))ij =

q∑
ℓ=1

Aiℓ(BC)ℓj =

q∑
ℓ=1

Aiℓ(

m∑
k=1

BℓkCkj) =

q∑
ℓ=1

m∑
k=1

Aiℓ(BℓkCkj).

On constate que les derniers termes des deux égalités sont identiques, ce qui établit (1).

On raisonne de la même façon pour (2).

Pour (3), (InB)ij =
∑n

k=1(In)ikBkj = (In)iiBij = Bij (la deuxième égalité découle du

fait que (In)ik = 0 si k ̸= i). □

Notation 5.1.2. On écrit Mn(K) pour l’ensemble des matrices n×n à coefficients dans

K, c’est-à-dire, Mn(K) désigne l’ensemble Mn×n(K).

On a déjà vu que Mn(K) est un K-espace vectoriel, donc un groupe abélien pour

l’addition. Avec les propriétés (1) à (3) ci-dessus, on a

Théorème 5.1.3. Soit K un corps. Alors Mn(K) est un anneau.

Noter que cet anneau est non commutatif, avec des “diviseurs de zero”; c’est-à-dire, il

existe A,B ∈Mn(K) non nulles avec AB = 0.

5.2. Des matrices carrées particulières.

Définition 5.2.1. (1) Une matrice D ∈ Mn(K) est dite diagonale si Dij = 0 à

chaque fois que i ̸= j, c’est-à-dire,D est une matrice carrée de la forme



λ1 0 · · · · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0

0
...

...
. . . 0

0 0 · · · 0 λn


,

où λi ∈ K pour 1 ≤ i ≤ n.

(2) Une matrice diagonale de la forme λIn, pour λ ∈ K, s’appelle unematrice scalaire;

c’est un multiple scalaire de la matrice identité.
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(3) Une matrice T ∈Mn(K) telle que Tij = 0 si i > j s’appelle une matrice triangu-

laire supérieure. Une matrice S ∈Mn(K) telle que Sij = 0 si j > i s’appelle une

matrice triangulaire inférieure.

(4) Une matrice A ∈ Mn(K) est dite inversible s’il existe B ∈ Mn(K) telle que

AB = In = BA.

(5) On note GLn(K) = {A ∈ Mn(K) | A inversible} l’ensemble des matrices n × n

inversibles.

Remarques: (1) Comme la multiplication de matrices est associative, si une matrice

A ∈Mn(K) est inversible, elle possède un unique inverse qu’on note A−1.

(2) Avec la multiplication de matrices, GLn(K) est un groupe. En anglais, on dit ‘the

general linear group.’

5.3. La matrice d’une application linéaire.

Définition 5.3.1. Une base ordonnée d’un K-espace vectoriel V de dimension finie est

un n-uplet (f1, . . . , fn) ordonné, c’est-à-dire un élément du produit cartésien V × · · · × V

(n copies), tel que {f1, . . . , fn} soit une base de V .

Dans la suite de ce chapitre, tous nos espaces vectoriels seront de dimension

finie et toutes nos bases seront des bases ordonnées.

Définition 5.3.2. Soit ϕ : V → W une application K-linéaire. On fixe une base de V ,

BV = (e1, . . . , en), et une base de W , BW = (f1, . . . , fm). On définit la matrice de ϕ par

rapport aux bases BV et BW , notée (ϕ)BW

BV
comme suit:

On exprime ϕ(ej) par rapport à la base BW , ϕ(ej) = a1jf1 + · · · + amjfm. La matrice

(ϕ)BW

BV
est la matrice m× n dont la j-ème colonne est



a1j

a2j
...

amj


.

Si V =W et on fixe une base B de V , on simplifie la notation (ϕ)BB en écrivant (ϕ)B .

Proposition 5.3.3. Avec les notations de la Définition 5.3.2 et ψ ∈ L(V,W ), on a

(1) (ϕ+ ψ)BW

BV
= (ϕ)BW

BV
+ (ψ)BW

BV
.
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(2) Pour tout λ ∈ K, (λϕ)BW

BV
= λ · (ϕ)BW

BV
.

(3) L’application Θ : L(V,W ) → Mm×n(K) définie par Θ(ϕ) = (ϕ)BW

BV
, pour tout

ϕ ∈ L(V,W ), est une application K-linéaire bijective.

Preuve. Les propriétés (1) et (2) sont à montrer en exercices. Pour (3): L’application Θ

est K-linéaire par les propriétés (1) et (2).

Pour la bijectivité, on détermine d’abord ker(Θ). Pour ϕ ∈ L(V,W ), Θ(ϕ) = 0m×n si

et seulement si ϕ(ei) = 0W pour tout i, si et seulement si ϕ = 0, l’application nulle. Donc

ker(Θ) = {0} et Θ est injective.

Pour la surjectivité, on prend C ∈Mm×n(K), C = (cij), et on définit une application

K-linéaire ϕ : V →W comme suit

ϕ(ei) =

m∑
k=1

ckifk,

pour tout i. On vérifie que ϕ est une application linéaire et Θ(ϕ) = C. □

Corollaire 5.3.4. dimL(V,W ) = dimV · dimW .

Définition 5.3.5. Soit BV comme ci-dessus et v ∈ V . Si v = λ1e1 + · · ·+λnen, alors on

pose

(v)BV
=



λ1

λ2
...

λn


∈Mn×1(K),

appelée la matrice de v par rapport à la base BV . On dit aussi le vecteur colonne de v

par rapport à la base BV .

Remarque 5.3.6. On note que l’association v 7→ (v)BV
définit une applicationK-linéaire

bijective de V dans Mn×1(K).

Théorème 5.3.7. Soit ϕ ∈ L(V,W ). On fixe une base BV de V et une base BW de W .

Alors pour tout v ∈ V , on a

(ϕ(v))BW
= (ϕ)BW

BV
· (v)BV

.
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Noter que l’expression à droite de l’égalité est un produit matriciel.

Preuve. Fixons BV = (e1, . . . , en) et BW = (f1, . . . , fm) et A = (ϕ)BW

BV
. Pour v ∈ V ,

v = λ1e1 + · · ·+ λnen, nous avons

ϕ(v) = ϕ(λ1e1 + · · ·+ λnen) =

n∑
i=1

λiϕ(ei) =

n∑
i=1

λi(A1if1 + · · ·+Amifm)

=

n∑
i=1

λi(

m∑
j=1

Ajifj) =

n∑
i=1

m∑
j=1

λiAjifj =

m∑
j=1

(

n∑
i=1

λiAji)fj .

On déduit que le coefficient de fj dans l’expression de ϕ(v) est égal à
∑n

i=1 λiAji =∑n
i=1Ajiλi. Mais ce dernier est précisément le j-ème terme du produit (ϕ)BW

BV
· (v)BV

.

Donc (ϕ)BW

BV
· (v)BV

= (ϕ(v))BW
. □

Proposition 5.3.8. Soient A,B ∈ Mm×n(K). Si AX = BX pour tout X ∈ Mn×1(K),

alors A = B.

Preuve. Par la Propriété 5.3.3(3), via la surjectivité de Θ, on sait que A = (ϕ)BW

BV
et

B = (ψ)BW

BV
pour certains ϕ, ψ ∈ L(V,W ), où V est un K-espace vectoriel de dimension n

avec base BV , et W est un K-espace vectoriel de dimension m avec base BW . Soit v ∈ V

et posons Y = (v)BV
. Par hypothèse, AY = BY . Donc

(ϕ)BW

BV
· (v)BV

= (ψ)BW

BV
· (v)BV

=⇒ (ϕ(v))BW
= (ψ(v))BW

=⇒ ϕ(v) = ψ(v).

Comme ceci est vrai pour tout v ∈ V , on a que ϕ = ψ et par conséquent A = Θ(ϕ) =

Θ(ψ) = B. □

Théorème 5.3.9 (Matrice d’une composition). Soient ϕ : U → V et ψ : V → W deux

applications K-linéaires. Soient BU , BV et BW des bases de U , V et W respectivement.

Alors

(ψ ◦ ϕ)BW

BU
= (ψ)BW

BV
· (ϕ)BV

BU
.

Preuve. Posons A = (ϕ)BV

BU
, B = (ψ)BW

BV
et C = (ψ ◦ϕ)BW

BU
. Soit X ∈Mn×1(K) et posons

v ∈ U avec (v)BU
= X.

On a ((ψ ◦ ϕ)(v))BW
= (ψ ◦ ϕ)BW

BU
·X = CX.
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Aussi ((ψ ◦ ϕ)(v))BW
= (ψ(ϕ(v)))BW

= (ψ)BW

BV
(ϕ(v))BV

= (ψ)BW

BV
· (ϕ)BV

BU
· (v)BU

=

BAX. Donc CX = BAX pour tout X ∈ Mn×1(K). Par la Proposition 5.3.8, C =

BA. □

Corollaire 5.3.10. Soit V un K-espace vectoriel de dimension finie n. Soit Θ : L(V, V ) →

Mn(K) l’application bijective définie dans la Proposition 5.3.3. Alors Θ est un isomor-

phisme d’anneaux, c’est-à-dire, un homomorphisme d’anneaux bijectif.

Preuve. Nous avons déjà montré que Θ est un morphisme de groupes abéliens pour

l’addition et que Θ est bijective. Le Théorème 5.3.9 montre que Θ(ϕ ◦ ψ) = Θ(ϕ)Θ(ψ).

Enfin nous avons aussi que Θ(idV ) = In. Donc Θ est un isomorphisme d’anneaux. □

Corollaire 5.3.11 (Applications bijectives). Soit ϕ ∈ L(V,W ). Si ϕ est bijective, alors

la matrice (ϕ)BW

BV
est inversible et

(ϕ−1)BV

BW
= ((ϕ)BW

BV
)−1 .

De plus, si A ∈ Mn(K) est une matrice inversible, alors il existe ψ ∈ L(V,W ) bijective

telle que A = (ψ)BW

BV
.

Preuve. Exercice. □

Proposition 5.3.12. Soit Fp le corps fini à p éléments. Alors le groupe GLn(Fp) est un

groupe fini de cardinal (pn − 1)(pn − p) · · · (pn − pn−1).

Preuve. Par le Corollaire 5.3.11, GLn(Fp) est en bijection avec l’ensemble des applications

bijectives de Fn
p dans Fn

p . Une application linéaire φ : Fn
p → Fn

p est une bijection si et

seulement si l’image d’une base de Fn
p par φ est de nouveau une base de Fn

p . De plus, φ

est déterminée par l’image d’une base fixée. On fixe une base ordonnée (e1, . . . , en) de

Fn
p et on dénombre les images possibles, ce qui nous donnera le nombre d’applications

linéaires bijectives distinctes.

L’image de e1 par φ peut être n’importe quel vecteur dans Fn
p sauf le vecteur nul. Il

y a (pn − 1) choix possibles pour φ(e1). Ensuite, comme φ(e2) doit être linéairement

indépendant de φ(e1), on a le choix entre tous les vecteurs qui appartiennent à Fn
p , sauf
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les vecteurs de Vect (φ(e1)); il y a (pn − p) choix possibles pour φ(e2). On continue

ainsi jusqu’au choix de φ(en), où on doit prendre un vecteur qui appartient à Fn
p , mais

qui n’appartient pas au sous-espace Vect (φ(e1), φ(e2), . . . , φ(en−1)). Nous avons donc

(pn − pn−1) choix possibles pour cette dernière image. Par le principe d’une suite de

choix, on trouve que le nombre d’applications linéaires bijectives entre Fn
p et Fn

p est le

produit indiqué. □

5.4. Changement de base.

Définition 5.4.1. Soient B = (e1, . . . , en) et B
′ = (f1, . . . , fn) deux bases d’un K-espace

vectoriel V . On exprime les fj en termes de la base B:

fj = p1je1 + p2je2 + · · · pnjen, pour 1 ≤ j ≤ n et pij ∈ K.

On définit la matrice P ∈Mn(K) par P = (pij); donc la j-ème colonne de P est le vecteur

colonne (fj)B . La matrice P ∈Mn(K) s’appelle la matrice de changement de base entre

la base B′ et la base B. On dit aussi que P est la matrice de passage entre la base B′ et

la base B. On note que P est la matrice de l’application identité id : V → V , par rapport

aux bases B′ et B; c’est-à-dire P = (id )BB′ .

Proposition 5.4.2. Soient V , B, B′ et P comme dans la Définition 5.4.1 et soit v ∈ V .

Alors P · (v)B′ = (v)B.

Preuve. Par définition, P · (v)B′ = (id )BB′ · (v)B′ . Par le Théorème 5.3.7, (id )BB′ · (v)B′ =

(id (v))B = (v)B . □

Proposition 5.4.3 (Matrice de passage inverse). Soit P = (id )BB′ la matrice de passage

entre les bases B′ et B. Alors P est inversible et son inverse P−1 est la matrice de

passage (id )B
′

B entre les bases B et B′.

