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1. STRUCTURES ALGEBRIQUES

1.1. Groupes, définitions et exemples.

Définition 1.1.1. Un groupe est un ensemble muni d’une loi de composition * : G X G —

G, qui envoie (a,b) — a * b, tel que les conditions suivantes sont vérifiées:

e (associativité de la loi de composition) a* (bxc) = (a*b) *c pour tout a,b,c € G.
o (existence de ’élément neutre & gauche) Il existe e € G tel que e x g = g pour
tout g € G.

o (existence des inverses a gauche) Pour tout g € G, il existe g* € G tel que

*

gtxg=ce.

Conséquences directes de la définition: Soit (G, *) un groupe avec e € G 1’élément neutre

a gauche.

(1) Grace a l’associativité, on écrira a * b * ¢ sans parentheéses sans que cela entraine une
ambiguité quelconque.
(2) Soit g € G. On montre que g*, inverse a gauche de g, est aussi un inverse a droite:

on a

* *

(0) *g"xgxg"=(g") xexg" =(g")" xg" =e.
Aussi,
(0°)" *g"*xgxg" =exgxg  =gx*g".
On a donc 'égalité g « g* = e, et g* est un inverse a droite de g.

(3) L’élément e est également un élément neutre & droite: En effet, pour tout g € G,
gxe=gxg*xg=exg=g.

(4) L’élément e est unique: Si f € G satisfait aussi f x g = g pour tout g € G, on a
f*e = e car f est un élément neutre a gauche, et f xe = f car e est un élément
neutre & droite (cf point (3)). Donc e = f.

(5) L’élément g* est unique. (exercice) On utilisera la notation g~! pour désigner cet

élément (l'inverse de g).



(6) Simplification, & gauche et a droite: pour tout a,b,c € G,onaaxb=axc=—=b=c.

En effet:
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axb=a*xc=—a " *xa*xb=a "*xaxc=—=b=c.

De méme,

axb=cxb=a=c
(7) Pour tout a,b € G, (axb) L =b"txa ! et (a=!)"! = a. (Exercice.)

Définition 1.1.2. 1. Un groupe (G, ) dans lequel la loi de composition est commutative,
c’est-a-dire que pour tout a,b € G on a a xb = b x a, est appelé groupe abélien. Si G
n’est pas abélien, on dit que G est non abélien.

2. Soit G un groupe. On appelle ['ordre de G le cardinal de G, noté, comme pour les

ensembles, par |G|, ou par Card(G).

Notation 1.1.3. Soit G un groupe.

1. On écrira souvent ab pour a x b dans un groupe ou la loi n’est pas précisée.

2. Si G est abélien, parfois on utilisera la notation + pour désigner la loi de composition,
0 pour I’élément neutre et —g pour l'inverse de g € G.

3. Soit g € G et m € Z. On écrit g™ pour désigner

g---g,(m copies de g), sim>0
(g7t~ g7 (Jm| copies de g71), sim <0
e sim=20

On vérifie que pour tout £,n € Z, on a g'g™ = ¢*™" et (g*)" = ¢g*". Si le groupe est
abélien et qu’on utilise la notation additive, on écrit mg et —mg a la place de g™ et

—m
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Exemples 1.1.4. Voici quelques exemples de groupes.

1. (Z,4+)

2. (R\{0},-)

3. Soit X un ensemble non vide. On note Bij(X) = {f : X — X, f est bijective},

Pensemble des applications bijectives de X dans X. On munit Bij(X) d’une loi de
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composition o : Bij(X) x Bij(X) — Bij(X), qui est la composition d’applications et on
vérifie que (Bij(X), o) est un groupe.

4. Cas particulier: prenons X = {1,2...,n} dans ’exemple précédent. On appelle Bij(X)
le groupe de permutations de l’ensemble X, ou le groupe symétrique de degré n, et ce
groupe est souvent noté &,,, Sym,,, ou simplement S,,. C’est un groupe d’ordre n!. Une
des facons de présenter les éléments de S, est de donner un tableau dans la premiere
ligne duquel on trouve les entiers 1,2, ..., n dans 'ordre croissant, et dont la deuxieme
ligne donne les images, dans 1'ordre, de ces éléments par la permutation. Donc, pour

o € 8,, on écrit

Par exemple, si n = 3, le groupe S3 comprend les 6 permutations :

1 2 3 1 2 3 1 2 3
I’élément neutre e = , 01 = , 02 = )
1 2 3 2 1 3 1 3 2
1 2 3 1 2 3 1 2 3
03 = , 04 = 7et 05 =
3 21 2 31 31 2

On note que o109 = 04 # 05 = 0201, et donc S3 est un groupe non abélien.
5. Le groupe dit “trivial” qui consiste en un seul élément, G = {e}.
6. Les entiers modulo n:
Fixons un nombre naturel n € N, n # 0. On définit une relation sur Z:
pour tout a,b € Z, on dit que a ~ b si et seulement si n divise b — a, c’est-a-dire
qu’il existe m € Z tel que b — a = nm.
Assertion: ~ est une relation d’équivalence sur Z:
e (réflexive) Pour tout @ € Z, a ~ a puisque ¢ —a =0=n-0.
e (symétrique) Pour a,b € Z, si a ~ b, on a b — a = nm pour un certain m € Z, et
donc a — b = n(—m) et par conséquent b ~ a.
e (transitive) Pour a,b,c € Z, si a ~ b et b ~ ¢, alors il existe m,¢ € Z tel que
b—a=mnetc—b=4In,etdoncc—a=c—b+b—a=~Iln+mn={+m)net

a ~ C.



On note @ la classe d’équivalence de a, c’est-a~-direa ={b € Z | a ~ b}. Pour b € Z
tel que a ~ b, on écrit a = b mod n, on dit que a est congru a¢ b modulo n, et on
appelle la classe d’équivalence de a la classe de congruence de a modulo n. On écrit
Z/nZ pour I'ensemble des classes d’équivalence de Z par rapport a cette relation.

On remarque que la notation @ a un défaut, dans le sens ou le n n’y apparait pas.
Si on souhaite travailler avec des classes de congruence modulo différents entiers, on

utilisera la notation [a],, pour indiquer la classe de a modulo n.
Proposition 1.1.5. Card(Z/nZ) =n

Preuve. Pour chaque entier a € Z, la division euclidienne de a par n donne l’existence
de g,7 € Z avec 0 < r <neta=qn+r. Doncn divise a—r =qn et a ~r. On
déduit que Z/nZ = {0,1,...,n — 1}, et pour tout 0 <r < s<m,onal<s—r<mn,

et donc 7 #£ S. O

Structure de groupe de Z/nZ: On munit Z/nZ d’une loi de composition qui lui
donnera la structure de groupe abélien.

Pour a,b € Z, on pose @ + b := a + b. Il faut montrer que I'association (a,b)
@+ b = a+b définit une application de Z/nZ x Z/nZ — Z/nZ. 1 est clair que
a+beZ/n.

Supposons que @ = a’ et b=’ pour a,a’,b,b’ € Z. Donc il existe £, m € Z tels que
a—a' =fnet b—b = mn. Alors (a+b)—(a'+b") = (a—a’)+(b—0b") = n+mn = ({+m)n
et donc, a + b = a’ + b'. L’application + est bien définie. Nous avons donc une loi de
composition sur Z/nZ. On vérifie aisément I’associativité de la loi (qui suit directment
de lassociativité de 'addition dans Z). L’élément neutre est 0, et I'inverse de @, pour

a € Z, est ’élément —a = n — a.
1.2. Sous-groupes.

Définition 1.2.1. Soit G un groupe. Une partie H de G est un sous-groupe de G si
la loi de composition restreinte a H munit H d’une structure de groupe. Si H est un

sous-groupe de G, on écrit H < G.



Proposition 1.2.2. Soit G un groupe et H C G une partie de G. Alors H est un

sous-groupe de G si et seulement si les conditions suivantes sont vérifiées:

(i) H est non vide.
(ii) Pour tout h,k € H, on a hk € H.

(iii) Pour tout h € H, on a h™ € H.

Preuve. Tout d’abord, on suppose que H est un sous-groupe de G. Comme H posséde un
élément neutre, H est non vide. Aussi, comme la loi de composition de G se restreint a
une loi de composition sur H, pour tout h, k € H, 'image de la loi (h, k) — hk appartient
a H. Maintenant, on montre que 1’élément neutre de H, ey, est égal a e, I’élément neutre
de G. En effet, nous avons ege = ey = egey et par simplification a gauche on obtient
que e = ey. Maintenant, pour h € H, soit h* € H tel que h*h = ey = e. On a aussi
h~'h = e et par simplification & droite, on obtient que h* = h™! et h~! € H.
Maintenant, supposons que les conditions (i), (ii) et (iil) sont vérifiées. On montre que
la restriction de la loi de composition sur G au sous-ensemble H, munit H d’une structure
de groupe. On a par (ii) que pour tout h,k € H, hk € H. Cela veut dire que 'image de
la loi de composition G x G — G de tout couple (a,b) € H x H appartient & H. Donc la
restriction définit bien une loi de composition sur H. La loi est associative car c’est déja
le cas dans G. Par (i), il existe h € H. Par (iii), h~! € H et par (ii), hh™! = e € H.
Donc H possede un élément neutre, notamment e, I’élément neutre de G, et par (iii), H

possede les inverses. O

Exemples 1.2.3. Voici quelques exemples de sous-groupes.

1. Soit G un groupe quelconque. Alors H = {e} et H = G sont des sous-groupes de G.

2. {1,-1} < (R\ {0},).

3. H = {entiers pairs} < (Z,+).

4. Soit G = 7Z/6Z. Alors H = {0,2,4} est un sous-groupe. (Y en a-t-il d’autres?)

5. Soit G = S, le groupe symétrique de degré 3. Alors H = {e, 04,05} est un sous-groupe
de G (voir la notation introduite dans I'exemple 1.1.4(4)).

6. Soit G un groupe. On pose Z(G) := {z € G |za = az pour tout a € G}, le centre de

G. On montre que Z(G) est un sous-groupe de G. (exercice)
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1.3. Morphismes de groupes.

Définition 1.3.1. (1) Soient (Gq,-),(Gae,*) des groupes. Un homomorphisme (ou

simplement morphisme) de groupes de Gy dans G est une application ¢ : G; —
G, telle que ¢(z - y) = ¢(x) * ¢(y) pour tout z,y € Gy.

(2) Un endomorphisme d’un groupe G est un homomorphisme de groupes ¢ : G — G.

(3) Un isomorphisme entre deux groupes G1 et Go est un homomorphisme de groupes
bijectif.

(4) Un automorphisme d’un groupe G est un endomorphisme bijectif de G.

(5) S’il existe un isomorphisme de groupes ¢ : G; — G2, on dit que G; est isomorphe

a GQ et on écrit G1 = GQ.

Exemples 1.3.2. Voici quelques exemples de morphismes de groupes.

1. Soit G un groupe. Alors 'application identité id : G — G est un morphisme de
groupes, tout comme 'unique application ¢ : G — {e}.
1 2 3 1 2 3 1 2

3
2. Soit H = , , < S3. On définit ¢ : Z/3Z — H
2 3 1 3 1 2 1 2 3

_ _ 1 2 3 _ 1 2 3
par ¢(0) = e, ¢(1) = et ¢(2) = . On vérifie que ¢ est un
2 3 1 3 1 2

isomorphisme de groupes.
3. ¢:Z— (R\{0},") et ¢(m) = (vV2)™
4. ¢:Z — Z/nZ et (m) =mn.

Lemme 1.3.3. Soit ¢ : G1 — Ga un morphisme de groupes de (G1,-) dans (Ga,x*), et
soit a € G1. Alors

(i) ¢plec,) = eq,, ou eq, est l’élément neutre de G; pouri=1,2,

(ii) ¢la™") = p(a)~"
(iii) Pour n € Z, ¢(a™) = ¢p(a)™.

Preuve. (i) Pour tout a € G, eq, * ¢(a) = ¢(a) = d(eg, - a) = dleq,) * #(a). La
simplification & droite donne le résultat. Les énoncés (ii) et (iii) sont laissés en exercice.

O



1.3.1. Morphismes et sous-groupes.

Définition 1.3.4. Le noyau d’'un homomorphisme de groupes ¢ : G; — G4 est 'ensemble

ker(¢) ={x € G1 | ¢(z) = eg, }-

On désigne 'image de ¢ par im (¢) = {¢(g) | g € G1} C Gbs.

Proposition 1.3.5. Soit ¢ : G; — G2 un homomorphisme de groupes. On a
(i) ker(¢) < G, et
(i) im (¢) < Go.

Preuve. (i) exercice.

(ii) Comme G; est non vide et ¢ est une application de G; dans Gs, im (¢) est non
vide. Soient maintenant a,b € im (¢), et x,y € Gy tels que ¢(x) = a et ¢(y) = b. Alors
ab = ¢(x)p(y) = ¢(xy). Comme G, est un groupe, zy € G et ¢(xy) € im (¢). De méme,
onaquez ! € G et, de ce fait, a™! = ¢(x) 7! = ¢p(z7!) € im (Gy), ot la derniere égalité

provient du Lemme 1.3.3. Par conséquent, im (¢) < Gs. O

Exemple 1.3.6.
Soit n € Nyn > 1 et soit ¢ : Z — Z/nZ le morphisme défini par ¢(a) = @. Alors
ker(p) ={a€Z|a=0} ={a €Z|n divise a} = nZ.

1.4. Anneaux.

Définition 1.4.1. Un anneau unitaire (A,+,-) est un ensemble muni de deux lois de

composition + et - :

o +: AxA — A - AxA —» A
(a,b) — a+b (a,b) — a-b

satisfaisant les axiomes suivants :

(1) (A,+) est un groupe abélien.

(2) a-(b-¢c)=(a-b)-c Va,bce A (associativité de -)
(3) ilexiste 14 € Atel que 14-a=a-14 = a pour tout a € A. (élément neutre
pour -)



(4) (a+b)-c=(a-c)+(b-c) Va,b,ce A. (distributivité I)
(5) a-(b+c)=(a-b)+(a-c) Va,b,ce A. (distributivité II)

Cachée dans (}), la stabilité des lois de composition est une propriété essentielle d’un

anneau.

Remarque 1.4.2. Soit (A4, +,+) un anneau unitaire.

(1) On écrira souvent ab a la place de a - b, et on parlera de la “multiplication” dans A.

(2) Un ensemble A muni de deux lois de composition + et -, qui satisfont les axiomes (1),
(2), (4) et (5) s’appelle un anneau. Nous ne considérerons que les anneaux unitaires
ici, et nous nous permettons de parler simplement des anneaux quand nous voulons
dire anneaux unitaires.

(3) On écrit 0 pour I’élément neutre par rapport & +, et —a pour 'inverse de a par
rapport a +, pour tout a € A. Pour 'opération +, on parlera de “I’addition” dans A.

(4) Les inverses multiplicatifs n’existent pas nécessairement. Pour a € A, s'il existe b € A
tel que ab = 14 = ba, on dit que a est inversible et que b est ["inverse de a. Et souvent,
on écrit b= a1,

(5) Si pour tout a,b € A, on a ab = ba, alors on dit que A est un anneau commutatif.

(6) Convention. On suppose que 14 # 0, et donc que A # {0}.

Exemples 1.4.3. o (Z,+,), (Q,+,-), (R,+,-), o + et - sont les opérations usuelles,
sont des anneaux commutatifs.
e Soit nZ = {nz:z € Z} pour n € Net n > 1 (avec la multiplication et I’addition
usuelles de nombres réels). Alors, (nZ,+,-) n’est pas un anneau pour n > 2, car
il ne possede aucun élément neutre pour la multiplication

e Soit E un ensemble non vide et (4,4, ) un anneau. On définit
App(E, A) = {f | f est une application de E vers A}
et les opérations

(f+9)(@) = f2) +9(x),  (F-9)(x):= f(x)g(x).
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Alors, (App(F, A),+,-) est un anneau (non commutatif).

e Soit n € N et n > 2. On munit ensemble Z/nZ des entiers modulo n d’une
deuxieme loi de composition; on associe a la paire (@,b) 1’élement ab. Il faut
vérifier que cette association définit bien une application de Z/nZ x Z/nZ dans
7./nZ, donnée par (@, b) — ab. C’est clair que ab € Z/nZ. Maintenant, on suppose
que pour a,a’,b,b € Z,onaa=a et b=10, c’est-d-dire, qu’il existe k, £ € Z tels
que @' = a+nk et b/ = b+ nl. On considere a'b’ — ab = (a + nk)(b+ nl) — ab =
ab + nla + nkb+n2kl — ab = n(fa + kb +nkf). On déduit que n divise a’'b’ — ab,
et par la définition de Z/nZ, on a ab = a/b/, ce qui montre que nous avons une
application bien définie - : Z/nZ x Z/nZ — Z/nZ donnée par (a@,b) — @- b := ab.
Les autres axiomes de la définition 1.4.1 sont faciles & vérifier. (Z/nZ,+,-) est

donc un anneau commutatif.

Lemme 1.4.4. Soit (A, +,-) un anneau. Alors,

(i) 0-a=a-0=0 pour tout a € A,
(i1) (—a)b = a(—b) = —(ab) pour tous a,b € A,
(i11) (—a)(—b) = ab pour tous a,b € A.

Preuve.

(i) Par l'axiome de distributivité I,
0-a=0-¢4+0=0-a+0-a+(—(0-a))=(0+4+0)-a+(—(0-a)) =0-a+(—(0-a)) =0.

De la méme manieére, on montre que a -0 = 0.

(ii) Par les axiomes de distributivité I+II et la partie (i) du lemme,
ab+ (—a)b=(a+(—a))b=0-b=0
et
ab+a(=b) =ab+ (-b)) =a-0=0.

Maintenant, par I'unicité des inverses additifs, on a que (—a)b = —(ab) et a(—b) =

—(ab).
10



(iii) Ici, on applique (ii) deux fois et on utilise le fait que —(—a) = a pour obtenir

(~a)(~b) = ~(a(~b)) = ~(~(ab)) = ab.

Le lemme 1.4.4 permet d’écrire —ab sans ambiguité.

Définition 1.4.5. Soient (A,+,-) et (B,®,®) deux anneaux, avec éléments neutres
14,1p, respectivement, par rapport a -, et ©. Un morphisme d’anneaux est une applica-

tion f: A — B telle que

fla+b)=fla)® f(b),  fla-b)=fla)©f(b), VabeA,

et

f(la) =1p.

Si de plus f est bijective, on dit que f est un isomorphisme d’anneauz et que les anneaux
(A, +,:) et (B,®,®) sont isomorphes. On note (A, +,-) = (B, ®,®), ou plus simplement

A= B (en tant qu’anneaux).

Définition 1.4.6. Soit (A4,+,-) un anneau et U C A. On dit que (U, +,-) est un sous-
anneaw de A si

(i) (U, +) est un sous-groupe de (4, +),

(ii) sia,be U alorsa-be U,

(iii) L’élément neutre multiplicatif 14 de A appartient & U.

Lemme 1.4.7. Soient (A,+,-) un anneau et U C A. Alors, les assertions suivantes sont
équivalentes:
(i) (U,+,-) est un sous-anneau de (A,+,)

(i) 14 € U, et pour tout a,b €U, onaa—beU eta-beU.

Preuve. (i) = (ii) découle de la définition d’un sous-anneau.

(ii) = (i) Comme 14 € U, U est non vide et comme 14 — 14 =0, on a que 0 € U. Si
beUalors -b=0—-beU. Sia,beU,alorsa+b=a—(—b) € U. Donc (U,+) est un
sous-groupe de (A,+). Sia,b € U, alors a-b € U d’apres (ii) et donc (U, +, ) est bien

un sous-anneau de (A, +, ). ]
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1.5. Corps, corps finis. Un corps est un anneau unitaire commutatif dans lequel tout

élément non nul est inversible par rapport a la loi de composition -.

Définition 1.5.1. Un corps (K, +,-) est un anneau unitaire (avec 1’élément neutre mul-
tiplicatif 1) avec K # {0} tel que:

(i) K est commutatif, c’est-a-dire que pour tout a,b € K,onaa-b="b-a.

“l.g=1.

(ii) pour tout a € K \ {0}, il existe a™! € K tel que a-a™! =a
On remarque que (K, +,-) est un corps si et seulement si (K, +) et (K \ {0},-) sont
des groupes abéliens et (a +b)-c=a-c+b-c pour tous a,b,c € K.

Une liste de tous les axiomes d’un corps (K, +,-) :

lat+beK, a-beK VabeK. (stabilité)
2a+b=b+a, Va,beK. (commutativité+)
3a+(b+ec)=(a+b)+¢, Va,bceK. (associativité+)
4 Tl existe 0 € K tel que 0 4+ a = a pour tout a € K. (élément neutre+)
5 Pour tout a € K, il existe —a € K tel que a + (—a) = 0. (inverse+)
6 a-b=b-a, Va,bekK. (commutativité

7a-(b-¢c)=(a-b)-¢, Va,bceK. (associativité-
8 Il existe 1 € K tel que 1-a = a pour tout a € K. (élément neutre-
9 Pour tout a € K \ {0}, il existe a=! € K tel que a-a~! = 1. (inverse-
10 (a+bd)-c=(a-c)+(b-c), Va,bceK. (distributivité T

)
)
)
)
)
)

11 a-(b+c¢)=(a-b)+(a-¢), Va,bceK. (distributivité 1T

En fait, la commutativité de - implique que les deux lois de distributivité I et II sont
équivalentes.

Exemples :

e (Q,+,), (R,+,-), ou + et - sont les opérations usuelles, sont des corps.

e (Z,+,-) n’est pas un corps parce qu’il n’y a pas d’inverse multiplicatif en général.

Un morphisme (isomorphisme) de corps est simplement un morphisme (isomorphisme)

des anneaux sous-jacents.
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Proposition 1.5.2. Soit n € N, n > 2. Sin est premier, alors tout élément de Z/nZ

différent de O est inversible.

