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The following article presents a general outline of the genesis of the elementary concepts 
of vector space theory. It presents the main works that contributed to the development of 
these basic elements and analyzes how they developed and how they influenced each other. 
The study of systems of linear equations and the search for an intrinsic geometric analysis 
were the two main sources which gave rise to the theory of linearity. The fact of going beyond 
the third dimension in geometry in the middle of the 19th century, as well as the dialectical 
development between algebra and geometry from the creation of analytical geometry on, 
brought about the development of an initial unification of linear questions around the concept 
of determinant. This framework was generalized to the countably infinite dimension following 
work on functional analysis. Axiomatization, which was carried out at the end of the 19th 
century, although only really put to use after 1920, is a wider process which is part of the 
general development of mathematics in the beginning of the 20th century. I will analyze how 
this phenomenon came into existence and how it finally established its influence. © 1995 
Academic Press, Inc. 

L'article qui suit, pr6sente une vue g6n6rale de la gen~se des concepts 616mentaires de la 
th6orie des espaces vectoriels. II pr6sente les principaux travaux qui ont 0euvr6 dans ce sens 
en analysant leurs interactions et les grandes lignes de d6veloppement. L'6tude des syst~mes 
d'6quations lin6aires et la recherche d'un calcul g6om6trique intrins~que sont les deux princi- 
pales sources de constitution d'une th6orie de la lin6arit6. Le d6passement de la dimension 
3 en g6om6trie au milieu du XIX~me si~cle, ainsi qu'un d6veloppement dialectique entre 
alg~bre et g6om6trie depuis la cr6ation de la g6om6trie analytique ont amen6 la constitution 
d'une premiere unification des questions lin6aires autour de la notion de d6terminant. Ce 
cadre rut g6n6ralis6 A la dimension infinie d6nombrable lors de travaux d'analyse fonctionnelle. 
L'axiomatisation r6alis6e ~t la fin du XIX~me si~cle, mais vraiement utilis6e seulement apr~s 
1920, est un processus plus large qui s'inscrit dans un d6veloppement g6n6ral des math6ma- 
tiques au d6but du XX~me si~cle. J'analyserai comment ce ph6nom~ne a pu na~tre et comment 
il a fini par s'imposer. © 1995 Academic Press, Inc. 

El articulo que sigue presenta una visi6n general sobre la g6nesis de los conceptos elemen- 
tales de la teorfa de espacios vectoriales. Aqui se presentan los principales trabajos que se 
han desarrollado en este sentido, analizando sus interacciones y las grandes lineas de desarrollo. 
E1 estudio de sistemas de ecuaci6n linear y la investigaci6n de un cfilculo geom6trico intrfnseco 
son las dos principales fuentes de constituci6n de una teorfa de la lfnearidad. La superaci6n 
de la dimensi6n 3 en geometria, a mediados del siglo XIX, asi como el desarrollo dialectico 
entre el algebra y la geometrfa, despu6s de la creaci6n de la geometrfa analftica, han llevado 
a la constituci6n de una primera unificaci6n des los aspectos lineares alrededor de la notion 
de determinante. Este cuadro fue generalizado a la dimensi6n infinita enumerable con los 
trabajos de analisis funcional. La axiomatisaci6n realizada a fines del siglo XX, pero realmente 
utilisada despu6s de 1920, es un proceso mLs largo que se inscribe en un desarroUo general 
de la matemAtica a comienzos del siglo XX. Yo analizare como ese fen6meno pudo nacer y 
como 61 a terminado por imponerse. © 1995 Academic Press, Inc. 
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I N T R O D U C T I O N  

The axiomatic theory of vector space is a recent achievement in mathematics. 
Giuseppe Peano gave the first axiomatic definition of a vector space in 1888 [76, 
141-152], but the theory was not actually developed before 1920. From the thirties, 
this theory rapidly became a f rame- -a lmos t  a language-- in  use in many branches 
of mathematics as well as in various sciences. Not only did it serve as a basis for 
new discoveries, but it also helped to renew proofs or methods in already well- 
established areas of mathematics. In this sense, vector space theory is essentially a 
unifying and generalizing theory, as it gave more cohesion to mathematics as well 
as leading to new discoveries. 

My goal in this paper is to recall the main aspects of the evolution of the concept 
of linearity up to its final stage in vector space theory. I focus my research on 
those elementary concepts, which appeared to be essential: linear combination, 
independence-dependence ,  rank-dimension,  linear transformation [29]. I show 
how these different concepts have been developed in various fields of mathematics 
(although I concentrate on geometry and linear equations), and I try to point out 
the different stages in the process of unification and theorization of linear problems. 

This work could have taken as its starting point ancient civilizations, all of  which 
developed ad hoc techniques for solving linear equations. Nevertheless, until the 
middle of the 18th century, it can be said that, apart from the improvement  of 
techniques to solve systems of linear equations and the development of symbolic 
algebra after Franqois Vi6te and Ren6 Descartes, nothing substantial occurred with 
regard to linear algebra. 

L I N E A R  EQUATIONS:  B U I L D I N G  T H E  FIRST CONCEPTS 

The year 1750 is an important date for our subject, as it is the date of publication 
of two crucial works in the history of the vector space concept. The first is the 
famous treatise, Introduction d l" analyse des courbes alg~briques, by Gabriel Cramer, 
in which he set up the frame for the theory of determinants [24]. 1 The second is 
entitled Sur une contradiction apparente dans la doctrine des lignes courbes and was 
written by Leonhard Euler  [34]. It concerns Cramer 's  paradox, which is related to 
algebraic curves. Two propositions were thought to be true, although only partially 
proven, at the beginning of the 18th century [34, 220-221]: 

(1) Two distinct algebraic curves of order  m and n have mn points in common. 
It  was known that some could be multiple, complex, or infinite, but mathematicians 
also knew of examples for which these points were all simple and real. 

(2) n(n + 3)/2 points are necessary and sufficient to determine a curve of 
order  n. 

1 The name "determinant" was introduced by Cauchy in [17]. In fact, in 1693, Gottfried Wilhelm 
Leibniz, in a letter to the Marquis de l'Hospital [67, 2:238-240] (for an English translation, see [88, 
267-269]), had given the first notation with double index of a system of linear equations and a rule to 
calculate the determinant. This letter was only published for the first time in 1850, so Cramer's text is 
usually referred to as the starting point of the theory of determinants. 
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The paradox appears for n more  than two because then n(n + 3)/2 - n 2, so it 
seems that two algebraic curves may have more points in common than is sufficient 
to determine each of them. Colin MacLaurin, in 1720, was one of the first to identify 
this paradox, and Cramer reformulated it in 1750 in the treatise quoted above. Also 
in 1750, Euler  identified the nature of the problem. In his work, after a close analysis 
of the situation, Euler  explained that in some cases Proposition (2) might not  be 
true, as n equations might not  be sufficient to determine n values. He  gave some 
examples to show that one equation might be comprised (comprise in French) in 
one or several others. This text is quite unusual for its time, as mathematicians 
then talked about  linear equations only in order  to develop methods for solving 
them. Euler 's  approach is more qualitative, and his text is one of the first in which 
the question of the dependence of linear equations is raised and pointed out, 
although the issue of the solution is still important,  and marks a difference compared 
to the modern  definition of linear dependence. Indeed, he starts with the case of 
two equations and gives the example "3x - 2y = 5 and 4y = 6x - 10." He says 
" I t  is not  possible to determine the two unknowns x and y, as while eliminating x, 
the other disappears and an identical equation remains, of which nothing can be 
deduced. The reason for such an incident is at first quite obvious, as the second 
equation can be changed into 6x - 4y = 10, which, being nothing but the double 
of the first 3x - 2y = 5, does not  differ from it at all" [34, 226]. 