Preuve. Par le Corollaire 5.3.11, la matrice P = (id )BB′ est inversible et son inverse est

la matrice de l’application id−1, par rapport aux bases B et B′ (dans cet ordre). Donc

P−1 = (id−1)B
′

B = (id )B
′

B . □
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Théorème 5.4.4 (changement de base). Soit ϕ ∈ L(V,W ). Soient B et B′ deux bases

de V et soient C et C ′ deux bases de W . Posons S = (id V )
B
B′ et T = (idW )CC′ (deux

matrices de passage), et A = (ϕ)CB et B = (ϕ)C
′

B′ . Alors

B = T−1AS, c’est-à-dire (ϕ)C
′

B′ = (idW )C
′

C · (ϕ)CB · (id V )
B
B′ .

Preuve. Théorème 5.3.9 =⇒ (idW )C
′

C · (ϕ)CB · (id V )
B
B′ = (idW ◦ϕ ◦ id V )

C′

B′ = (ϕ)C
′

B′ . □

Définition 5.4.5. Soient A,B ∈ Mn(K). On dit que A et B sont semblables s’il existe

une matrice inversible P ∈Mn(K) telle que P−1AP = B. On vérifie que ‘être semblable’

est une relation d’équivalence sur Mn(K). (Exercice.)

Exemple 5.4.6. Soit ϕ ∈ L(V, V ), où dimV = n. Soient B et C deux bases de V . Alors

les matrices (ϕ)B et (ϕ)C sont semblables, car

(ϕ)B = (id )BC · (ϕ)C · (id )CB = ((id )CB)
−1 · (ϕ)C · (id )CB .
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6. Opérations élémentaires

On fixe un corps K.

6.1. Définitions et premières propriétés.

Notation 6.1.1. a) Soit X un ensemble. Pour a, b ∈ X, le symbole de Kronecker δab

désigne le nombre réel tel que δab = 0 si a ̸= b et δab = 1 si a = b.

b) Pour 1 ≤ r ≤ n, 1 ≤ s ≤ m, on définit une matrice Ers ∈Mn×m(K) dont le coefficient

(Ers)ij satisfait

(Ers)ij = δriδsj ,

c’est-à-dire, Ers est la matrice n ×m telle que le seul coefficient non nul est (Ers)rs

et ce coefficient est égal à 1. On note que {Eij | 1 ≤ i ≤ n, 1 ≤ j ≤ m} est une base

de Mn×m(K).

c) Pour A ∈Mn×m(K), on note A = (Aij) 1≤i≤n
1≤j≤m

= (Aij) = (aij), et on note Ai la i-ème

ligne de A.

Définition 6.1.2. On définit trois types d’opérations sur les lignes d’une matrice, ap-

pelées opérations élémentaires.

Type I Echanger deux lignes de la matrice.

Type II Multiplier une ligne de la matrice par un scalaire non nul λ ∈ K.

Type III Additionner à une ligne de la matrice un multiple scalaire d’une autre ligne

de la matrice.

Remarque 6.1.3. On note que ces trois opérations sont ‘réversibles’ dans le sens qu’il

existe une opération élémentaire qui renvoie à la matrice de départ.

i. Type I est son propre inverse.

ii. Type II: On multiplie la même ligne par 1
λ .

iii. Type III: Si on additionne λ · Ai à Aj , alors l’opération inverse est d’additionner

−λ ·Ai à Aj .
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Définition 6.1.4. On dit que A,B ∈Mn×m(K) sont lignes équivalentes (ou équivalentes

par lignes), si B peut être obtenue à partir de A en faisant une suite (finie) d’opérations

élémentaires.

Remarque 6.1.5. Comme toutes ces opérations sont réversibles, ‘être lignes équivalentes’

est une relation d’équivalence sur Mn×m(K). En particulier, la relation est symétrique,

c’est-à-dire, si on peut obtenir B à partir de A par une suite d’opérations élémentaires,

on peut également obtenir A à partir de B par une suite d’opérations élémentaires.

Propriété. Chaque opération élémentaire sur les lignes de A ∈Mn×m(K) correspond à

la multiplication à gauche par une certaine matrice de GLn(K).

Preuve. Type I: Echanger les lignes Ar et As de la matrice A.

On considère la permutation τ = (rs) ∈ Sn du groupe symétrique de degré n. Posons

Trs ∈Mn(K) la matrice dont le coefficient (Trs)ij satisfait:

(Trs)ij = δτ(i),j .

On vérifie que

• (Trs)ii = 1 si i ̸∈ {r, s},

• (Trs)rs = 1 = (Trs)sr et

• tous les autres coefficients de Trs sont nuls.

On montre que TrsA est la matrice obtenue à partir de A en échangeant les lignes Ar

et As:

Preuve. (TrsA)ik =
∑n

j=1(Trs)ijAjk. Comme (Trs)ij = δτ(i),j = 0 sauf si τ(i) = j, on

a

(TrsA)ik =

n∑
j=1

(Trs)ijAjk = Aτ(i),k.

Et ce dernier terme est égal à Aik si i ̸= r, s, Ask si i = r, et Ark si i = s. Cela veut dire

que TrsA est bien la matrice obtenue en échangeant les lignes Ar et As.

On note que Trs = (Trs)
−1.
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Type II: Multiplier la ligne Ar par λ ∈ K, λ ̸= 0.

Posons Dr(λ) ∈Mn(K) la matrice dont le coefficient Dr(λ)ij satisfait

Dr(λ)ij =


1, si i = j ̸= r

0, si i ̸= j

λ, si i = j = r

Alors (Dr(λ)A)ik =
∑n

j=1Dr(λ)ijAjk = Dr(λ)iiAik =

 Aik, i ̸= r

λArk i = r
.

Donc Dr(λ)A est la matrice obtenue en multipliant la r-ème ligne de A par λ. De ce fait,

on a

(Dr(λ))
−1 = Dr

(
1

λ

)
.

Type III: Additionner λ ·As à Ar .

Posons Lrs(λ) = In + λErs ∈Mn(K). Pour simplifier, on écrit I = In. On calcule

Lrs(λ)A = (I + λErs)A = A+ λErsA.

(Lrs(λ)A)ik = Aik +
∑n

j=1(λErs)ijAjk

= Aik + δriλAsk

.

Ce dernier est égal à Aik si i ̸= r et à Ark + λAsk si i = r. Donc c’est bien le résultat

d’additionner λ ·As à Ar. De ce fait, on a

(Lrs(λ))
−1 = Lrs(−λ).

□

Définition 6.1.6. Les matrices Trs,Dr(λ) et Lrs(λ) s’appellent lesmatrices élémentaires.

Remarque 6.1.7. • TrsTrs = In et par conséquent T−1
rs = Trs.

• Dr(λ
−1)Dr(λ) = In et par conséquent (Dr(λ))

−1 = Dr(λ
−1).

• Lrs(−λ)Lrs(λ) = In et par conséquent (Lrs(λ))
−1 = Lrs(−λ).
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6.2. Echelonnage et la méthode de Gauss.

Définition 6.2.1. On dit qu’une matrice A = (aij) ∈ Mp×n(K) est échelonnée si soit

A = 0p×n, soit il existe un entier r ≤ n, r ≤ p, et des entiers j1, j2, . . . , jr entre 1 et n

avec les propriétés suivantes:

1. 1 ≤ j1 < j2 < · · · < jr ≤ n;

2. a1j = 0 pour tout j < j1 et a1j1 ̸= 0;

a2j = 0 pour tout j < j2 et a2j2 ̸= 0;
...

arj = 0 pour tout j < jr et arjr ̸= 0;

3. Si r < p les lignes Ar+1, . . . Ap sont nulles.

Si A ̸= 0, les entiers j1, . . . , jr s’appellent les échelons de la matrice A et les éléments

aiji , i = 1, ..., r, s’appellent les pivots.

Définition 6.2.2. Une matrice A = (aij) ∈Mp×n(K) est dite échelonnée réduite si soit

A = 0, soit A est échelonnée avec échelons j1 < j2 < · · · < jr et si de plus on a les

propriétés suivantes:

1. a1j1 = 1, a2j2 = 1, . . . , arjr = 1;

2. akji = 0 pour tout k ̸= i (c’est-à-dire, dans toute la colonne à l’échelon ji, le seul

coefficient non nul est aiji).

Théorème 6.2.3 (l’échelonnage d’après la méthode de Gauss). Toute matrice est ligne

équivalente à une matrice échelonnée réduite. Autrement dit, toute matrice peut être

transformée en une matrice échelonnée réduite par une suite d’opérations élémentaires

sur les lignes de la matrice.

Preuve. (La preuve est constructive, dans le sens qu’elle donne un algorithme pour trouver

une forme échelonnée réduite; cette méthode s’appelle la méthode de Gauss ou la méthode

d’élimination de Gauss.)

Soit A ∈Mp×n(K). On suppose A ̸= 0, car sinon A est déjà échelonnée réduite.
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Soit j1 le plus petit indice colonne pour lequel un coefficient de A est non nul, disons

aij1 ̸= 0. Par une opération de type I (échanger les lignes 1 et i), on est ramené au cas

ou a1j1 ̸= 0 (le pivot est en première ligne).

Par une opération de type II, multiplier la première ligne par a−1
1j1

, on est ramené au

cas où a1j1 = 1 (le pivot en première ligne est égal à 1).

Par une suite d’opérations de type III, on annule tous les autres coefficients de la j1-ème

colonne (rajouter −akj1 × ligne 1 à la ligne k).

Ainsi, on aboutit à une matrice de la forme

A′ =



0 · · · 0 1 ∗ · · · ∗

0 · · · 0 0 ∗ · · · ∗
...

...
... 0 ∗ · · · ∗

0 · · · 0 0 ∗ · · · ∗


.

Posons B la matrice constituée des lignes 2 à p de A′. Si B = 0, alors A′ est échelonnée

réduite. Sinon soit j2 le plus petit indice colonne pour lequel B possède un coefficient

non nul. Alors j2 > j1. On applique à la matrice B la méthode utilisée ci-dessus, ce qui

crée (en reportant les opérations sur la matrice A′) une matrice

A′′ =



0 · · · 0 1 ∗ ∗ ∗ ∗ · · · ∗

0 · · · 0 0 · · · 0 1 ∗ · · · ∗

0 · · · 0 0 · · · 0 0 ∗ · · · ∗
... · · ·

... 0 · · · 0 0 ∗ · · · ∗


,

où nous avons un pivot a1j1 = 1 et a2j2 = 1. Avec une opération de type III, on annule

le coefficient a1j2 à la ligne 1 (rajouter −a1j2 × ligne 2 à la ligne 1) . Cette dernière

opération ne modifie pas les éléments sur la première ligne de A′′ précédant la colonne j2,

i.e. les a′′1ℓ avec ℓ < j2, car tous les coefficients correspondant sur la ligne 2, i.e. les a′′2ℓ

avec ℓ < j2, sont nuls.

On répète ce procédé jusqu’à ce qu’on obtienne une matrice échelonnée réduite. □
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Remarque 6.2.4. Soient A,B ∈ Mp×n(K) des matrices lignes équivalentes. Alors

chaque ligne de B est une combinaison linéaire des lignes de A et chaque ligne de A

est une combinaison linéaire des lignes de B.

Corollaire 6.2.5 (L’unicité de la forme échelonnée réduite). Soient A,R,R′ ∈Mp×n(K)

lignes équivalentes. Si R et R′ sont échelonnées réduites, alors R = R′.

Esquisse de preuve. Par les remarques ci-dessus, les lignes de R sont des combinaisons

linéaires des lignes de R′ et vice versa.

Supposons que R ait des échelons aux colonnes j1 < j2 < · · · < jr et R′ aux colonnes

k1 < k2 < · · · < ks. On déduit que j1 = k1, sinon soit R1 n’est pas dans le sous-espace

engendré par les lignes de R′, soit R′
1 n’est pas dans le sous-espace engendré par les lignes

de R.

Maintenant

R1 =

(
0 · · · 0 1 a1j1+1 · · · a1j2−1 0 ∗ · · ·

)
,

avec le pivot 1 à la place (1, j1) et

R2 =

(
0 · · · 0 1 a2j2+1 ∗ · · ·

)
,

avec le pivot 1 à la place (2, j2), et

R′
1 =

(
0 · · · 0 1 b1j1+1 · · · b1k2−1 0 ∗ · · ·

)
,

avec le pivot 1 à la place (1, k1) = (1, j1) et

R′
2 =

(
0 · · · 0 1 b2k2+1 ∗ · · ·

)
,

avec le pivot 1 à la place (2, k2).

Alors R2 est une combinaison linéaire des lignes R′
k, k ≥ 2, de R′ et R′

2 est une combi-

naison linéaire des lignes Rk, k ≥ 2, de R (la première ligne étant toujours exclue, car

R2,j1 = R′
2,j1

= 0). Pour la même raison que précédemment, on déduit que j2 = k2 et

donc (a1j1+1 a1j1+2 · · · a1j2−1) = (b1j1+1 b1j1+2 · · · b1k2−1).

La suite consiste à comparer les lignes Ri et R
′
i de manière analogue. □

62



Corollaire 6.2.6. Soit A ∈Mp×n(K). Alors il existe une matrice inversible P ∈ GLp(K)

telle que PA est échelonnée réduite.