Preuve. On suppose n = p un nombre premier. Soit maintenant a € Z tel que @ # 0.
Alors p ne divise pas a et donc pged(a, p) = 1. Par lidentité de Bézout, il existe ¢,d € Z
tels que ac+pd = 1. Donc ac—1 = —pd, p divise ac— 1, et on déduit que ac =1 mod p.

Par conséquent, ac = 1 et a est inversible. [
Corollaire 1.5.3. Soit p € N un nombre premier. Alors 'anneauw Z/pZ est un corps.
Notation 1.5.4. On écrit F,, pour désigner le corps fini Z/pZ.

1.6. Le corps des nombres complexes. Un nombre compleze est une paire ordonnée

(couple) (x,y) ot z,y € R. En définissant I'unité imaginaire i, on écrit
T+ iy
au lieu de (z,y). L’ensemble des nombres complexes se note
C={z+iy: z,y € R}.

Quelques conventions : Soit z = x + iy € C.

e On note x = Re(z) et on dit que = est la partie réelle de z.

e On note y = Im(z) et on dit que y est la partie imaginaire de z.

e Siy =0, il est usuel d’identifier le nombre complexe z avec le nombre réel z, et
on dit que z est réel. De plus, on n’écrit pas le terme i0.

e Si z =0, on dit que z est imaginaire pur ou totalement imaginaire, et on n’écrit
pas le term 0 dans l’expression 0 + iy.

e Siy=+1, on écrit x 1 (au lieu de = +i(£1)).

On définit une loi + (addition des nombres complexes) et une loi - (multiplication des

nombres complexes) sur C :

+: CxC—=C, (z1+41iy)+ (w2 +iys) == (1 +x2) +i(y1 + y2),

CxC—C, (z1+iy)- (z2+iy2) = (z172 — y1y2) +i(T1y2 + y172).
13



On constate que i? =i-i = —1. Cela suffit pour retrouver la loi de multiplication :

(z1+iy1) - (w2 +iye) = 2172 +iy172 + iT1y2 + 2Y170

= w172 +iy1xe +iT1Y2 — Y1Y2

= (x122 — Y1y2) +i(z1y2 + Y122).

Exemple 1.6.1. On a

(141) 4 (=2 +1) = -1 +2i

et

(141)(-2+1) = -3 —i.

Comme (C, +) hérite des propriétés de (R, +), on voit que (C, +) est un groupe abélien.
L’élément neutre est 0 = 0 + 0i, et U'inverse additif de z = x + iy € C est —z := —z — iy.

On définit la soustraction des nombres complexes par

21— 29 =21 + (—22) = (1 — z2) +i(y1 — y2).

C’est laborieux de vérifier directement les propriétés de la multiplication. Néanmoins,

on peut montrer:

Théoréme 1.6.2. L’ensemble C muni des opérations + et - définies ci-dessus est un

corps.

Remarque 1.6.3. Grace au théoreme précédent, on a que la multiplication est commu-

tative, et on peut écrire aussi bien x+iy que x+yi car iy = (0+1)-(y+10) = (y+i0)-(0+1)

Définition 1.6.4. Le conjugué d’un nombre complexe z = x +iy est le nombre complexe

Z défini par z := = — iy.

Lemme 1.6.5. Soient z1, 29,2z € C. Alors,
(i) 1+2=21+7%
(i) Z1 22 =71 - Z2

(iii) Z = 2
14



(iv) Re(z) = (2 +7%2)
(v) Im(z) = =(z — 7).

Preuve. Ces propriétés sont des exercices faciles. [

Les parties (1)—(iii) du lemme 1.6.5 impliquent que la conjugaison est un isomorphisme

du corps (C, +, -) dans lui-méme.*

Définition 1.6.6. Le module d’'un nombre complexe z = x + iy est le nombre réel positif

|z| défini par |z| := /22 + y2.

Lemme 1.6.7. Soient z1, 29,z € C. Alors,
(i) 2% = |z
(ii) 27! = % (2 #£0)
(iii) 2=t =z"1  (2#0)
(i) |21 - za| = |z1] - |22
(v) |21+ 22| < |21|+ 22| avec égalité si et seulement si il existe o > 0 tel que z1 = azo

ouU 29 = Qzq.

Prewve. (i). 2z = (x +1iy)(z — iy) = 2% + y? + i(zy — yx) = 22 + 4% = |2|.
(i) découle de (i) et (iii) découle de (ii).
(iv). En utilisant le lemme 1.6.5 et la commutativité de la multiplication complexe, on

obtient
\21'22|2 =21°22°21 2 =21"22 21 22 =221 %222 = |Z1|2 : |Z2|2-
(v). L’inégalité découle de

|21+ 22° = (21+22)(21 + 22) = (21 + 22) (7T + 2)
= |21’ + 227 + 2172 + |22 = [21]? + 2Re(2172) + |22[?

l21]? + 2 |21]|22] + |22]® = |21)* + 2|21 ]| 22] + |22)* = (l21] + |22])*.

IN

1Un isomorphisme d’une structure algébrique dans elle-méme est dit automorphisme.
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On a utilisé le fait que le module est toujours supérieur a la partie réelle. L’inégalité
ci-dessus devient une égalité si Re(z1Z3) = |z122], c-&-d si 8 = 21Z3 est réel positif. Si

2o =0, on a bien zo = az; avec a = 0. Si 29 # 0, alors

_ Bz B

= = (z9 avec a =
|22|? |22/

212229 = Bza = z1 > 0.

La réciproque est évidente. [

La division d’un nombre complexe z; par un nombre complexe zo # 0 est définie par

21/29 := 2125 *. D’apres le lemme 1.6.7 (ii), on a

21 2129

V) o |22|2.

Par exemple,
2+31  (2+3i)(1—-i) 5+i 5 1

1+i  1+1 5 T3 Tab

1.6.1. Plan compleze et forme polaire. On note que nous n’utiliserons pas la matiere de
ce paragraphe ni du paragraphe §1.7 dans le cours d’algebre linéaire ce semestre, mais ce

sera repris dans les cours de physique et d’analyse.

Par définition, les nombres complexes C sont des couples de nombres réels. Pour cette
raison, tout nombre complexe correspond uniquement & un vecteur dans le plan R? (qu’on
appelera ici plan complere). La somme des nombres complexes correspond & la somme
des vecteurs, et la conjugaison correspond a la réflexion par rapport a I’axe réel, voir
figure 1.

Soit z = z +1iy € C\ {0}. En notant r = /22 + y2 > 0 la longueur, et § = arctan £ €

— 7, | Pangle du vecteur (x,y) dans la plan complexe, on peut écrire
g Y
(z,y) = (rcos@,rsinb).
Ainsi, on a
z=x+iy =rcosf +irsinf = r(cosf + isinh),

ou 0 est défini a 2km pres avec k € Z. On lappelle la forme polaire de z. L’angle

0 = arg(z) est 'argument de z.
16



iR

Zl+22 2 1 Py

z S !
92+ g 1 - ;
/ 0 !

1+ ! 1 2
—1 A !

z2 |
} } R z

0 1 2 —2

I'addition de deux nombres complexes . ,
le conjugué

FI1GURE 1. L’addition et le conjugué dans la plan complexe.

Par les identités trigonométriques, la forme polaire permet de multiplier facilement

deux nombres complexes:

2122 = pilcosgr +isingy) - pa(cos gz + isin po)

(1) = pipa(cos(pr + @2) +isin(pr + ¢2)).

Alors, le produit z1z9 représente géométriquement une multiplication de la longueur de

z1 par ps et une rotation anti-horaire de z; d’angle s.
Lemme 1.6.8 (Formule de Moivre). Pour tousr > 0,0 € R etn €N, on a
(r(cos @ + isin 9))n = 7" (cos(nf) + isin(nd)).
Preuve. Par récurrence utilisant (1). ]
1.7. La fonction exponentielle complexe.

Définition 1.7.1. Pour z = z + iy € C, on définit

Rez(cos(lmz) + isin(Imz))

e = exp(z) := e”(cosy +isiny) =e

ou e” est la fonction exponentielle réelle usuelle.

Propriétés de I'exponentielle:
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arg(e*) = Imz (& 2kw pres avec k € Z)

Rez

e*T2hm — ¢ (cos(y + 2km) + isin(y + 2k7)) = €* pour tout k € Z

w+z

(1)
(2)
(3) silmz=0,onae*=e
(4)
(5) e =¢eY - e* pour tous w,z € C

La formule d’Fuler s’écrit, pour 6 € R,

e? = cosf + isin 6.

En particulier pour § = 7 on obtient l’identité d’Fuler
e+ 1=0.

1.8. Anneaux de polynémes. Soit (A,+,-) un anneau (nous utiliserons la juxtaposi-
tion pour indiquer la loi de composition - dans A).
Soit AM™ T’ensemble des suites ordonnées (ag, a1, . ..) d’éléments de A avec a; # 0 pour

un nombre fini de 4, autrement dit
AN = {(ag,ay,...) | a; € A pour tout i et {i >0 | a; # 0} est fini}.

On note que deux suites (ag, a1, .- .), (bo, b1, . ..) sont égales si et seulement si a; = b; pour
tout 7 > 0.

On définit deux lois de composition @ et * sur AMN:

(ao,al,...) D (b07b17~--) = ((10 —|—b0,a1 +b1,),

(ag,a1,...) * (bo,b1,...) :==(co,c1,...), OU ¢ = Z a;b; pour m > 0.
i+j=m
Soient M € N tel que a; = 0 pour ¢ > M, et N € N tel que b; = 0 pour j > N. Alors
@, + by = 0 pour m > max{M, N}, et ¢,, = 0 pour m > M + N, car pour tout 4, j avec
i+j=m>M+N,soit i > M etj > N. On a donc soit a; = 0, soit b; = 0.

Par conséquent (ag, as,...) ® (bg,b1,...) € AW et (ag,a1,...) * (bo,b1,...) € AW,
18



On note que (A™ | @) est un groupe abélien avec élément neutre 0 = (0,0,...), 'inverse
de (ag, ai,...) est (—ap, —az, .. .), et 'associativité et la commutativité de @ sont héritées
de celles de A.

L’élément neutre pour *:

(1,0,0,...) * (ag,a1,-..) = (co,c1,...) avec ¢y = Z bia;

i+j=m

ou by =1 et b; =0 pour 7 > 0. Donc ¢, = bpa,, = a,, pour tout m > 0, d’ou
(1,0,0,...) * (a07a17...) = (ao,al,...)

et de méme pour (ag, as,...)*(1,0,0,...). L’élément neutre pour * est alors (1,0,0,...).

On vérifie maintenant ’associativité de *:

Soient a;, b;,d; € A, et posons ¢, = Ziﬂ-:[ a;b; pour £ > 0. Alors

((ao,al,...) k (bo,bl,...)) k (do,dl,...) = (Co,Cl,...) * (do,dl,...) = (anflv"')7

ou

fo= > cdr= > (Y abjdr= > (ab;)dx

l+k=m l+k=m i+j=¢ i+j+k=m

= Z ai(bjdk): Z ai( Z b]dk)

i+j+k=m i+r=m jt+k=r

On pose (bg, b1, ...) * (do,d1,...) = (S0, 51,-..), alors s, = ZjJrk:T bjdy et on déduit que

(a07a17...) * ((bmbl,...) * (do,dh...)) = (ao,al,...) * (80,81,...) = (go,gl7...)7 ou

Gm = ZH_T:m a;s, pour m > 0, c’est-a~dire g,, = f, ce qui établit I’associativité de *.

On laisse la vérification des propriétés de distributivité comme exercice.

Notation 1.8.1. On écrit

o (

(0,0,...)
o t:=(0,1,0,0,...)

e 1=(1,0,0,...)
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e poura € A, a = (q,0,0,...)
On remplace * par -, ou simplement par la juxtaposition d’éléments, et P
par +. Enfin, on désigne 'anneau (AN, @, %) par A[t]; on 'appelle I’anneau des

polynomes a coefficients dans A (voir Proposition 1.8.2).

Conséquences de cette nouvelle notation:
(1) Pour a € A4, (a,0,0,...) =a-1=a.
(2) Pour a € A, (0,4a,0,0,...) =(a,0,0,...)%(0,1,0,...) = at.
(3) Pour m € N, m > 1, (0,0,...,1,0,0,...) = ¢™ ou la valeur 1 est & la (m + 1)-ieme
place.
(4) Pour a; € A, i € Net ap = 0 pour k > m, on a (ag,a1,...) = ag + art + ast? +--- +

amt™.

Proposition 1.8.2. L’ensemble At], avec + et -, est un anneau. Si A est commutatif,
alors Alt] est commutatif. L’application ¢ : A — Alt] définie par ¢(a) = (a,0,0,...) est

un morphisme d’anneaux injectif.

Remarque 1.8.3. Etant donné le morphisme ¢ de la proposition précédente, on identifie

A avec ¢(A), et A devient un sous-anneau de anneau de polynémes A[t].

Définition 1.8.4. Soit A un anneau.

(1) Soit f =ag+ art + -+ amt™ € Alt] avec a,, # 0. On dit que f est de degré m, et
on écrit deg(f) = m. On pose deg(0) = —oo.

(2) Pour f € Alt], si deg(f) =m et a,, = 1, on dit que f est unitaire.

(3) Sideg(f)=0,0usi f=0,ondit que f est un polynéme constant.

1.8.1. Polyndmes a coefficients dans un corps. Si K est un corps, en particulier (K, +, )
est un anneau commutatif, on sait d’apres la proposition 1.8.2 que ’ensemble des polynomes
a coefficients dans K, muni de 'addition et de la multiplication des polynomes, est un

anneau commutatif.

Définition 1.8.5. Soit K un corps, sous-anneau d’un anneau A. Soit p € K|[t] avec

p(t) = ap + a1t + - - - + apt™. L’évaluation de p en s € A, notée p(s), est I’élément de A
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suivant:

ag+ay-s+---+ay,-s", ou s :=s5-5---5.

Exemple 1.8.6.
Soit K =R, A =C, p(t) = t>+1 € R[t].

pi) = ?+1=-14+1=0

(+1)%+1

=
+

e
I

242+1+1=2i+1

Définition 1.8.7. Soit K un corps, sous-anneau d’un anneau A. Un élément ¢ € A

s’appelle une racine de p € K[t] si p(c) = 0.

Théoreme 1.8.8 (division euclidienne des polynoémes). Soient p,q € K[t] avec g # 0.

Alors, il existe un unique couple de polynomes g,r € K|[t] tels que

p=gq+r avec degr < deggq.

Preuve. (Facultative)
Existence. Par récurrence sur n = degp. Si n < deggq, alors g = 0 et r = p
conviennent. (A noter que ceci inclus le cas p = 0.) Supposons le résultat montré pour

tout polynéme de degré strictement inférieur a n et n > m := degq. On pose

p(t) =ag+art+ -+ apt”™, q(t) =bg + byt + -+ by t™.

Posons f(t) = p(t) — an/bm - t""™q(t), alors deg f < n. Par hypothese de récurrence, on
a

f=aqq+r avec degr < degg.

Alors,

ou g,r possedent les propriétés demandées.
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Unicité. Sip = giq + r1 = g2q + 2, alors

(g1 —g2)g=12—11 avec deg(ra — r1) < deggq.

Sigi—g2 #0,

deg((g1 — 92)q) = deg(g1 — g2) + degq > degy,
ce qui est absurde. Donc g1 = g9, et par suite r; = rs. ]

Corollaire 1.8.9. Soit p € K[t] et c € K. Alors c est une racine de p si et seulement si

t — c divise p (sans reste), c-a-d p(t) = g(t)(t — ¢) pour un certain g € K|[t].
Preuve. L assertion découle du théoréme 1.8.8 en posant ¢(t) =t — c. []
Définition 1.8.10. On dit qu'un polynéme p € K[t] de degré n > 1 est scindé si
pt)=at—c){t—ca) - (t —cn), €1, .., 0n € K.

Théoréme 1.8.11 (Théoréme fondamental de lalgebre). Tout polynéme a coefficients

dans C est scindé.

Preuve. Admis sans preuve. [ |

Remarque 1.8.12. La suite et fin de ce chapitre seront utilisées au deuxiéme semestre,

et par conséquent, ne sont pas couvertes au premier semestre.

Vocabulaire: Soient p,q € K[t] avec ¢ # 0. On dit
e que q divise p,
e que q est un diviseur de p,
e que p est divisible par ¢, ou
e que p est un multiple de q,

si le reste de la division de p par ¢ est nul.

Définition 1.8.13. Un polynéme p € K|[t] est dit irréductible (sur K) si

(i) degp>1
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(ii) les seuls diviseurs de p sont les polynémes de degré 0 (les polynémes constants)

et c-p(t) avec c € K \ {0}.

Exemples :
(1) Tout polynéme de degré 1 est irréductible.
(2) Le polynome t? + 1 € R[t] est irréductible.

(3) Le polynéme at? + bt + ¢ € R[t] est irréductible si et seulement si b*> — dac < 0.

Théoréme 1.8.14. Tout polynéme p € K|[t] de degré > 1 peut s’écrire de maniére unique

(a permutation des facteurs preés)
(2) p=agig2--gr ot a€kK
et gi, 1 =1,...,r, sont des polynomes irréductibles unitaires.

Preuve. (Facultative)

Sans perte de généralité, on peut supposer que p soit unitaire.

Existence. Si p est irréductible, on obtient directement (2). Sinon, on peut écrire
p = p1p2, OU Py, p2 sont des polynémes de degré strictement inférieur & degp. Ainsi, on
obtient (2) par la récurrence.

Unicité. Soit p = g192---¢9, = hiha---hs, o0 hy, i = 1,...,s, sont des polynémes
irréductibles unitaires. Comme h; est irréductible, h; divise un des g;. Mais, comme g;

est aussi irréductible, h; = g;. Soit o une permutation avec o(1) = i. Alors,

-
g; = hohg-- - hs.

j=1

j#a(1)

En continuant de cette maniere, on obtient r = s et I'existence d’une permutation o telle

que h; = goy, 1 =1,...,7. [ ]
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2. ESPACES VECTORIELS

2.1. Définitions, premiéres propriétés, exemples.

Définition 2.1.1. Soit K un corps. Un K-espace vectoriel est un ensemble V' muni de
deux lois:
e une loi dite interne V. xV — V,
(u,v) — u+ v,
e une loi dite externe K xV — V,
(A, v) = X v (ou simplement Av),

qui satisfont aux conditions suivantes:

i) (V,+) est un groupe abélien,

)
ii) pour tout ,pe KetveV, (A+pu) - v=A-v+pu-v,
iii) pour tout A, p e KetveV, (Au)-v=X(p-v),
iv) pour tout A€ K et v,w eV, A-(v+w)=A-v+ X w, et
v) 1-v=w (ici 1 = 1g).

Les éléments de V s’appellent les vecteurs et les éléments de K s’appellent les scalaires.
On parle de [’addition ou la somme pour u+v et de la multiplication par un scalaire pour
Av. On notera ’élément neutre du groupe (V,+) par 0 (ou Oy si nécessaire) et 'inverse

de v € V par —v.

Exemples 2.1.2 (Quelques exemples). 1. Soit V' le produit cartésien K x --- x K (n

fois), qu’on notera V' = K™. On munit V d’une structure de groupe via

(@1, 2n) + W) = (21 Y1, Tn + Yn),

pour tout z;,y; € K, 1 <4 < n. On définit une loi externe, la multiplication par un
scalaire, comme suit:

pour tout A € K et (z1,...,2,) € V,0on a
A (@1, xp) = (Ax, .o, Axy).

On vérifie que V est un K-espace vectoriel.
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2. Soit K[t] anneau de polynémes a coefficients dans K. Alors (K[t],+) est un groupe
abélien et on définit une loi externe, la multiplication par un scalaire, par :

pour A € K et f € K[t], f(t) = ant™ + an_1t"" + -+ + a1t + ag, on pose
(A= )(E) := X f(1) = Aant™ + Xap_1t" "1 + -+ Xagt + Aag

3. Soit X un ensemble et soit F(X, K) ’ensemble des applications de X dans K. Alors
F(X,K) est un anneau. En particulier, (F(X,K),+) est un groupe abélien avec
l'addition définie par (f + g)(x) = f(z) + g(z), pour tout f,g € F(X, K) et pour tout
x € X. (Voir polycopié de D. Kressner, exemples, page 26.) On définit une loi externe,
la multiplication par un scalaire, par :

pour tout A € K et pour tout f € F(X,K), (A f)(z) =X f(x), pour tout z € X.
On vérifie que F(X, K) est un K-espace vectoriel.
4. Une matrice n X m a coefficients dans K est un tableau a n lignes et m colonnes

constitué d’éléments de K:

aip a2 - Aim

a21 Qa22 - A2m
A =

an1 An2 e Anm

On appelle les a;; les composantes de la matrice A ou les coefficients de A. Les
indices (i,j) indiquent la ligne et la colonne & l'intersection desquelles se trouve la
composante a;;. On écrit A = (a;5). On pose M, xm(K) 'ensemble des matrices
n x m a coefficients dans K et on définit une loi interne + et une loi externe - comme
suit. Soient A, B € M, xm(K), avec A = (a;;) et B = (b;;) et soit encore A € K. On

définit 'application

+: Muxm (K) X Mpsm (K) = My wm(K)

(A,B) — A+ B,
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ou (A+ B);j = a;j + bi;, pour tout 1 < i <netl<j<m,etlamultiplication par

des scalaires:

i KX Myxm (K) = Mpxm(K)

(A A) = A A,

ot (A-A)ij =A-a;5, pourtout 1 <i<netl<j<m.

Quelques conséquences directes de la Définition 2.1.1:

Proposition 2.1.3. Soient A € K et v € V. On dénote par Oy l’élément neutre de V

et par 0 l’élément neutre par rapport a l’addition dans K, c’est-a-dire le scalaire 0 € K.

On a
a) /\'0\/:0\/.
b) O'U:OV.

¢) Si A-v =0y, alors soit A =0, soit v =0y.

d) (=A)-v=X-(—v)=—=(\-v).

Preuve. (a) A-0y = A- (0y +0y) = A- 0y + A - 0y. On simplifie & gauche (ce qui est
possible dans un groupe) et on obtient Oy = X - Oy.

(b)0-v=(0+0)-v=0-v+0-v et on conclut comme dans (a).