No one can doubt  that something so "obvious"  could not  have been noticed by 
any mathematician of Euler 's  time, but  one equation being the double of the other  
is not  sufficient in itself to assert that one unknown is not determined; Euler  had 
to solve the system by elimination and substitution in order  to give a convincing 
proof  and to point out the actual "incident."  

For  three equations, he gave an example with two similar equations, and another  
example in which one equation is the double of the sum of the two others. In these 
two cases, there is no trial for solving the equations. The conclusion is: "Thus,  when 
one says that to determine three unknowns, it is sufficient to have three equations, 
the restriction needs to be added that these three equations are so different that 
none is already comprised in the others"  [34, 226]. 

For  four equations, Euler  remarked that, in some cases, two unknowns may not 
be determined, and he provided the following example: 

5 x + 7 y - 4 z  + 3 v - 2 4  = 0 ,  

2 x -  3y + 5z - 6 v -  20 = 0, 

x +  1 3 y -  14z + 15v + 1 6 = 0 ,  

3 x +  1 0 y - 9 z  + 9 v - 4 = 0 ,  

they are only worth two, as after extract ing from the third the value of 

x = - 1 3 y  + 14z - 15v - 16, 

and after its substi tution in the second, one gets: 

33z - 3v - 52 - 2 3 z  + 33v + 212 
Y 29 and x 29 ' 
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the substi tut ion of these two values of  x and y in the  first and four th  equat ions leads to identical 
equations,  therefore the  quanti t ies z and v will remain undetermined.  [34, 227] 

Here again the proof turns on eliminations and substitutions, and Euler does not 
mention any linear relations between the equations, although they are quite obvious 
( ( 1 )  - (2) = (4) and (1) - 2 x (2) = (3), for instance). 

After these examples, he concluded with a general statement: "When one says 
that to determine n unknown quantities, it is sufficient to have n equations giving 
their mutual relations, the restriction must be added that they are all different or 
that none is confined [enferm6e] in the others" [34, 228]. The terms "comprised" 
or "confined" are not clearly defined. In a modem context, they would point out 
a linear relation between the equations, but this is not exactly the meaning given 
by Euler. In his approach, these terms refer to an "incident" in the final process 
of elimination and substitution that results in one or several unknowns remaining 
undetermined. Of course, he notes, although not systematically, the linear relations 
between the equations, but his proofs never rely on this fact. So in the nature of 
this definition there is nothing a priori linear. This is why I propose to say that 
Euler introduced the notion of inclusive dependence rather than linear dependence. 
Of course, the two notions coincide when applied to linear equations, and the 
distinction may seem superfluous, but inclusive dependence is embedded in the 
context of equations and cannot be transferred into other linear situations (like n- 
tuples). We will see that this had an influence on the development of linear algebra 
over the next hundred years. 

On the other hand, Euler's definition is very close to intuition and suited his 
purpose. When he treated the case n = 4 (cf. the quotation above), he developed 
arguments in which one can recognize an empirical intuition of the notion of rank. 
Moreover, at the end of his text, Euler developed similar considerations in relation 
to Cramer's paradox: 

W h e n  two lines of  fourth order meet  in 16 points, as 14 points, when they lead to different 
equations,  are sufficient to determine one line of  this order, these 16 points will always be 
such that  three or more  equat ions are already comprised in the others. In this way, these 16 
points  do not  determine more  than if there  were 13 or 12 or even less points  and in order  to 
determine the curve entirely, one mus t  add to these 16 points  one or two others  . . . .  [34, 223] 

This kind of reasoning on equations is based on intuition and uses little theory. 
Yet it was to remain an isolated approach. Indeed, after Cramer's work, the theory 
of determinants became a very prosperous branch of mathematical activity [74]. 
As a consequence, the study of linear equations became a part of this new theory 
and Euler's ideas did not immediately generate further investigations. In fact, for 
nearly a century, the questions related to undetermined and inconsistent systems 
of linear equations were neglected, whereas it is only through these questions that 
one can approach the notions of dependence and rank. From around 1840 to 1879, 
within the theory of determinants, the concepts of rank took shape. In the context 
of linear equations, rank is an invariant which determines the size of the set of 
solutions (minimal number of generators/maximal number of independent solu- 
tions) and, by a process of duality, the number of relations of dependence (minimal 
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number  of equations describing the set of solutions/maximal number  of independent  
equations). To create the concept of rank containing these different aspects, mathe- 
maticians had to overcome several obstacles and change their point of view on 
certain elementary notions. I analyzed this process in detail in [30]. I give just the 
main outlines here. 

One can list three main sources of obstacles and difficulties: 

(1) the recognition of the invariance which was, if not unseen, at least assumed 
without necessity of proof, 

(2) the possibility of the same definition of dependence between equations 
and n-tuples, and 

(3) the anticipation of the concept of duality and the consideration of all the 
systems of equations which have the same set of solutions. 

Of course, these three points are not independent,  and the progress relative to 
each of them influenced the progress of the other two. The concept of inclusive 
dependence,  as I pointed out in Euler 's  work, remained but was also rapidly con- 
nected to the evanescence of the main determinant of a square system of linear 
equations. Moreover,  the notion of minor allowed a determination of the "size" 
of the set of solutions in relation to the maximal number of independent  equations. 
Indeed, the maximal order  r of nonevanescent minors in a system of p linear 
equations in n unknowns gives the number  n - r  of arbitrary unknowns to be chosen 
to describe the set of solutions of a consistent system and represents the maximal 
number of independent  equations in the system. Such ideas became well known 
by the middle of the 19th century. 2 The classical method consists in first isolating 
the part of the equations corresponding to a nonzero minor of maximal order  and 
then using Cramer's rule with the other  unknowns as parameters appearing in the 
second members. This manipulation requires theoretical justifications, which prior 
discoveries on determinants made explicit. Moreover,  this first phase opened new 
ways to more systematic investigation into systems of equations. However,  it was 
more the search for a practical method than concern for theoretical achievement 
that led to this first step. Henry J. S. Smith's approach pointed out a change of 
point of view which marked a fundamental step. Indeed, in a paper of 1861 [89], 
he showed that the maximal order  of a nonzero minor is also related to the maximal 
number  of independent solutions. This does not help, directly, to describe the set 
of solutions better. In this sense it is more a theoretical than a practical result, and 
this shows the slight but decisive change of approach marked by Smith, who not 
only was interested in giving ways to solve the systems of equations, but also studied 
them on a theoretical basis. 

Between 1840 and 1879 the concept of rank is, therefore,  implicitly central to 

2 The first results in this direction were developed by several mathematicians (for a conjoint overview, 
I give some references in [74]: Sylvester in 1840 [91 or 74, 1:227-235], Cayley in 1843 [20 or 74, 2:14-17], 
Sylvester in 1850 [92 or 74, 2:50-52], Baltzer in 1857 [3], Trudi in 1862 [74, 3:84-85], Baltzer in 1864 
[74, 3:227-235], Dodgson in 1867 [74, 2:85-86], Rouch6 in 1880 [85 or 74, 3:86-90], and Fonten6 
[74, 3:90-92]. 
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the description of systems of linear equations. With the use of determinants, an 
analogous treatment of the question of dependence relative to equations and n- 
tuples is possible. Yet the technicality of demonstrations involving determinants 
seems to have made it difficult to provide a clear and concise overview of all the 
relations of invariance and duality involved. The work developed in this period is 
very different from Euler's [34]. The tools are more sophisticated, but their use 
requires so much technique that intuition is averted. 