Preuve. On applique la méthode de Gauss; chaque opération élémentaire correspond à

multiplier à gauche par un élément de GLp(K). Le produit d’éléments dans GLp(K) est

aussi dans GLp(K). On a PN · · ·P1A échelonnée réduite et PN · · ·P1 ∈ GLp(K). □

6.3. Applications de la méthode de Gauss.

6.3.1. Systèmes de vecteurs; base d’un sous-espace défini par un système de générateurs.

Soit (u1, . . . , up) un p-uplet ordonné de vecteurs dans Kn. On souhaite:

• Trouver une base aussi simple que possible de Vect (u1, . . . , up) = U .

• Trouver dimU .

• Compléter cette base en une base de Kn.

Méthode: On écrit les coordonnées des vecteurs u1, . . . , up dans les lignes d’une matrice

A ∈ Mp×n(K), c’est-à-dire on pose A = (aij) ∈ Mp×n(K), où Ai = (ai1, . . . , ain) = ui.

On effectue les opérations élémentaires sur les lignes de A pour la transformer en une

matrice échelonnée réduite R. Soit wi ∈ Kn le vecteur avec coordonnées données par la

ligne Ri. Alors Vect (w1, . . . , wp) = U , car chaque opération élémentaire est inversible.

Donc chaque wi est une combinaison linéaire des u1, . . . , up et chaque uj est une combi-

naison linéaire des w1, . . . , wp. Les wi non nuls forment une base de U . Donc dimU est

égale au nombre de lignes non nulles de la matrice R. Pour compléter cette base en une

base de Kn, on prend les vecteurs {eℓ | ℓ n’est pas un échelon de la matrice R}.

Définition 6.3.1. (1) Un système de vecteurs dans un K-espace vectoriel V est un

uplet ordonné de vecteurs (v1, . . . , vt) dans V .

(2) On dit qu’un système de vecteurs (w1, . . . , wt), avec wi ∈ Kn, est échelonné

(réduit) si la matrice ayant pour i-ème ligne les coordonnées de wi est échelonnée

(réduite).

(3) Pour un système de vecteurs (u1, . . . , ut) dans V , dim(Vect (u1, . . . , ut)) s’appelle

le rang du système.
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On note que le rang du système (u1, . . . , ut) est le nombre maximal de vecteurs

linéairement indépendants dans l’ensemble {u1, . . . , ut}.

Définition 6.3.2. Soit A ∈ Mm×n(K). On regarde les lignes A1, . . . , Am de A comme

vecteurs dans Kn. On dit que le rang-ligne de A est le rang du système (A1, . . . , Am).

On note que le rang-ligne de A est égal au rang-ligne de R, où R est la forme échelonnée

réduite de A, et que le rang-ligne de R est le nombre d’échelons de R.

Plus généralement, soit V un K-espace vectoriel de dimension n avec base ordonnée

B = (f1, . . . , fn). On a une application linéaire bijective φ : Kn → V donnée par

φ((a1, . . . , an)) =
∑n

i=1 aifi. Soit maintenant (v1, . . . , vp) un système de vecteurs dans V .

Alors comme φ est bijective, dimVect (v1, . . . , vp) = dimVect (φ−1(v1), . . . , φ
−1(vp)) =

le rang-ligne de la matrice avec lignes φ−1(v1), . . . , φ
−1(vp). Ainsi, on peut utiliser la

méthode développée ci-dessus pour déterminer dimVect (v1, . . . , vp), une base de cet es-

pace, et également pour compléter cette base en une base de V .

6.3.2. L’image d’une application linéaire.

Définition 6.3.3. Soit B ∈ Mm×n(K). On note par ci ∈ Km le vecteur dont les coor-

données se trouvent dans la i-ème colonne deB. Le rang-colonne deB est dim(Vect (c1, . . . , cn))

comme sous-espace de Km.

Remarque 6.3.4 (Lien avec les applications linéaires). Soit ϕ : V →W une application

K-linéaire entre espaces vectoriels de dimension finie, et soient BV et BW des bases

ordonnées de V etW respectivement. On rappelle que le rang de ϕ est égal à la dimension

de im (ϕ). Posons B = (ϕ)BW

BV
∈ Mm×n(K) et notons les colonnes de B par c1, . . . , cn ⊂

Km. Alors dim im (ϕ) = dim(Vect (c1, . . . , cn)), ce qui est le rang-colonne de B.

Définition 6.3.5. Soit A ∈Mp×q(K). La transposée de A, notée At, est la matrice q×p

telle que (At)ij = Aji.

Remarque 6.3.6. Comme les colonnes de At sont les lignes de A et les lignes de At sont

les colonnes de A, le rang-colonne de A est égal au rang-ligne de At. On utilise ce fait

pour calculer le rang-colonne d’une matrice et le rang d’une application linéaire, et même

pour trouver une base de imϕ.
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6.3.3. Systèmes d’équations linéaires.

Définition 6.3.7. Soit un système de p équations linéaires à n inconnues:

a11x1 + · · ·+ a1nxn = b1
...

...
...

ap1x1 + · · ·+ apnxn = bp,

avec aij , bk ∈ K. Si bi = 0 pour tout 1 ≤ i ≤ p, on dit que le système est homogène et

s’il existe i, 1 ≤ i ≤ p, avec bi ̸= 0, on dit que le système est inhomogène.

En termes matriciels: Posons A =


a11 · · · a1n
...

...
...

ap1 · · · apn

, la matrice des coefficients,

X =



x1

x2
...

xn


, le vecteur colonne des inconnues, et b =


b1
...

bp

, le vecteur colonne des

termes constants. Alors le système d’équations est équivalent à l’équation matricielle

AX = b.

Définition 6.3.8. Le rang du système est le rang-ligne de la matrice des coefficients A.

En termes d’applications linéaires: la matrice A représente une application linéaire

ϕ : Kn → Kp (par rapport aux bases canoniques des deux espaces). L’existence d’une

solution du système veut dire qu’il existe x = (x1, . . . , xn) ∈ Kn tel que ϕ(x) = b.

C’est-à-dire b appartient à l’image de ϕ.

Si b ̸∈ im (ϕ), alors le système ne possède aucune solution. Si b ∈ im (ϕ), le système

possède au moins une solution.

Cas particulier: si le système est homogène, c’est-à-dire b = 0, alors il existe au moins

une solution car ϕ(0) = 0. Même, l’ensemble des solutions du système est égal à {v ∈

Kn | ϕ(v) = 0} = ker(ϕ), et par conséquent on a le résultat suivant:
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Proposition 6.3.9. L’ensemble des solutions d’un système homogène est un sous-espace

vectoriel de Kn, car c’est le noyau d’une application K-linéaire.

Pour résoudre un système linéaire par la méthode de Gauss, on réduit à un système

échelonné réduit A′X = b′. Pour ce faire, on forme la matrice augmentée du système

(A | b) où on rajoute b comme une dernière colonne. Ensuite on réduit cette nouvelle

matrice à sa forme échelonnée réduite, (A′ | b′). Soit r le rang du système (égal au

rang-ligne de la matrice A′), et soient j1, . . . , jr les échelons de la matrice A′.

Définition 6.3.10. Les inconnues qui apparaissent aux échelons du système échelonné

réduit, xj1 , . . . , xjr s’appellent les inconnues principales et les autres (s’il y en a) s’appellent

les inconnues libres (qui sont n− r en nombre).

Description des solutions:

Cas I: Si l’un des scalaires b′r+1, . . . b
′
p n’est pas nul, on a l’équation 0 = b′i, et le système

ne possède aucune solution.

Cas II: Si b′r+1 = ... = b′p = 0, ou si r = p, le système possède au moins une solution.

Pour décrire les solutions, on donne des valeurs arbitraires aux inconnues libres et on

détermine la valeur de chaque inconnue principale en termes des inconnues libres. Donc

s’il existe des inconnues libres, il y a plus qu’une solution et s’il n’existe aucune inconnue

libre (⇔ r = n), le système possède une solution unique.

Proposition 6.3.11 (L’ensemble des solutions dans le cas homogène). Considérons un

système homogène de p équations linéaires à n inconnues, et de rang r.

(1) On a r ≤ p et r ≤ n (par définition du rang).

(2) Il existe toujours la solution dite triviale, i.e. la solution x ∈ Kn où xi = 0 pour

tout i.

(3) L’ensemble des solutions est un sous-espace vectoriel de Kn de dimension n − r

(= le nombre d’inconnues libres).

(4) Si n ≤ p et n = r, il n’y a que la solution triviale.

(5) Si n > p, on a n > p ≥ r et donc n−r > 0, et il existe des solutions non triviales.
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La méthode pour trouver une base du sous-espace des solutions d’un système est ex-

pliquée en cours.

Proposition 6.3.12 (L’ensemble de solutions dans le cas inhomogène). Considérons un

système inhomogène de p équations linéaires à n inconnues, de rang r, et avec système

échelonné réduit associé A′X = b′.

(1) Le système ne possède aucune solution si et seulement s’il existe b′i avec i ≥ r+1

et b′i ̸= 0.

(2) Si y = (y1, . . . , yn) ∈ Kn est une solution du système AX = b, alors l’ensemble

des solutions du système est {y + x | x ∈ Kn est une solution du système AX =

0}.

(3) Si n = p et r = n, le système possède une solution unique.

Preuve. L’affirmation de (1) est claire.

Pour (2): Posons Y =


y1
...

yn

 tel que AY = b. Prenons (α1, . . . , αn) ∈ Kn une solution

du système homogène AX = 0. Posons Z =


α1

...

αn

, donc AZ = 0. Par conséquent

A(Y + Z) = AY + AZ = b + 0 = b. De plus, si Y ′ est une autre solution de AX = b,

alors AY ′ = b = AY , et donc A(Y ′ − Y ) = b − b = 0 et Y ′ = Y + (Y ′ − Y ), où Y ′ − Y

est bien une solution du système homogène.

(3): Si n = p, alors le nombre d’équations est égal au nombre d’inconnues et r = n

veut dire que le nombre d’échelons est aussi égal au nombre d’équations et donc il n’y a

pas de lignes de (A′ | b′) de la forme (0 0 · · · 0 | b′i) avec b′i ̸= 0 et par (1), il existe une

solution. S’il existe deux solutions Y et Y ′ à AX = b, alors le système AX = 0 possède

une solution Z = Y − Y ′ qui ne peut être que triviale (i.e. Y = Y ′) par la partie (4) de

la proposition précédente. □

6.4. Le rang d’une matrice. Soit A ∈ Mm×n(K). Nous avons défini le rang-ligne et

le rang-colonne de la matrice A. Le rang-ligne est le nombre maximal de lignes de A qui
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sont linéairement indépendantes vues comme des vecteurs dans Kn et le rang-colonne

est la dimension de im (φ), où φ : Kn → Km est l’application linéaire représentée par la

matrice A par rapport aux bases canoniques de Kn et Km (i.e. (φ)EE = A).

Théorème 6.4.1. Le rang-ligne de A est égal au rang-colonne de A.

Preuve. Posons r = le rang-ligne de A. Alors kerφ est égal à l’ensemble des solutions de

l’équation AX = 0 et, par la Proposition 6.3.11, est de dimension n− r. Par le théorème

du rang, dimKn = dimkerφ+ dim imφ.

On a donc n = (n − r) + dim imφ et on déduit que dim imφ = r, c’est-à-dire, le

rang-ligne est égal au rang-colonne. □

Définition 6.4.2. Le rang d’une matrice A est le rang-ligne (ou le rang-colonne) de A,

noté rang(A) ou rg(A).

6.5. Inversion des matrices carrées.

Théorème 6.5.1 (d’inversibilité). Soit A ∈ Mn(K). Les conditions suivantes sont

équivalentes.

(a) A est inversible.

(b) Il existe C ∈Mn(K) telle que AC = In.

(c) Il existe B ∈Mn(K) telle que BA = In.

(d) Le système AX = 0 possède une solution unique, la solution triviale.

(e) rang(A) = n.

(f) La matrice échelonnée réduite qui est ligne équivalente à A est la matrice identité

In.

Preuve. D’abord on montre que (a), (b) et (c) sont équivalents. Il est clair que (a)=⇒(b)

et (a)=⇒(c).

Supposons maintenant qu’il existe C ∈ Mn(K) telle que AC = In. Soient φ : Kn →

Kn tel que (φ)EE = A et ψ : Kn → Kn telle que (ψ)EE = C, où E est la base canonique de

Kn. Alors φ◦ψ = id implique que φ est surjective. Mais φ surjective implique φ bijective

(par exemple en utilisant le théorème du rang) et donc A est inversible. Par conséquent

(b)=⇒(a).
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Supposons qu’il existe B ∈ Mn(K) telle que BA = In. Soit φ comme ci-dessus et

posons γ : Kn → Kn telle que (γ)EE = B. On a alors γ ◦ φ = id et donc φ est injective.

Mais φ injective implique que φ est bijective et donc A est inversible, et nous avons que

(c)=⇒(a). Ces implications montrent que (a), (b) et (c) sont équivalents.

On montre maintenant que (a)=⇒(d)=⇒(e)=⇒(f)=⇒(c) pour conclure.

(a)=⇒(d) Supposons que A est inversible avec inverse A−1. On considère l’équation

AX = 0; on multiplie à gauche par A−1 des deux cotés et on obtient que A−1AX = A−10,

d’où X = 0. Donc il n’existe que la solution triviale X = 0.