(c) Supposons \-v = 0y et que X # 0. Alors il existe A\=! € K (I'inverse multiplicatif)
et on a

A Ay =N v=1g v =0.

Mais aussi A™1 - (A-v) = A1 - 0y = Oy, par (a). Donc v = Oy-.
(d) On calcule (=A)-v+X-v=(=A4+X)-v=0-v =0y, par (b). Par I'unicité des
inverses dans un groupe, (—A) - v = —(A - v). De fagon similaire, on a A- (—v) + A v =

A-(—v+v) = X0y =0y et on conclut comme avant. O

2.2. Sous-espaces vectoriels. On fixe un corps K.
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Définition 2.2.1. Soit V un K-espace vectoriel. Une partie W de V s’appelle un sous-
espace vectoriel (ou simplement un sous-espace) de V si les restrictions des deux lois +

et - a W font de W un K-espace vectoriel.

Pour qu’une partie W C V soit un sous-espace, il faut que

e TV soit non vide,

e pour tout wy,ws € Won aw; +wy € Wet —wy € W (stable par + et 'existence
des inverses), et

e pour tout A € K et w € W, onaA-w € W (stable par la multiplication par un

scalaire).

En fait, la proposition suivante démontre qu’on peut remplacer ces trois conditions par
deux conditions et que ces deux conditions sont suffisantes pour assurer que W soit un

sous-espace.

Proposition 2.2.2. Soit V un K-espace vectoriel, et soit W une partie de V.. Alors W
est un sous-espace de V' si et seulement si
1. W#£0, et

2. pour tout A € K et pour tout wi,wy € W, on a Awy +ws € W.

Preuve. La nécessité des conditions a été discutée ci-dessus.

Supposons que W C V soit une partie non vide de V qui satisfait a la condition 2.
Comme W est non vide, il existe w € W. Prenons A = —1 et appliquons la condition 2.
On trouve (—1) - w+w = —w + w = 0y € W. Donc W possede 1’élément neutre. Aussi
pour wy,ws € W onal-wy +wy =w; +ws €W, et —w; = (—1)-w; +0y € W. Donc
W est stable par I’addition et possede les inverses. La condition 2. implique que W est
stable par multiplication par les scalaires (prendre ws = Oy ). Donc (W, +) est un groupe
abélien muni de la loi externe K x W — W, (A, w) — A - w. Les conditions ii), iii), iv) et
v) dans la définition d’'un K-espace vectoriel sont satisfaites, car elles le sont déja dans

V. d

Exemples 2.2.3. 1. Soit V un K-espace vectoriel, et soient v1,...,v, € V. Posons

Vect (v1,...,00) i={ M1+ -+ Novp | A; € K pour 1 <i <r}.
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On vérifie que Vect (vy, ..., v,) est un sous-espace vectoriel de V', appelé le sous-espace
de V' engendré par vi,...,0,.

2. Soit V un K-espace vectoriel. Soit X C V une partie de V. On pose

Vect (X) = NwesW, ot S = {U | U un sous-espace de V avec X C U},

Iintersection de tous les sous-espaces de V' qui contiennent le sous-ensemble X. On
Pappelle le sous-espace engendré par X. On vérife que Vect (X) est bien un sous-espace

et dans les exercices vous montrerez que Vect (X) = {0} si X = 0 et si X # () alors

Vect (X) :={\v1+-- N | reENjoy; € X, N € K pour 1 <i < r}.

3. Soit A = (a;j) € Myxm(K). On pose un systeme d’équations :

anzy +  ai2x2 + -+ amz, = 0
Am1T1 + amar2 + 0+ AmpTp, = 0
On dit que (aq,...,a,) € K™ est une solution du systéme si pour tout 1 <t <m

on a

apnay + -+ agay, = 0.
L’ensemble des solutions du systéme forme un sous-espace vectoriel de K™
D’autres exemples sont développés en cours.

2.3. Comment former de nouveaux sous-espaces a partir d’autres sous-espaces.

Définition 2.3.1. Soient W; et W5 deux sous-espaces d'un K-espace vectoriel V. La

somme Wy + Wy est P'ensemble {u+ w | u € Wy,w € Wa}.

Lemme 2.3.2. Soient Wy, Wy, V' comme dans la définition précédente. Alors

(a) W1 + Wy est un sous-espace vectoriel de V.

(b) W1 N Wy est un sous-espace vectoriel de V.

Preuve. Exercice. O
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Définition 2.3.3. Soient W7, Wy, V comme dans la définition précédente. On dit qu'un
sous-espace U de V est la somme directe de Wy et Wy si

o U=W;+ W5y, et

o Wy NWy ={0}.

Dans le cas ou U est la somme directe de W7 et Wa, on écrit U = W1 @ Wh.
On peut généraliser cette définition au cas de plus de deux sous-espaces:

Définition 2.3.4. Soient W7,..., W; des sous-espaces vectoriels d'un K-espace vectoriel

V.
(a) On dénote par Wy + - -- + W 'ensemble {zq + -+ + 24 | 2; € W;, V1 < i <t}. On
écrit
t
Zmi:x1+-~~+xt.
i=1
(b) On dit qu’un sous-espace U de V est la somme directe de W7y, ..., W; si
e U=Wi+---+W,;, et
e Win (32, W;)=0pour tout 1 <i <t.
On démontre (par récurrence par exemple) que Wy + -+ + W; est un sous-espace

vectoriel de V. Si U est la somme directe des W;, 1 <1i <t, on écrit U = Wy H--- d W,.

Théoréme 2.3.5. (Caractérisation des sommes directes) Soient Wy, ... , Wy, U des sous-
espaces vectoriels d’un K-espace vectoriel V. avec W; C U pour tout i. Les conditions
suivantes sont équivalentes:

LHU=W1o---aoW,.

(2) Chaque vecteur uw € U s’écrit de fagon unique comme wy + - -+ + wy avec w; € W;

pour tout 1 <4 < t.

Preuve. (1)==(2): Chaque vecteur u € U s’écrit comme u = wy + - - - + wy pour certains
w; € Wi, 1 <@ <t,car U =Wy +---+W,. Supposons que u = wy + -+ + wy =
y1 + -+ + Yy, pour certains w;,y; € W;, 1 < i < t. Alors pour chaque 1 < i < t, on a
w; —yi = (y1 —w1) + -+ (Yic1 — wi—1) + (Yir1 — wig1) + - + (y¢ — wy). Ce vecteur

appartient & la fois & W; et & la somme ) ki W; et par la définition de la somme directe,
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Iintersection de ces deux sous-espaces est le vecteur nul. On déduit que w; = y; pour
tout ¢ et par conséquent ’écriture est unique.

(2)==(1): Comme W; C U pour tout i et que U est un sous-espace de V, on a
Wi +---+ W, CU. Par hypothese, pouru e U, u =wi; +---+w € Wi +---+W; et on
déduit que U = Wy + - - - + Wy. Supposons que x € W; N (Z#i W;). Alors d’une part,
r=0+0---+2+0+---4+0, ou le terme = est dans le sous-espace W;, et d’autre part
r=w; +wa+--+wi—1+0+ w1+ -+ w pour certains w; € W;. Comme 'écriture

est unique, on déduit que x = 0. O
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3. BASES ET DIMENSIONS

On fixe un corps K et V un K-espace vectoriel.

3.1. Dépendance et indépendance linéaire.

Définition 3.1.1. a) Soient v1,...,v, € V. Une combinaison linéaire de v1,...,v, est
un vecteur v € V de la forme v = \vy + -+ + A\yv,, pour \; € K. On dit que v
est une combinaison linéaire de vy,...,v, et que Aq,...,\. sont les coefficients de la
combinaison linéaire.

b) Une partie X de V s’appelle un systéme générateur, ou une partie génératrice de V,
si V = Vect (X). Si X # 0, X est une partie génératrice de V si et seulement si tout

v € V est une combinaison linéaire de vecteurs dans X.

Exemples 3.1.2. 1. Dans I’espace vectoriel K[t], 'ensemble {1,¢,2,...} est un systeme
de générateurs.
2. Dans l'espace vectoriel K2, {(1,0,0),(0,1,0),(0,0,1)} est un systéme de générateurs.

3. Dans I'espace vectoriel R?, {(1,1,0), (0,1,0), (0,0,2), (1,0,1)} est un systeme de générateurs.

On souhaite préciser la notion d’une partie génératrice minimale.

Définition 3.1.3. (1) Soient vy,...,v, € V. On dit que vy,...,v, sont liés, ou
linéairement dépendants, s’il existe Aq,..., A\, € K, non tous nuls, avec A\jvy +

s A = 0.
(2) Une partie X de V est dite liée, ou linéairement dépendante, $’il existe vy, ..., v €

X distincts qui sont liés.

On a le critere utile suivant:

Proposition 3.1.4. Soient vy,...,v, € V, r > 2 vecteurs distincts. Alorsvy,...,v, sont
linéairement dépendants si et seulement si l'un des v; est une combinaison linéaire des

autres.
31



Preuve. Supposons que v, . .., v, sont linéairement dépendants. Alors il existe A\1,..., A\, €
K, non tous nuls, tels que A\jvy + -+ + A\.v,. = 0. Supposons que \; # 0. On a
v = A7H= D Agw):
J#i
En particulier v; est une combinaison linéaire des v;, j # i.
Réciproquement, si I'un des v; est une combinaison linéaire des v;, j # ¢, on a v; =
Zﬁﬂ ajv; pour des o; € K et on déduit que v; —Zj# ojv; = 0, c’est-a-dire, les vecteurs

V1, ..., 0, sont linéairement dépendants. O

Il y a une notion opposée de la dépendance linéaire:

Définition 3.1.5. (1) Soient v1,...,v. € V distincts. On dit que vy,...,v, sont
libres, ou linéairement indépendants, si vy, ...,v, ne sont pas liés.
(2) Une partie X de V est dite libre, ou linéairement indépendante, si toute partie

finie {v1,...,v.} C X de r vecteurs distincts est libre.

Remarque 3.1.6. Les r vecteurs distincts vq, ..., v, sont libres si et seulement si toute

égalité \jv1 + - - + v = 0 pour des scalaires \; € K, implique que \; = 0 pour tout .

Exemples 3.1.7. 1. L’ensemble vide ) C V est libre.

2. Dans l'espace vectoriel K[t], la partie {1,¢,¢2,---} est une partie libre.

3. Dans F(R,R), l'ensemble {e? sinz,z?} est un ensemble de vecteurs linéairement
indépendants.

4. Soit F un corps avec K C F'. Alors (F,+) est un groupe abélien et aussi un K-espace

vectoriel par rapport a la loi externe :
KxF—F, (0, /) = aB € F.
Sion prend K = R et F' = C, alors les vecteurs 1, ¢ € C sont linéairement indépendants.
3.2. Base.

Définition 3.2.1. Une partie X de V s’appelle une base si les deux conditions suivantes

sont satisfaites:
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e X est une partie génératrice de V', et

e X est une partie libre.

On démontre

Proposition 3.2.2. Soit V un K-space vectoriel V. # {0}. Une partie X de V est
une base de V si et seulement si pour tout v € V, v # 0, il existe x1,...,2; € X et

AL, .., A € K\ {0}, uniquement déterminés tels que v = Ayxy + -+ + A2

Preuve. Supposons que X est une base de V. Par définition, X est une partie génératrice
et donc tout v € V est une combinaison linéaire de vecteurs dans X. On doit montrer

I'unicité de I'expression. Supposons que pour v € V', on a
v=o0qx1 + oy = Piys + o+ Bryr,

ou a;, 35 € K et x;,y; € X. En rajoutant des termes a coefficients nuls, on peut supposer
que

U =y1U1 F o Vi, = 01Uy + - F O Uy,

ou v;,60; € K et u; € X pour 1 <i <m. On a donc que

m

i=1
Mais comme X est libre cela implique que «; = §; pour tout i et donc les deux expressions
sont identiques. En particulier, I’ensemble des u; avec 7; # 0 et ’ensemble des u; avec
d; # 0 sont le méme. On déduit que I'ensemble {x1,..., 2} et les scalaires aq,..., o
sont uniquement déterminés.

Supposons maintenant que tout v € V, v # 0 s’écrit de maniere unique comme combi-
naison linéaire d’éléments de X. En particulier, X est un systeme générateur pour V et
comme V' # {0}, X n’est pas vide et il existe € X, x # 0. On note aussi que le vecteur
nul n’appartient pas a X car sinon pour z € X,z #0,onal-z=1-2+1-0, ce qui

contredit I'unicité de I'expression.
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Maintenant supposons que Z?L a;x; = 0 pour «; € K et x; € X. On suppose que

a; # 0 pour tout 3. On a donc

m
—Q;X; = E Oéj!L‘j

j=1.5#i
et par 'unicité de ’ecriture on déduit que ce vecteur est le vectuer nul. Mais cela veut
dire que a;z; = 0. Comme «; # 0 on déduit que x; = 0, une contradiction. Donc tout «

vaut 0 et X est libre. Cela montre que X est une base de V. g

Remarque 3.2.3. Le résultat précédent permet de compter les éléments d’un espace
vectoriel sur un corps fini. Soit K un corps fini & p® éléments (p un nombre premier,
a € Z,a > 1). Si V est un K-espace vectoriel avec base {v1,..., v} alors V posséde

exactement (p®)™ = p®™ éléments.

Corollaire 3.2.4. Supposons {f1,..., fn} est une base de V. Alors V = Vect (f1)&®---®

Vect (fn)-
Preuve. Exercice. O
Définition 3.2.5. Soit B = {v1,...,v,} une base de V. Les composantes, ou co-

ordonnées, d’'un vecteur v € V par rapport a la base B sont les \; € K tels que
v = E?:l )\ﬂ)i

Définition 3.2.6. L’espace vectoriel V est dit de dimension finie si V possede un systeme

générateur fini.

Théoréme 3.2.7 (I'existence d’une base). Soit V' un K-espace vectoriel de dimension
finie, avec une partie génératrice finie S C V. Soit L C S une partie libre. Alors il existe

une base B de' V avec L C B C S.

Preuve. Si V. = {0} L = () et 'ensemble B = () satisfait au résultat. On suppose
maintenant que V' # {0}.

Soit B une partie libre inclus dans .S, contenant L, et maximale sous les conditions
d’étre libre et de contenir L. Si B = S alors B est libre et génératrice, donc une base de

V.
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Si B # S, soit x € S\ B. Alors BU {x} est plus grand que B et contient L. Par la
maximalité de B, on a que B U {x} n’est pas libre. Par conséquent, il existe A\, € K et

{Ay | v € B} C K non tous nuls tels que

AT + Z Ayy = 0.
yeEB

Comme B est libre, A\, # 0. On déduit que

= *)‘;1(2 A7)

VEB
Par conséquent, tout élément dans S\ B est une combinaison linéaire des éléments de B.

Soit maintenant v € V. Comme S est une partie génératrice, v = Y _oc¢s8 pour

seS

certains ¢; € K. Donc

v:chs—F Z CsS.

seB seS\B

Par I'argument qui précede, pour s € S\ B, nous pouvons écrire s = >, asb et enfin,

nous avons que

v = chs+ Z cs(z asph),

SEB seS\B beB

une combinaison linéaire d’éléments de B. Donc B est une partie génératrice et libre de

V', donc une base de V. O

Corollaire 3.2.8. Soit V un K-espace vectoriel de dimension finie. Alors V posséde une

base finie.
Preuve. On prend L = ) dans le théoréeme précédent. O

Théoréme 3.2.9. Soit V un K-espace vectoriel de dimension infini. Alors V posséde

une base.

Nous admettrons ce résultat sans démonstration. La preuve demande la mise en place
du lemme de Zorn, ce que nous ne ferons pas dans ce cours. Pour une preuve, vous pouvez

consulter le polycopié de D. Kressner, §4.3.1, pages 61-63.
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Théoréme 3.2.10 (de la dépendance linéaire). Soit V un K-espace vectoriel de dimen-
sion finie. Soit S = {f1,...,fn} un systéme de générateurs (ot S = 0 sin = 0). Si
p > n, tout ensemble de vecteurs {v1,...,vp} est linéairement dépendant. Autrement dit,

si L ={w1,...,wq} est une partie libre dans V, alors ¢ <n

Preuve. On procede par récurrence sur n. Sin = 0, alors V = Vect (0) = {0} et tout
ensemble non vide de vecteurs de V' contient le vecteur nul et est donc linéairement
dépendant. On traite aussi le cas n = 1: Ici, V = Vect (f1) = {Afr | A € K}, et
p > 1. Prenons vy,vp € V, v; = A\ f1, pour \; € K, i =1,2. Si v; =0, alors v; et vy
sont linéairement dépendants. Si v; # 0, alors Ay # 0 et 0 = =X AT (M f1) + Aof1 =
—/\2/\1_1111 + vo et vy et vy sont linéairement dépendants.

Supposons maintenant que n > 2 et que le résultat est vérifié pour tout espace vectoriel
W avec un systeme de générateurs de moins que n vecteurs.

Posons W := Vect (f1,..., fn—1). Tout vecteur dans v € V s’écrit comme v = w+afy,,

pour w € W et a € K. En particulier, nous avons

v =  wi+ Ozlfn
vy = watonf
vy = Wp+ apfn,

pour w; € Wya; € K, 1 <1 <p.
Si a; = 0 pour tout 4, alors v; € W pour tout 4 et par 'hypothése de récurrence sur n,
{v1,...,vp} est un ensemble de vecteurs linéairement dépendants de W et donc de V.
Supposons donc que a3 # 0 (sans perte de généralité). Dans ce cas, nous avons

fn =ai(v1 —wy). On trouve par substitution que
v; = w; + aag (v —wi), pour 1 < i < p,
ce qui implique que

—1 —1
vV — o0y v =W — oy w; € W
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Nous avons les p — 1 vecteurs
-1 -1 -1
U2 — Q0y; V1,U3 — Q30 V1,...,Up — QpQ¥y V1,

qui appartiennent & W = Vect (f1,..., fn_1) et p —1 > n — 1. Par I’hypothese de
récurrence, ces vecteurs sont linéairement dépendants. Il existe Az, As,..., A, € K, non

tous nuls, tels que
Ao (vg — agaflvl) + A3(vs — agaflvl) +oe 4 Ap(vp — apaflvl) =0.

Donc —(Agaga;t + Azaza;! + -+ 4+ Mpaya; vy + >0 _oAju; = 0, une relation de

dépendance. Donc {v1,...,v,} est un ensemble de vecteurs linéairement dépendants. [

3.3. Dimension.

Théoreme 3.3.1. (de la dimension) Soit V un K-espace vectoriel de dimension finie.

Alors toutes les bases de V' sont finies et possédent le méme nombre d’éléments.

Preuve. Soit S un systéme de générateurs fini (qui existe par la définition de dimension
finie). Par le Thm. 3.2.7, il existe une base B C S finie (prendre L = () dans le théoréme).
Soit maintenant B’ une autre base de V, donc un ensemble libre. Par le Thm. 3.2.10,
Card(B’) < Card(B). En particulier, B’ est finie. Pour compléter la preuve, on échange

les roles de B et B’ pour obtenir que Card(B) < Card(B’). O

Définition 3.3.2. Le cardinal d’une base dans un K-espace vectoriel V' de dimension

finie s’appelle la dimension de V et se note dim(V).

Exemples 3.3.3. La dimension de Pespace V' = {0} est 0. La dimension de K est égale
a 1 et plus généralement, dim(K™) = n. L’espace vectoriel K[t] n’est pas de dimension

finie.

Proposition 3.3.4 (Critere de la dimension finie et infinie). Soit V' un K -espace vectoriel.

(a) L’espace vectoriel V' est de dimension infinie si et seulement si pour tout n € N, il

existe une partie libre L de V' de cardinal n.
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(b) L’espace vectoriel V' est dimension finie si et seulement s’il existe m € N tel que

toute partie de V de cardinal m est liée.

Preuve. Les deux affirmations étant équivalentes, il suffit de montrer (b).

Supposons que V est de dimension finie dim(V) = n. Prenons m = n + 1. Par le
Thm. 3.2.10, toute partie de m éléments est liée.

Maintenant supposons qu’il existe m € N tel que toute partie de V' de cardinal m est
liée, et par conséquent, toute partie d’au moins m éléments est liée. Soit L C V une
partie libre maximal (c¢’est-a-dire qui n’est incluse dans aucune partie libre de V' & part
lui-méme). On montre que V' = Vect (L). Par les remarques précédentes, card(L) < m.
Soit v € L, alors v € Vect (L). Prenons maintenant v € V'\ L. Posons W = Vect (LU{v}).
L’espace W est un espace de dimension finie, car engendré par LU{v}. Par le Thm. 3.2.7,
il existe une base B de W, avec L C B C LU {v}. Donc W = Vect (B). Mais L maximal
pour la propriété d’étre libre implique L = B et par conséquent v € Vect (L). Donc

V = Vect (L), comme voulu. O

Théoréme 3.3.5 (complétion en une base). Soit V un K-espace vectoriel de dimension

finie et soit L une partie libre de V.

(a) L’ensemble L est fini et card(L) < dim V.

(b) L’ensemble L peut étre complété en une base de V, c’est-a-dire, il existe une base B
de V avec L C B.

(¢) Si Card(L) = dim V, alors L est une base de V.

Preuve. Soit dim(V') = n et soit B une base de V.

(a) Par le Thm 3.2.10, si une partie libre L posséde au moins m éléments distincts,
alors m < Card(B). Donc L est fini et Card(L) < Card(B) = dim V.

(b) On a que BU L est un systeme de générateurs de V', car B lest. Aussi, L C BUL.
Par le Thm. 3.2.7, il existe une base B’ de V avec L C B’ C BU L.

(c) Par (b), il existe une base B’ avec L C B’. Mais Card(B’) = dimV par le

Thm. 3.3.1. Donc Card(L) = Card(B’) et L = B’ est une base de V. O
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Théoréeme 3.3.6 (extraction d'une base). Soit V' un K-espace vectoriel de dimension

finie et S CV un systeme de générateurs fini de V.

(a) dimV < card(S).
(b) On peut extraire de S un sous-ensemble qui est une base de V.