Georg Ferdinand Frobenius managed to achieve this goal of clarity and concise- 
ness, while also defining premises without the use of determinant. Indeed, in a 
paper of 1875, "Uber das Pfaffsche Problem" [44], his first original idea was to 
give a common definition of independence for equations and n-tuples without 
using determinants: 

Several particular solutions 

Z~ x) . . . . .  A ~  ), (3( = 1 . . . . .  k), 

will be said to be independent  or different, when  c l A ~  ) + . . .  + c k A ~  ) cannot  be zero for 
a = 1, . . . ,  n, without c l ,  . . . ,  Ck being all zero, in o ther  words, when  the k linear forms 
A~k)ul  + . . .  + A ~ ) u n  are independent .  [44, 236] 

This is the modern definition still in use today. 
Frobenius then introduced the notion of "associate" ["zugeordnet" or "adjung- 

irt"] system. A system of linear homogeneous equations being given, a homogeneous 
system will be called an "associate" system if the coefficients of its equations 
constitute a basis of solutions of the original system. Of course, this correspondence 
is a symmetrical relation. In the two first pages of this section, Frobenius set up 
the basis for the notion of duality by considering n-tuples and equations as similar 
objects that can be seen from two different angles. Given a system of n linear 
homogeneous equations in p unknowns, with maximal order of nonevanescent 
minor equal to r, he showed that one can find a maximum of p-r independent 
solutions. Given one of this set of solutions (a basis), he built an "associate" system 
by simply reversing the role of coefficients and unknowns in the equations, and 
showed that any basis for solution of the "associate" system has an "associate" 
system with the same set of solutions as the initial system of equations. He then 
easily pointed out and related all the invariants attached to the number r. His 
approach used technical theorems and methods of the theory of determinants, but 
most of his results are expressed without the use of determinants, except for the 
potential definition of rank. In a paper of 1879, "Uber homogene totale Differen- 
tialgleichungen" [45], he used the term rank for the first time and defined it in 
these terms: "When in a determinant, all minors of order (m + 1) vanish, but those 
of order m are not all zero, I call the rank [Rang] of the determinant the value of 
m" [45, 1]. 

With Frobenius, it can be considered that within the theory of determinants the 
concept of rank reached its maturity. This can be seen in a paper of 1905, entitled 
"Zur Theorie der linearen Gleichungen" [46], in which he gave a complete struc- 
tured report of theoretical results on the study of linear equations. 



HM 22 GENESIS OF VECTOR SPACE THEORY 233 

A few interesting complementary results were established by Alfredo Capelli 
and Giovanni Gabrieri between 1886 and 1891 [74, 4:102-106]. First, they showed 
that any system of rank r is equivalent to a triangular system of r equations. Then 
they pointed out and proved that the rank of the lines of a matrix is the same as 
the rank of its rows. They also showed that a system of equations is consistent if 
and only if the rank of the array of their coefficients is the same as the rank of the 
array augmented by the row of second members. 

At this stage of the analysis, the main aspect to keep in mind is that the study 
of linear equations and the theory of determinants represent the context in which 
the first theoretical concepts (dependence, rank, and duality) related to vector space 
theory were created and applied in finite dimension. Between 1750 and the beginning 
of the 20th century, determinants were omnipresent in all problems--both practical 
and theoretical--involving linearity (except in some works related to geometry, 
which will be studied in the following sections). This fact had an influence on the 
nature of the concepts, even if the role of determinants has been minimized by the 
axiomatic approach which gave a rather drastically different organization and order 
of priority in the coordination of elementary concepts. In particular, the concept 
of rank in the axiomatic theory of vector spaces is inseparable from the concept 
of dimension, which is a synthesis of the relations between the concepts of generators 
and dependence and can be (and usually is) introduced before the idea of duality. 
Still, even today, the concept of rank (not of dimension) is important in many 
problems of linear algebra, and the meaning it acquired over nearly two centuries, 
during which determinants were its support, is still an inevitable component of 
its nature. 

THE CONCEPT OF VECTOR IN GEOMETRY 3 

The relation between vector space theory and geometry seems somehow obvious 
to many people, because of the use of geometric representation to illustrate vectorial 
ideas, because of the use of a common vocabulary in the two fields, and because 
vectorial geometry is a very powerful method. The parallelogram of velocities, 
which is a geometric representation for the addition of vectors, has been used since 
the Middle Ages and even since Antiquity, but, as we shall see, it was far from 
adequate for the creation of the concept of directed line segment. Linearity refers 
to line in geometry, which is one of the basic figures. But the circle is also basic. 
The analytical method, introduced independently by Rend Descartes in his G~om(- 
trie [26] and Pierre de Fermat in A d  Locos Pianos et Solidos Isagoge [37], organized 
geometry according to different criteria. The equation of a line being of the first 
order, it became the first level. The change of coordinates, useful, for instance, in 
the search for invariants to categorize curves, gave a framework for the study of 
linear transformations. Therefore, with the use of analytical methods in geometry, 
linearity became a starting point or a central question in many problems. 

As early as 1679, in a letter to Christian Huygens (which remained unpublished 

3 For work complementary to the ideas presented in this section, see [25]. 
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until 1833), Gottfried Wilhelm Leibniz criticized the analytical method and tr ied--  
although unsuccessfully-to create an intrinsic geometric analysis which he called 
the "geometry of situation" [66]. The reasons for his failure, so obvious to a modern 
reader, are less interesting than the content of his criticism, which gave an accurate 
analysis not only of the weakness of the analytical method but also of the nature 
of what an intrinsic geometric analysis should be. He wrote: "I am still not satisfied 
with algebra because it does not give the shortest methods or the most beautiful 
constructions in geometry. This is why I believe that, as far as geometry is concerned, 
we need still another analysis which is distinctly geometrical or linear and which 
will express situation directly as algebra expresses magnitudes" [67, 2:18-19]. And 
he continued: "Algebra is the characteristic for undetermined numbers or magni- 
tudes only, but it does not express situation, angles and motion directly. Hence it 
is often difficult to analyze the properties of a figure by calculation, and still more 
difficult to find very convenient geometrical demonstrations and constructions, even 
when the algebraic calculation is completed" [67, 2:20]. 

The arbitrary choice of a system of coordinates being a transitory and external 
step in a geometrical demonstration was also a major philosophical concern in the 
use of the analytical method. From the beginning of the 19th century, the search 
for an intrinsic geometrical analysis became a preoccupation for several mathemati- 
cians on the basis of the criticism of the analytical methods as expressed above. In 
fact, an initial answer to this problem came, somewhat indirectly, from the geometri- 
cal representation of complex numbers. I say indirectly, because the principles for 
the geometrical representation of complex numbers came not only from the search 
for a geometric analysis but also, and sometimes mainly, from the motivation to 
legitimize the use of these numbers which were rejected by mathematicians as being 
inadequate to mathematical reality. 4 The question of the geometrical representation 
of complex numbers has been analyzed in various historical works (e.g., [15; 60, 
3:117-158; 18; 11; 25; or 2]). In John Wallis's work [96, 2:286-295], one finds an 
initial attempt to illustrate complex numbers in geometry, but his model of gained 
and lost surfaces under the sea failed to give an illustration of multiplication. Within 
a few years, and independently, five practically unknown mathematicians from 
various countries set up the principle of the geometric representation of complex 
numbers: Caspar Wessel in 1799 [99], l'abb6 Bure in 1805 [12], Jean Robert Argand 
in 1806 [1], C. V. Mourey in 1828 [73], and John Warren in 1828 [97]. However, it 
was only with Carl Friedrich Gauss around 1831 [49] and Augustin-Louis Cauchy 
around 1849 [18], that these principles became widely known and accepted among 
mathematicians. Complex numbers provided a model for a bidimensional geometri- 
cal analysis. In some of the works quoted above (especially Wessel's), the authors 
tried to generalize their ideas on space geometry, but their attempts always foun- 
dered on the difficult problem of multiplication. During the same period of time, 
two mathematicians--August Ferdinand M~bius and Giusto Bellavitis--developed 

4 They were still called impossible or imaginary quantities. 
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two different systems of geometrical analysis valid for dimension three as well as 
for dimension two, which laid the basis for vectorial geometry. 