(d)=⇒(e) On sait que la dimension de l’espace des solutions du système est égale à

n − r, où r = rang(A). Mais l’espace des solutions est le sous-espace nul et donc est de

dimension 0. On déduit que n = r, i.e. la matrice A est de rang n.

(e)=⇒(f) Supposons maintenant que rang(A) = n. On effectue les opérations élémentaires

sur les lignes de A pour obtenir une matrice échelonnée réduite R. Le rang de R est aussi

n et par conséquent R = In.

(f)=⇒(c) Supposons qu’il existe E1, . . . , Et des matrices élémentaires telles que E1 · · ·EtA =

In. Alors la matrice B = E1 · · ·Et satisfait à la condition de (c). □

Corollaire 6.5.2. Toute matrice inversible est un produit de matrices correspondant aux

opérations élémentaires.

Preuve. Par (f), il existe des matrices élémentaires E1, . . . , Et telles que E1 · · ·EtA = In,

ce qui montre que A = E−1
t E−1

t−1 · · ·E
−1
1 et A−1 = E1 · · ·Et. □

Le corollaire nous donne un algorithme pour calculer facilement l’inverse d’une matrice

(ou bien pour déterminer si une matrice donnée est inversible).
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7. Le déterminant

On fixe un corps K.

7.1. Le groupe symétrique.

7.1.1. Notation en cycles. On rappelle que le groupe symétrique de degré n est le groupe

(Bij(X), ◦), noté aussi Sn, où X = {1, 2, . . . , n}.

Définition 7.1.1. 1. Soit {a1, a2, . . . , am} ⊆ {1, 2, . . . , n} une partie de m éléments dis-

tincts. On écrit (a1 a2 · · · am) pour la permutation σ ∈ Sn définie par :

σ(ai) = ai+1 pour 1 ≤ i ≤ m − 1, σ(am) = a1, et σ(b) = b pour tout b ∈

{1, 2, . . . , n} \ {a1, a2, . . . , am}. On appelle un tel élément un m-cycle.

2. Un 2-cycle s’appelle une transposition.

3. Pour σ ∈ Sn, on pose supp(σ) := {j ∈ {1, 2, . . . , n} | σ(j) ̸= j}, le support de σ.

Exemples 7.1.2. 1. L’élément neutre, la permutation identité, est égale au 1-cycle (1),

et aussi au 1-cycle (2), etc. Noter que supp((1)) = ∅.

2. Dans le groupe S3, tout élément est soit

• un 1-cycle, (l’élément neutre),

• soit un 2-cycle (

1 2 3

2 1 3

 = (1 2),

1 2 3

1 3 2

 = (2 3) ou

1 2 3

3 2 1

 = (1 3))

• soit un 3-cycle (

1 2 3

2 3 1

 = (1 2 3) ou

1 2 3

3 1 2

 = (1 3 2)). Noter que le

3-cycle (1 2 3) est égal au 3-cycle (2 3 1), qui est égal au 3-cycle (3 1 2).

3. Dans le groupe S4, l’élément

1 2 3 4

2 3 4 1

 est le 4-cycle (1 2 3 4), mais pour tous

r ≥ 1, l’élément

1 2 3 4

2 1 4 3

 n’est pas un r-cycle.

Le dernier exemple montre que la notation introduite dans 7.1.1 ne suffit pas pour

décrire tous les éléments de Sn. La proposition 7.1.4 traite des éléments généraux.
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Définition 7.1.3. On dit que deux cycles σ = (a1 a2 . . . am), τ = (b1 b2 · · · bℓ) ∈ Sn sont

disjoints si supp(σ) et supp(τ) sont disjoints, c’est-à-dire que {a1, . . . , am}∩{b1, . . . , bℓ} =

∅.

Noter que si σ et τ sont des cycles disjoints, alors στ = τσ.

Proposition 7.1.4. Toute permutation σ ∈ Sn\{id}, s’écrit comme un produit de cycles

disjoints, chacun de longueur au moins 2. Cette factorisation est unique à l’ordre près

des cycles.

Preuve. (facultatif) Pour m ∈ {1, 2, . . . , n} et σ ∈ Sn, on appelle Y = {σj(m) | j ∈ Z}

l’orbite de m sous l’action de σ ou simplement la σ-orbite de m.

D’abord on montre que Y = {m,σ(m), . . . , σk−1(m)}, où k ∈ N est maximal tel

que {m,σ(m), . . . , σk−1(m)} soient distincts. Soit k comme dans l’assertion. On a que

σk(m) = σj(m) pour un certain 0 ≤ j ≤ k − 1. Donc σk−j(m) = m et par le choix de k,

j = 0 et σk(m) = m. Pour s ∈ Z, on écrit s = qk+ r pour q, r ∈ Z avec 0 ≤ r < k. Alors

σs(m) = σr((σqk)(m)) = σr(σk(· · · (σk(m))) = σr(m) ∈ {m,σ(m), . . . , σk−1(m)}. Donc

Y = {m,σ(m), . . . , σk−1(m)}.

Soit Y1 la σ-orbite de 1. Si Card(Y1) = n alors σ = (1 σ(1) σ2(1) · · · σn−1(1))

et σ est un n-cycle. Si Card(Y1) < n, alors on choisit m ∈ {1, 2 . . . , n} \ Y1 et on

pose Ym la σ-orbite de m. On note que Y1 ∩ Ym = ∅, car par la première étape de la

preuve, Y1 = {1, σ(1), . . . , σk−1(1)} où σk(1) = 1, et Ym = {m,σ(m), . . . , σℓ−1(m)} où

σℓ(m) = m. Si σr(1) = σs(m) pour 0 ≤ r < k et 0 ≤ s < ℓ, alors σr−s(1) = m et m ∈ Y1,

ce qui est en contradiction avec le choix de m.

Conclusion : Maintenant, on décompose {1, 2, . . . , n} en une réunion disjointe de σ-

orbites, Y1 ∪ · · · ∪ Yt avec Y1 l’orbite de 1. Alors si Yi = {i, σ(i), . . . , σki−1(i)} avec

|Yi| = ki, on vérifie par l’action que

σ = (a1 σ(a1) · · · σk1−1(a1))(a2 σ(a2) · · · σk2−1(a2)) · · · (at σ(at) · · · σkt−1(at)).

Comme remarqué auparavant, les cycles disjoints commutent entre eux et donc l’écriture

n’est pas unique, mais est unique à l’ordre près des cycles. En effet, les orbites de σ

déterminent le support des cycles et l’action de σ sur chaque orbite détermine le cycle.
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Enfin, si Yi = {i} pour un certain i, on supprime le cycle (i) car la notation sous-entend

que σ(i) = i si i n’apparâıt dans aucun cycle. □

Exemples 7.1.5. 1. Considérons la permutation σ =

1 2 3 4 5 6 · · · n

5 3 2 4 1 6 · · · n


dans le groupe symétrique Sn pour n ≥ 5. Son écriture en cycles disjoints de longueur

au moins 2 est (1 5)(2 3).

2. L’écriture de σ = (1 2 3)(3 4 7)(7 8)(6 5 7) ∈ S8 en produit de cycles disjoints de

longueur au moins 2 est

(1 2 3 4 7 6 5 8).

3. L’écriture de τ = (1 3 5 7)(2 3 7 1)(2 3) ∈ S8 en produit de cycles disjoints de longueur

au moins 2 est (1 2)(3 5 7). Dans chaque cas, on peut vérifier l’action sur tous les

nombres entre 1 et 8.

Proposition 7.1.6. Chaque σ ∈ Sn s’écrit comme un produit de transpositions.

Preuve. Si n = 1, alors Sn = {(1)} et l’élément neutre est le produit vide. Supposons

n ≥ 2. Par Proposition 7.1.4, il suffit de montrer que chaque r-cycle s’écrit comme un

produit de transpositions. Il y a plusieurs façons de le faire:

(a1 a2 · · · ar) = (a1 ar)(a1 ar−1) · · · (a1 a2),

ou

(a1 a2 · · · ar) = (a1 a2)(a2 a3) · · · (ar−1 ar).

□

7.1.2. La signature d’une permutation. Tout d’abord, on montrera que si σ ∈ Sn s’écrit

comme un produit de m transpositions ainsi que comme un produit de ℓ transpositions,

alors m et ℓ ont la même parité, c’est-à-dire que soit m et ℓ sont les deux paires, soit les

deux impaires.

On commence par un lemme qu’on vérifie directement en comparant les images des

nombres {1, 2, . . . , n} sous l’action de chaque permutation.

72



Lemme 7.1.7. Soient h, k ∈ Z, h, k ≥ 0 et a, b, c1, . . . , ch, d1, . . . , dk ∈ {1, 2 . . . , n}

distincts. Alors

(3) (a b)(a c1 · · · ch b d1 · · · dk) = (b d1 · · · dk)(a c1 c2 · · · ch).

Preuve. Exercice. □

Soit σ ∈ Sn, σ ̸= (1). On écrit

(4) σ = σ1σ2 · · ·σt,

un produit de cycles disjoints chacun de longueur au moins 2. On suppose que σi est un

ri cycle pour 1 ≤ i ≤ t, ri ≥ 2. On définit une application N : Sn → N par N((1)) = 0 et

pour σ comme dans (4),

N(σ) = r1 − 1 + r2 − 1 + · · ·+ rt − 1.

Cette application est bien définie par l’unicité (à l’ordre des facteurs près) de la factori-

sation en produit de cycles disjoints.

Pour a, b, ci, dj comme dans Lemme 7.1.7,

N((b d1 · · · dk)(a c1 c2 · · · ch)) = h+ k

et

N((a c1 · · · ch b d1 · · · dk)) = h+ k + 1.

Ainsi, par l’égalité (3) du Lemme 7.1.7,

(5) N((ab)σ) =


N(σ)− 1 si {a, b} ⊆ supp(σi) pour un certain i

N(σ) + 1 si a ∈ supp(σi), b ∈ supp(σj), i ̸= j

N(σ) + 1 si {a, b} ∩ supp(σ) = ∅

Proposition 7.1.8. Si σ ∈ Sn s’écrit comme un produit de m transpositions pour m ≥ 1,

alors N(σ) et m ont la même parité.
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Preuve. On écrit σ = τ1 · · · τm, τi une transposition pour tout i. On procède par

récurrence sur m. Si m = 1, alors σ = (ab) pour 1 ≤ a, b ≤ n et N(σ) = 1 par définition

et le résultat est vérifié. Maintenant supposons que m ≥ 2 et que le résultat est vrai pour

tout produit de moins de m transpositions. Alors N(τ1 · · · τm) = N(τ2 · · · τm) ± 1, par

(5). Par l’hypothèse de récurrence, N(τ2 · · · τm) et m − 1 ont la même parité. Ainsi on

trouve que N(σ) et m ont aussi la même parité comme énoncé. □

Ce résultat nous permet de poser la définition suivante:

Définition 7.1.9. Soit σ ∈ Sn.

1. On dit que σ est paire si σ s’écrit comme un produit d’un nombre pair de transpositions,

c’est-à-dire que N(σ) est pair. On dit que σ est impaire si σ s’écrit comme un produit

d’un nombre impair de transpositions, c’est-à-dire que N(σ) est impair.

2. La signature de σ, notée ε(σ), est égale à (−1)N(σ), soit 1 si σ est paire, −1 si σ est

impaire.

On obtient donc

Proposition 7.1.10. L’application ε : Sn → ({1,−1}, ·) est un morphisme de groupes.

Preuve. Soit σ, τ ∈ Sn. Si σ et τ sont les deux paires ou les deux impaires alors ε(σ) =

ε(τ), στ est une permutation paire et donc ε(στ) = 1 = ε(σ)2 = ε(σ)ε(τ).

Si l’une des deux est paire et l’autre est impaire, alors στ est impaire et ε(στ) = −1 =

ε(σ)ε(τ). □

7.2. Applications multilinéaires.

Définition 7.2.1. Soient V et W des K-espaces vectoriels. Une application ϕ : V ×· · ·×

V →W , du produit cartésien de m copies de V dans W , est dite m-multilinéaire si pour

tous 1 ≤ i ≤ m, v1, . . . , vm, u ∈ V et λ ∈ K on a

ϕ(v1, . . . , vi−1, vi + λu, vi+1, . . . , vm) = ϕ(v1, . . . , vm) + λϕ(v1, . . . , vi−1, u, vi+1, . . . , vm).

Autrement dit, ϕ est K-linéaire par rapport à chaque coordonnée.
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Exemple 7.2.2 (produit scalaire usuel dans R2). L’application β : R2 ×R2 → R définie

par β(u, v) = u · v := u1v1 + u2v2 pour tous u = (u1, u2), v = (v1, v2) ∈ R2 est une

application 2-linéaire. Dans ce cas on dit plutôt bilinéaire.

Remarque 7.2.3. On vérifie (exercice) que si ϕ est une application m-linéaire de V dans

W , alors pour tous 1 ≤ i ≤ m et pour tout vj ∈ V , on a

ϕ(v1, v2, . . . , vi−1, 0, vi+1, . . . , vm) = 0.