(c) Si Card(S) =dimV, alors S est une base de V.

Preuve. Par le théoreéme de la dépendance linéaire, tout ensemble de vecteurs avec plus
que card(S) vecteurs est lié. Donc une base posséde au plus card(S) vecteurs, ce qui
montre (a). L’affirmation de (b) se déduit du théoréme de lexistence d’une base en
prenant L = (). Enfin, supposons que card(S) = dim V. Par (b), il existe une base B de
V avec B C S. Mais le théoréme de la dimension montre que card(B) = dim V. Comme

dim V = card(S) par hypothese, on a que B = S et donc S est une base de V. O

Théoréme 3.3.7 (des sous-espaces). Soit V' un K-espace vectoriel de dimension finie,

et soit W un sous-espace vectoriel de V.

a) L’espace vectoriel W est de dimension finie.
c)dimW <dimV.
c¢) Toute base de W peut étre complétée en une base de V.

(
(
(
(d) Si dim W = dim V', alors W = V.

Preuve. (a) et (b) Posons n = dim V. Alors toute partie de n+ 1 éléments de W est liée.
Donc par le critere de la dimension finie, W est de dimension finie et de plus, dim W < n.
(c) Soit B’ une base de W. On peut la compléter en une base B de V, B’ C B, car B’
est libre.
(d) Si dimW = dimV, on a B’ = B et on déduit que Vect (B) = Vect (B’) et V =
w. O

Théoreme 3.3.8. (du supplémentaire) Soit V' un K -espace vectoriel de dimension finie
et soit W un sous-espace vectoriel de V. Alors il existe un sous-espace U de V tel que

V=WoU etdimV =dimW +dimU.
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Preuve. Soit B’ une base de W, qu’on compléte en une base B de V., B’ = {e1,...,en}
et B={e1,...,em,em+1,---,€n}. Posons U = Vect (e41,...,6en). Alors UNW = {0}

et U+W =V. 0

Définition 3.3.9. (1) Pour V, W et U comme ci-dessus, on appelle U un supplémentaire
de W dans V.
(2) Pour V et W comme ci-dessus, si dimV = n et dim W = m, alors on appelle n — m

la codimension de W dans V et on note codimy (W) =n — m.

Théoréme 3.3.10. (formule des dimensions) Soient Wy et Wa deuz sous-espaces vecto-

riels d’un K-espace vectoriel V.. Supposons Wy et Wy de dimension finie. Alors
dim(W1 + Wg) = dim W7 + dim Wy — dim(W1 n Wg)

Preuve. Soit {uy, ..., u:} une base de WiNWs. On la compléte en une base {ug, ..., up, w, ..., ws}
de W et aussi en une base {u1, ..., us, v1,...,v,} de Wo. On montre que S = {uq,...,u, W1, ..., W, V1,...,0p}

est une base de Wy + Ws, et donc

dim(Wr + Wa) =t+s+r=(t+s)+ (t+r) —t =dim Wy + dim Wy — dim(W; N W).

Systeme générateur: soit v € Wy + Wy, v =z +y, x € Wy, y € Wy, Alors z =
dasu 4+ > Bjwy et y =Y viug + Y 6;v5 et x +y € Vect (5).

Indépendance linéaire: Supposons que > a;u; + »_ Bjw; + > yxvr = 0, pour certains
o, B,k € K. Posons u =Y oyuy, w =) fw; et v =73 v;v. Nous avons que u+w =
—v € Wi N Ws. On déduit que v = Y §;u;. Mais cela entraine que Y d;u; = . v,v;, et
> du; — > vv; = 0. Par I'indépendance linéaire de {uq, ..., us,v1,. .., v} on déduit que
d; = 0 = ~y; pour tout 7 et donc v = 0.

Ensuite on a que 0 = v = u+w = Y a;u; + > f;w;. Par I'indépendance linéaire de
{ui,...,ut,wy,...,ws}, a; = 0= F; pour tout i. Donc S est libre.

Comme nous avons montré que S est un systeme de générateurs, S est une base de

Wi+ Wa. Il

Corollaire 3.3.11. Soient Wy, ..., W, des sous-espaces vectoriels d’un K -espace vectoriel

V. Supposons W; de dimension finie pour tout i et aussi Wi+ -+ Wy =W1 @ --- @ W;.
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Alors
t
dim(Wy 4 -+ W) = > _ dim W;.
=1
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4. APPLICATIONS LINEAIRES

On fixe un corps K. Soient V et W deux K-espaces vectoriels.

4.1. Définitions, exemples.

Définition 4.1.1. Une application ¢ : V. — W est dite K-linéaire si

i) ® est un homomorphisme de groupes (pour 'addition), et

i) o(A) = Ap(v), pour tout A € KetveV.

S’il est clair que nous parlons du corps K, on dit simplement une application linéaire.

Donc ¢ : V — W est une application K-linéaire si et seulement si

i) o(u+v) = p(u) + ¢(v), pour tout u,v € V, et
ii) p(Av) = Ap(v), pour tout A € K et v e V.

Ces deux conditions se résument en une seule:
(1) p(Au+v) = Ap(u) + ¢(v), pour tout A € K et u,v € V.

On a les propriétés suivantes:

Proposition 4.1.2. Soit ¢ : V. — W une application K-linéaire. On note Oy, respec-

tivement Oy, pour l’élément neutre de V', respectivement W.

(1) On a o(0y) = 0w (car ¢ est un morphisme de groupes).
(2) p(Mvr + -+ M) = Ap(vr) + -+ + ep(vr), pour tout \; € K et v; € V' (par

récurrence surt).

Comme chaque élément de v s’écrit de maniére unique comme une combinaison linéaire
des éléments d’une base de V', ¢ est entierement déterminée par ses images sur une base de
V, et il suffit de connaitre les valeurs de ¢ sur une base de V' pour connaitre I’application
©.

On donne plusieurs exemples en cours. Mais un exemple qui en englobe plusieurs

autres est le suivant:
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Exemple 4.1.3. Soit V = K" et W = K™. On fixe des scalaires a;; pour 1 <i¢ < m et

1 < j <n. On définit une application ¢ : V. — W par
n n
30(1‘1, e ,CL‘n) = (Z Chj&?j, ceey Zamjxj),
j=1 j=1

pour (x1,...,2,) € V. Clest-a-dire, chaque coordonnée de ¢(v) est une combinaison

linéaire des coordonnées de v. Vérifions que ¢ est bien K-linéaire.

Soient (z1,...,2Zn), (Y1,---,yn) EV et A € K.

oAz, xn) + W1,y Un) = p(Az1 + Y1, .-, AT, + Yn)

= (Z alj()\xj +yj), ceey Zamj()‘mj + y]))

j=1 j=1

n n n n
= ()\Z a1 + Zaljyj, ceey )\Z AmjiTj + Zamjyj)
j=1 j=1 j=1 j=1

n n n n
= )\(Z aljxj, ey Zamjxj) + (Z aljyj, ey Zamjyj)
j=1 j=1 j=1 j=1
=Xp(x1, .y xn) F (Y1, - - Yn)-
Ceci montre que ¢ est bien K-linéaire.
4.2. Opérations sur les applications K-linéaires.

Définition 4.2.1. Soient V,W deux K-espaces vectorielset o : V. — W, ¢ : V - W

deux applications K-linéaires.
(1) On définit la somme de ¢ et ¢ comme étant V'application ¢ + ¢ : V. — W,
(p+¥)(v) = p(v) + 1 (v). On vérifie que ¢ + ¢ est une application K-linéaire.
(2) Pour A € K, on définit 'application A - ¢ : V. — W par (A- ¢)(v) = X- p(v). On
vérifie que \- ¢ est une application K-linéaire. (Par la suite, on laissera tomber le
‘point’ entre le scalaire A et I’application ¢ et on notera cette nouvelle application
simplement par Ap.)

On montre facilement:
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Proposition 4.2.2. Soient V et W deux K -espaces vectoriels et posons L(V, W) l’ensemble
des applications K-linéaires de V' dans W. On munit L(V,W) de l’addition et la multi-

plication scalaire définies ci-dessus. Alors L(V,W) est un K-espace vectoriel.
On peux aussi composer les applications linéaires:

Proposition 4.2.3. (1) Soient ¢ : V — W ety : W — U deux applications K -linéaires
de K-espaces vectoriels V, W, U. Alors Uapplication ¥ o p : V. — U est une application
K-linéaire.

1

(2) Sip est bijective, alors Uapplication inverse, qu’on dénote par ¢~ *, est une applica-

tion K-linéaire o= : W — V.

Preuve. Pour (1), on prend A€ K et z,y € V. Ona (Yo p) Az +y) = v(p(Ax +y)) =

Y(Ap(z)+@(y)), car @ est K-linéaire. Et ensuite, 1(Ap(x)+p(y)) = Mb(e(x)) +(0(y)),

car ¢ est K-linéaire. Mais ce dernier est précisément A(¢) o 9)(x) + (¢ o v)(y).

1 est définie comme suit: pour

Pour (2), on se rappelle que I'application inverse ¢~
tout w € W, il existe un unique v € V avec ¢(v) = w. On pose ¢~ (w) = v. (C’est bien
défini par la bijectivité de ¢.)

Maintenant, soient z,y € W et A € K. Donc x = ¢(u) et y = ¢(v) pour certains

u,v € V. Alors

e Az +y) =07 p(u) + o) = 07 (p(hu + v)),
car @ est K-linéaire. Ensuite, on a

7 (Mt v)) = (¢ o) Mu+v) = Mut+v= AT () + 97 (1),

1

ce qui montre que ¢~ est K-linéaire. O

4.3. Noyau, image et le théoreme du rang.

Définition 4.3.1. Soit ¢ : V. — W une application K-linéaire. L%mage de ¢ est
I’ensemble

im(p) ={weW|3v eV avec w = p(v)}.
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On vérifie que im () est un sous-espace vectoriel de W.

Définition 4.3.2. Si im (p) est de dimension finie, alors dim(im ¢) s’appelle le rang de
.
Définition 4.3.3 (Rappel). Soit ¢ : V' — W une application K-linéaire. Le noyau de ¢

est ’ensemble
ker(p) = {v € V'[p(v) = 0}.
C’est exactement le méme ensemble que défini pour un morphisme de groupes.

On vérifie aussi que ker(p) est un sous-espace vectoriel de V' (on sait déja que c’est
un sous-groupe du groupe (V,+)). La proposition suivante montre que le noyau de ¢

détermine si ¢ est injective.

Proposition 4.3.4 (Critere d’injectivité). Soit ¢ : V. — W une application K -linéaire.

Alors ¢ est injective si et seulement si ker(y) = {0y }.

Preuve. On suppose tout d’abord que ¢ est injective. Alors si v € ker ¢, par définition,
on a que p(v) = Oy. Mais comme (0y) = Ow aussi, 'injectivité de ¢ implique que
v = 0y. On conclut que ker(p) = {0y }.

Supposons maintenant que ker¢ = {0y }. Soient v,w € V et supposons que p(v) =
p(w). On a

p(v) — p(w) = Oy ce qui implique que p(v — w) = Oy .

Par conséquent v — w € ker ¢ et par hypothese v — w = 0. On déduit que v = w et ¢

est bien injective. O

On aimerait un critéere aussi clair pour déterminer si une application K-linéaire est
surjective. Comme im () est un sous-espace vectoriel, si W est de dimension finie, ¢
est surjective si et seulement si dim(im (¢)) = rang(y) = dim W. Le théoreme suivant

montre comment utiliser le noyau pour calculer le rang de .
Théoréme 4.3.5 (Théoréeme du rang). Soit ¢ : V. — W une application K-linéaire.

Supposons V' de dimension finie. Alors

dim (V') = dim(ker(y)) + dim(im (¢)) = dim(ker(p)) + rang(p).
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Preuve. Comme V est de dimension finie, ker(¢) est aussi de dimension finie. On
choisit une base {e1,...,en} de ker(¢) et on la complete en une base B de V, B =
{e1,.-yem,emt1,---,en}. On montre que S = {Y(em+1),.-.,¢(en)} est une base de
im (¢), ce qui donne dim(ker ¢) + dim(imy) =m+ (n —m) =n =dimV.

Tout d’abord on montre que S est un ensemble libre: supposons que q,+1¢(€mi1) +
<o+ applen,) = 0, pour certains a; € K. Par la linéarité de ¢, on a que 0 =
p(amtieme1 + - + apey). On déduit que apyiemat + -+ + ane, € ker(p). On peut
alors écrire pi1€m41 + -+ e, = Bre1 + - -+ Bmen, pour certains 3; € K. Mais en-
suite on obtient que f1e1 4+ Bmem — ¥mt1€m+1 — - - - — ey = 0. Par 'indépendance
linéaire de la base B, a; = 0 = f3; pour tout ¢, j et donc S est libre.

On montre que S est un systéme générateur de im (). Soit w € im (). Alors il existe
v eV avec p(v) = w. On écrit v =Y . | A;e;. Maintenant, on a ¢(v) = p(3 i, Nie;) =

>oimi Aiw(ei). Ce dernier est égal a Y 1" ) Aip(e;), car ¢(e;) = 0 pour j < m. On a

alors que
w=p(v) = Z Aip(e;) € Vect (@(emt1), - - -, p(en)),
i=m-+1
et S ={¢(em+1),...,p(en)} est un systéme générateur de im (). O

Un corollaire direct de ce résultat est

Théoreme 4.3.6 (Critere de bijectivité). Soit ¢ : V. — W une application K -linéaire et
supposons V' de dimension finie.

(1) Si  est bijective, alors W est aussi de dimension finie et dimV = dim W.

(2) Si W est aussi de dimension finie et dimV = dim W, alors ¢ est bijective < ¢

est injective < @ est surjective.

Preuve. (Bon exercice a faire soi-méme) O

On conclut avec un dernier exemple d’application linéaire qui nous sera utile dans la

suite:

Définition 4.3.7. Soit V un K-espace vectoriel avec sous-espaces U et W tels que V =
U @ W. La projection sur W le long de U est 'application linéaire 7w : V' — W définie

par m(u + w) = w.
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Comme chaque v € V s’écrit de maniere unique sous la forme v = u + w, cette
application est bien définie et on vérifie que 7 est K-linéaire. De plus im (7) = W et
ker(m) =U.

Mais attention: comme il y a beaucoup de supplémentaires différents de W dans V, il

y a beaucoup de projections différentes sur W, selon le supplémentaire choisi U.

4.4. Le groupe linéaire général. Posons Endg (V) = L(V, V) (les endomorphismes de
V). Alors Endg (V) est un sous-ensemble des applications de V' dans V. Définissons
également le groupe Bij(V'), ’ensemble des applications bijectives de V' dans V. On pose
GL(V) = Endg (V) N Bij(V), les applications linéaires bijectives de V dans V. Alors
la propositon 4.2.3 montre que GL(V) est un groupe avec comme opération binaire la
composition d’applications. Ce groupe s’appelle le groupe général linéaire sur V. Nous

considérons quelques sous-groupes dans les exemples suivants et dans les exercices.

Remarque 4.4.1. Il y a une confusion dans la littérature avec la notation End(V'), car
(V,+) est un groupe abélien avec la loi de composition +. Dans ce context, End(V) =
{p:V =V | d(u+v) = ¢(u) + ¢(v)}, Pensemble des morphismes de groupe de V' dans
V. C’est pour cela que nous adopterons la notation Endg (V) pour 'ensemble L£(V, V).
Malheureusement, on voit aussi dans la littérature End(V') utilisé pour L(V, V).

Pour éviter cette confusion dans le cours, je vais utiliser la notation £(V,V) pour

désigner 'ensemble des applications K-linéaire de V dans V.
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5. MATRICES

On fixe un corps K.
5.1. Algebres des matrices.

Définition 5.1.1. Soient A € M, xm(K) et B € My, x¢(K). On définit le produit A - B
(ou simplement AB) comme étant la matrice C' € M,,«¢(K) telle que pour i = 1,...,n et
g=1,..10:
Cij = AnByj + ApBaj + -+ + AimBmj = > AixBy;.
k=1

(On multiplie successivement les coefficients le long de la i-éme ligne de A et la j-éme

colonne de B et on additionne.)

Attention: Le produit AB n’est défini que si le nombre de colonnes de A est égal au
nombre de lignes de B. En particulier, il arrive que AB soit défini et que BA ne soit pas
défini.
Quelques premieres propriétés découlent de cette définition:
(1) Associativité: Pour toutes A € M,y 4(K), B € Myxm(K), et C € Mpxr(K), on
a (AB)C = A(BC).
(2) Distributivité: Pour toutes A, B,D € Mpxm(K) et C,E,F € M,,»x¢(K), on a
(A+B)C=AC+ BCet D(E+F)=DE+ DF.

10 --- 0
01 --- 0
(3) Matrice identité: Soit I, = |0 0 1 --- |, cest-a-dire, I,, est la matrice
0 0 1
n x n telle que
1 sii=j,
(In)ij =
0 sinon .

Alors pour toute A € M,,«m(K) et pour toute B € M,,,»n(K), on a BI,, = B et
I,A=A.

Preuve. Pour (1), on compare les coefficients ij des matrices A(BC) et (AB)C.
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q
Z Ai¢By)Chj.

1¢=

M-

m q
Z AB 1k0kj = Z(Z AiéBék)Ck
k=1

k=1 ¢=1

>
Il
=

Et aussi

m m

q q
= Au(BC)j =Y Au(d_ BuCyj) =
=1

=1 k=1 (=1 k=1

MQ

Ait(BeClj).

On constate que les derniers termes des deux égalités sont identiques, ce qui établit (1).
On raisonne de la méme fagon pour (2).
Pour (3), (I,B)ij = > p—y(In)itBrj = (In)iiBi; = B;j (la deuxieme égalité découle du

fait que (I,)ix = 0 si k # 0). O

Notation 5.1.2. On écrit M, (K) pour 'ensemble des matrices n x n a coefficients dans

K, c’est-a-dire, M,,(K) désigne I'ensemble M,,x, (K).

On a déja vu que M, (K) est un K-espace vectoriel, donc un groupe abélien pour

laddition. Avec les propriétés (1) & (3) ci-dessus, on a
Théoreme 5.1.3. Soit K un corps. Alors M, (K) est un anneau.

Noter que cet anneau est non commutatif, avec des “diviseurs de zero’; c’est-a-dire, il

existe A, B € M, (K) non nulles avec AB = 0.

5.2. Des matrices carrées particuliéeres.

Définition 5.2.1. (1) Une matrice D € M, (K) est dite diagonale si D;; = 0 a
A0
0 X
chaque fois que i # j, c’est-a-dire, D est une matrice carrée delaforme | 0 0
0
0 0

ou \; € K pour 1 <17 <n.
(2) Une matrice diagonale de la forme A\I,,, pour A € K, s’appelle une matrice scalaire;

c’est un multiple scalaire de la matrice identité.
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(3) Une matrice T' € M, (K) telle que T;; = 0 si i > j s’appelle une matrice triangu-
laire supérieure. Une matrice S € M, (K) telle que S;; = 0 si j > i s’appelle une
matrice triangulaire inférieure.

(4) Une matrice A € M, (K) est dite inversible sl existe B € M, (K) telle que
AB =1, = BA.

(5) On note GL,(K) = {A € M,(K) | A inversible} I’ensemble des matrices n x n

inversibles.

Remarques: (1) Comme la multiplication de matrices est associative, si une matrice
A € M, (K) est inversible, elle posséde un unique inverse qu’on note A~!.
(2) Avec la multiplication de matrices, GL,,(K) est un groupe. En anglais, on dit ‘the

general linear group.’
5.3. La matrice d’une application linéaire.

Définition 5.3.1. Une base ordonnée d'un K-espace vectoriel V' de dimension finie est
un n-uplet (f1,..., fn) ordonné, c’est-a-dire un élément du produit cartésien V x --- x V

(n copies), tel que {f1,..., fn} soit une base de V.

Dans la suite de ce chapitre, tous nos espaces vectoriels seront de dimension

finie et toutes nos bases seront des bases ordonnées.

Définition 5.3.2. Soit ¢ : V — W une application K-linéaire. On fixe une base de V,
By = (e1,...,en), et une base de W, By = (f1,..., fm). On définit la matrice de ¢ par
rapport auzx bases By et By, notée (qﬁ)g‘v/v comme suit:

On exprime ¢(e;) par rapport a la base By, ¢(e;) = a1 f1 + -+ + am; fm- La matrice

ayj

agj
(d))g‘v/v est la matrice m x n dont la j-éme colonne est !

Qmj
Si V = W et on fixe une base B de V, on simplifie la notation (¢)5 en écrivant (¢)g.

Proposition 5.3.3. Avec les notations de la Définition 5.3.2 et € L(V,W), on a

(1) (@+e)y = (@) + W5y
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(2) Pour tout X € K, (A¢)" = X-()5" .
(3) L’application © : LIV, W) — Mpyxn(K) définie par ©(¢) = (gb)gg/, pour tout

¢ € L(V,W), est une application K-linéaire bijective.

Preuve. Les propriétés (1) et (2) sont & montrer en exercices. Pour (3): L’application ©
est K-linéaire par les propriétés (1) et (2).

Pour la bijectivité, on détermine d’abord ker(©). Pour ¢ € LV, W), ©(¢) = 0y, xn si
et seulement si ¢(e;) = Oy pour tout ¢, si et seulement si ¢ = 0, Papplication nulle. Donc
ker(©) = {0} et © est injective.

Pour la surjectivité, on prend C € My, xn(K), C = (c;5), et on définit une application

K-linéaire ¢ : V. — W comme suit
m
olei) = crifes
k=1
pour tout i. On vérifie que ¢ est une application linéaire et ©(¢) = C. O

Corollaire 5.3.4. dim L(V,W) =dimV - dim W.

Définition 5.3.5. Soit By comme ci-dessus et v € V. Siv = Aje; +---+ A\, e,, alors on

pose

appelée la matrice de v par rapport a la base By. On dit aussi le vecteur colonne de v

par rapport a la base By .

Remarque 5.3.6. On note que l'association v — (v) g, définit une application K-linéaire

bijective de V' dans My, x1(K).