Mtibius was one of the first mathematicians to have drawn out the notion of 
directed line segment. In the first chapter of his Barycentrische Calcul [70], the 
principles of which were first conceived around 1818, he designated a line segment 
from a point A to a point B by the notation AB and stated that AB = - B A  [70, 
1-5]; he then defined the addition of collinear segments. The central theorem of 
barycentric calculus is: 

Given any number (v) of points, A ,  B, C . . . . .  N with coefficients a, b, c . . . . .  n where the sum 
of the coefficients does  not equal zero, there can always be found one (and only one)  point 
S - - t h e  centroid--which point has the property that if one draws parallel lines (pointing in 
any direction) through the given points and the point S, and if these lines intersect some plane 
in the points A' ,  B',  C', . . . ,  N',  S', then one always has: 

a .AA'  + b.BB' + c.CC' + . . .  + n.NN' = (a + b + c + - - .  + n).SS' 

and consequently if the plane goes  through S itself, then 

a .AA'  + b.BB' + c.CC' + . . .  + n.NN' = 0. 

[70, 9-101]  

In the case where the sum of the coefficients equals zero, M/~bius noted, without 
further comment, that the point is sent to infinity. 5 M~bius' theory provided an 
algebra of points, but his goal was not to present an algebraic "structure" in all its 
details; he wanted rather to exhibit a tool for solving geometrical and physical 
problems. Indeed, the applications he gave are convincing and numerous. Moreover, 
his influence is important on a theoretical level; he inspired Christian von Staudt 
in the invention of projective coordinates, which freed projective geometry from 
any metric consideration and allowed a better understanding of the nature of 
projective properties. 

It is somehow surprising that Mrbius did not define the addition of noncollinear 
segments in his barycentric calculus; in fact, he did so eventually, but only in 1843, 
in his Elemente der Mechanik des Himmels [71] :  6 

The position of a point B towards a point A is given, when its distance from A and the direction 
of the line A B  are given. A third point B' will therefore have the same position towards a 
fourth point A' ,  as B towards A,  if the segments A B  and A'B'  have the same length and direction 
(not opposite),  which will be shortly formulated by: A B  --- A'B' .  With this characterization, we 
can easily prove the following theorems, with elementary geometry: 

5 In his 1844 Ausdehnungslehre (cf. below),  Grassmann rediscovered barycentric calculus as an applica- 
tion of his more general theory, and he studied this case, showing that the linear combination of points 
is to be considered as a vector, when the sum of the coefficients is zero. Grassmann had great admiration 
for M/)bius, who was one of the rare mathematicians to recognize his value; they wrote to each other 
over a long period. 

6 M~bius may have been influenced by Bellavitis, who had already discovered his Calcolo delle 
Equipollenze (see below) and had written to M/Sbius in 1835 [72, 4:717-718]. He had already been in 
contact with Grassmann as early as 1840. 
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I. If A B  ~- A ' B ' ,  then  we also have: A A '  --- BB' .  
II. If A A '  -= BB '  and BB'  ~ CC' ,  then  we also have: A A '  ~- CC' .  
III. If AB ~- A ' B '  and BC -= B ' C ' ,  then  we also have: A C  -= A ' C ' .  [71, 1-2] 

He also defined the multiplication by a non-negative number. 
Finally, in 1862, M~bius wrote"tJber geometrische Addition und Multiplication," 

which was only published in 1887, in the first edition of his collected work after 
being revised in 1865 [72, 4:659-697]. There, he defined addition of noncollinear 
segments, multiplication by any number, and two kinds of products of segments, 
which were directly inspired by Grassmann's work. 

M6bius had the recognition of various famous mathematicians including Gauss, 
Cauchy, Jacobi, and Dirichlet (cf. Baltzer's remarks in [72, l:xi-xii]). He created 
an efficient and practical method of solving geometrical problems; but although he 
pointed out some fundamental aspects of vectorial geometry, his theory, based on 
an intuitive perception of space, failed to offer the possibility of extension towards 
a more general concept of vector (or barycentric) space. 

With his Calcolo delle Equipollenze, Giusto Bellavitis may be considered as the 
first mathematician to have defined, in 1833 [7], the addition of vectors in space: 

(2 °) Two straight lines are called equipollent if they are equal,  parallel and directed in the  
same sense. 
(3 °) If two or more  straight lines are related in such a way that  the  second extremity of each 
line coincides with the first extremity of the following, then  the line which together  with these 
forms a polygon (regular or  irregular), and which is drawn from the first extremity of the  last 
line is called the equipollent-sum. [8, 246] 

He also defined the multiplication of coplanar directed line segments. In fact, 
the calculus of equipollences offered no more possibilities than complex numbers. 
Bellavitis himself admitted that his discovery was based on his reading of Bu6e's 
work [12], but throughout his life, he refused to accept complex numbers as part 
of mathematics. Indeed, his presentation is especially original for two main reasons: 
the objects on which the calculus is created are purely geometrical entities (not 
like complex numbers), and the first part of the calculus can be applied in space 
geometry, although, like many others, Bellavitis failed to generalize the product of 
directed line segments to space. This generalization was to be achieved by the Irish 
mathematician, Sir William Rowan Hamilton. 

Hamilton had long been interested in a generalization to three dimensions of 
the geometric representation of complex numbers, when he finally invented the 
quaternions around 1843. His philosophical position towards the nature of algebra 
and his "Science of Pure Time" have been discussed in several works (for references, 
see [61] and [25, 17-46]). For the purpose of this work and in this paragraph, I will 
focus on the role of quaternions in the evolution of the concept of vector. From 
1835 at least, Hamilton sought the equivalent of complex numbers for dimension 
three. Like all his predecessors, and quite naturally, he was looking for triplets with 
an addition and a multiplication. He had established the list of properties the two 
operations should have (equivalent to the structure of a field). After several at- 
tempts, all of which failed, Hamilton changed his point of view slightly by focusing 
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on the geometrical nature of multiplication in dimension 2 rather than on general 
algebraic properties. He then pointed out that this multiplication is based on the 
ratio of lengths of the two vectors and the angle they form. He then transposed 
this idea in dimension three. An analysis of the problem [59, 1:106-110] led him 
to show that the multiplication in dimension 3 should take into account the ratio 
of lengths, and the rotation between the two directions of the vectors. The first is 
a one-dimensional value, and the second depends on the direction of the axis of 
the rotation (a two-dimensional value) and the angle (a one-dimensional value). 

This change towards the geometric signification of multiplication pointed out the 
fact that quadruplets suited the problem of three-dimensional geometric algebra, 
whereas triplets did not. It also showed the impossibility of preserving commutativ- 
ity, as rotations in space do not commute. In 1844, Hamilton was able to publish 
the first results of his discovery [58]. The quaternions are algebraic numbers which 
allow a geometric representation in space. The multiplication represents, at the 
same time, the scalar product and the vector product. Hamilton's discovery had 
widespread influence on the development of vector analysis [25, 17-46]. Yet this 
development, initiated by quaternions, is not the most important for the theory of 
vector spaces. Indeed, it is mostly because of the change they introduced in algebra 
that quaternions had a strong influence on the emergence of linear algebra. This 
point will be discussed below. 