Voir Proposition 7.2.7(a).

On peut identifier le produit cartésien Kn×· · ·×Kn de n copies de Kn avec l’ensemble

Mn(K). Un élément (v1, . . . , vn) ∈ Kn × · · · × Kn est associé avec la matrice dont la

i-ème ligne est le vecteur vi. On a donc la définition suivante.

Définition 7.2.4. Une application D :Mn(K) → K est dite n-linéaire (par rapport aux

lignes) si D est n-multilinéaire lorsqu’on identifie Mn(K) avec Kn × · · · × Kn comme

précédemment. Plus précisément, si A ∈ Mn(K) est écrit A =



A1

A2

...

An


avec Ai la i-ème

ligne de A, D est n-linéaire si pour tout A, on a

D





A1

A2

...

Ai−1

Ai + µBi

Ai+1

...

An





= D





A1

A2

...

Ai−1

Ai

Ai+1

...

An





+ µ ·D





A1

A2

...

Ai−1

Bi

Ai+1

...

An





,

pour tout Bi ∈ Kn et µ ∈ K.
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Définition 7.2.5. On dit qu’une application n-linéaire D : Mn(K) → K est alternée si

D(A) = 0 à chaque fois que deux lignes de la matrice A sont égales.

Exemple 7.2.6. L’application D :M2(K) → K définie par D


a b

c d


 = 2(ad− bc)

est bilinéaire alternée.

Proposition 7.2.7. Soit D :Mn(K) → K une application n-linéaire.

(a) Si une ligne de A est nulle, alors D(A) = 0.

(b) Si D est alternée, alors on a D(TijA) = −D(A) pour tout 1 ≤ i < j ≤ n.

Preuve. On montre (b) en premier. On rappelle que TijA est la matrice obtenue en

échangeant les lignes i et j de la matrice A. On considère la matrice C =



A1

A2

...

Ai +Aj

...

Aj +Ai

...

An



.

Comme il y a deux lignes égales et D est alternée, on a D(C) = 0. Mais on peut aussi

développer en utilisant la multilinéarité:

0 = D





A1

A2

...

Ai +Aj

...

Aj +Ai

...

An





= D





A1

A2

...

Ai

...

Aj +Ai

...

An





+D





A1

A2

...

Aj

...

Aj +Ai

...

An





.
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Et encore une fois :

0 = D





A1

A2

...

Ai

...

Aj

...

An





+D





A1

A2

...

Ai

...

Ai

...

An





+D





A1

A2

...

Aj

...

Aj

...

An





+D





A1

A2

...

Aj

...

Ai

...

An





.

Mais comme D est alternée, les deux termes du milieu sont égaux à 0 et on a que

D





A1

A2

...

Ai

...

Aj

...

An





= −D





A1

A2

...

Aj

...

Ai

...

An





.

L’énoncé de (a) est couvert par la Remarque 7.2.3.

□

7.3. Le déterminant.

Définition 7.3.1. Soit A ∈ Mn(K), A = (aij). Le déterminant de A, noté det(A), est

l’élément de K défini par

det(A) =
∑
σ∈Sn

ε(σ)a1σ(1)a2σ(2) · · · anσ(n),
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où ε : Sn → {1,−1} est la signature de σ. On écrit également

det(A) = |A| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 . . . a1n

a21 . . . a2n
... . . .

...

an1 . . . ann

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Exemples 7.3.2. Les cas particuliers de n = 1, n = 2, n = 3 et la règle de Sarrus, qui

peut être utilisée pour le cas n = 3, seront abordés en cours. Attention, si vous utilisez

cette règle pour calculer det(A), il faut la citer.

Soit A ∈Mn(K). On note Ai la i-ème ligne de A, donc A =



A1

A2

...

An


.

Théorème 7.3.3 (multilinéarité du déterminant). Le déterminant est une application

n-linéaire (linéaire par rapport à chaque ligne) ; c’est-à-dire, pour A1, . . . , An, Bi ∈ Kn

et µ ∈ K,

det



A1

A2

...

Ai−1

Ai + µBi

Ai+1

...

An



= det



A1

A2

...

Ai−1

Ai

Ai+1

...

An



+ µ · det



A1

A2

...

Ai−1

Bi

Ai+1

...

An



.
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Preuve. On a

det



A1

...

Ai + µB

...

An


=

∑
σ∈Sn

ε(σ)a1σ(1) · · · ai−1σ(i−1)(aiσ(i) + µbiσ(i)) · · · anσ(n)

=
∑
σ∈Sn

ε(σ)a1σ(1) · · · aiσ(i) · · · anσ(n) + µ
∑
σ∈Sn

ε(σ)a1σ(1) · · · biσ(i) · · · anσ(n)

= det



A1

...

Ai

...

An


+ µ · det



A1

...

Bi

...

An


.

□

Lemme 7.3.4 (Lemme fondamental). Le déterminant est une application n-linéaire al-

ternée. C’est-à-dire, si deux lignes de A sont égales, alors det(A) = 0.

Preuve. Soient 1 ≤ i < j ≤ n. Supposons que Ai = Aj , c’est-à-dire aik = ajk pour tout

k. Soit τ = (ij) la transposition qui échange i et j et qui fixe tout autre élément de

{1, 2 . . . , n}. Soit H ≤ Sn l’ensemble des permutations paires dans Sn. On note que Sn

est l’union disjointe de H et Hτ . En effet, si ρ ∈ Sn est impaire alors ρτ = σ ∈ H et

donc ρ = στ ∈ Hτ . On calcule le déterminant de A:

det(A) =
∑
σ∈Sn

ε(σ)a1σ(1) · · · anσ(n) =
∑
σ∈H

ε(σ)a1σ(1) · · · anσ(n) +
∑

γ∈Hτ

ε(γ)a1γ(1) · · · anγ(n)

=
∑
σ∈H

ε(σ)a1σ(1) · · · anσ(n) +
∑
σ∈H

ε(στ)a1στ(1) · · · aiστ(i) · · · ajστ(j) · · · anστ(n)

=
∑
σ∈H

ε(σ)a1σ(1) · · · anσ(n) +
∑
σ∈H

ε(σ)(−1)a1σ(1) · · · aiσ(j) · · · ajσ(i) · · · anσ(n).
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Mais comme Ai = Aj par hypothèse, on a aiσ(j) = ajσ(j) et ajσ(i) = aiσ(i), donc les deux

sommes s’annulent et on obtient 0. □

Proposition 7.3.5 (permutation de lignes). Soit D : Mn(K) → K une application

n-linéaire alternée. A =


A1

...

An

 ∈Mn(K) et σ ∈ Sn. Alors

D


Aσ(1)

...

Aσ(n)

 = ε(σ) ·D


A1

...

An

 .

Preuve. On écrit σ comme produit de k ≥ 0 transpositions et on procède par récurrence

sur k. Si k = 0, alors σ = id et le résultat est vérifié. Si k = 1, alors σ = τ est une

transposition, donc ε(τ) = −1 et la Proposition 7.2.7(b) donne le résultat. Supposons

maintenant que k > 1 et que le résultat est vérifié pour un produit de k−1 transpositions.

On a σ = τ1 · · · τk = γτk, où γ = τ1 · · · τk−1. On a alors

D



Aσ(1)

Aσ(2)

...

Aσ(n)


= D



Aγτk(1)

Aγτk(2)

...

Aγτk(n)


= ε(γ) ·D



Aτk(1)

Aτk(2)

...

Aτk(n)


,

par l’hypothèse de récurrence. Et par la Proposition 7.2.7(b), ce dernier est égal à

−ε(γ) ·D



A1

A2

...

An


= ε(γ)ε(τk) ·D



A1

A2

...

An


= ε(γτk)D



A1

A2

...

An


= ε(σ)D



A1

A2

...

An


,

car ε est un homomorphisme de groupes. □

Proposition 7.3.6. Soit D : Mn(K) → K une application n-linéaire. Pour tout A ∈

Mn(K), Ar ∈ Kn, et λ ∈ K on a
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(a) D



A1

...

λAi

...

An


= λD


A1

...

An

; et

(b) si D est alternée, pour r ̸= i, D



A1

...

λAr +Ai

...

An


= D


A1

...

An

.

Preuve. La partie (a) suit directement de la linéarité. Pour (b), on développe en utilisant

la linéarité :

D



A1

...

λAr +Ai

...

An


= λD



A1

...

Ar

...

Ar

...

An



+D


A1

...

An

 = D


A1

...

An

 ,

où le premier terme de la somme vaut 0 car deux lignes sont égales. □

Théorème 7.3.7 (déterminant d’une matrice triangulaire). Si A = (aij) est triangulaire

supérieure, c’est-à-dire, aij = 0 pour tout i > j, alors det(A) = a11a22 · · · ann (également

vrai pour les matrices triangulaires inférieures).

Preuve. On a det(A) =
∑

σ∈Sn
ε(σ)a1σ(1) · · · anσ(n). On montre que tous les termes de la

somme sont nuls sauf le terme a11 · · · ann, où σ = id.

Supposons donc que a1σ(1) · · · anσ(n) ̸= 0 pour un σ ∈ Sn. Alors

(6) ajσ(j) ̸= 0 pour tout j.
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Comme dans une matrice triangulaire supérieure ajk = 0 pour tout k < j, on a

(7) σ(j) ≥ j pour tout j.

En particulier σ(n) = n. Donc σ permute l’ensemble {1, 2, . . . , n−1} et par (7), σ(n−1) =

n − 1. Par récurrence sur k, on montre que σ(n − k) = n − k pour tout k ≥ 0, ce qui

implique σ(i) = i pour tout i, et on déduit que σ = id. Donc det(A) = ε(id)a11 · · · ann =

a11a22 · · · ann. □

Proposition 7.3.8. Pour tout λ ∈ K, 1 ≤ r ̸= s ≤ n, on a

(a) det(In) = 1.

(b) det(Trs) = −1.

(c) det(Dr(λ)) = λ.

(d) det(Lrs(λ)) = 1.

Preuve. C’est une conséquence des résultats 7.3.7, 7.3.4, 7.2.7 et 7.3.6. □

7.4. Unicité du déterminant.

Théorème 7.4.1. Soit D : Mn(K) → K une application n-linéaire alternée. Alors il

existe d ∈ K tel que D(A) = d · det(A) pour tout A ∈Mn(K). De plus d = D(In).

Preuve. Soit A =


A1

...

An

 et In =


e1
...

en

 où ei est le i-ème vecteur de la base canonique

de Kn. On a Ai =
∑n

j=1 aijej . On calcule D(A), utilisant la n-linéarité de D:

D(A) = D


∑n

j1=1 a1j1ej1
...∑n

jn=1 anjnejn

 =

n∑
j1=1

a1j1D



ej1∑n
j2=1 a2j2ej2

...∑n
jn=1 anjnejn


= · · ·
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=

n∑
j1=1

n∑
j2=1

· · ·
n∑

jn=1

a1j1a2j2 · · · anjnD



ej1

ej2
...

ejn


.

CommeD est alternée, si jk = jℓ alorsD


ej1
...

ejn

 = 0. Donc les seuls termes non nuls de

la somme sont ceux avec {j1, . . . , jn} = {1, . . . , n}. En plus, les n-uplets (j1, . . . , jn) avec

coordonnées distinctes forment un ensemble complet et sans répétition des permutations

de l’ensemble {1, . . . , n}. La somme est donc égale à
∑

σ∈Sn
a1σ(1) · · · anσ(n)D


eσ(1)
...

eσ(n)

 .

Ce dernier est égal à
∑

σ∈Sn
a1σ(1) · · · anσ(n) · ε(σ) · D


e1
...

en

 , par la Proposition 7.3.5.

Donc, on trouve D(A) = det(A) ·D(In) comme énoncé. □

7.5. Multiplicativité du déterminant.

Théorème 7.5.1. Soient A,B ∈Mn(K). Alors

(a) det(AB) = det(A)det(B), et

(b) si A est inversible, alors det(A) ̸= 0 et det(A−1) = (det(A))−1.

Preuve. Fixons B ∈Mn(K). On définit une application DB :Mn(K) → K par DB(A) =

det(AB). On vérifie d’abord que DB est une application n-linéaire alternée. Pour ceci,

on note que la matrice AiB est une matrice 1 × n, égale à la i-ème ligne de la matrice
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AB. Soient λ ∈ K et C ∈ Kn. On a

DB



A1

...

Ai + λC

...

An


= det





A1

...

Ai + λC

...

An


·B


= det



A1B

...

(Ai + λC)B

...

AnB



= det



A1B

...

AiB

...

AnB


+ λdet



A1B

...

CB

...

AnB


= DB(A) + λDB



A1

...

C

...

An


.

Donc DB est n-linéaire.

Aussi soit A ∈Mn(K) telle que Ar = As pour 1 ≤ r < s ≤ n. On a

DB(A) = det(AB) = det



A1B

...

ArB

...

AsB

...

AnB



= 0

car ArB = AsB. On a donc que DB est aussi alternée. Par le théorème de l’unicité

du déterminant, on a DB(A) = DB(In)det(A) pour tout A ∈ Mn(K). Donc det(AB) =

DB(A) = DB(In)det(A) = det(B)det(A) = det(A)det(B).