Théoréme 5.3.7. Soit ¢ € LIV, W). On fize une base By de V' et une base By de W.

Alors pour tout v € V, on a

((b(v))Bw = (¢)§\V/V ) (U)Bv .
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Noter que ’expression a droite de I’'égalité est un produit matriciel.

Preuve. Fixons By = (e1,...,e,) et By = (f1,...,fm) et A = (qi))gf/". Pour v € V,
v = Aey + -+ A\pen, nous avons
$(v) = p(Arer + -+ Anen) = Y Nid(ei) = > Ni(Avift + -+ + Amifin)
i=1 i=1
=D N Auf) =0 NAifi =Y O M) fi
=1 j=1 i=1 j=1 j=1 i=1

On déduit que le coefficient de f; dans Pexpression de ¢(v) est égal & > 1 | N\;Aj; =

w

Yoii AjiXi. Mais ce dernier est précisément le j-éme terme du produit (¢)gv - (V) By -

Donc (</>)§§V “(v)By = (¢(v)) By - =

Proposition 5.3.8. Soient A, B € M,,xn(K). Si AX = BX pour tout X € M, «1(K),
alors A = B.

Preuve. Par la Propriété 5.3.3(3), via la surjectivité de O, on sait que A = (qﬁ)g‘v/" et

B = (zb)gf/" pour certains ¢, € L(V, W), o V est un K-espace vectoriel de dimension n
avec base By, et W est un K-espace vectoriel de dimension m avec base Byy. Soit v € V

et posons Y = (v)p, . Par hypothese, AY = BY. Donc

B)BY - (W), = @)BY - ()5, = (6(V)By = V(V)B,y, = d(v) = V(v).

Comme ceci est vrai pour tout v € V', on a que ¢ = v et par conséquent A = O(¢) =

O(y) = B. 0

Théoreme 5.3.9 (Matrice d’'une composition). Soient ¢ : U = V et : V — W deux
applications K-linéaires. Soient By, By et By des bases de U, V et W respectivement.

Alors
(Vo )Y = (V)5 - (9)5Y -

Preyve. Posons A = (gzﬁ)gg7 B = (w)gf/" et C = (¢0¢)gy. Soit X € M, «1(K) et posons
v e U avec (v)p, = X.

Ona (0 d)(v)p, = (bod)p - X = CX.
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Aussi (¥ 0 9)()py = (V(6(v))Bw = (V)5 (6(v)B, = W)BY - (D)) - (V)By
BAX. Donc CX = BAX pour tout X € M, «1(K). Par la Proposition 5.3.8, C' =

BA. 0

Corollaire 5.3.10. Soit V un K -espace vectoriel de dimension finien. Soit © : LIV, V) —
M, (K) Uapplication bijective définie dans la Proposition 5.3.53. Alors © est un isomor-

phisme d’anneauz, c’est-a-dire, un homomorphisme d’anneauz bijectif.

Preuve. Nous avons déja montré que 6 est un morphisme de groupes abéliens pour
l'addition et que 6 est bijective. Le Théoréme 5.3.9 montre que ©(¢ o ¢) = O(¢$)O ().

Enfin nous avons aussi que O(idy ) = I,,. Donc © est un isomorphisme d’anneaux. 0

Corollaire 5.3.11 (Applications bijectives). Soit ¢ € L(V,W). Si ¢ est bijective, alors

w

la matrice (¢)gv est inversible et

(@ gy, = ((@0)py) "

De plus, si A € M, (K) est une matrice inversible, alors il existe 1 € L(V,W) bijective

telle que A = (w)gf/",
Preuve. Exercice. O

Proposition 5.3.12. Soit F,, le corps fini a p éléments. Alors le groupe GL,,(F,) est un

groupe fini de cardinal (p™ — 1)(p"™ —p) --- (p" — p" ).

Preuve. Par le Corollaire 5.3.11, GL,,(IF,,) est en bijection avec I’ensemble des applications
bijectives de F); dans ;. Une application linéaire ¢ : F) — F} est une bijection si et
seulement 'image d’une base de [} par ¢ est de nouveau une base de ;). De plus, ¢ est
déterminée par 'image d'une base fixée. On fixe une base ordonnée (ey, ..., e,) de F} et
on dénombre les images possibles, ce qui nous donnera le nombre d’applications linéaires
bijectives distinctes.

L’image de e; par ¢ peut étre n'importe quel vecteur dans F) sauf le vecteur nul. Il
y a (p"™ — 1) choix possibles pour ¢(e1). Ensuite, comme ¢(es) doit étre linéairement

indépendant de p(e1), on a le choix entre tous les vecteurs qui appartiennent a Fy, sauf
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les vecteurs de Vect (p(e1)); il v a (p™ — p) choix possibles pour ¢(ez). On continue

mn
p’

ainsi jusqu’au choix de ¢(e,), ot on doit prendre un vecteur qui appartient a F?, mais
qui n’appartient pas au sous-espace Vect (¢(e1),¢(e2),...,¢(en—1)). Nous avons donc
(p™ — p"~ 1) choix possibles pour cette derniere image. Par le principe d'une suite de
choix, on trouve que le nombre d’applications linéaires bijectives entre ) et F] est le

produit indiqué. O
5.4. Changement de base.

Définition 5.4.1. Soient B = (ey,...,e,) et B' = (f1,..., fn) deux bases d'un K-espace

vectoriel V. On exprime les f; en termes de la base B:

[i = p1je1 +pajez + -+ ppjen, pour 1 < j <netpy; € K.

On définit la matrice P € M,,(K) par P = (p;;); donc la j-éme colonne de P est le vecteur
colonne (f;)p. La matrice P € M, (K) s’appelle la matrice de changement de base entre
la base B’ et la base B. On dit aussi que P est la matrice de passage entre la base B’ et
la base B. On note que P est la matrice de I’application identité id : V' — V| par rapport

aux bases B’ et B; c’est-a-dire P = (id)5, .

Proposition 5.4.2. Soient V., B, B’ et P comme dans la Définition 5.4.1 et soitv € V.
Alors P - (v)gr = (v)B.

Preuve. Par définition, P - (v)p: = (id)B, - (v)p/. Par le Théoreme 5.3.7, (id)5, - (v)p =

(zd(v))B = (’U)B. O

Proposition 5.4.3 (Matrice de passage inverse). Soit P = (id)5, la matrice de passage
entre les bases B' et B. Alors P est inversible et son inverse P~ est la matrice de

passage (id)5  entre les bases B et B'.

Preuve. Par le Corollaire 5.3.11, la matrice P = (id)5, est inversible et son inverse est

la matrice de 'application id~!, par rapport aux bases B et B’ (dans cet ordre). Donc

P~ = (id "B = (id)B. 0
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Théoréme 5.4.4 (changement de base). Soit ¢ € L(V,W). Soient B et B’ deux bases
de V et soient C et C' deuz bases de W. Posons S = (idy)E, et T = (idw)%, (deux

matrices de passage), et A= (¢)G et B = (¢)%,. Alors

/

B=T""AS, cest-a-dire ($)$, = (idw)$ - (0)G - (idy)5, .

’

Preuve. Théoreme 5.3.9 = (idw)S - (¢)% - (idy) B, = (idw o ¢ oidy)G = (¢)S, . O

Définition 5.4.5. Soient A, B € M, (K). On dit que A et B sont semblables s’il existe
une matrice inversible P € M, (K) telle que P~ AP = B. On vérifie que ‘étre semblable’

est une relation d’équivalence sur M, (K). (Exercice.)

Exemple 5.4.6. Soit ¢ € L(V, V), o dimV = n. Soient B et C deux bases de V. Alors

les matrices (¢)p et (¢)c sont semblables, car

(@) = (id)& - (¢)c - (id)G = ((id)5) " - (d)c - (id)F .
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6. OPERATIONS ELEMENTAIRES

On fixe un corps K.

6.1. Définitions et premiéres propriétés.

Notation 6.1.1. a) Soit X un ensemble. Pour a,b € X, le symbole de Kronecker 45
désigne le nombre réel tel que d,, =0 sia#bet dqp =1 sia=0.

b) Pour 1 <r <mn, 1< s <m,on définit une matrice F,s € M, xm (K) dont le coefficient
(Ers)i; satisfait

(Ers)ij = 5ri55j»

c’est-a-dire, F,¢ est la matrice n x m telle que le seul coefficient non nul est (E,s),s
et ce coefficient est égal & 1. On note que {E;; | 1 <i <n,1 <j < m} est une base
de M, xm(K).

c) Pour A € M, (K), on note A = (A;;) 1<i<n = (Ai;) = (a;5), et on note A; la i-eme

1<j<m

ligne de A.

Définition 6.1.2. On définit trois types d’opérations sur les lignes d’une matrice, ap-

pelées opérations élémentaires.

Type I Echanger deux lignes de la matrice.
Type II Multiplier une ligne de la matrice par un scalaire non nul A € K.
Type III Additionner & une ligne de la matrice un multiple scalaire d’une autre ligne

de la matrice.

Remarque 6.1.3. On note que ces trois opérations sont ‘réversibles’ dans le sens qu’il

existe une opération élémentaire qui renvoie a la matrice de départ.

i. Type I est son propre inverse.
ii. Type II: On multiplie la méme ligne par %
iii. Type III: Si on additionne A - A; & A;, alors 'opération inverse est d’additionner

~X-A;i A A,
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Définition 6.1.4. On dit que A, B € M« (K) sont lignes équivalentes (ou équivalentes
par lignes), si B peut étre obtenue & partir de A en faisant une suite (finie) d’opérations

élémentaires.

Remarque 6.1.5. Comme toutes ces opérations sont réversibles, ‘étre lignes équivalentes’
est une relation d’équivalence sur M,,x,(K). En particulier, la relation est symétrique,
c’est-a-dire, si on peut obtenir B a partir de A par une suite d’opérations élémentaires,

on peut également obtenir A & partir de B par une suite d’opérations élémentaires.

Propriété. Chaque opération élémentaire sur les lignes de A € M« (K) correspond &

la multiplication & gauche par une certaine matrice de GL,, (K).

Preuve. Type I: Echanger les lignes A, et A, de la matrice A.

On considere la permutation 7 = (rs) € S,, du groupe symétrique de degré n. Posons

T,s € M, (K) la matrice dont le coefficient (7));; satisfait:

(Trs)ij = Or(iy -
On vérifie que
o (Tg)i = 1siid{rs},
o (Ths)rs =1=(Tys)sr €t

e tous les autres coefficients de T4 sont nuls.
On montre que T,sA est la matrice obtenue a partir de A en échangeant les lignes A,
et Ag:
Preuwve. (TrsA)ir = Z?Zl(Trs)ijAjk. Comme (Tys)ij = 0-(;),; = 0 sauf si 7(i) = j, on

n

(TTSA)ik: = Z(Trs)ijAjk = A‘r(z)k

j=1
Et ce dernier terme est égal & A, sit # r,s, Agp sii =1, et Ay, sii =s. Cela veut dire
que T,sA est bien la matrice obtenue en échangeant les lignes A, et Aj,.

On note que Tj.s = (Ty5) L.
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Type II: Multiplier la ligne A, par A € K, A # 0.
Posons D,.(\) € M, (K) la matrice dont le coefficient D,.()\);; satisfait

1, sii=j#r
Dr(N)ij =4 0, sii#j

A, sii=j5=r

Aika 7’757.
)\Ark T=7r

Donc D,.(A\)A est la matrice obtenue en multipliant la r-éme ligne de A par A. De ce fait,

Alors (Dr(N)A)ir = 37— Dr(NijAjk = Dr(NiAur, =

on a
(D) =D, ().
Type III: Additionner A - A; a A, .

Posons L,s(A) = I, + AE,.s € M,,(K). Pour simplifier, on écrit I = I,,. On calcule

Lys(NA = (I +\E,;)A = A+ \E,,A.

(LrsNA)ir = Aig + 205 (AErs)ij Ajy
= Azk + 6ri)\Ask
Ce dernier est égal a A, si i # r et a Ay + AAg, si @ = r. Donc c’est bien le résultat

d’additionner A - A; a A,.. De ce fait, on a
Lys(N) 7™ = Lys (=),
O
Définition 6.1.6. Les matrices T, D,-(\) et L.s(\) s’appellent les matrices élémentaires.

Remarque 6.1.7. o T..T,.s = I, et par conséquent TT_S1 =Ts.
e D, (A"1)D,(\) = I, et par conséquent D,.(\)~t = D, (A1),

e L.s(—=\)L,s(\) = I, et par conséquent L,5(A)~! = L,s(—\).
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6.2. Echelonnage et la méthode de Gauss.

Définition 6.2.1. On dit qu'une matrice A = (a;;) € Mpxn(K) est échelonnée si soit
A = Opxp, soit il existe un entier r < n, r < p, et des entiers ji, ja,...,Jjr entre 1 et n

avec les propriétés suivantes:

1. 1Sj1<.j2<"'<jr§n;
2. ayj; = 0 pour tout j < jy et arj, # 0;

az; = 0 pour tout j < ja et ag;, # 0;

ar; = 0 pour tout j < j, et a,;, # 0;

3. Sir < pleslignes Ay41,... Ap sont nulles.

Si A # 0, les entiers ji, ..., J, s’appellent les échelons de la matrice A et les éléments

aij;, 9= 1,...,r, s’appellent les pivots.

Définition 6.2.2. Une matrice A = (a;;) € Mpxn(K) est dite échelonnée réduite si soit
A = 0, soit A est échelonnée avec échelons j; < ja < -+ < j, et si de plus on a les

propriétés suivantes:

1. a1j5, = 1, a2j, = 17. sy Ay, = 1;
2. ap;, = 0 pour tout k # ¢ (c’est-a-dire, dans toute la colonne & I’échelon j;, le seul

coefficient non nul est a;;,).

Théoreme 6.2.3 (I’échelonnage d’aprés la méthode de Gauss). Toute matrice est ligne
équivalente o une matrice échelonnée réduite. Autrement dit, toute matrice peut étre
transformée en une matrice échelonnée réduite par une suite d’opérations élémentaires

sur les lignes de la matrice.

Preuve. (La preuve est constructive, dans le sens qu’elle donne un algorithme pour trouver
une forme échelonnée réduite; cette méthode s’appelle la méthode de Gauss ou la méthode
d’élimination de Gauss.)

Soit A € Mpyxn(K). On suppose A # 0, car sinon A est déja échelonnée réduite.
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Soit j; le plus petit indice colonne pour lequel un coefficient de A est non nul, disons
a;j, # 0. Par une opération de type I (échanger les lignes 1 et ¢), on est ramené au cas
ou aij, # 0 (le pivot est en premiere ligne).

Par une opération de type II, multiplier la premiere ligne par al_jll, on est ramené au
cas ol a1;, = 1 (le pivot en premiére ligne est égal & 1).

Par une suite d’opérations de type III, on annule tous les autres coefficients de la j;-eme
colonne (rajouter —ay;, X ligne 1 & la ligne k).

Ainsi, on aboutit & une matrice de la forme

0 0 1 = *

" 0 0 0 = *
N 0 = *

0 0 0 = *

Posons B la matrice constituée des lignes 2 & p de A’. Si B = 0, alors A’ est échelonne
réduite. Sinon soit jo le plus petit indice colonne pour lequel B possede un coefficient
non nul. Alors jo» > ji1. On applique a la matrice B la méthode utilisée ci-dessus, ce qui

crée (en reportant les opérations sur la matrice A’) une matrice

0 0 1 =% x *x = *

o 0 - 00 -+ 0 1 % -+ %
o - 00 - 0 0 « o

0 0 0 = *

oll nous avons un pivot aij, = 1 et ag;, = 1. Avec une opération de type III, on annule
le coefficient a1;, & la ligne 1 (rajouter —aq;, X ligne 2 & la ligne 1) . Cette derniére
opération ne modifie pas les éléments sur la premiere ligne de A” précédant la colonne ja,
i.e. les af, avec £ < jo, car tous les coeflicients correspondant sur la ligne 2, i.e. les af,

avec ¢ < jo, sont nuls.

On répete ce procédé jusqu’a ce qu’on obtienne une matrice échelonnée réduite. O
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Remarque 6.2.4. Soient A,B € M,x,(K) des matrices lignes équivalentes. Alors
chaque ligne de B est une combinaison linéaire des lignes de A et chaque ligne de A

est une combinaison linéaire des lignes de B.

Corollaire 6.2.5 (L’unicité de la forme échelonnée réduite). Sotent A, R, R’ € My, (K)

lignes équivalentes. Si R et R’ sont échelonnées réduites, alors R = R'.

Esquisse de preuve. Par les remarques ci-dessus, les lignes de R sont des combinaisons
linéaires des lignes de R’ et vice versa.

Supposons que R ait des échelons aux colonnes j; < ja < --- < j, et R’ aux colonnes
k1 < ko < +-- < kgs. On déduit que j; = k1, sinon soit R; n’est pas dans le sous-espace
engendré par les lignes de R’, soit R} n’est pas dans le sous-espace engendré par les lignes
de R.

Maintenant

R1—<0 o 001 agje1 o a1 0 % >,

avec le pivot 1 a la place (1,71) et

R2_<0 o 001 agjer * >,
avec le pivot 1 a la place (2, j2), et
R’l(o o 001 byjpr o bigyo1 0 % ),

avec le pivot 1 & la place (1,k1) = (1,71) et

avec le pivot 1 & la place (2, ko).
Alors Ry est une combinaison linéaire des lignes R}, k > 2, de R’ et R} est une combi-

naison linéaire des lignes Ry, k > 2, de R (la premiere ligne étant toujours exclue, car

Ry, = ’27]»1 = 0). Pour la méme raison que précédemment, on déduit que jo = ko et
donc (a1j,+1 a1j,4+2 *++ a1jp—1) = (biji41 biji+2 *+ biky—1)-
La suite consiste & comparer les lignes R; et R} de maniére analogue. g
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Corollaire 6.2.6. Soit A € My, (K). Alors il existe une matrice inversible P € GL,(K)

telle que PA est échelonnée réduite.

Preuve. On applique la méthode de Gauss; chaque opération élémentaire correspond a
multiplier & gauche par un élément de GL,(K). Le produit d’éléments dans GL,(K) est
aussi dans GL,(K). On a Py - -- P; A échelonnée réduite et Py --- Py € GL,(K). O

6.3. Applications de la méthode de Gauss.

6.3.1. Systemes de vecteurs; base d’un sous-espace défini par un systeme de générateurs.

Soit (u1, ..., up) un p-uplet ordonné de vecteurs dans K™. On souhaite:

e Trouver une base aussi simple que possible de Vect (uy,...,upy) =U.
e Trouver dimU.

e Compléter cette base en une base de K™.

Meéthode: On écrit les coordonnées des vecteurs uq, . .., u, dans les lignes d’une matrice
A € Myyn(K), cest-a-dire on pose A = (a;;) € Mpxn(K), ot 4; = (a;1,...,amn) = u;.
On effectue les opérations élémentaires sur les lignes de A pour la transformer en une

matrice échelonnée réduite R. Soit w; € K™ le vecteur avec coordonnées données par la

ligne R;. Alors Vect (ws,...,w,) = U, car chaque opération élémentaire est inversible.
Donc chaque w; est une combinaison linéaire des uq,...,u, et chaque u; est une combi-
naison linéaire des wi, ..., wp. Les w; non nuls forment une base de U. Donc dim U est

égale au nombre de lignes non nulles de la matrice R. Pour compléter cette base en une

base de K™, on prend les vecteurs {e; | £ n’est pas un échelon de la matrice R}.

Définition 6.3.1. (1) Un systéme de vecteurs dans un K-espace vectoriel V' est un
uplet ordonné de vecteurs (vy,...,v:) dans V.
(2) On dit qu'un systeme de vecteurs (ws,...,w;), avec w; € K™, est échelonné

(réduit) si la matrice ayant pour i-eéme ligne les coordonnées de w; est échelonnée
(réduite).
(3) Pour un systeme de vecteurs (uq,...,u;) dans V, dim(Vect (uq, ..., us)) s’appelle

le rang du systeme.
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On note que le rang du systeéme (ug, ..., u;) est le nombre maximal de vecteurs

linéairement indépendants dans 'ensemble {uy,...,u;}.

Définition 6.3.2. Soit A € M,,x,(K). On regarde les lignes Aq,..., A,, de A comme

vecteurs dans K™. On dit que le rang-ligne de A est le rang du systeme (Ay, ..., Ay).

On note que le rang-ligne de A est égal au rang-ligne de R, ou R est la forme échelonnée
réduite de A, et que le rang-ligne de R est le nombre d’échelons de R.

Plus généralement, soit V un K-espace vectoriel de dimension n avec base ordonnée
B = (f1,..-,fn). On a une application linéaire bijective ¢ : K™ — V donnée par
o((at,...,an)) = Y1, a;f;. Soit maintenant (vy,...,v,) un systéme de vecteurs dans V.
Alors comme ¢ est bijective, dim Vect (vq,...,v,) = dim Vect (0= (v1),...,9 1 (vp)) =
le rang-ligne de la matrice avec lignes ¢~!(v1),...,9 ! (v,). Ainsi, on peut utiliser la
méthode développée ci-dessus pour déterminer dim Vect (v1,...,v,), une base de cet es-

pace, et également pour compléter cette base en une base de tout V.
6.3.2. L’image d’une application linéaire.

Définition 6.3.3. Soit B € M,,x,(K). On note par ¢; € K™ le vecteur dont les coor-
données se trouvent dans la i-eme colonne de B. Le rang-colonne de B est dim(Vect (cq, ..., ¢n))

comme sous-espace de K™.

Remarque 6.3.4 (Lien avec les applications linéaires). Soit ¢ : V' — W une application
K-linéaire entre espaces vectoriels de dimension finie, et soient By et By des bases
ordonnées de V' et W respectivement. On rappelle que le rang de ¢ est égal a la dimension
de im (¢). Posons B = (¢)g‘v/" € Myxn(K) et notons les colonnes de B par ¢1,...,¢, C

K™. Alors dimim (¢) = dim(Vect (c1,...,¢,)), ce qui est le rang-colonne de B.