More generally, the elaboration of systems of geometric calculus seems to have 
had, in the long term, more influence on the development of vector analysis than 
on the theory of vector space. Yet its historical importance should not be underesti- 
mated. Indeed, geometry is a central part of mathematics, potentially rich in ques- 
tioning. The possibility of a geometric interpretation of algebraic results is therefore 
a source of enrichment as it gives to concepts an intuitive background and more 
consistency. The use of geometric terms in the general theory of vector spaces is 
proof of this fact and highlights the privileged relations between geometry and 
linear algebra. 

LINEAR ALGEBRA IN THE DIALECTIC EXCHANGES BETWEEN 
GEOMETRY AND ALGEBRA 

The attempts described above to create an intrinsic geometrical analysis can be 
viewed either as a desire to free geometry from the external invasion of arithmetic 
or as an attempt to import some aspects of algebra into geometry. In any case, 
from the discovery of the analytical method, the new relation between algebra and 
geometry meant that the evolution of the two fields was henceforth intrinsically 
linked in a dialectical process. In this sense, the use of the analytical method in 
geometry generated the creation of most of the tools of matrix algebra through the 
study of linear substitutions (i.e., change of coordinates). The concept of geometric 
transformation as something which applies to the whole space or plane is recent 
and was really only fully established through Felix Klein's Erlangen Program [64]. 
Yet many problems in analytical geometry led to the application of changes of 
coordinates, and the study of linear substitutions (as they were known at the time) 
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is similar to that of linear transformations. Moreover, the use of linear substitution 
appeared not only in geometry but also, for instance, in the study of quadratic 
forms with integral coefficients in various problems of arithmetic and in the solution 
of differential equations. 

In 1770, Euler, in "Problema algebricum ob affectiones prorsus singulares memor- 
abile," studied questions which can be interpreted in terms of orthogonal linear 
substitutions [35]. In fact, the objects he was interested in were squares of numbers, 
which he compared to a magic square: 

which satisfies the following conditions: 

1.A2 + B2 + C 2 =  l,  
2. D 2 + E 2+ F 2 = 1, 
3. G2 + H2 + / 2  = 1, 

7 .A  2 +  D 2 + G 2 = 1, 
8. BZ + E2 + l [2= l ,  
9. C2 + FE + I2= f ,  

[35, 751 

A , B , C ,  

D , E , F ,  

G , H , I ,  

4. AB + D E  + G H  = 0, 
5 . A C +  D F +  GI  =0 ,  
6. B C  + E F  + H I =  0, 

IO .AD + B E +  C F = 0 ,  
l l . A G  + B H  + CI  = O, 
12. D G  + E H  + FI  = O. 

He first established that these 12 conditions are equivalent to the fact that the 
transformation 

X =  A x  + By  + Cz; Y = D x  + Ey  + Fz; Z = Gx + H y  + Iz; 

is such that X X  + Y Y  + Z Z  = xx  + yy  + z z  [35, 77]. He also noted that the first 
6 relations imply the last 6. Then he showed that these relations are equivalent to 
9 others, which, in modern terms, states that the matrix equals the opposite of the 
matrix of cofactors. 7 He did not raise the question of independence of the relations, 
but used the intuitive reasoning that the n 2 coefficients being bound by n(n + 1)/ 
2 conditions, an orthogonal substitution depends on n(n  - 1)/2 parameters. 

For n = 3 he showed that an orthogonal transformation can be written as the 
product of n(n - 1)/2 = 3 orthogonal substitutions which only modify two axes at 
a time. Euler's method introduced three angles (which are still known in mechanics 
as Euler's angles) to characterize an orthogonal substitution. Moreover, Euler did 
not stop with n = 3; using only algebra, he gave a full solution for n = 4 and 5. 
Finally, he said that for any n, an orthogonal substitution can be represented by 
n(n - 1)/2 parameters as its n 2 coefficients depend on n(n + 1)/2 relations. 

Euler's approach remained essentially algebraic (even if his results have very 
interesting geometrical interpretations for n = 3), which is why he did not limit 

7 In fact, Euler  made  a small mistake that  led him to ignore positive isometries. Indeed,  if A is an  
or thogonal  matrix, then  A -1 = A t and A -1 = (1 /de t (A) )C(A)  t, therefore A = (1 /de t (A))C(A) .  Thus,  
Euler ' s  proof  is only valid when  det(A) = - 1 .  
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himself  to  d imens ion  three;  the si tuat ion was quite different  in geomet ry ,  as we 
will see below. 

Be tween  1773 and 1775 in his " R e c h e r c h e  d ' a r i t hmr t ique , "  Joseph  Louis  La-  
grange  was led to s tudy the effect  o f  l inear substi tutions with integral  coefficients 
in a quadrat ic  fo rm of  two variables,  while s tudying the proper t ies  of  numbers  
which are the sum of  two squares  [65, 3:695/795]. H e  established the fact tha t  the 
discr iminant  (he did no t  give it a name)  o f  the new quadrat ic  fo rm is the p roduc t  
o f  the old discr iminant  by the square  o f  a quant i ty  which has since been  k n o w n  
as the  de te rminan t  of  the l inear substitution. A r o u n d  1798, in his D i s q u i s i t i o n e s  

a r i t h m e t i c a e ,  Gauss  studied the same ques t ion with two and three variables [48]. 
H e  in t roduced  a no ta t ion  which was very  similar to  a matr ix  to character ize the 
l inear subst i tut ion and, moreover ,  established the formula  for  the composi t ion  of  
two linear substitutions: 8 

268. If a ternary form f, in the variables x, x', x", and determinant D, is transformed into 
a ternary form g, whose determinant is E, by the substitution 

x = oty + fly' + yy", x '  = ot'y + ~ ' y '  + y'y",  .d' = ot"y + f f 'y '  + y"y", 

the coefficients a,/3, y, a' ,  ... being integers, we will say briefly that the form fis transformed 
into g by the substitution 

a,/] ,y;  ot ' , /3 ' , y ' ;  ot", /3", y" ... (S), 

and that f contains g or that g is contained in f . . . .  
270. If the ternary form f contains the ternary form f '  and this one contains f", the form 

[ also contains f". Thus it is easy to see that if [ is transformed into [ '  by the substitution 

ot,/3, y; ot', fl ' ,  y '  ; ot", ff", y", 

and f '  into ["  by the substitution 

&e,~; ~',e', ~'; ~", e", ~', 

[ will be transformed into jr" by the substitution 

a,~+ B 8 '  + y,7' ,  

a ' 8  + ~ '8 '  + y '8 ' ,  

a",~ + lY'~' + Y"'~', 

[48, 306-309] 

ae + fie'  + ye", 

cl' e + f l 'e '  + y'e", 

ot"e + fl"e' + y"e", 

a~ + B~' + v¢'; 

a'~ +/3'~' + v'~", 

a"~ +/3"¢ + y"¢'; .... 

This marks  a fundamen ta l  step towards  the concept  o f  a matrix; no t  only did this 
text  in t roduce  a symbolic  no ta t ion  for  l inear substitutions, but  it used it to  represent  
multiplication. 