Pour (2): on suppose que A soit inversible avec inverse A−1. On a 1 = det(In) =

det(AA−1) = det(A)det(A−1), par la partie (1). Cette égalité montre que det(A) ̸= 0.

Aussi, la même égalité montre que det(A−1) = (det(A))−1. □
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Proposition 7.5.2 (Critère d’inversibilité). Soit A ∈ Mn(K). Alors A est inversible si

et seulement si det(A) ̸= 0.

Preuve. La direction =⇒ est le théorème précédent.

Supposons maintenant que det(A) ̸= 0. Soit R une matrice échelonnée réduite ligne

équivalente àA. DoncR est une matrice triangulaire supérieure de déterminant r11 · · · rnn.

Aussi il existe des matrices élémentaires E1, . . . , Et telles que R = E1 · · ·EtA. Par la

multiplicativité du déterminant on a det(R) = det(E1 · · ·Et)det(A). Comme E1 · · ·Et est

inversible, son déterminant est non nul et par hypothèse det(A) ̸= 0. D’où det(R) ̸= 0.

Donc R possède n pivots, et par conséquent est de rang n, de même que A. Par le

Théorème 6.5.1, A est inversible. □

Corollaire 7.5.3. (a) L’application det : GLn(K) → K \ {0} est un morphisme de

groupes, où on munit K \ {0} de la loi de composition de multiplication.

(b) Soient A,B ∈Mn(K) des matrices semblables. Alors det(A) = det(B).

Preuve. Faites en cours. □

Ce dernier résultat nous permet de définir le déterminant d’une application linéaire

d’un K-espace vectoriel de dimension finie.

Définition 7.5.4. (1) Soit V un K-espace vectoriel de dimension n et ϕ ∈ L(V, V ). On

définit det(ϕ) comme suit: on choisit une base C de V et on pose det(ϕ) = det((ϕ)CC).

Le corollaire précédent montre que la valeur est indépendante du choix de la base C.

(2) Le noyau de l’application det : GLn(K) → K \ {0} s’appelle le groupe linéaire spécial

et est noté SLn(K) := ker(det) = {A ∈ GLn(K) | det(A) = 1}.

7.6. La transposée.

Théorème 7.6.1. Soit A ∈Mn(K). Alors det(At) = det(A).

Preuve. Nous avons

det(At) =
∑
σ∈Sn

ε(σ)(At)1σ(1) · · · (At)nσ(n) =
∑
σ∈Sn

ε(σ)aσ(1)1 · · · aσ(n)n.
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Or σ(i) = j si et seulement si σ−1(j) = i. Donc aσ(i)i = ajσ−1(j). Aussi la somme sur

σ ∈ Sn est la même que la somme sur σ−1 ∈ Sn. (L’application σ 7→ σ−1 est une bijection

de Sn → Sn). Finalement, on note que ε(σ−1) = ε(σ).

Donc on a que

det(At) =
∑
σ∈Sn

ε(σ)a1σ−1(1) · · · anσ−1(n)

=
∑
σ∈Sn

ε(σ−1)a1σ−1(1) · · · anσ−1(n) =
∑
τ∈Sn

ε(τ)a1τ(1) · · · anτ(n) = det(A).

□

Corollaire 7.6.2. Toutes les propriétés des déterminants relatives aux lignes sont aussi

valables pour les colonnes.

(a) Le déterminant est linéaire par rapport à chaque colonne.

(b) Si une colonne est nulle, alors det(A) = 0.

(c) Si deux colonnes sont égales, alors det(A) = 0.

(d) Si on effectue une permutation σ des colonnes de A, le déterminant de la matrice

résultante est égal à ε(σ) · det(A).

(e) Si on multiplie une colonne de A par λ ∈ K, le déterminant est multiplié par λ.

(f) Si on additionne à une colonne un multiple scalaire d’une autre colonne, le déterminant

ne change pas.

7.7. Cofacteurs.

Définition 7.7.1. Soit A ∈Mn(K). On suppose n ≥ 2.

(a) On pose A(r|s) la matrice dans Mn−1(K) obtenue à partir de A en supprimant la

r-ème ligne de A et la s-ème colonne de A.

(b) det(A(r|s)) s’appelle un mineur de A d’ordre n− 1.

(c) (−1)r+sdet(A(r|s)) s’appelle le cofacteur du coefficient Ars.

Théorème 7.7.2 (développement par rapport à la r-ème ligne de A). On fixe r, 1 ≤ r ≤

n.

det(A) =

n∑
j=1

Arj(−1)r+jdet(A(r|j)).
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Preuve. Par définition det(A) =
∑

σ∈Sn
ε(σ)A1σ(1) · · ·Arσ(r) · · ·Anσ(n). On réécrit la

somme :

det(A) = Ar1

∑
σ∈Sn,σ(r)=1

ε(σ)A1σ(1) · · ·Ar−1,σ(r−1)Ar+1,σ(r+1) · · ·Anσ(n)

+Ar2

∑
σ∈Sn,σ(r)=2

ε(σ)A1σ(1) · · ·Ar−1,σ(r−1)Ar+1,σ(r+1) · · ·Anσ(n)

...

+Arn

∑
σ∈Sn,σ(r)=n

ε(σ)A1σ(1) · · ·Ar−1,σ(r−1)Ar+1,σ(r+1) · · ·Anσ(n)

=

n∑
j=1

Arj

( ∑
σ∈Sn,σ(r)=j

ε(σ)A1σ(1) · · ·Ar−1,σ(r−1)Ar+1,σ(r+1) · · ·Anσ(n)

)
.

On pose

A′
rj =

∑
σ∈Sn,σ(r)=j

ε(σ)A1σ(1) · · ·Ar−1,σ(r−1)Ar+1,σ(r+1) · · ·Anσ(n).

Il faut montrer que

A′
rj = (−1)r+jdet(A(r|j)).

Cas 1. r = j = 1.

Soit H ≤ Sn un sous-groupe tel que H = {σ ∈ Sn | σ(1) = 1}. Alors on identifie

H naturellement avec le groupe des permutations de l’ensemble {2, . . . , n}, ce qui est

également identifié avec le groupe Sn−1.

Dans ce cas nous avons

A′
11 =

∑
σ∈Sn,σ(1)=1

ε(σ)A2σ(2) · · ·Anσ(n) =
∑
σ∈H

ε(σ)A2σ(2) · · ·Anσ(n)

= detA(1|1) = (−1)1+1detA(1|1),

comme affirmé.

Cas 2. r et j quelconques.
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Soit B la matrice obtenue à partir de A en remplaçant la r-ème ligne par la ligne

(0 · · · 0 1 0 · · · 0), où le coefficient 1 est à la j-ème place. Donc précisément nous avons

Bkℓ =


Akℓ si k ̸= r

0 si k = r, ℓ ̸= j

1 si k = r, ℓ = j

.

Si on calcule B′
rj les coefficients de la ligne r n’apparaissent pas dans la somme et donc

(8) B′
rj = A′

rj .

Aussi

(9) B(r|j) = A(r|j),

car on supprime la ligne qui est différente.

Maintenant, det(B) =
∑n

k=1BrkB
′
rk = 1 ·B′

rj , car Brk = 0 si k ̸= j. Donc

(10) B′
rj = det(B).

Soit maintenant C la matrice obtenue à partir de B en permutant cycliquement les r

premières lignes (i.e. on permute les lignes de B selon le r-cycle (1 2 · · · r)) et ensuite

cycliquement les j premières colonnes (selon le j-cycle (1 2 · · · j)).

On rappelle que ε((1 2 · · · s)) = (−1)s+1. Par conséquent, det(C) = (−1)r+1(−1)j+1det(B),

d’où

(11) det(C) = (−1)r+jdet(B).

La r-ème ligne de B étant la première ligne de C et la j-ème colonne de B étant la

première colonne de C, donc

(12) C(1|1) = B(r|j)

On calcule maintenant det(C) en développant par rapport à la première ligne: det(C) =∑n
k=1 C1kC

′
1k = C ′

11, car C1k est 0 si k ̸= 1. Et par le Cas 1, déjà traité ci-dessus,
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C ′
11 = det(C(1|1)). Donc nous avons

(13) det(C) = det(C(1|1)).

On peut maintenant conclure:

A′
rj = B′

rj = det(B) = (−1)r+jdet(C) = (−1)r+jdet(C(1|1))

= (−1)r+jdet(B(r|j)) = (−1)r+jdet(A(r|j)),

où la première égalité suit de l’égalité (8), la deuxième de l’égalité (10), la troisième de

l’égalité (11), la quatrième de l’égalité (13), la cinquième de l’égalité (12), et la dernière

de l’égalité (9). □

Théorème 7.7.3 (développement par rapport à une colonne). On fixe s tel que 1 ≤ s ≤

n. Alors,

det(A) =

n∑
i=1

Ais(−1)i+sdet(A(i|s)).

Preuve. Par Théorème 7.6.1, on a que

det(A) = det(At) =

n∑
j=1

(At)sj(−1)s+jdet(At(s|j)) =
n∑

j=1

Ajs(−1)s+jdet(A(j|s))

. □

Définition 7.7.4. Soit A = (aij) ∈ Mn(K), n ≥ 2. La matrice des cofacteurs de A est

la matrice cof(A) formée des cofacteurs de la matrice A :

(cof(A))ij = (−1)i+jdet(A(i|j)).

Remarque 7.7.5. cof(At) = (cof(A))t, car

(cof(At))ij = (−1)i+jdet(At(i|j)) = (−1)i+jdetA(j|i) = (cof(A))ji.

Théorème 7.7.6 (La matrice des cofacteurs). Soit A = (aij) ∈Mn(K), n ≥ 2. Alors

A · cof(A)t = det(A)In = cof(A)t ·A.
89



Preuve. D’abord on calcule les coefficients du produit A · cof(A)t qui apparaissent le long

de la diagonale du produit A · cof(A)t:

(A·cof(A)t)ii =
n∑

k=1

Aik(cof(A)
t)ki =

n∑
k=1

Aik(cof(A))ik =

n∑
k=1

Aik(−1)i+kdet(A(i|k)) = det(A),

par le Théorème 7.7.2.

Maintenant, on calcule les autres coefficients (A · (cofA)t)kℓ pour k ̸= ℓ.

On définit une nouvelle matrice B comme suit:

On remplace la ℓ-ème ligne de A par la k-ème ligne de A. De ce fait, det(B) = 0 et

B = (bij) avec bij = aij si i ̸= ℓ et bℓj = akj pour tout 1 ≤ j ≤ n.

En termes des lignes nous avons A =



A1

...

Ak

...

Aℓ

...

An



et B =



A1

...

Ak

...

Ak

...

An



. Ainsi, nous avons aussi

l’égalité B(ℓ|j) = A(ℓ|j) pour tout j.

Maintenant, on calcule det(B) en développant le long de la ℓ-ème ligne:

0 = det(B) =

n∑
j=1

bℓj(−1)ℓ+jdet(B(ℓ|j)) =
n∑

j=1

akj(−1)ℓ+jdet(A(ℓ|j))

=

n∑
j=1

akj(cofA)ℓj =

n∑
j=1

akj((cof(A)
t)jℓ = (A · cof(A))t)kℓ.

Nous avons établi l’égalité matricielle A · (cof(A))t = det(A) ·In. Pour (cof(A))t ·A, on

applique le cas précédent à At et on utilise le fait montré en exercices que (AB)t = BtAt,

et le fait que det(At) = det(A). □

Corollaire 7.7.7. Si A est inversible, A−1 = 1
det(A) · cof(A)

t.
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8. Transformations linéaires

On fixe un corps K.

8.1. Vecteurs propres et valeurs propres. Ici, on étudie l’anneau unitaire L(V, V ) et

on rappelle que dans le cas d’un K-espace vectoriel de dimension finie n, cet anneau est

isomorphe à l’anneau Mn(K) (voir Corollaire 5.3.10).

Définition 8.1.1. Une transformation linéaire d’un K-espace vectoriel V est une ap-

plication K-linéaire de V dans V , c’est-à-dire un élément de L(V, V ). On dit aussi un

opérateur linéaire de V ou un endomorphisme de V .

Les matrices qui sont les plus faciles à “manipuler” algébriquement sont les matrices

diagonales. Ensuite, les matrices triangulaires partagent quelques propriétés utiles aussi

(par exemple, facilité pour le calcul du déterminant ou du rang). Soit A ∈ Mn(K) une

matrice diagonale ou triangulaire supérieure. Alors, par l’isomorphisme entre Mn(K)

et L(Kn,Kn) associé au choix de la base canonique C = (e1, . . . , en) de Kn, il existe

une unique ϕ ∈ L(Kn,Kn) avec (ϕ)CC = A. Comme A est triangulaire supérieure ou

diagonale, on note que ϕ(e1) = a11e1; cette observation motive la définition suivante.

Définition 8.1.2. Soit ϕ : V → V une transformation linéaire d’un K-espace vectoriel

V .

(1) On dit que v ∈ V est un vecteur propre de ϕ si

• v ̸= 0, et

• ϕ(v) est un multiple scalaire de v.

Plus précisément, v est un vecteur propre de ϕ si v ̸= 0, et qu’il existe λ ∈ K tel

que ϕ(v) = λv.