Définition 6.3.5. Soit A € M, ,(K). La transposée de A, notée A*, est la matrice ¢ x p

telle que (At)ij = A]Z

Remarque 6.3.6. Comme les colonnes de A° sont les lignes de A et les lignes de A? sont
les colonnes de A, le rang-colonne de A est égal au rang-ligne de A*. On utilise ce fait
pour calculer le rang-colonne d’une matrice et le rang d’une application linéaire, et méme

pour trouver une base de im ¢.
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6.3.3. Systémes d’équations linéaires.

Définition 6.3.7. Soit un systeme de p équations linéaires & n inconnues:

anxi + -+ a1, =b

Ap1T1 +"'+a/pnxn :bp7
avec a;j, b, € K. Si b; = 0 pour tout 1 < ¢ < p, on dit que le systéme est homogene et

s'il existe 7, 1 <14 < p, avec b; # 0, on dit que le systeme est inhomogéne.

aix - Qin
En termes matriciels: Posons A = “ |, la matrice des coefficients,
apl CLpn
Z1
by
xT9 .
X = , le vecteur colonne des inconnues, et b = - |, le vecteur colonne des
by
In

termes constants. Alors le systeme d’équations est équivalent & I’équation matricielle

AX =b.

Définition 6.3.8. Le rang du systeéme est le rang-ligne de la matrice des coefficients A.

En termes d’applications linéaires: la matrice A représente une application linéaire
¢ : K™ — KP (par rapport aux bases canoniques des deux espaces). L’existence d’une
solution du systeme veut dire qu’il existe z = (x1,...,2,) € K™ tel que ¢(x) = b.
C’est-a-dire b appartient a 'image de ¢.

Si b ¢ im (¢), alors le systéme ne posséde aucune solution. Si b € im (¢), le systéme

possede au moins une solution.

Cas particulier: si le systéme est homogene, c’est-a-dire b = 0, alors il existe au moins
une solution car ¢(0) = 0. Méme, ensemble des solutions du systeme est égal & {v €

K™ | ¢(v) =0} = ker(¢), et par conséquent on a le résultat suivant:
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Proposition 6.3.9. L’ensemble des solutions d’un systéme homogeéne est un sous-espace

vectoriel de K™, car c’est le noyau d’une application K -linéaire.

Pour résoudre un systeme linéaire par la méthode de Gauss, on réduit & un systeme
échelonné réduit A’X = b'. Soit r le rang du systeme (égal au rang-ligne de la matrice

A’), et solent ji,...,jr les échelons de la matrice A’.

Définition 6.3.10. Les inconnues qui apparaissent aux échelons du systeme échelonné
réduit, z;,, ..., z;, s’appellent les inconnues principales et les autres (s'il y en a) s’appellent

les inconnues libres (qui sont n — r en nombre).

Description des solutions:

Cas I: Si l'un des scalaires b;., 1, ... b;, n’est pas nul, on a I'équation 0 = b, et le systeme
ne possede aucune solution.

Cas II: Si b, = ... = b; =0, ou si 7 = p, le systéme posséde au moins une solution.
Pour décrire les solutions, on donne des valeurs arbitraires aux inconnues libres et on
détermine la valeur de chaque inconnue principale en termes des inconnues libres. Donc
’il existe des inconnues libres, il y a plus qu’une solution et s’il n’existe aucune inconnue

libre (< r = n), le systéme posseéde une solution unique.

Proposition 6.3.11 (L’ensemble des solutions dans le cas homogene). Considérons un
systeme homogéne de p équations linéaires a n inconnues, et de rang r.
(1) On ar <petr<n (par définition du rang).
(2) Il existe toujours la solution dite triviale, i.e. la solution x € K™ ou x; = 0 pour
tout 7.
(3) L’ensemble des solutions est un sous-espace vectoriel de K™ de dimension n —r
(= le nombre d’inconnues libres).
(4) Sin<petn=r,iny a que la solution triviale.

(5) Sin>p,onan>p>retdoncn—r >0, etil eviste des solutions non triviales.

La méthode pour trouver une base du sous-espace des solutions d’un systeme est ex-

pliquée en cours.
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Proposition 6.3.12 (I’ensemble de solutions dans le cas inhomogene). Considérons un
systeme inhomogéne de p €quations linéaires a n inconnues, de rang r, et avec systéme
échelonné réduit associé¢ A’X =V,
(1) Le systéme ne posséde aucune solution si et seulement s’il existe b} avec i > r+1
et b # 0.
(2) Siy = (y1,...,Yn) € K™ est une solution du systéme AX = b, alors l’ensemble

des solutions du systéeme est {y +x | x € K™ est une solution du systéme AX =

0}.

(8) Sin=p etr=nmn, le systéme posséde une solution unique.

Preuve. L’affirmation de (1) est claire.

Y1
Pour (2): Posons Y = | : | tel que AY =b. Prenons (aq,...,q,) € K™ une solution
Yn
(€51
du systeme homogene AX = 0. Posons Z = ‘|, donc AZ = 0. Par conséquent
an

AY +Z) =AY + AZ =b+ 0 =b. De plus, si Y’ est une autre solution de AX = b,
alors AY =b=AY, et donc A(Y' - Y)=b—-0=0et Y =Y 4+ (Y =-Y),ouY' -Y
est bien une solution du systéeme homogene.

(3): Si m = p, alors le nombre d’équations est égal au nombre d’inconnues et r = n
veut dire que le nombre d’échelons est aussi égal au nombre d’équations et donc il n’y a
pas de lignes de (A’ | b') de la forme (00 --- 0 | b}) avec b # 0 et par (1), il existe une
solution. S’il existe deux solutions Y et Y/ & AX = b, alors le systeme AX = 0 possede
une solution Z =Y — Y’ qui ne peut étre que triviale (i.e. Y =Y”) par la partie (4) de

la proposition précédente. O

6.4. Le rang d’une matrice. Soit A € M,,«,(K). Nous avons défini le rang-ligne et
le rang-colonne de la matrice A. Le rang-ligne est le nombre maximal de lignes de A qui

sont linéairement indépendantes vues comme des vecteurs dans K™ et le rang-colonne
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est la dimension de im (), ou ¢ : K™ — K™ est application linéaire représentée par la

matrice A par rapport aux bases canoniques de K™ et K™ (i.e. (p)5 = A).
Théoréme 6.4.1. Le rang-ligne de A est égal au rang-colonne de A.

Preuve. Posons r = le rang-ligne de A. Alors ker ¢ est égal a ’ensemble des solutions de
I’équation AX = 0 et, par la Proposition 6.3.11, est de dimension n — r. Par le théoréeme
du rang, dim K™ = dim ker ¢ + dim im ¢.

On a donc n = (n —r) + dimimg et on déduit que dimimy = r, c’est-a-dire, le

rang-ligne est égal au rang-colonne. O

Définition 6.4.2. Le rang d’une matrice A est le rang-ligne (ou le rang-colonne) de A,

noté rang(A) ou rg(A).
6.5. Inversion des matrices carrées.

Théoréme 6.5.1 (d’inversibilité). Soit A € M, (K). Les conditions suivantes sont

équivalentes.

(a) A est inversible.

(b) Il existe C € M, (K) telle que AC = 1I,,.

(c) Il existe B € M, (K) telle que BA = 1I,,.

(d) Le systéeme AX = 0 posséde une solution unique, la solution triviale.

(e) rang(A) = n.

(f) La matrice échelonnée réduite qui est ligne équivalente a A est la matrice identité

L.

Preuve. D’abord on montre que (a), (b) et (c) sont équivalents. Il est clair que (a)=(b)
et (a)=(c).

Supposons maintenant qu’il existe C' € M,,(K) telle que AC = I,,. Soient ¢ : K" —
K™ tel que (p)E = Aetyp: K™ — K" telle que ()% = C, ot E est la base canonique de
K™. Alors ot = id implique que ¢ est surjective. Mais ¢ surjective implique ¢ bijective
(par exemple en utilisant le théoréme du rang) et donc A est inversible. Par conséquent

(b)=(a).
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Supposons qu’il existe B € M, (K) tlle que BA = I,,. Soit ¢ comme ci-dessus et
posons v : K™ — K" telle que (7)£ = B. On a alors 70 ¢ = id et donc ¢ est injective.
Mais ¢ injective implique que ¢ est bijective et donc A est inversible, et nous avons que
(¢)=(a). Ces implications montrent que (a), (b) et (c) sont équivalents.

On montre maintenant que (a)=-(d)=-(e)=(f)==-(c¢) pour conclure.

(a)==(d) Supposons que A est inversible avec inverse A=!. On considere ’équation
AX = 0; on multiplie & gauche par A~! des deux cotés et on obtient que A~ AX = A~'0,
d’ou X = 0. Donc il n’existe que la solution triviale X = 0.

(d)=(e) On sait que la dimension de l’espace des solutions du systéme est égale a
n —r, ou r = rang(A). Mais l'espace des solutions est le sous-espace nul et donc est de
dimension 0. On déduit que n = r, i.e. la matrice A est de rang n.

(e)=(f) Supposons maintenant que rang(A) = n. On effectue les opérations élémentaires
sur les lignes de A pour obtenir une matrice échelonnée réduite R. Le rang de R est aussi
n et par conséquent R = I,,.

(f)=>(c) Supposons qu’il existe F1, ..., F; des matrices élémentaires telles que Ey - -- Bt A =

I,,. Alors la matrice B = E; - - - F; satisfait & la condition de (c). O

Corollaire 6.5.2. Toute matrice inversible est un produit de matrices correspondant aux

opérations élémentaires.

Preuve. Par (f), il existe des matrices élémentaires E1, ..., E; telles que Fy - -+ B, A = I,

ce qui montre que A =E; 'E; Y .- E;'et A1 =F, - E,. O

Le corollaire nous donne un algorithme pour calculer facilement I'inverse d’une matrice

(ou bien pour déterminer si une matrice donnée est inversible).
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7. LE DETERMINANT

On fixe un corps K.
7.1. Le groupe symétrique.

7.1.1. Notation en cycles. On rappelle que le groupe symétrique de degré n est le groupe

(Bij(X), o), noté aussi Sp, ou X ={1,2,...,n}.

Définition 7.1.1. 1. Soit {a1,az,...,am} C{1,2,...,n} une partie de m éléments dis-
tincts. On écrit (a1 az -+ a,) pour la permutation o € S,, définie par :
o(a;) = ajy1 pour 1 < i < m—1, o(am) = a1, et o(b) = b pour tout b €
{1,2,...,n}\ {a1,az2,...,a,}. On appelle un tel élément un m-cycle.
2. Un 2-cycle s’appelle une transposition.

3. Pour 0 € S,,, on pose supp(o) :={j € {1,2,...,n} | o(j) # j}, le support de o.

Exemples 7.1.2. 1. L’élément neutre, la permutation identité, est égale au 1-cycle (1),
et aussi au 1-cycle (2), etc. Noter que supp((1)) = 0.
2. Dans le groupe S3, tout élément est soit

e un l-cycle, (’élément neutre),

1 2 3 1 2 3 1 2 3
e soit un 2-cycle ( =(12), =(23)ou =(13))
2 1 3 1 3 2 3 2 1
1 2 3 1 2 3
e soit un 3-cycle ( =(123) ou = (1 3 2)). Noter que le
2 3 1 3 1 2
3-cycle (1 2 3) est égal au 3-cycle (2 3 1), qui est égal au 3-cycle (3 1 2).
1 2 3 4
3. Dans le groupe Sy, 1’élément est le 4-cycle (1 2 3 4), mais ’élément
2 3 41
1 2 3 4
n’est un r-cycle pour aucun r.
2 1 4 3

Le dernier exemple montre que la notation introduite dans 7.1.1 ne suffit pas pour

décrire tous les éléments de S,,. La proposition 7.1.4 traite des éléments généraux.

Définition 7.1.3. On dit que deux cycles 0 = (a1 aa ... ), 7™ = (b1 by --- by) € S,

sont disjoints si {a1,...,am}N{b1,...,be} = 0.
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Noter que si o et 7 sont des cycles disjoints, alors o7 = 70.

Proposition 7.1.4. Toute permutation o € S,\{Id}, s’écrit comme un produit de cycles
disjoints, chacun de longueur au moins 2. Cette factorisation est unique a l'ordre preés

des cycles.

Preuve. (facultatif) Pour m € {1,2,...,n} et 0 € Sy, on appelle Y = {a/(m) | j € Z}
lorbite de m sous l'action de o ou simplement la o-orbite de m.

D’abord on montre que Y = {m,a(m),...,c""1(m)}, on k € N est maximal tel
que {m,o(m),...,0*71(m)} soient distincts. Soit k comme dans I’assertion. On a que
o*(m) = o7(m) pour un certain 0 < j < k — 1. Donc 0*77(m) = m et par le choix
de k, j = 0 et 0¥(m) = m. Pour s € Z, on écrit s = gk + r pour q,r € 7 avec
0 <r <k Alors o*(m) = o ((67%)(m)) = o"(c*(--- (¢¥(m))) = o"(m) € Y. Donc
Y = {m,o(m),...,c*"1(m)}.

Soit Y7 la o-orbite de 1. Si Card(Y;) = n alors ¢ = (1 (1) o%(1) --- o™ (1))
et o est un n-cycle. Si Card(Y;) < n, alors on choisit m € {1,2...,n}\ Y7 et on
pose Yy, la o-orbite de m. On note que Y; NY,, = 0, car par la premidre étape de la
preuve, Y7 = {1,a(1),...,a* (1)} on o¥(1) = 1, et Y,,, = {m,o(m),..., a1 (m)} on
of(m)=m. Sio"(1) =c*(m) pour 0 <r < ket 0 < s < ¢, alors 0" *(1) =met m € Y7,
ce qui est en contradiction avec le choix de m.

Conclusion : Maintenant, on décompose {1,2,...,n} en une réunion disjointe de o-
orbites, Y3 U ---UY; avec Y; l'orbite de 1. Alors si V; = {i,0(i),...,0% (i)} avec

|Y;| = ki, on vérifie par l'action que
o= (ar ofar) - 0" o)) (a2 o) 0¥ a)) - (ar olar) o oF I (ar)).

Comme remarqué auparavant, les cycles disjoints commutent entre eux et donc I’écriture

n’est pas unique, mais est unique a l'ordre pres des cycles. En effet, les orbites de o

déterminent le support des cycles et I'action de o sur chaque orbite détermine le cycle.
Enfin, si ¥; = {i} pour un certain ¢, on supprime le cycle (i) car la notation sous-entend

que o(i) =i si ¢ n’apparait dans aucun cycle. O
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1 2 3 45 6 --- n
Exemples 7.1.5. 1. Considérons la permutation o =

5 3 2 41 6 --- n

dans le groupe symétrique S,, pour n > 5. Son écriture en cycles disjoints de longueur
au moins 2 est (1 5)(2 3).

2. L’écriture de 0 = (1 2 3)(3 4 7)(7 8)(6 5 7) € S en produit de cycles disjoints de
longueur au moins 2 est

(12347658).

3. Lécriturede 7= (135 7)(2371)(23) € Ss en produit de cycles disjoints de longueur
au moins 2 est (1 2)(3 5 7). Dans chaque cas, on peut vérifier 'action sur tous les

nombres entre 1 et 8.

Proposition 7.1.6. Chaque o € S, s’écrit comme un produit de transpositions.

Preyve. Sin =1, alors S,, = {(1)} et I’élément neutre est le produit vide. Supposons
n > 2. Par Proposition 7.1.4, il suffit de montrer que chaque r-cycle s’écrit comme un

produit de transpositions. Il y a plusieurs fagons de le faire:

(a1 az -+ ay) = (a1 a;)(ar ar—1)--- (a1 az),

ou

(a1 az -+ a,) = (a1 a2)(ag az) - (ar—1 ar).

7.1.2. La signature d’une permutation. Tout d’abord, on montrera que si ¢ € S, s’écrit
comme un produit de m transpositions ainsi que comme un produit de ¢ transpositions,
alors m et £ ont la méme parité, c’est-a-dire que soit m et £ sont les deux pairs, soit les
deux impairs.

On commence par un lemme qu’on vérifie directement en comparant les images des

nombres {1,2,...,n} sous 'action de chaque permutation.
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Lemme 7.1.7. Soient h,k € Z, h,k > 0 et a,b,c1,...,¢p,d1,...,d € {1,2...,n}

distincts. Alors
(3) (ab)aecy - epbdy -+ dp)=(bdy -+~ di)(a ey ca -+ cp).

Preuve. Exercice. O

Soit o € Sy, 0 # (1). On écrit
(4) 0 =010z 0%,

un produit de cycles disjoints chacun de longueur au moins 2. On suppose que o; est un
r; cycle pour 1 <4 < ¢, r; > 2. On définit une application N : S,, — N par N((1)) =0 et

pour o comme dans (4),
N)=ri—14+r—14+--4+r —1.

Cette application est bien définie par I'unicité (& Pordre des facteurs pres) de la factori-
sation en produit de cycles disjoints.

Pour a,b,¢;,d; comme dans Lemme 7.1.7,
N(bdy -+ dg)lacrca--- cp)=h+k
et

N(aci - cpbdy -+ dy))=h+k+1.

Ainsi, par I'égalité (3) du Lemme 7.1.7,

N(o)—1 si{a,b} Csupp(o;) pour un certain i
(5) N((ab)o) = N(o)+1 siae€supp(o;),besupp(o;),i#j
N(o)+1 si{a,b}Nsupp(c) =10

Proposition 7.1.8. Sio € S, s’écrit comme un produit de m transpositions pour m > 1,

alors N (o) et m ont la méme parité.
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Preuve. On écrit ¢ = 7 ---7, 7; une transposition pour tout i. On procede par
récurrence sur m. Si m = 1, alors o0 = (ab) pour 1 < a,b <n et N(o) =1 par définition
et le résultat est vérifié. Maintenant supposons que m > 2 et que le résultat est vrai pour
tout produit de moins de m transpositions. Alors N(1y - 7y) = N(m2+--Tm) £ 1, par
(5). Par ’hypothese de récurrence, N(12- - Ty,) €t m — 1 ont la méme parité. Ainsi on

trouve que N (o) et m ont aussi la méme parité comme énoncé. O

Ce résultat nous permet de poser la définition suivante:

Définition 7.1.9. Soit o € S,,.

1. On dit que o est paire si o s’écrit comme un produit d’un nombre pair de transpositions,
c’est-a-dire que N (o) est pair. On dit que o est impaire si o 8’écrit comme un produit
d’un nombre impair de transpositions, c’est-a-dire que N (o) est impair.

2. La signature de o, notée £(0), est égale & (—1)N(@) soit 1 si o est paire, —1 si o est

impaire.
On obtient donc
Proposition 7.1.10. L’application € : S, — ({1, —1},-) est un morphisme de groupes.

Preuve. Soit 0,7 € S,,. Sio et 7 sont les deux pairs ou les deux impairs alors (o) = &(7),

oT est une permutation paire et donc e(o7) = 1 = £(0)? = (0)e(7).
Si 'un des deux est pair et 'autre est impair, alors o7 est impair et e(o7) = —1 =
e(o)e(r). O

7.2. Applications multilinéaires.

Définition 7.2.1. Soient V et W des K-espaces vectoriels. Une application ¢ : V' x - X
V — W, du produit cartésien de m copies de V' dans W, est dite m-multilinéaire si pour

tout 1 <i<m,vy,...,vp,u€Vetre Kona

A(V1,y s Vie1, U+ MU Vi1, -, Um) = O(V1, -, Um) F AG(V1, oo Vi1, Uy Vi1, - o, Ur)-

Autrement dit, ¢ est K-linéaire par rapport a chaque coordonnée.
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Exemple 7.2.2 (produit scalaire usuel dans R?). L’application 3 : R? x R? — R définie
par B(u,v) = u-v = ugvy + ugve pour tout u = (uy,uz),v = (vi,v2) € R? est une

application 2-linéaire. Dans ce cas on dit plutot bilinéaire.

Remarque 7.2.3. On vérifie (exercice) que si ¢ est une application m-linéaire de V' dans

W, alors pour tout 1 < ¢ < m et pour tout v; € V, on a
gZS(Ul,UQ, PN ,vi_l,O,le, ‘e ,’Um) =0.

On peut identifier le produit cartésien K™ x --- x K™ de n copies de K™ avec ’ensemble
M, (K). Un élément (v1,...,v,) € K™ x --- x K™ est associé avec la matrice dont la

i-eme ligne est le vecteur v;. On a donc la définition suivante.

Définition 7.2.4. Une application D : M, (K) — K est dite n-linéaire (par rapport auz

lignes) si D est n-multilinéaire lorsqu’on identifie M, (K) avec K™ x --- x K™ comme
Ay
Az

précédemment. Plus précisément, si A € M, (K) est écrit A= | | avec A; la i-eme
An

ligne de A, D est n-linéaire si pour tout A, on a

Ay Ay Ay
Ao As Ay
Ai* Aif Aif
D 1 _ D 1 D 1 7
Aina Aitr Aita
A7l A"l ATL

pour tout B; € K" et p € K.

Définition 7.2.5. On dit qu’'une application n-linéaire D : M,,(K) — K est alternée si

D(A) =0 a chaque fois que deux lignes de la matrice A sont égales.
74



Exemple 7.2.6. L’application D : My(K) — K définie par D = 2(ad — bc)

est 2-linéaire alternée.

Proposition 7.2.7. Soit D : M,,(K) — K une application n-linéaire alternée.

(a) On a D(T;;A) = —D(A) pour tout 1 <i < j<n.
(b) Si une ligne de A est nulle, alors D(A) = 0.

Preuyve. On rappelle que T;;A est la matrice obtenue en échangeant les lignes i et j de la
Ay
A

A+ A
matrice A. On considere la matrice C = ' 7|, comme il y a deux lignes égales,

AJ+A7

An

D(C) = 0. Mais on peut aussi développer en utilisant la multilinéarité:

A1 Al A1
A2 A2 A2
A+ A, A; A,
0=D =D +D
A+ A Aj+ A Aj+ A
A, A, A,



Et encore une fois :

Ay
Az

Aﬂ,

+D

Ay
Az

Ap

+D

Ay
Ao

A

+D

Ay
Az

An

Mais comme D est alternée, les deux termes du milieu sont égaux a 0 et on a que

Ay
As

An

Ay
A

An

Pour (b), on pose A; =0 et =0 comme dans la définition 7.2.1. On obtient que

Ay
Ay

A1
04+0-B;
Ait1

Ay
Ay

+0-D(
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par Remarque 7.2.3.