Yet ,  for  a cer tain t ime, the concep t  o f  de te rminan t  was no t  clearly identified as 
separa te  f rom the concep t  o f  matrix, which was a source of  confusion.  For  instance, 
this might  have been  a reason why the noncommuta t iv i ty  of  the p roduc t  o f  matr ices  
had no t  b e e n  po in ted  out  whereas ,  on  the contrary ,  it was k n o w n  that  de t (AB)  = 

8 In his memoir on determinants [17], Cauchy showed that the product of two determinants of the 
same order is also a determinant, and he recognized the influence of Gauss in his discovery. 
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det(A)det(B) = det(BA). There are, however, some even more fundamental rea- 
sons, like the fact that the multiplication of matrices was not seen as an algebraic 
operation but just as a local process. This attitude towards the algebraic status of 
matrices changed around the middle of the 19th century, when matrices appeared 
to be connected to various objects and when recent developments (like the discovery 
of quaternions) had enlarged the field of algebra. From this perspective, the English 
algebraic school--most notably Arthur Cayley and James Joseph Sylvester--was 
the most active center for progress in this direction. But one can find similar ideas 
around the same time in Germany, for instance. Indeed, one of the first attempts 
to give a systematic listing of algebraic properties of matrices appeared in Ferdinand 
G. M. Eisenstein's work [33]; in particular, noncommutativity is singled out. He 
also used one single letter to refer to a matrix and to describe algebraic relations, 
which was one of the most important changes in the treatment of matrix operations. 
The study of the algebraic operations on matrices (square or rectangular) reached 
a first stage of maturation with the publication in 1858 of Cayley's famous "Memoir 
on the Theory of Matrices" [22], in which the author gathered, in a detailed and 
carefully organized report, all the results discovered within the two preceding de- 
cades. 

As I pointed out above, the use of coordinates made the generalization of geome- 
try to more than three dimensions possible and, in a way, natural. But the desire 
for legitimacy towards reality prevented such a generalization until the middle of 
the 19th century. For instance, M6bius, in his barycentric calculus, defined two 
figures as equal and similar when they are such that every point of the first figure 
can be associated with a point in the other, so that the distance between any two 
points in the first figure is equal to the distance between the two associated points 
in the second figure [70, 181-183]. He then showed that two equal and similar 
figures in the same plane can be brought into coincidence, and he remarked that 
this is not true for solid figures. He concluded that 

for the coincidence of two equal and similar systems A, B, C, D, . . .  and A' ,  B' ,  C',  D ' ,  . . .  in 
space of three dimensions, in which the points D, E, . . .  and D' ,  E ' ,  . . .  lie on opposite sides 
of the planes ABC and A ' B ' C ' ,  it will be necessary, we must conclude from analogy, that we 
should be able to let one system make a half revolution in a space of four dimensions. But 
since such a space cannot be thought of, so is also coincidence, in this case, impossible. [70, 526] 

M6bius' attitude is usual for his time. He could have ventured into space of more 
than three dimensions, but, since it lay beyond the realm of possibility, neither he 
nor his contemporaries went further into this field. Cayley, in 1846, was one of the 
first to have made a decisive step in this direction. In his paper, entitled "Sur 
quelques r6sultats de g6om6trie de position," he showed how one can obtain results 
in three-dimensional geometry by working in a space of more than three dimensions: 

One can, without using any metaphysical notions towards the possibility of  a four-dimensional 
space, reason as follows (everything may also be easily translated into purely analytical lan- 
guage): Assuming four dimensions in space, one must consider lines determined by two points, 
half-planes determined by three points, planes determined by four points; (the intersection of 
two planes is therefore a half-plane, etc.). Ordinary space must be considered as a plane, and 
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its intersection with another plane is an ordinary plane, with a half-plane, an ordinary hne, 
and with a line, an ordinary point. [21,217-218] 

On the other hand, the development of mathematics in the 19th century facilitated 
and justified the use of spaces of more than three dimensions. In this sense, two 
types of events were fundamental: 

(1) The discussions of the foundations of geometry, with the discovery of non- 
Euclidean geometry and the development of projective and algebraic geometry, 
enlarged the traditional field of investigation of geometry. 

(2) The discovery of the quaternions by Hamilton annihilated George Pea- 
cock's principle of equivalent forms, which stated that any algebra should have the 
law of arithmetic as a foundation. This opened the way to many discoveries of new 
types of algebra and ultimately resulted in the evolution of algebra as an independent 
field of arithmetic. (See [75; 80; 78; 79].) 

In the second half of the 19th century, linear algebra still did not exist as a unified 
field, but a geometry in dimension n was developed on the basis of analytic geometry 
and the theory of determinants and matrices. In this new field, one of the most 
productive branches was the study of n-ary forms which was the continuation of 
the work of Lagrange and Gauss on quadratic forms. Many mathematicians worked 
in this direction, and their investigations led, among other things, to most of the 
results concerning the reduction of matrices. 

GRASSMANN'S AUSDEHNUNGSLEHRE: AN ISOLATED 
SINGULARITY 9 

In 1844, Hermann Grassmann published the first version of his Lineale Ausdehn- 
ungslehre (literally "linear theory of extension") [51]. This was announced by the 
author as the first part of a general theory, die Ausdehnungslehre, never completed 
by Grassmann. This work was highly original for its time and remains so today. 
The roots of the Ausdehnungslehre are varied from both a mathematical and a 
philosophical point of view, but geometry and the nature of space represent im- 
portant sources of Grassmann's reflection, even though his theory of extension 
contains more ambitious prospects. Grassmann, who studied theology and philoso- 
phy, was a self-taught mathematician and was mainly influenced by the work of his 
father, Justus Grassmann. His research on geometrical analysis can be traced back 
at least to 1832; in 1840, in order to obtain a better position as a secondary school 
teacher, he wrote a long essay (over 200 pages) on the theory of tides ("Theorie 
der Ebbe und Flut"), which was published only posthumously in his collected works 
[53, 3:1-238]. In this work, he laid the bases of his geometrical analysis and gave 
substantially simplified solutions to many results in Lagrange's M~canique analytique 
and Laplace's M~canique c~leste. In the foreword of the Ausdehnungslehre, he 
recalled the origins of his mathematical inspiration: 

9 For more details on Grassmann, one can consult, e.g., [68; 69; 38; 39; 40; 41, preface; 31; 32]. 
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The initial incentive was provided by the consideration of negatives in geometry; I was used 
to regarding displacements AB and BA as opposite magnitudes. From this it follows that if 
A, B, C are points of a straight line, then AB + BC = AC is always true, whether AB and 
BC are directed similarly or oppositely, that is even if C lies between A and B. In the latter case 
AB and BC are not interpreted merely as length, but rather their directions are simultaneously 
retained as well, according to which they are precisely oppositely oriented. Thus the distinction 
was drawn between the sum of lengths and the sum of such displacements in which the directions 
were taken into account. From this there followed the demand to establish this latter concept 
of a sum, not only for the case that the displacements were similarly or oppositely directed, 
but also for all other cases. This can most easily be accomplished if the law AB + BC = AC 
is imposed even when A, B, C do not lie on a single straight line. 

Thus the first step was taken toward an analysis that subsequently led to the new branch of 
mathematics presented here. However I did not then recognize the rich and fruitful domain 
I had reached; rather, that result seemed scarcely worthy of note until it was combined with 
a related idea. 

While I was pursuing the concept of product in geometry as it has been established by my 
father, 1° I concluded that not only rectangles but also parallelograms in general may be regarded 
as products of an adjacent pair of their sides, provided one again interprets the product, not 
as the product of their lengths, but as that of the two displacements with their directions taken 
into account. When I combined this concept of the product with that previously established 
for the sum, the most striking harmony resulted .... 