(2) Le scalaire λ s’appelle la valeur propre de ϕ associée au vecteur propre v.

(3) L’ensemble des valeurs propres de ϕ s’appelle le spectre de ϕ.

On a la notion analogue pour les matrices A ∈Mn(K).

Définition 8.1.3. Soit A ∈Mn(K).
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On dit qu’un vecteur colonne v =



a1

a2
...

an


∈ Mn×1(K) est un vecteur propre pour A si

v ̸= 0, et qu’il existe λ ∈ K tel que Av = λv. On appelle λ la valeur propre de A associée

au vecteur propre v.

Remarque 8.1.4. (1) Un vecteur propre est par définition non nul, mais la valeur

propre associée à un vecteur propre peut être nulle.

(2) Si 0 est une valeur propre pour ϕ ∈ L(V, V ), alors un vecteur propre de valeur

propre 0 est un vecteur v ∈ V , v ̸= 0 tel que ϕ(v) = 0. Donc v ∈ ker(ϕ). On

déduit que 0 est une valeur propre de ϕ si et seulement si ϕ est non injective.

(3) Si v, w sont des vecteurs propres de ϕ, les deux de valeur propre λ, alors pour tout

µ ∈ K, le vecteur µv +w est soit égal à 0, soit un vecteur propre de ϕ, de valeur

propre λ. En effet, on a que ϕ(µv+w) = µϕ(v)+ϕ(w) = µ(λv)+λw = λ(µv+w).

Proposition 8.1.5. Soit A ∈Mn(K). Alors A est diagonale si et seulement si ei =



0

...

0

1

0

...

0



,

le vecteur colonne avec 1 à la i-ème coordonnée et 0 ailleurs, est un vecteur propre de A

pour tout 1 ≤ i ≤ n.

Proof. Ce résultat découle directement du fait que Aei est la i-ème colonne de A. □

8.2. Matrices et transformations diagonalisables et trigonalisables. D’abord rap-

pelons que des matrices A,B ∈Mn(K) sont semblables s’il existe P ∈ GLn(K) telle que

B = P−1AP .

Définition 8.2.1. (1) On dit que A ∈ Mn(K) est diagonalisable si A est semblable

à une matrice diagonale.
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(2) On dit que A ∈ Mn(K) est trigonalisable, si A est semblable à une matrice

triangulaire.

Remarque 8.2.2. On note que chaque matrice triangulaire supérieure est semblable à

une matrice triangulaire inférieure, et de même, que chaque matrice triangulaire inférieure

est semblable à une matrice triangulaire supérieure. En effet, si A est triangulaire

supérieure, on pose B la base ordonnée de Kn, B = (en, en−1, . . . , e1), où C = (e1, . . . , en)

est la base canonique de Kn. On vérifie que pour P = (id)BC , on a que PAP−1 est trian-

gulaire inférieure.

Maintenant, on considère les transformations linéaires.

Définition 8.2.3. Soit V un K-espace vectoriel de dimension finie et soit ϕ ∈ L(V, V ).

On dit que ϕ est diagonalisable s’il existe une base de V formée de vecteurs propres de ϕ.

Théorème 8.2.4. Soit ϕ : V → V une transformation linéaire d’un K-espace vectoriel

de dimension finie n. Soit B une base de V . Alors ϕ est diagonalisable si et seulement

si la matrice (ϕ)BB est diagonalisable.

Proof. On suppose d’abord que ϕ est diagonalisable. Par définition, il existe une base F

de V formée de vecteurs propres pour ϕ. Posons F = (f1, . . . , fn), et soit λi la valeur

propre associée au vecteur propre fi pour chaque i. Comme ϕ(fi) = λifi, la i-ème colonne

de la matrice (ϕ)FF est le vecteur colonne avec λi à la i-ème coordonnée et 0 ailleurs. Donc,

(ϕ)FF est une matrice diagonale (avec les valeurs propres λ1, . . . , λn le long de la diagonale).

Finalement, (ϕ)BB = Q−1(ϕ)FFQ, avec Q = (id)FB , et donc (ϕ)BB est diagonalisable.

On suppose maintenant que (ϕ)BB est diagonalisable. Il existe donc P ∈ GLn(K) telle

que P−1(ϕ)BBP est une matrice diagonale. Comme P est inversible, on a P = (id)BE pour

un certain choix de base E = (w1, . . . , wn) de V , et (ϕ)EE = (id)EB(ϕ)
B
B(id)

B
E = P−1(ϕ)BBP

qui est par hypothèse une matrice diagonale, ce qui implique que ϕ(wi) = λiwi pour un

certain λi ∈ K. Donc, la base E est une base de V formée de vecteurs propres de ϕ et ϕ

est diagonalisable. □

Définition 8.2.5. Soient V un K-espace vectoriel et ϕ ∈ L(V, V ).
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(1) Un sous-espace vectoriel W de V est dit stable par ϕ ou ϕ-invariant si pour tout

w ∈W on a que ϕ(w) ∈W .

(2) On suppose maintenant que V est de dimension finie n. On dit que ϕ est trig-

onalisable) s’il existe des sous-espaces vectoriels ϕ-invariants W0, . . . ,Wn de V ,

avec {0} =W0 ⊂W1 ⊂ · · · ⊂Wn−1 ⊂Wn = V et dimWi = i pour tout i

Proposition 8.2.6. Soit V un K-espace vectoriel de dimension finie n avec base B, et

soit ϕ ∈ L(V, V ). Alors ϕ est triagonalisable si et seulement si (ϕ)BB est trigonalisable.

Proof. Tout d’abord, on suppose que (ϕ)BB est trigonalisable. Il existe donc P ∈ GLn(K)

telle que P−1(ϕ)BBP est une matrice triangulaire supérieure (voir la Remarque 8.2.2).

Comme P est inversible, on a P = (id)BE pour un certain choix de base E = (f1, . . . , fn)

de V , et (ϕ)EE = (id)EB(ϕ)
B
B(id)

B
E = P−1(ϕ)BBP . Comme (ϕ)EE est triangulaire supérieure,

ϕ(fi) ∈ Vect (f1, . . . , fi) pour tout i. On pose donc W0 = {0} et Wi = Vect (f1, . . . , fi)

pour tout 1 ≤ i ≤ n, des sous-espaces ϕ-invariants qui satisfont la définition 8.2.5.

Maintenant, on suppose que ϕ est trigonalisable, c’est-à-dire qu’il existe des sous-

espaces vectoriels ϕ-invariants U0, . . . , Un avec dimUi = i, Ui ⊂ Ui+1 pour tout i. On

choisit une base F = (u1, . . . , un) de V , avec (u1, . . . , ui) une base de Ui pour tout

1 ≤ i ≤ n. Comme ϕ(uj) ∈ Vect (u1, . . . , ui) pour tout j ≤ i, la matrice (ϕ)FF est

triangulaire supérieure, et (ϕ)BB = (id)BF (ϕ)
F
F (id)

F
B est trigonalisable. □

8.3. Polynôme caractéristique et valeurs propres. Dans ce paragraphe, on établira

une méthode pour “trouver” les valeurs propres, dans le cas des matrices ou bien des

transformations linéaires des espaces de dimension finie.

Théorème 8.3.1 (Caractérisation de valeurs propres). Soit V un K-espace vectoriel et

ϕ ∈ L(V, V ). Soit encore λ ∈ K. Alors λ est une valeur propre de ϕ si et seulement si

ϕ− λidV n’est pas inversible, et si et seulement si ker(ϕ− λidV ) ̸= 0.

Proof. On montre les trois équivalences en même temps :

λ est une valeur propre de ϕ⇐⇒ ∃v ∈ V, v ̸= 0 telle que ϕ(v) = λv

⇐⇒ (ϕ− λidV )(v) = 0 ⇐⇒ v ∈ ker(ϕ− λidV ) ⇐⇒ ker(ϕ− λidV ) ̸= {0}
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⇐⇒ ϕ− λidV n’est pas inversible. □

Dans le cas d’un espace de dimension finie, le résultat précédent nous donne une

méthode “calculatoire” pour trouver les valeurs propres:

Proposition 8.3.2. Soient V un K-espace vectoriel de dimension finie et ϕ ∈ L(V, V ),

et soit encore λ ∈ K. Fixons une base B de V et posons A = (ϕ)BB. Alors λ est une

valeur propre de A (ou de ϕ) si et seulement si la matrice A− λIn est non inversible, et

si et seulement si det(A− λIn) = 0.

Ce dernier résultat motive la définition suivante:

Définition 8.3.3. Soit A ∈Mn(K). Soit t une indéterminée. Alors det(A− tIn) est un

polynôme en t, appelé le polynôme caractéristique de A. On le dénote par cA(t). Donc

cA(t) = det(A− tIn).

Par la caractérisation des valeurs propres (Théorème 8.3.1) et la Proposition 8.3.2,

nous déduisons:

Proposition 8.3.4. Soit A ∈ Mn(K) et λ ∈ K. Alors λ est une valeur propre de A si

et seulement si λ est une racine du polynôme caractéristique cA(t).

Quelques cas particuliers:

(1) Si A = (aij) est une matrice triangulaire alors cA(t) = (a11−t)(a22−t) · · · (ann−t).

Par conséquent ses valeurs propres sont précisément les valeurs le long de sa

diagonale.

(2) Soit A =

a b

c d

 ∈M2(K). Alors

cA(t) = det

a− t b

c d− t

 = t2 − (a+ d)t+ (ad− bc) = t2 − (Tr(A))t+ det(A).

La proposition suivante montre que les propriétés soulignées dans (2) ci-dessus se

généralisent.
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Proposition 8.3.5. Soit A ∈Mn(K). Le polynôme caractéristique de A est un polynôme

de degré n. De plus, le coefficient de tn est (−1)n, le coefficient de tn−1 est (−1)n−1Tr(A),

et le terme constant est égal à det(A).

Proof. Posons A = (aij), et on note In = I dans la suite. Alors

cA(t) = det(A− tI) =
∑
σ∈Sn

ε(σ)(A− tI)1σ(1) · · · (A− tI)nσ(n).

Le terme constant d’un polynôme est la valeur du polynôme évalué en t = 0, ce qui

donne

cA(0) =
∑
σ∈Sn

ε(σ) · a1σ(1) · · · anσ(n) = det(A).

La plus haute puissance de t qu’on peut obtenir dans un produit de termes (A −

tI)1σ(1) · · · (A− tI)nσ(n) a lieu lorsque tous les facteurs ont un terme avec t, donc lorsque

σ(i) = i pour tout i (comme l’indéterminée n’apparâıt que dans les coefficients diagonaux

de la matrice A − tI). Comme t apparâıtra dans chacun des facteurs (A − tI)ii, on

trouvera un terme (−1)ntn et aucun terme de degré plus haut. Enfin, on trouve tn−1

dans tous les termes de la somme où σ(i) ̸= i pour au plus une valeur de i. Mais la seule

permutation σ ∈ Sn avec cette propriété est la permutation identité, et donc le terme

tn−1 n’apparâıtra aussi que dans le terme de la somme (A − tI)11 · · · (A − tI)nn. C’est

un exercice de montrer que le coefficient de tn−1 dans le polynôme (a11 − t) · · · (ann − t)

est égal à (−1)n−1(a11 + · · ·+ ann). □

Grâce au résultat suivant, on peut définir le polynôme caractéristique d’une transfor-

mation linéaire (d’un K-espace vectoriel de dimension finie).

Proposition 8.3.6. Deux matrices semblables ont le même polynôme caractéristique.

Proof. Soient A,B ∈Mn(K) et P ∈ GLn(K) telles que B = P−1AP . On a

cB(t) = det(B − tIn) = det(P−1AP − tP−1InP )

= det(P−1(A− tIn)P ) = det(P−1)det(A− tIn)det(P ) = cA(t).

□
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Corollaire 8.3.7. Deux matrices semblables ont les mêmes valeurs propres.

Corollaire 8.3.8. Pour A,B ∈Mn(K), si B est semblable à A alors Tr(B) = Tr(A) et

det(B) = det(A).

Définition 8.3.9. Soit V un K-espace vectoriel de dimension finie et soit ϕ ∈ L(V, V ).

(1) Le polynôme caractéristique de ϕ est le polynôme caractéristique cA(t) où A =

(ϕ)BB , pour B une base ordonnée quelconque de V .

(2) La trace de ϕ, notée Tr(ϕ) est la trace de A.

(3) Le déterminant de ϕ est le déterminant de A.

8.4. Espaces propres, multiplicité géométrique, multiplicité algébrique.

Définition 8.4.1. Soit α ∈ L(V, V ) et soit λ ∈ K une valeur propre de α. L’espace

propre associé à λ est le sous-espace vectoriel Eλ = {v ∈ V | α(v) = λv}.

On a que

Eλ = {0} ∪ {vecteurs propres de α associés à λ},

et Remarque 8.1.4(3) montre que Eλ est un sous-espace vectoriel de V .