7.3. Le déterminant.

Définition 7.3.1. Soit A € M, (K), A = (a;;). Le déterminant de A, noté det(A), est

I’élément de K défini par

det(A) = Z £(0)A15(1)020(2) ** * Cno(n)s

g€Sy

oue: S, = {1,—1} est la signature de 0. On écrit également

ail

a1

det(A) = |A]

Gnl

Exemples 7.3.2. Voir les notes du cours pour les cas particuliers de n = 1, n = 2 et
n = 3 et la regle de Sarrus qui peut étre utilisée pour le cas n = 3. Attention, si vous

utilisez cette regle pour calculer det(A), il faut la citer.

Soit A € M, (K). On note A; la i-eme ligne de A, donc A =

Théoréme 7.3.3 (multilinéarité du déterminant). Le déterminant est une application

n-linéaire (linéaire par rapport a chaque ligne) ; c’est-a-dire, pour Aq, ..

7

Q1n

A2n

a/’ﬂ’ﬂ

.,An,Bi e K"



et \,pe K,

A1 Al Al
As Ao Ao
A4 A Aiq
det = det + 4 - det
Ay A A
A, A, A,

Preuve. On a

Ay
det | A; + uB | = Z e(0)a1o(1) Gim10(i—1)(Gio(s) + Mic(s)) -+ no(n)
oceS,
Ay,

Z 5(”)%;(1) C Qg (i) T Gno(n) T Z 5(0)a1a(1) T bw(i) ©Opg(n)
g€S, oceSy,

Ay Ay

g

Lemme 7.3.4 (Lemme fondamental). Le déterminant est une application n-linéaire al-

ternée. C’est-a-dire, si deux lignes de A sont égales, alors det(A) = 0.

Preuve. Soient 1 <14 < j < n. Supposons que A; = A;, c’est-a-dire a;, = a;, pour tout
k. Soit 7 = (ij) la transposition qui echange i et j et qui fixe tout autre élément de

{1,2...,n}. Soit H < S,, Pensemble des permutations paires dans S,,. On note que S,
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est 'union disjointe de H est H7. En effet, si p € S,, est impaire alors p7 = 0 € H et

donc p = o7 € H7. On calcule le déterminant de A:

det(A) = Z E(U)ala(l) T Qpo(n) = Z €<U)a1cr(1) *Ano(n) + Z al'y * Gpy(n)

oESy, ceH YEHT

- Z alo(l *Ono(n) + Z 6(0’7‘)&107(1) o Qigr (i) T Qjor(f) T GnoT(n)

oc€H ocH
- Z ala ©Ono(n) + Z ala(l) Qig(5) """ Ajo(i) " Ano(n)-
oc€EH ocH

Mais comme A; = A; par hypothese, on a a;y(j) = @jo(j) €t @@y = Qig(i), donc les deux

sommes s’annulent et on obtient 0. O

Proposition 7.3.5 (permutation de lignes). Soit D : M,(K) — K une application

Ay
n-linéaire alternée. A= | * | € M, (K) et o € S,,. Alors
An
A1) Ay
D : =¢(o)-D
Ao’(n) Ap

Preuve. On écrit o comme produit de k& > 0 transpositions et on procede par récurrence
sur k. Si k = 0, alors ¢ = id et le résultat est vérifié. Si k = 1, alors ¢ = 7 est une
transposition, donc (1) = —1 et la Proposition 7.2.7(a) donne le résultat. Supposons

maintenant que k > 1 et que le résultat est vérifié pour un produit de k£ —1 transpositions.

Onaoc=7y - Tp =Yk, 00Uy =Ty " . On a alors
Ag(n) Ayr1) Az
Ao 2 A Tr (2 AT, 2
.() -D "/.k() —e(7)-D ,?() 7
Ag(n) Ayri(n) Arn)
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par 'hypothese de récurrence. Et par la Proposition 7.2.7(a), ce dernier est égal a

Al Al Al Al
A2 A2 A2 A2
—e(y)- D . = e(y)e(mk) - D . =e(ym)D . =¢(o)D . )
car € est un homomorphisme de groupes. O

Proposition 7.3.6. Soit D : M, (K) — K une application n-linéaire alternée. Pour

tout A€ Mp(K), A, e K", et \€ K on a

Ay
Ay
(a) D | aa, | =20
An
An
Ay
Ay
(b) pourr#i, D| \A, + A; | =D
An

An

Preuve. 1’énoncé (a) est un cas particulier de la linéarité & la i-eme ligne et de la Remar-

que 7.2.3. Pour (b), on développe en utilisant la linéarité :

Ay
Aq
A, Ay Ay
DIXA, +A; |=AD| : |+D| : [=D] : |,
A, A, A,
An
An



ol le premier terme de la somme vaut 0 car deux lignes sont égales. g

Théoréme 7.3.7 (déterminant d’une matrice triangulaire). Si A = (a;;) est triangulaire
supérieure, c’est-d-dire, a;; = 0 pour tout ¢ > j, alors det(A) = ai11a22 - - - ann (€galement

vrai pour les matrices triangulaires inférieures).

Preuve. On adet(A) =) g €(0)a15(1)* Ano(n)- On montre que tous les termes de la
somme sont nuls sauf le terme a1 - - - Gpy, o o = id.

Supposons donc que a,(1) * * * Ang(n) 7 0 pour un o € Sy,. Alors
(6) ajo(j) 7 0 pour tout j.
Comme dans une matrice triangulaire supérieure a;; = 0 pour tout k¥ < j, on a
(7) o(j) > j pour tout j.

En particulier o(n) = n. Donc o permute ’ensemble {1,2,...,n—1} et par (7), c(n—1) =
n — 1. Par récurrence sur k, on montre que o(n — k) = n — k pour tout k > 0, ce qui
implique o (%) = @ pour tout ¢, et on déduit que o = id. Donc det(A4) = e(id)aiy - - - app =

(11022 " * * Q.- O

Proposition 7.3.8. Pour tout \€ K, 1 <r#s<mn, ona

(a) det(l,) = 1.
(b) det(T,s) = —1.
(c¢) det(D,(X)) = A.
(d) det(L,s(N\)) = 1.

Preuve. C’est une conséquence des résultats 7.3.7, 7.3.4, 7.2.7 et 7.3.6. g
7.4. Unicité du déterminant.

Théoréme 7.4.1. Soit D : M, (K) — K une application n-linéaire alternée. Alors il

existe d € K tel que D(A) = d - det(A) pour tout A € My (K). De plus d = D(1,,).
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Ay e1
Preuve. Soit A= : et I, = | : | oue; est le i-eme vecteur de la base canonique

An en
de K". Ona A; = 377, ajje;. On calcule D(A), utilisant la n-linéarité de D:

n €5,
> ii=1015,€j, . S e e
. . . j2=19242%2 |
D(A)*D . *Zalle ) = ...
Jji=1 :
n
Zjnzl Anj, Cjn n
Zjn:1 Anjn Cjn

ej’VL
€
Comme D est alternée, si j = jealors D | : | = 0. Donc les seuls termes non nuls de
€in
la somme sont ceux avec {j1,...,jn} = {1,...,n}. En plus, les n-uplets (j1,...,jn) avec

coordonnées distinctes forment un ensemble complet et sans répétition des permutations

€5(1)
de I'ensemble {1,...,n}. La somme est donc égale & Y g a15(1) " Gno(n) D
€o(n)
€1
Ce dernier est égal a > g @15(1) " Ano(n) - €(0) - D | : |, par la Proposition 7.3.5.
en
Donc, on trouve D(A) = det(A) - D(I,,) comme énoncé. O

7.5. Multiplicativité du déterminant.

Théoréme 7.5.1. Soient A,B € M, (K). Alors
(a) det(AB) = det(A)det(B), et

(b) si A est inversible, alors det(A) # 0 et det(A™1) = (det(A))~1.
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Preuve. Fixons B € M, (K). On définit une application Dp : M,,(K) — K par Dp(A) =

det(AB). On vérifie d’abord que Dp est une application n-linéaire alternée. Soient A € K
et Ce K". Ona

Al Al A]_B

Dp | Ai+XC | =det| [ A;+AC |- B[ =det | (4;+XC)B

AB A1 B Ay

=det | A;B | +Adet | ¢B | =Dp(A)+ADp | C

A, B A,B Ap,

Donc Dpg est n-linéaire.

Aussi soit A € M, (K) telle que A, = A; pour 1 <r <s<n.Ona
A B

A,.B
Dp(A) = det(AB) = det =0

AsB

A,B

car A, B = A;B. On a donc que Dp est aussi alternée. Par le théoréme de 1'unicité
du déterminant, on a Dp(A) = Dp(I,)det(A) pour tout A € M, (K). Donc det(AB) =
Dgp(A) = Dp(I,)det(A) = det(B)det(A) = det(A)det(B).

Pour (2): on suppose que A soit inversible avec inverse A=, On a 1 = det(I,) =
det(AA™Y) = det(A)det(A™1), par la partie (1). Cette égalité montre que det(A) # 0.

Aussi, la méme égalité montre que det(A~1) = (det(A4))~L. O
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Proposition 7.5.2 (Critere d’inversibilité). Soit A € M, (K). Alors A est inversible si

et seulement si det(A) # 0.

Preuve. La direction = est le théoreme précédent.
Supposons maintenant que det(A) # 0. Soit R une matrice échelonnée réduite ligne
équivalente & A. Donc R est une matrice triangulaire supérieure de déterminant r11 - - - rpy,.
Aussi il existe des matrices élémentaires E, ..., E; telles que R = E;--- E;A. Par la
multiplicativité du déterminant on a det(R) = det(E} - - - Ey)det(A). Comme Ej - - - E} est
inversible, son déterminant est non nul et par hypotheése det(A) # 0. D’ou det(R) # 0.
Donc R possede n pivots, et par conséquent est de rang n, de méme que A. Par le

Théoreme 6.5.1, A est inversible. a

Corollaire 7.5.3. (a) L’application det : GL,(K) — K \ {0} est un morphisme de
groupes, ot on munit K \ {0} de la loi de composition de multiplication.

(b) Soient A,B € M, (K) des matrices semblables. Alors det(A) = det(B).

Preuve. Voir notes de cours. O

Ce dernier résultat nous permet de définir le déterminant d’une application linéaire

d’un K-espace vectoriel de dimension finie.

Définition 7.5.4. (1) Soit V un K-espace vectoriel de dimension n et ¢ € L(V,V). On
définit det(¢) comme suit: on choisit une base C de V et on pose det(¢) = det((4)%).
Le corollaire précédent montre que la valeur est indépendante du choix de la base C.

(2) Le noyau de Iapplication det : GL,, (K) — K \ {0} s’appelle le groupe linéaire spécial
et est noté SL,, (K) := ker(det) = {A € GL,(K) | det(A) = 1}.

7.6. La transposée.
Théoréme 7.6.1. Soit A € M, (K). Alors det(A') = det(A).

Preuve. Nous avons

det(At) = Z E(O’)(At)la(l) e (At),w(n) = Z E(O’)ag(l)l © Go(n)n-

oc€ESy oesS,
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Or o(i) = j si et seulement si 07 '(j) = i. Donc ay(;); = ajo-1(;)- Aussi la somme sur
o € S, est la méme que la somme sur 0! € S,,. (L’application o + o~ est une bijection
de S,, — S,). Finalement, on note que (c™1) = (o).

Donc on a que

det(At) = Z 5(0)(11071(1) T Qpe—1(n)

oES,
= Z 6(O-_l)a141*1(1) o Qpe—1(n) = Z 6(7’)0,17(1) ©Qpr(n) = det(A)
oSy TESH

O

Corollaire 7.6.2. Toutes les propri¢tés des déterminants relatives aux lignes sont aussi

valables pour les colonnes.

(a) Le déterminant est linéaire par rapport & chaque colonne.

(b) Si une colonne est nulle, alors det(A) = 0.

(c) Si deuz colonnes sont égales, alors det(A) = 0.

(d) Si on effectue une permutation o des colonnes de A, le déterminant de la matrice
résultante est égale a £(0) - det(A).

(e) Si on multiplie une colonne de A par A\ € K, le déterminant est multiplié par \.

(f) Si on additionne & une colonne un multiple scalaire d’une autre colonne, le déterminant

ne change pas.
7.7. Cofacteurs.

Définition 7.7.1. Soit A € M,,(K). On suppose n > 2.

(a) On pose A(r|s) la matrice dans M,,_1(K) obtenue & partir de A en supprimant la
r-eme ligne de A et la s-éme colonne de A.
(b) det(A(r|s)) s’appelle un mineur de A d’ordre n — 1.

(c) (—=1)"*sdet(A(r|s)) s’appelle le cofacteur du coefficient A,.

Théoréme 7.7.2 (développement par rapport & la r-eme ligne de A). On fizer, 1 <r <

n.
n

det(A) = ZATj(—lwdet(A(rlj)).
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Preuve. Par définition det(A) = > g €(0)A1o01)  Aro(r)  ** Ano(n)- On réecrit la

somine :

det(A> = Arl Z E(G)Ala(l) to Arfl,o(rfl)ArJrl,a('H»l) o Ana(n)
oc€Sy,o(r)=1

+Ar2 Z g(J)Ala'(l) T Ar—l,a(r—l)Ar+l,a'(r+1) T Ana(n)
o€Sy,o(r)=2

+Arn Z 6(0’)A10—(1) t Ar—l,n(r—l)Ar+1,a(r+1) T Am7(n)
oc€Sp,o(r)=n

n

= Z Arj( Z E(U)Ala‘(l) T Ar—l,o‘(r—l)Ar—Q—l,a(r—i-l) T Ana‘(n))'

j=1 0ESn,o(r)=j
On pose
Ay = Z (@) Aoy Arcto(r—1)Ari1,0(r41)  Ano(n)-
c€Sy,o(r)=j

Il faut montrer que

Al = (=1)"Hdet(A(r[5)).

)

Casl.r=j5=1.

Soit H < S, un sous-groupe tel que H = {0 € S,, | o(1) = 1}. Alors on identifie
H naturellement avec le groupe des permutations de 'ensemble {2,...,n}, ce qui est
également identifié avec le groupe S,,_1.

Dans ce cas nous avons

Alll = Z E(O—)AQU(Q) T Ano(n) = Z E(U)AQU(Q) c Ana(n)

c€Sy,0(1)=1 occ€H
=detA(1]1) = (=1)"det A(1]1),
comme affirmé.

Cas 2. r et j quelconque.
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Soit B la matrice obtenue & partir de A en remplagant la r-éme ligne par la ligne

(0---010 --- 0), oule coefficient 1 est & la j-éme place. Donc précisément nous avons

Age sik#r
Bre=140 sik=rl#7-

1 sik=rl=j

Si on calcule B;j les coefficients de la ligne r n’apparaissent pas dans la somme et donc

(®) Bl = AL,
Aussi
9) B(r|j) = A(rlj),

car on supprime la ligne qui est différente.

Maintenant, det(B) = Y_;_, BBl =1 B.., car B, = 0si k # j. Donc

Ty
(10) Bl, = det(B).

Soit maintenant C' la matrice obtenue a partir de B en permutant cycliquement les r
premieres lignes (i.e. on permute les lignes de B selon le r-cycle (1 2 -+ r)) et ensuite
cycliquement les j premieres colonnes (selon le j-cycle (12 --- j)).

On rappelle que e((12 - -+ 5)) = (—1)**1. Par conséquent, det(C) = (—=1)"+1(—1)/1det(B),

d’ou
(11) det(C) = (—1)"+det(B).

La r-éme ligne de B étant la premiere ligne de C' et la j-éme colonne de B étant la

premiere colonne de C, donc
(12) CQ1) = B(rly)

On calcule maintenant det(C') en développant par rapport a la premiere ligne: det(C) =

Sonoi CikCr = Cfq, car Cyy est 0 si k # 1. Et par le Cas 1, déja traité ci-dessus,
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C1y = det(C(1]1)). Donc nous avons
(13) det(C) = det(C(1]1)).

On peut maintenant conclure:

Ay = B,; = det(B) = (—1)""det(C) = (—1)"det(C(1[1))
= (=1)"det(B(r]5)) = (=1)"det(A(r|5)),

ol la premiere égalité suit de 1'égalité (8), la deuxieme de 1’égalité (10), la troisieme de
Pégalité (11), la quatritme de ’égalité (13), la cinquieme de ’égalité (12), et la derniére

de D’égalité (9). O

Théoréme 7.7.3 (développement par rapport & une colonne). On fize s tel que 1 < s <

n. Alors,

det(A4) = ZAZ»S(—DHSdet(A(us)).

Preuve. Par Théoreme 7.6.1, on a que

n n

det(4) = det(4%) = S 2(AN).y(~1) ™ Idet(A'(s1)) = 3 Azu(~1)"Hdet(A(j]s)

O

Définition 7.7.4. Soit A = (a;;) € M,(K), n > 2. La matrice des cofacteurs de A est

la matrice cof(A) formée des cofacteurs de la matrice A :

(cof(A))s; = (—1)"" det(A(i]5)).
Remarque 7.7.5. cof(A?) = (cof(A))?, car
(cof(A7))35 = (—1)™det(A1(ilf)) = (—1)"IdetA(jli) = (cof(4));:.
Théoréme 7.7.6 (La matrice des cofacteurs). Soit A = (a;;) € M,,(K), n > 2. Alors

A -cof(A)" = det(A)I, = cof(A)" - A.
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Preuve. D’abord on calcule les coefficients du produit A -cof(A)! qui apparaissent le long

de la diagonale du produit A - cof(A4):
(A-cof (A ZAM (cof (A ZA”C cof (A))ix = ZA,k 1) det(A(i|k)) = det(A),

par le Théoreme 7.7.2.
Maintenant, on calcule les autres coefficients (A - (cof A)*)xe pour k # £.
On définit une nouvelle matrice B comme suit:
On remplace la ¢-eme ligne de A par la k-eme ligne de A. De ce fait, det(B) = 0 et

B = (bU) avec b” = Q5 sit 7é { et bgj = ap; pour tout 1 < j <n.

Ay Ay
A Ay
En termes des lignes nous avons A = et B=| : |. Ainsi, nous avons aussi
Ay Ag
An Ay,

Pégalité B(¢|j) = A(¢|j) pour tout j.

Maintenant, on calcule det(B) en développant le long de la ¢-eme ligne:

0 = det(B Zbg 1) det(B(£]5)) Zak 1) det(A(4]5))

:Z (cof A)g Zakj cof (A)") e = (A - cof (A))") k.

Nous avons établi 'égalité matricielle A - (cof(A))! = det(A)-I,,. Pour (cof(A))¢- A, on
applique le cas précédent & A® et on utilise le fait montré en exercices que (AB)! = BtAY,

et le fait que det(A?) = det(A). O

Corollaire 7.7.7. Si A est inversible, A=! = detl(A) -cof(A)*.
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8. TRANSFORMATIONS LINEAIRES

On fixe un corps K.

8.1. Vecteurs propres et valeurs propres. Ici, on étudie 'anneau unitaire L(V, V) et
on rappelle que dans le cas d’'un K-espace vectoriel de dimension finie n, cet anneau est

isomorphe & ’anneau M, (K) (voir Corollaire 5.3.10).

Définition 8.1.1. Une transformation linéaire d’un K-espace vectoriel V est une ap-
plication K-linéaire de V' dans V, c’est-a-dire un élément de L(V,V). On dit aussi un

opérateur linéaire de V ou un endomorphisme de V.

Les matrices qui sont les plus faciles a “manipuler” algébriquement sont les matrices
diagonales. Ensuite, les matrices triangulaires partagent quelques propriétés utiles aussi
(par exemple, facilité pour le calcul du déterminant ou du rang). Soit A € M, (K) une
matrice diagonale ou triangulaire supérieure. Alors, par l'isomorphisme entre M, (K) et
L(K™,K™) associé au choix de la base canonique C' de K", il existe une unique ¢ €
LK™, K™) avec (¢)& = A. Comme A est triangulaire supérieure ou diagonale, on note

que ¢(e1) = ajier; cette observation motive la définition suivante.

Définition 8.1.2. Soit ¢ : V — V une transformation linéaire d’'un K-espace vectoriel

V.

(1) On dit que v € V est un vecteur propre de ¢ si
e v#0, et
e ¢(v) est un multiple scalaire de v.
Plus précisément, v est un vecteur propre de ¢ si v # 0, et qu’il existe A € K tel
que ¢(v) = Av.
(2) Le scalaire A s’appelle la valeur propre de ¢ associée au vecteur propre v.

(3) L’ensemble des valeurs propres de ¢ s’appelle le spectre de ¢.

On a la notion analogue pour les matrices A € M, (K).

Définition 8.1.3. Soit A € M, (K).
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ay
as

On dit qu'un vecteur colonne v = | € My, x1(K) est un vecteur propre pour A si

Qn,

v # 0, et qu’il existe A € K tel que Av = Av. On appelle X la valeur propre de A associée

au vecteur propre v.

Remarque 8.1.4. (1) Un vecteur propre est par définition non nul, mais la valeur
propre associée a un vecteur propre pourrait étre nulle.

(2) Si 0 est une valeur propre pour ¢ € L(V, V), alors un vecteur propre de valeur
propre 0 est un vecteur v € V, v # 0 tel que ¢(v) = 0. Donc v € ker(¢). On
déduit que 0 est une valeur propre de ¢ si et seulement si ¢ est non injective.

(3) Siw,w sont des vecteurs propres de ¢, les deux de valeur propre A, alors pour tout
u € K, le vecteur uv + w est soit égal a 0, soit un vecteur propre de ¢, de valeur

propre \. En effet, on a que ¢p(pv+w) = pp(v)+o(w) = p(Av)+Iw = A(pv+w).