This harmony did indeed enable me to perceive that a completely new domain had thus 
been disclosed, one that could lead to important results .... 

Thus I felt entitled to hope that in this new analysis I have found the only natural way in 
which mathematics should be applied to nature, and likewise that in which geometry should 
be treated if it is to lead to general and fruitful results. [51, v-viii] 

G r a s s m a n n  c la imed that  he had  created a new theory  which, a l though it could 
be appl ied  to geometry ,  mechanics ,  and  var ious o the r  scientific fields, was i ndepen -  
den t  of them.  Indeed ,  he thought  that  geomet ry  should no t  be  par t  of  mathemat ics ,  
since it refers to real i ty which val idates  some of its processes: it is a science outs ide 
mathemat ics ,  and  the theory  of ex tens ion  is the mathemat ica l  mode l  to be  appl ied  
to it. Moreover ,  G r a s s m a n n  m a d e  his theory  self con ta ined  and  i n d e p e n d e n t  of the 
rest  of  mathemat ics ,  in the sense that  it rel ied only  on  the e l emen ta ry  rules of 
ma themat i ca l  reasoning.  As  a consequence ,  it inc luded  m a n y  pre l iminary  def ini t ions 
and  in t roduced  m a n y  new no t ions  with new words,  which G r a s s m a n n  carefully took 

f rom G e r m a n  ra ther  than  Lat in  roots. G r a s s m a n n  also had precise ideas on  the 
type of p resen ta t ion  ma themat i ca l  work should  follow: " N o w  we character ize a 
m e t h o d  of t r e a tmen t  as scientific if the reader  is the reby  on  the one  h a n d  led 

necessari ly to recognize the indiv idual  truths,  and  on  the o ther  is p laced in a pos i t ion  
f rom which he can survey the b roade r  sweep of the d e v e l o p m e n t "  [51, xxix-xxx].  

This  implies  a dialectical p re sen ta t ion  based on  the contras t  be t w e e n  formal  and  

real  aspects of the theory:  genera l  results  mus t  be  deduced  f rom genera l  objects  

and  their  propert ies ,  bu t  at each step of the theory,  the reader  mus t  be  able to see 
f rom which concre te  s i tua t ion and  by which me a ns  the general  theory  proceeds.  
The  choice of p resen ta t ion  is essent ial  in G r a s s m a n n ' s  work; this was also an  obstacle  

10 Cf. J. G. Grassmann, Raumlehre, Teil H, p. 194, and Trigonometrie, p. 10 (Berlin; G. Reimer, 1824 
and 1835). [This note is Grassmann's.] 
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that most of Grassmann's contemporaries did not get beyond. As a matter of 
fact, critics of Grassmann's work often pointed out its lack of clarity, due to an 
overwhelming tendency to mix up mathematical results with obscure philosophical 
considerations. Grassmann was also often reproached for giving applications only 
after general results, which made his ideas very hard to follow. 

For instance, Ernst Friedrich Apelt, in a letter to Mtbius, written on 3 September, 
1845, asked: 

Have you read Grassmann's strange Ausdehnungslehre? I know it only from Grunter's Archiv; 
it seems to me that a false philosophy of mathematics lies at its foundation. The essential 
character of mathematical knowledge, its intuitiveness [Anschaulichkeit], seems to have been 
expelled from the work. Such an abstract theory of extension as he seeks could only be 
developed from concepts. But the source of mathematical knowledge lies not in concepts but 
in intuition. [53, 3:101; English translation, 25, 79] 

Ernst Eduard Kummer, who was asked to give an expert report on Grassmann's 
work wrote in a similar vein on 12 June, 1847: 

Regarding first what concerns the form or the representation of the treatise, one has to admit 
in general that it is a failure; for, even though the style is good and full of spirit, it lacks 
everywhere a suitable organization of its content in which essential points could be clearly 
distinguished from things of less importance. [41, 19] 

Grassmann's philosophical position was not common in his time and cannot be 
separated from his mathematical work, of which it is an essential component. In 
his thoroughly documented paper [68], Albert C. Lewis has pointed out many 
aspects of this fact, and, in particular, the influence of Schleiermacher's Dialektik 
on Grassmann, the main result of which is the use of a dialectic of contrast as an 
important source of progress in Grassmann's theory. The contrasts used by 
Grassmann can be listed pairwise: equal-different, discrete-continuous, general- 
particular, real-formal, etc. Grassmann's mathematical work could not and still 
cannot be fully appreciated, if one does not make the effort to understand the 
philosophy on which it is based. In 1862, Grassmann published a completely revised 
version of the Ausdehnungslehre [52], from which most of the philosophical consid- 
erations had been deleted, and he also adopted a more classical mathematical 
presentation. Nevertheless, this version met with no more success than the first 
one. Certainly, the disappearance of any philosophical background, if it avoided 
an initial superficial obstacle, made the mathematical content somewhat difficult 
to accept. Moreover, as in 1844, many readers were discouraged by the strict 
Euclidean organization, which did not permit a partial reading of the theory, as 
one had to read it from the first page in order to understand the meaning of 
any concept. 

In spite of this lack of success, Grassmann's theory contained the bases for a 
unified theory of linearity, as it introduced, with great accuracy and in a very general 
context, elementary concepts such as linear dependence, basis, and dimension. 
Furthermore, the mathematical content went quite beyond this point, and some of 
the concepts introduced by Grassmann have been a source of inspiration for recent 
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theories, such as Elie Cartan's exterior algebra [16] or more recently, Gian-Carlo 
Rota's exterior calculus [84]. 11 Let us now turn to a brief analysis of some of 
Grassmann's key ideas. 

The 1844 Ausdehnungslehre starts with a long philosophical introduction, in which 
Grassmann explains what mathematics is for him, compared to philosophy or other 
sciences. This is followed by an introductory chapter about the "General Theory of 
Forms," which attempts to formalize the concept of algebraic addition, subtraction, 
multiplication, and division. This could be seen as quite close to an axiomatic 
presentation of the structures of group, ring, and field, but, as Lewis noticed, "what 
is presented is not a set of unproven statements from which succeeding statements 
are deduced; rather, principles of connection, expressed by means of the general 
concepts equality and difference, and connection and separation, are symbolized" 
[68, 140]. 

This introductory chapter gives the rule for the investigation of the formal aspect 
of the theory of extension as well as the rules for the construction and comparison 
of new entities by connections with others. Generation is an important concept in 
Grassmann's work. Entities are not given a priori and are not defined according 
to the properties of their operations; they are created through the "evolution" or 
the connection of other entities. 

The concept of "extensive magnitude" is introduced as follows: a given element 
is to generate a "system of first order" by the "continuous action of the same 
fundamental evolution" (or its opposite); then another "evolution," applied to each 
element of the system of first order will generate a system of second order, etc., 
with no limitation on the number of orders. The concept of "evolution" corresponds 
in geometry to a movement along a straight line, but in Grassmann's theory, it has 
a more general meaning, based on "the fundamental intuition of space and time," 
which is given "a priori," and is "originally inherent to us like the body is to 
the soul" (cf. foreword of [51]). Furthermore, Grassmann, careful to develop an 
autonomous theory, did not use the concept of number at the beginning of his 
theory. He deduced it, in the fourth chapter only, from the concept of division of 
colinear extensive magnitudes. This choice restricted him from using any multiplica- 
tion by a scalar (until Chapter 4) and therefore any linear combination. This made 
the first third of the 1844 version rather difficult to understand (at least for a modem 
reader). Still this framework, with its intuitive basis, proved its effectiveness in 
generating a rich model for linearity, as Grassmann managed to define the essential 
objects and to prove most of the elementary properties of finite-dimensional vec- 
tor spaces. 