De plus, Eλ = Ker (α − λ · idV ). Si V est de dimension n, avec base B, et A = (α)BB ,

alors Eλ est l’ensemble des vecteurs v ∈ V tel que (v)B est une solution du système

(A− λ · In)X = 0. En particulier, dimEλ = n− rang(A− λIn). On rappelle aussi que si

λ est une valeur propre de α, alors λ est une racine du polynôme caractéristique de α et

donc cα(t) se factorise: cα(t) = (t− λ)mf(t). En mettant en évidence autant de facteurs

(t− λ) que possible, on peut supposer que f(λ) ̸= 0.

Définition 8.4.2. Soit V un K-espace vectoriel de dimension finie et soit λ ∈ K une

valeur propre de α ∈ L(V, V ).

a) La multiplicité algébrique de λ, notée malg(λ), est la multiplicité de λ comme racine

du polynôme caractéristique cα(t); c’est-à-dire, si cα(t) = (t−λ)m ·f(t), avec f(λ) ̸= 0,

alors malg(λ) = m.

b) La multiplicité géométrique de λ, notée mgeom(λ), est la dimension de l’espace propre

Eλ.
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Proposition 8.4.3. Soit V un K-espace vectoriel de dimension finie et λ ∈ K une valeur

propre de α ∈ L(V, V ). Alors mgeom(λ) ≤ malg(λ).

Proof. Soit m = mgeom(λ) et soit (v1, . . . , vm) une base de l’espace propre Eλ. On

complète cette base en une base B de V , B = (v1, . . . , vm, vm+1, . . . , vn). Alors la matrice

de ϕ par rapport à la base B est de la forme A = (α)BB =

D M

0 N

 ou D = λIm,

M ∈Mm×(n−m)(K) et N ∈Mn−m,n−m(K). Par un exercice,

cα(t) = cA(t) = cD(t)cN (t) = (t− λ)mcN (t).

On déduit donc que malg(λ) ≥ m, comme affirmé. □

8.5. Diagonalisation.

Proposition 8.5.1. Soient V un K-espace vectoriel et λ1, . . . , λr ∈ K des valeurs propres

distinctes de α ∈ L(V, V ), et supposons que r ≥ 2. Soient Eλ1
, . . . , Eλr

les espaces propres

associés. Alors la somme Eλ1 + · · ·+ Eλr est directe.

Proof. On raisonne par récurrence sur r. On suppose que r = 2. Alors la somme Eλ1
+Eλ2

est directe si et seulement si Eλ1 ∩ Eλ2 = {0}. Soit w ∈ Eλ1 ∩ Eλ2 . On a

α(w) = λ1w = λ2w =⇒ (λ1 − λ2)w = 0.

Comme λ1 ̸= λ2 on déduit que w = 0 et Eλ1 ∩ Eλ2 = {0}.

On suppose maintenant que r > 2 et que l’énoncé est vérifié pour une somme inférieure

à r espaces propres. Cette fois, on doit montrer que, pour tout 1 ≤ i ≤ r,

Eλi ∩ (Eλ1 + · · ·+ Eλi−1 + Eλi+1 + · · ·+ Eλr ) = {0}.

Soit w ∈ Eλi ∩ (Eλ1 + · · ·+Eλi−1 +Eλi+1 + · · ·+Eλr ). On écrit w =
∑

1≤j≤r,j ̸=i wj , où

wj ∈ Eλj
. On a α(w) = λiw, car w ∈ Eλi

et on a aussi

α(w) =
∑

1≤j≤r,j ̸=i

α(wj) =
∑

1≤j≤r,j ̸=i

λjwj .
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On déduit que

λi(
∑

1≤j≤r,j ̸=i

wj) =
∑

1≤j≤r,j ̸=i

λjwj

.

Par l’hypothèse de récurrence, la somme Eλ1
+ · · · + Eλi−1

+ Eλi+1
+ · · · + Eλr

est

directe, et par l’unicité d’expression dans une somme directe, on a que λiwj = λjwj pour

tout j ̸= i, d’où (λi − λj)wj = 0. Comme λi ̸= λj pour tout j ̸= i, on trouve que wj = 0

pour tout j ̸= i, ce qui montre que w = 0. □

Théorème 8.5.2 (caractérisation des transformations linéaires diagonalisables). Soit V

un K-espace vectoriel de dimension n, et soit α ∈ L(V, V ). Alors α est diagonalisable si

et seulement si les deux conditions suivantes sont satisfaites:

(1) cα(t) est scindé dans K[t], c’est-à-dire cα(t) = (−1)n
∏r

i=1(t− λi)
mi , pour λi ∈ K,

mi ∈ N, mi ≥ 1, et

(2) pour chaque valeur propre λ de α, on a mgeom(λ) = malg(λ).

Proof. On suppose d’abord que α est diagonalisable. Par définition, il existe une base F

de V , formée de vecteurs propres de α. Par conséquent, (α)FF est une matrice diagonale.

Posons

A = (α)FF =


d1

. . .

dn

 .

Soit λ1, . . . , λr les valeurs propres distinctes de α. On suppose que la base F est ordonnée

comme suit:

f11, . . . , f1m1
, f21, . . . , f2m2

, . . . , fr1, . . . , frmr
,

où fij est un vecteur propre de valeur propre λi pour tout 1 ≤ i ≤ r et par conséquent

les scalaires d1, . . . , dn sont précisément les scalaires λ1 (répétés m1 fois), λ2 (répétés

m2 fois), etc. Alors cα(t) = det(A − tIn) = (−1)n(t − λ1)
m1(t − λ2)

m2 · · · (t − λr)
mr .

En particulier, cA(t) est scindé. De plus, malg(λi) = mi (rappelons que les λi sont

distinctes) et mgeom(λ) = dimEλi
≥ mi car fi1, . . . fimi

sont des vecteurs linéairements

indépendants dans Eλi
. Par Proposition 8.4.3, mgeom(λi) ≤ malg(λi) = mi. Les deux

inégalités montrent que mgeom(λi) = malg(λi), et ceci pour tout i.
99



Supposons maintenant que les deux conditions (1) et (2) sont satisfaites, avec cα(t) =

(−1)n
∏r

i=1(t−λi)mi . Sans perte de généralité on suppose que les λi sont distinctes. Par

la condition (2), dimEλi
= mi pour tout i. On fixe une base ei1, . . . , eimi

de Eλi
. Par

Proposition 8.5.1, le sous-espace vectoriel Eλ1
+ · · ·+Eλr

est une somme directe, et donc

dim(Eλ1
+ · · ·+ Eλr

) =

r∑
i=1

dimEλi
=

r∑
i=1

mi = deg(cA(t)) = dimV.

On déduit que Eλ1
+ · · · + Eλr

= V . Comme Eλi
= Vect (ei1, . . . , eimi

), l’ensemble

B = {eij | 1 ≤ i ≤ r, 1 ≤ j ≤ mi} est une famille génératrice de V , et donc de cardinal au

moins dimV =
∑r

i=1mi. Comme B possède au plus
∑r

i=1mi vecteurs, B est de cardinal

dimV et forme une base de V ; c’est-à-dire que B est une base de vecteurs propres pour

α et α est diagonalisable. □

Corollaire 8.5.3. Soient V un K-espace vectoriel de dimension finie n et α ∈ L(V, V ).

Si cα(t) possède n valeurs propres distinctes, alors α est diagonalisable.

Proof. Par hypothèse, cα(t) = (λ1 − t) · · · (

lambdan − t) avec comme scalaires λ1, . . . , λn distincts, et par conséquent, cA(t) est

scindé. Pour tout 1 ≤ i ≤ n, on a malg(λi) = 1. Comme 1 ≤ mgeom(λi) ≤ malg(λi)

(Prop. 8.4.3), on a mgeom(λi) = malg(λi) pour tout i. Par le théorème précédent, α est

diagonalisable. □

Application: calcul des puissances d’une matrice diagonalisable

Soit A ∈Mn(K). Si A est diagonalisable, alors il existe P ∈ GLn(K) telle que

PAP−1 = D =



d1 0 . . . 0

0 d2 . . . 0

...
...

...
...

0 0 · · · dn


.
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Alors A = P−1DP , et donc pour k ∈ N,

Ak = (P−1DP )(P−1DP ) · · · (P−1DP ) = P−1DkP = P−1



dk1 0 . . . 0

0 dk2 . . . 0

...
...

. . .
...

0 0 · · · dkn


P.

8.6. Trigonalisation.

Théorème 8.6.1 (de trigonalisation). Soit V un K-espace vectoriel de dimension finie

n et soit ϕ ∈ L(V, V ). Alors ϕ est trigonalisable si et seulement si cϕ(t) est scindé dans

K[t].

Proof. Supposons d’abord que ϕ est trigonalisable. Par Proposition 8.2.6, il existe une

base B de V telle que (ϕ)BB soit une matrice triangulaire (supérieure), disons

A = (ϕ)BB =



d1 ∗ · · · ∗

0 d2 · · · ∗
...

. . .
...

0 · · · 0 dn


.

Alors cϕ(t) = cA(t) = det(A − tIn). Comme A − tIn est une matrice triangulaire, son

déterminant est le produit des coefficients le long de la diagonale; on trouve cϕ(t) =

(d1 − t) · · · (dn − t), ce qui montre que cϕ(t) est scindé.

Maintenant, on procède par récurrence sur n pour montrer que toute transformation

linéaire d’un K-espace vectoriel de dimension finie dont le polynôme caractéristique est

scindé est trigonalisable. Si n = 1, toute ϕ ∈ L(V, V ) est trigonalisable; prenonsW0 = {0}

et W1 = V dans la Definition 8.2.5. On suppose maintenant que n > 1 et que le résultat

est vrai pour toute transformation linéaire d’unK-espace vectoriel de dimension inférieure

à n. Par hypothèse, cϕ(t) est scindé. En particulier, ϕ possède une valeur propre λ ∈ K.

Soit w ∈ V un vecteur propre de valeur propre λ. Posons U1 = Vect (w), un sous-espace

ϕ-invariant de dimension 1. Fixons une base B de V avec B = (w,w2, . . . , wn) et posons
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A = (ϕ)BB . Alors

A =



λ a12 · · · a1n

0 a22 · · · a2n
...

... · · ·
...

0 an2 · · · ann


.

SoitA′ ∈Mn−1,n−1(K) la matriceA′ =



a22 a23 · · · a2n

a32 a33 · · · a3n
...

...
...

...

an2 an3 · · · ann


. PosonsW ′ = Vect (w2, . . . , wn),

un K-espace vectoriel de dimension n − 1 avec base B′ = (w2, . . . , wn). On définit

α ∈ L(W ′,W ′) par (α)B
′

B′ = A′. On note que pour tout u ∈ W ′, ϕ(u) − α(u) ∈ Vect (w)

(il suffit de vérifier sur les vecteurs de la base B′.) En utilisant le développement par

rapport à la première colonne, on trouve que

cϕ(t) = det(A− tIn) = (λ− t)det(A′ − tIn−1) = (λ− t)cα(t).

Comme cϕ(t) est scindé, le polynôme caractéristique de α est aussi scindé. Par l’hypothèse

de récurrence, α est trigonalisable. Soit (f2, . . . , fn) une base deW
′ telle que Vect (f2, . . . fi)

est α-invariant pour tout i. (Voir la preuve de la Proposition 8.2.6.) Enfin, posons Ui =

Vect (w, f2, . . . , fi) pour 2 ≤ i ≤ n. On montre que {0} = U0 ⊂ U1 ⊂ U2 · · · ⊂ Un = V

satisfait aux conditions de la Définition 8.2.5. Par construction, dimUi = i. Aussi, pour

tout i ≥ 2, ϕ(fi) − α(fi) ∈ Vect (w). Comme Vect (f2, . . . , fj) est α-invariant, on trouve

que ϕ(fi) ∈ Uj pour tout 2 ≤ i ≤ j, ce qui donne l’invariance par ϕ de chaque sous-espace

vectoriel Uj , et de suite la tringonalisabilité de ϕ. □

Par le théorème fondamental de l’algèbre, chaque polynôme p(t) ∈ C[t] est scindé. Le

théorème précédent implique alors :

Corollaire 8.6.2. Toute transformation linéaire d’un C-espace vectoriel de dimension

finie est trigonalisable.

Proposition 8.6.3 (sur la trace et le déterminant). Soit V un K-espace vectoriel de

dimension n et soit ϕ ∈ L(V, V ). Supposons que cϕ(t) est scindé dans K[t]. Soient
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λ1, . . . , λn les racines de cϕ(t) (avec répétition selon leur multiplicité). Alors Tr(ϕ) =

λ1 + · · ·+ λn et det(ϕ) = λ1 · · ·λn.

Proof. Par le Théorème de trigonalisation, ϕ est trigonalisable. Par Proposition 8.2.6,

il existe une base B de V telle que (ϕ)BB = A =



d1 · · · ∗

0
. . . ∗

...
. . .

...

0 · · · dn


. On trouve

cϕ(t) = cA(t) = (d1 − t) · · · (dn − t) = (λ1 − t) · · · − (λn − t). Donc, quitte à renuméroter,

on peut supposer que di = λi pour tout i. Enfin, Tr(ϕ) = Tr(A) =
∑n

i=1 di =
∑n

i=1 λi et

det(ϕ) = det(A) = d1 · · · dn = λ1 · · ·λn. □
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