0

Proposition 8.1.5. Soit A € M,,(K). Alors A est diagonale si et seulement sie; = | 1 |,

0
le vecteur colonne avec 1 a la i-éme coordonnée et 0 ailleurs, est un vecteur propre de A

pour tout 1 <1 < n.
Proof. Ce résultat découle directement du fait que Ae; est la i-éme colonne de A. O

8.2. Matrices et transformations diagonalisables et triangularisables. D’abord
rappelons que des matrices A, B € M, (K) sont semblables s’il existe P € GL, (K) telle

que B = P 1AP.

Définition 8.2.1. (1) On dit que A € M, (K) est diagonalisable si A est semblable

a une matrice diagonale.
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(2) On dit que A € M, (K) est triangularisable, ou triagonalisable, si A est semblable

a une matrice triangulaire.

Remarque 8.2.2. On note que chaque matrice triangulaire supérieure est semblable a
une matrice triangulaire inférieure, et de suite, que chaque matrice triangulaire inférieure
est semblable & une matrice triangulaire supérieure. En effet, si A est triangulaire
supérieure, on pose B la base ordonnée de K™, B = (e, €n—1,...,€1),00C = (ey,...,ey,)
est la base canonique de K™. On vérifie que pour P = (id)Z, on a que PAP™! est trian-

gulaire inférieure.
Maintenant, on considere les transformations linéaires.

Définition 8.2.3. Soit V un K-espace vectoriel de dimension finie et soit ¢ € L(V, V).

On dit que ¢ est diagonalisable s'il existe une base de V formée de vecteurs propres de ¢.

Théoréme 8.2.4. Soit ¢ : V — V une transformation linéaire d’un K-espace vectoriel
de dimension finie n. Soit B une base de V. Alors ¢ est diagonalisable si et seulement

si la matrice (¢)B est diagonalisable.

Proof. On suppose d’abord que ¢ est diagonalisable. Par définition, il existe une base F
de V formée de vecteurs propres pour ¢. Posons F' = (f1,..., fn), et soit A; la valeur
propre associée au vecteur propre f; pour chaque i. Comme ¢(f;) = A, f;, la i-éme colonne
de la matrice (¢) est le vecteur colonne avec \; & la i-éme coordonnée et 0 ailleurs. Donc,
(¢)L est une matrice diagonale (avec les valeurs propres A1, ..., A, le long de la diagonale).
Finalement, (¢)8 = Q71(¢)%Q, avec Q = (id)E, et donc (¢)5 est diagonalisable.

On suppose maintenant que (¢)5 est diagonalisable. Il existe donc P € GL,,(K) telle
que P~1(¢)BP est une matrice diagonale. Comme P est inversible, on a P = (id)2 pour
un certain choix de base E = (wq,...,w,) de V, et (¢)Z = (id)E(¢)B(id)E = P~ L(¢)EP
qui est par hypotheése une matrice diagonale, ce qui implique que ¢(w;) = A\w; pour un
certain \; € K. Donc, la base E est une base de V' formée de vecteurs propres de ¢ et ¢

est diagonalisable. O

Définition 8.2.5. Soient V' un K-espace vectoriel et ¢ € L(V, V).
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(1) Un sous-espace vectoriel W de V est dit stable par ¢ ou ¢-invariant si pour tout
w € W on a que ¢p(w) € W.

(2) On suppose maintenant que V est de dimension finie n. On dit que ¢ est trian-
gularisable (ou triagonalisable) s'il existe des sous-espaces vectoriels ¢-invariants
Wo,...,Wpde V,yavec {0} =Wy CcW C---CW,_1 CW, =V et dimW,; =1

pour tout 2

Proposition 8.2.6. Soit V un K-espace vectoriel de dimension finie n avec base V, et

soit ¢ € L(V,V). Alors ¢ est triagonalisable si et seulement si (¢)g est triangonalisable.

Proof. Tout d’abord, on suppose que (¢)5 est trigonalisable. Il existe donc P € GL,,(K)
telle que P~1(¢)BP est une matrice triangulaire supérieure (voir la Remarque 8.2.2).
Comme P est inversible, on a P = (id)E pour un certain choix de base E = (f1,..., fu)
de V, et (¢)% = (id)E(¢)B(id)E = P~1(¢)BP. Comme (¢)E est trianguliare supérieur,
o(fi) € Vect (f1,...,fi) pour tout i. On pose donc Wy = {0} et W; = Vect (f1,..., fi)
pour tout 1 < i < n, des sous-espaces ¢-invariants qui satisfont a la définition 8.2.5.
Maintenant, on suppose que ¢ est triagonalisable, c’est-a-dire qu'’il existe des sous-
espaces vectoriels ¢-invariants Uy, ...,U, avec dimU; = i, U; C U;41 pour tout i. On
choisit une base F = (uy,...,u) de V, avec (u1,...,u;) une base de U; pour tout
1 <i<n. Comme ¢(u;) € Vect (u1,...,u;) pour tout i, la matrice (¢)% est triangulaire

supérieure, et (¢)5 = (id)2(#)E(id)E est triagonalisable. O

8.3. Polyndéme caractéristique et valeurs propres. Dans ce paragraphe, on établira
une méthode pour “trouver” les valeurs propres, dans le cas des matrices ou bien des

transformations linéaires des espaces de dimension finie.

Théoréme 8.3.1 (Caractérisation de valeurs propres). Soit V un K-espace vectoriel et
¢ € L(V,V). Soit encore A € K. Alors \ est une valeur propre de ¢ si et seulement si

¢ — Aidy n’est pas inversible, et si et seulement si ker(¢ — Aidy ) # 0.

Proof. On montre les trois équivalences en méme temps :

A est une valeur propre de ¢ <= Jv € V,v # 0 telle que ¢(v) = v
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< (¢ — Ady)(v) =0 <= v € ker(¢ — Aidy ) <> ker(¢ — Aidy ) # {0}
<= ¢ — Aidy n’est pas inversible. O

Dans le cas d’un espace de dimension finie, le résultat précédent nous donne une

méthode “calculatoire” pour trouver les valeurs propres:

Proposition 8.3.2. Soient V' un K-espace vectoriel de dimension finie et ¢ € L(V,V),
et soit encore X € K. Firons une base B de V et posons A = (¢)B. Alors \ est une
valeur propre de A (ou de ¢) si et seulement si la matrice A — \I,, est non inversible, et

st et seulement si det(A — AI,,) = 0.
Ce dernier résultat motive la définition suivante:

Définition 8.3.3. Soit A € M,,(K). Soit ¢ une indéterminée. Alors det(A — tI,,) est un

polyndéme en t, appelé le polyndme caractéristique de A. On le dénote par c4(t). Donc
ca(t) = det(A — tI,).

Par la caractérisation des valeurs propres (Théoréme 8.3.1) et la Proposition 8.3.2,

nous déduisons:

Proposition 8.3.4. Soit A € M, (K) et A € K. Alors A est une valeur propre de A si

et seulement si A est une racine du polynéme caractéristique ca(t).

Quelques cas particuliers:

(1) Si A = (ai;) est une matrice triangulaire alors c4(t) = (a11—t)(ag2—1t) - - - (Gnn—1).
Par conséquent ses valeurs propres sont précisément les valeurs le long de sa

diagonale.

a b
(2) Soit A = € M(K). Alors

ca(t) = det =12 — (a+d)t + (ad — be) = t* — (Tr(A))t + det(A).
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La proposition suivante montre que les propriétés soulignées dans (2) ci-dessus se

généralisent.

Proposition 8.3.5. Soit A € M,,(K). Le polynéme caractéristique de A est un polynome
de degré n. De plus, le coefficient de t™ est (—1)", le coefficient de "~ est (—1)" = Tr(A),

et le terme constant est égal a det(A).

Proof. Posons A = (a;;), et on note I,, = I dans la suite. Alors
ca(t) = det(A—tI) = Y e(0)(A = tD)1501) - (A= tD)ng(n)-
o€Sn

Le terme constant d’un polynoéme est la valeur du polynome évalué en ¢t = 0, ce qui

donne

ca(0) = Z £(0)(a10(1) *** Ao (ny) = det(A).

ocEeS,

La plus haute puissance de t qu’on peut obtenir dans un produit de terme (A —
tl)h,(l) (A= tI)m(n) a lieu lorsque tous les facteurs ont un terme avec t, donc lorsque
o (i) = i pour tout i (comme I'indéterminée n’apparait que dans les coefficients diagonaux
de la matrice A—tI). Comme t apparitra dans chacun des facteurs (A —tI);;, on trouvera
un terme (—1)"t" et aucun terme de degré plus haut. Enfin, on trouve ¢"~! dans tous les
termes de la somme ol o(¢) # ¢ pour au plus une valeur de i. Mais la seule permutation
o € S, avec cette propriété est la permutation identité, et donc le terme t"~! aussi
n’apparaitra aussi que dans le terme de la somme (A —tI)11--- (A — tI)pp. Clest un
exercice de montrer que le coefficient de t"~! dans le polynoéme (ay; —t) -« (apn —t) est

égal & (—1)" M ayy + -+ + ann)- O

Grace au résultat suivant, on peut définir le polynéme caractéristique d’une transfor-

mation linéaire (d'un K-espace vectoriel de dimension finie).
Proposition 8.3.6. Deux matrices semblables ont le méme polynome caractéristique.
Proof. Soient A, B € M,,(K) et P € GL,,(K) telles que B= P~1AP. On a

cp(t) = det(B — tI,,) = det(P~'AP — tP~'I,P)
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=det(P~1(A — tI,)P) = det(P~1)det(A — t1,,)det(P) = ca(t).

Corollaire 8.3.7. Deux matrices semblables ont les mémes valeurs propres.

Corollaire 8.3.8. Pour A,B € M,,(K), si B est semblable & A alors Tr(B) =Tr(A) et
det(B) = det(A).

Définition 8.3.9. Soit V' un K-espace vectoriel de dimension finie et soit ¢ € L(V, V).

(1) Le polynome caractéristique de ¢ est le polyndme caractéristique c(t) on A =
(qb)g, pour B une base ordonnée quelconque de V.
(2) La trace de ¢, notée Tr(¢) est la trace de A.

(3) Le déterminant de ¢ est le déterminant de A.

8.4. Espaces propres, multiplicité géométrique,

multiplicité algébrique.

Définition 8.4.1. Soit o € L(V,V) et soit A € K une valeur propre de . L’espace

propre associé d A est le sous-espace vectoriel Exy = {v € V | a(v) = \v}.

On a que la

Ey = {0} U {vecteurs propres de « associés & A},

et Remarque 8.1.4(3) montre que E) est un sous-espace vectoriel de V.

De plus, Ey = Ker (o — X -idy). Si V est de dimension n, avec base B, et A = ()5,
alors E) est I'ensemble des vecteurs v € V tel que (v)p est une solution du systeme
(A—X-1,)X = 0. En particulier, dim F) = n —rang(A — A\[,,). On rappelle aussi que si
A est une valeur propre de «, alors A est une racine du polynéme caractéristique de « et
donc ¢, (t) se factorise: ¢, (t) = (t — A)™ f(t). En mettant en évidence autant de facteurs

(t — A) que possible, on peut supposer que f(A) # 0.

Définition 8.4.2. Soit V un K-espace vectoriel de dimension finie et soit A € K une

valeur propre de o € L(V, V).
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a) La multiplicité algébrique de A, notée mqiq(A), est la multiplicité de A comme racine
du polynéme caractéristique ¢, (t); c’est-a-dire, si co(t) = (=)™ f(t), avec f(A) # 0,
alors mg (X)) = m.

b) La multiplicité géométrique de X\, notée Myeom(A), est la dimension de I'espace propre

Ej.

Proposition 8.4.3. Soit V un K-espace vectoriel de dimension finie et A\ € K une valeur

propre de o € L(V, V). Alors Mgeom(A) < Maig(N).

Proof. Soit m = Mgeom(A) et soit (vi,...,v,) une base de Pespace propre E). On

compléte cette base en une base B de V., B = (v1,...,Vm, Um+1,---,VUn). Alors la matrice
D M

de ¢ par rapport & la base B est de la forme A = (a)B = ou D = A,
0 N

M € My (n—m)(K) et N € My, 1 (K). Par un exercice,

ca(t) =ca(t) =cpt)en(t) = (t — N)"en(t).
On déduit donc que mqiq(A) > m, comme affirmé. O
8.5. Diagonalisation.

Proposition 8.5.1. Soient V un K-espace vectoriel et A1, ..., . € K des valeurs propres
distinctes de o € L(V, V), et supposons que r > 2. Soient Ex,, ..., E\, les espaces propres

associés. Alors la somme Ey, + -+ + E\_ est directe.

Proof. On raisonne par récurrence sur 7. On suppose que r = 2. Alors la somme E), +E),

est directe si et seulement si Ex, N Ey, = {0}. Soit w € Ex, N E),. On a
a(w) = Mw = dw = (A1 — A2)w = 0.

Comme A # Ay on déduit que w =0 et Ey, N E), = {0}.
On suppose maintenant que r > 2 et que I’énoncé est vérifié pour une somme inférieur
a r espaces propres. Cette fois, on doit montrer que, pour tout 1 <14 < r,

E)\i N (E)\l +oee E>\i—1 + E)\i+1 +oee E/\r) = {0}
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Soit w € Ex, N (Ex, + -+ Ex,, + Exjyy +- -+ Ex). Onéerit w =3, ., ;. wj, ot
wj € Ey;. On a a(w) = A\jw, car w € Ey; et on a aussi
aw)= > alw)= Y Nu;
1<j<r,ji 1<j<r,j#i

On déduit que

NOODYD w) = > N,

1<y, j#i 1<j<r,j#1

Par I'hypothese de récurrence, la somme Ey, + .-+ Ey,_, + Ex,,, + -+ E), est
directe, et par I'unicité d’expression dans une somme directe, on a que \;w; = Ajw; pour
tout j # i, d’ou (A; — Aj)w; = 0. Comme A; # A\; pour tout j # ¢, on trouve que w; =0

pour tout j # i, ce qui montre que w = 0. O

Théoréme 8.5.2 (caractérisation des transformations linéaires diagonalisables). Soit V'
un K -espace vectoriel de dimension n, et soit o € L(V, V). Alors « est diagonalisable si

et seulement si les deux conditions suivantes sont satisfaites:

(1) ca(t) est scindé dans K[t], ¢’est-d-dire co(t) = (=1)" TT,_, (t — Xi)™, pour \; € K,

m; €N, m; > 1, et

(2) pour chaque valeur propre A de o, on @ Mgeom(A) = Maig(A).

Proof. On suppose d’abord que « est diagonalisable. Par définition, il existe une base F’
de V, formée de vecteurs propres de . Par conséquent, (a)g est une matrice diagonale.

Posons
dy

A= (a)f =
dn
Soit A1,..., A, les valeurs propres distinctes de a. On suppose que la base F' est ordonnée

comme suit:

fll7"'7fl7ﬂ17f217"'7f2mg7"'7f7”1)"'7f7‘mr,~7

ou f;; est un vecteur propre de valeur propre A; pour tout 1 < ¢ < r et par conséquent

les scalaires dy, . .., d, sont précisément les scalaires \; (répétés my fois), Ay (répétés mo
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fois), etc. Alors ¢ (t) = det(A — tI,) = (=1)™(t — A)™2(t — Xg)™2 -+ (t — A\.)™ . En
particulier, ca(t) est scindé. De plus, mqiq(Ai) = m; (rappelons que les \; sont distinctes)
et Mgeom (A) = dim Ey, > m; car fi1, ... fim, sont des vecteurs linéairements indépendants
dans Ej,. Par Proposition 8.4.3, Mgeom (Ai) < Maig(Ai) = m;. Les deux inégalités montre
que Mgeom (Ai) = multqg(A;), et ceci pour tout 3.

Supposons maintenant que les deux conditions (1) et (2) sont satisfaites, avec ¢, (t) =
(=)™ TTi_, (¢t = X;)™i. Sans perte de généralité on suppose que les \; sont distinctes. Par
la condition (2), dim E, = m; pour tout i. On fixe une base e;1,..., €y, de E),. Par

Proposition 8.5.1, le sous-espace vectoriel Ey, +---+ Ejy est une somme directe, et donc
T T
dim(Ey, +---+ Ey )= > dimEy, =Y m; = deg(ca(t)) = dim V.
i=1 1=1

On déduit que Ey, + -+ E5, = V. Comme E), = Vect(e;1,...,€im,), 'ensemble
B = {eij |1<i<r1<j<m;} est une famille génératrice de V', et donc de cardinal au
moins dimV =" m;. Comme B posséde au plus Y _;_, m; vecteurs, B est de cardinal
dim V et forme une base de V; c’est-a-dire B est une base de vecteurs propres pour « et

« est diagonalisable. O

Corollaire 8.5.3. Soient V un K-espace vectoriel de dimension finie n et « € L(V, V).

Si co(t) posséde n valeurs propres distinctes, alors o est diagonalisable.

Proof. Par hypothese, cq(t) = (11 —t)- -+ (1, — t) avec comme scalaires jiy, ..., iy, dis-
tincts, et par conséquent, ca(t) est scindé. Pour tout 1 < ¢ < n, on a mge(A;) = 1.
Comme 1 < Mgeom (Ai) < Maig(A;) (Prop. 8.4.3), on a Myeom (Ai) = Maig (i) pour tout i.

Par le théoreme précédent, « est diagonalisable. O

Application: calcul des puissances d’une matrice diagonalisable

Soit A € M, (K). Si A est diagonalisable, alors il existe P € GL,,(K) telle que

di 0 ... 0
papt_p_ |0 A e 0
0 0 dy,
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Alors A= P7'DP, et donc pour k € N,

i 0 0
0 d& ... 0

Ak = (P~'DP)(P'DP)---(P7'DP) = p-lpkp — p-! ' '2 | r
0 O dr

8.6. Triangularisation.

Théoréme 8.6.1 (de triangularisation). Soit V' un K-espace vectoriel de dimension finie
n et soit ¢ € L(V,V). Alors ¢ est triangularisable si et seulement si cy(t) est scindé dans

Klt).

Proof. Supposons d’abord que ¢ est triangularisable. Par Proposition 8.2.6, il existe une

base B de V telle que (¢)5 soit une matrice triangulaire (supérieure), disons

d1 * *

O dg *
A= (95 =

0 0 d,

Alors cy(t) = ca(t) = det(A — tI,). Comme A — tI,, est une matrice triangulaire, son
déterminant est le produit des coefficients le long de la diagonale; on trouve cy(t) =
(dv —t)---(dn —t), ce qui montre que cg4(t) est scindé.

Maintenant, on procede par récurrence sur n pour montrer que toute transformation
linéaire d’'un K-espace vectoriel de dimension finie dont le polynéme caractéristique est
scindé est triangonalisable. Si n = 1, toute ¢ € L(V,V) est triangonalisable; prenons
Wy = {0} et Wi = V dans la Definition 8.2.5. On suppose maintenant que n > 1 et
que le résultat est vrai pour toute transformation linéaire d’'un K-espace vectoriel de
dimension inférieure a n. Par hypothese, c4(t) est scindé. En particulier, ¢ possede
une valeur propre A € K. Soit w € V un vecteur propre de valeur propre A. Posons

Uy = Vect (w), un sous-espace ¢-invariant de dimension 1. Fixons une base B de V avec
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B = (w,wa,...,w,) et posons A = (¢)B. Alors

A a2 - aip
0 ax -+ a2,
A =
0 an2 e Qnn
Q22 A23 -+ A2p
L ) , asz2 asz - A3n ,
Soit A’ € My_1,5n—1(K) lamatrice A’ = . Posons W' = Vect (ws, ...
Gn2 an3 T Qnn
un K-espace vectoriel de dimension n — 1 avec base B’ = (wa,...,w,). On définit

e LW, W') par ()8, = A’. On note que pour tout u € W', ¢(u) — a(u) € Vect (w)
(il suffit de vérifier sur les vecteurs de la base B’.) En utilisant le développement par

rapport a la premiere colonne, on trouve que
co(t) = det(A —tI,) = (A —t)det(A' — tI,_1) = (A — t)ca(t).

Comme c4(t) est scindé, le polynéme caractéristique de a est aussi scindé. Par 'hypothese
de récurrence, « est triagonalisable. Soit (fs, ..., f,) une base de W’ telle que Vect (fa, ... fi)
est a-invariant pour tout 4. (Voir la preuve de la Proposition 8.2.6.) Enfin, posons U; =
Vect (w, fa, ..., fi) pour 2 < i < n. On montre que {0} =Uy C Uy CUz---C U, =V
satisfait aux conditions de la Définition 8.2.5. Par construction, dim U; = i. Aussi, pour
tout i > 2, ¢(f;) — a(f;) € Vect (w). Comme Vect (fa, ..., fj) est a-invariant, on trouve
que ¢(f;) € U; pour tout 2 <4 < j, ce qui donne l'invariance par ¢ de chaque sous-espace

vectoriel Uj, et de suite la triangonalisabilité de ¢. O

Par le théoreme fondamental de ’algebre, chaque polynéme p(t) € C[t] est scindé. Le

théoreme précédent implique alors :

Corollaire 8.6.2. Toute transformation linéaire d’un C-espace vectoriel de dimension

finie est triangularisable.
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Proposition 8.6.3 (sur la trace et le déterminant). Soit V un K-espace vectoriel de di-
mension n et soit ¢ € LV, V). Supposons que cy(t) est scindé dans K[t]. Soit M,..., A\,
les racines de cy(t) (avec répétition selon leur multiplicité). Alors Tr(¢) = M +---+ A,
et det(p) = A1+ Ap.

Proof. Parle Théoreme de triangularisation, ¢ est triangonalisable. Par Proposition 8.2.6,

dy - *
0o . *

il existe une base B de V telle que (¢)8 = A = . On trouve
0o - d,

cp(t) =ca(t) =(d1 —t)---(dp —t) = (M1 —t)--- — (Ay — t). Donc, quitte & renuméroter,

on peut supposer que d; = \; pour tout i. Enfin, Tr(¢) = Tr(A4) = Z?:l d; = Z;«;l A; et
det(¢) =det(A) =dy---dp =1~ M. -
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