His approach to the concepts of bases and dimension is particularly interesting. 
According to the original mode of generation (which represents the real aspect of 
the theory), a system of nth order is generated by n fundamental methods of 
evolution, which are given as independent (i.e., none is included in a system gener- 

11 See also Arno Zaddach's study of Grassmann's Algebra [101]. 
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ated by some of the others). Therefore, the order of a system, which is the "natural" 
dimension, is intrinsically related to the concepts of generation and dependence; 
it represents the measure of the extension. In order to contrast this particular mode 
of generation by a general approach to the theory, the main explicit goal of the 
first seven paragraphs of Grassmann's theory (Section 13 to 20) is to make the 
higher order system independent from this initial model of generation. This is 
done by using the contrast between the formal and real aspects of the addition of 
displacement (the equivalents of our vectors) [51, Section 17-19], in order to attain 
the final result: "[A] system of mth order is generable by any m methods of evolution 
belonging to it that are mutually independent" [51, 30]. 

This provides a notion equivalent to the modern concept of basis and gives the 
value m a general meaning close to the concept of dimension. Nevertheless, one 
aspect is missing, as nothing proves that fewer than rn methods of evolution could 
not generate the system. In fact, in his proof Grassmann gives a result from which 
this fact can easily be deduced: 

First I will show that if the system is generated by m methods of evolution whatever, I can 
replace any given one of them by a new method of evolution (p) belonging to the same system 
of mth order and independent of the remaining (m-l), and, using this in combination with the 
other (m-l), generate the given system. [51, 30] 

This is exactly what is now known as the exchange theorem. In 1844, Grassmann 
did not explicitly deduce from this result that a system of mth order cannot be 
generated by less than m methods of evolutions, although he admitted it implicitly. 
In 1862, the exchange theorem and its consequences were given explicitly in a series 
of six theorems [52, 19-21]. Yet, as we shall see below, most of Grassmann's readers 
did not see the importance of this result. 

Linear dependence and dimension are also central concepts in Grassmann's 
theory, as they are in modern vector space theory. In the two versions, he gave an 
elegant proof of a result equivalent to the formula about the dimension of the sum 
and intersection of two subspaces [51, 183-185]: 

dim(E + F) + dim(E t3 F) = dim E + dim F. 

The two concepts are related to the two types of products (exterior and regressive) 
which are original creations of Grassmann, but a detailed analysis of these would 
take us too far afield in this paper. 

As mentioned above, Grassmann employed a very different theoretical frame- 
work in 1862. In particular, objects are given a priori and defined through operations, 
which is closer to modern presentations: given a system of m units (i.e., m linear 
independent magnitudes), Grassmann defined a system of order m as the system 
of all linear combinations of the units. Then he defined addition and subtraction, 
and multiplication and division by a number. A list of "fundamental properties" 
for the four operations followed, with the acknowledgment that all the algebraic 
laws of addition, subtraction, multiplication, and division will follow from them. 
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8. For  ex tens ive  m a g n i t u d e s  a, b, c, the  fol lowing f u n d a m e n t a l  f o rmu la s  hold: 

(1) a + b = b + a  

(2) a + (b + c) = (a + b) + c 

(3) a + b - b = a 

(4) a - b + b = a . . . .  

12. For  the  mul t ip l ica t ion  an d  divis ion of  ex tens ive  m a g n i t u d e s  (a, b) by n u m b e r s  ( a , / 3 )  the  
fo l lowing f u n d a m e n t a l  f o rm u la s  hold: 

(1) a/3 : 

(2) a/33" = a(fl3") 

(3) (a + b)3" = a v  + b y  

(4) a(/3 + 3') = a/3 + a3" 

(5) a.1 = a 

(6) a/3 = 0 if and  on ly  if a = 0 o r / 3  = 0 

(7) a:/3 = a( l / /3)  i f /3  ~ 0. [52, 15-16]  

This presentation can be seen as a kind of a posteriori axiomatization of linear 
structure. Moreover, the fundamental properties given by Grassmann are almost 
the same as the axioms of the modern structure of vector space, except for (1) and 
(7) about multiplication, which are mere conventions; (6), which is a redundant 
property; and the ambiguous use of subtraction, which made the concept of zero 
and opposite somewhat unclear. In fact, this last point had been carefully analyzed 
in the general theory of forms of the 1844 version [51, 8-9]. This shows that the 
1862 version could not be read independently of the original 1844 work. Moreover, 
the mathematical content was not drastically changed in 1862, in spite of some 
improvements and new applications. 

In many ways, Grassmann's theory remains a singularity. Even if all its results 
correspond to modern concepts and theories, it contributed to the creation of very 
few of them. For the theory of vector spaces, it played an important role in the 
discovery of the axiomatic theory, but most of the concepts of this theory were 
reestablished independently of Grassmann's work. Yet, because of its original ap- 
proach, the 1844 version remains unique and offers an alternative to vector space 
theory, which gives a rich analysis of the relations between the formal concepts of 
linear algebra and geometrical intuition that cannot be found elsewhere. 

THE FIRST AXIOMATIC APPROACHES 

In 1888, Peano published a condensed version of his own reading of Grassmann's 
Ausdehnungslehre entitled Calcolo geometrico. At the end of this treatise, in a small 
final chapter, he gave an axiomatic definition of what he called a linear system, 
which is the first axiomatic definition of a vector space (in modern terms) [76, 
141-142]. Peano's axioms are very similar to Grassmann's fundamental properties, 
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but Peano's contribution is fundamental; he really put forward the properties of 
the operations to describe the structure, unlike Grassmann who had deduced them 
from the definition of the operations on the coordinates. Moreover, Peano, aware 
of axiomatic approaches, improved the formulation of properties by suppressing 
the convention and the redundancy built into Grassmann's fundamental properties; 
he also defined more clearly the concepts of zero and opposite elements. Yet this 
definition was not quickly followed by many new developments, and his approach 
was not taken up immediately. 

Following Peano, in 1897, Cesare Burali-Forti published a book on differential 
geometry [13] in which he used Grassmann's ideas and pointed out Peano's role 
in making the Ausdehnungslehere more accessible. Nothing is said, however, about 
the axiomatic approach introduced in the Calcolo geometrico. In 1909, with another 
Italian mathematician, Roberto Marcolongo, Burali-Forti published Omografie vet- 
torialli con applicazioni alle derivate respetto ad un punto et alia ftsica-matematica 
[14], which opened with an axiomatic presentation of linear systems. However, the 
definition Burali-Forti and Marcolongo gave conforms less than Peano's to the 
model of an axiomatic definition (some axioms are redundant and some are missing), 
and they did not provide more substantial results and applications. But their work 
is important because it is the first to have such an introduction (in Peano's book 
it appeared only in the final chapter). Although their work does not seem to 
have generated immediate followers either, it helped make the axiomatic approach 
known (if not used) especially in Italy and in France. 

In spite of their important contribution to axiomatic vector space theory, one 
has to admit that Peano, Burali-Forti, and Marcolongo were, on some points, less 
accurate than Grassmann. This is especially true relative to the concept of dimension. 
Indeed, they defined it, before the concept of basis, as the maximal number of 
independent vectors in the space. This is sufficient to prove easily that any set of 
n independent vectors in an n-dimensional space constitutes a system of generators 
and therefore a basis. They overlooked however the question of minimality of a 
system of generators, which is necessary for the proof of the uniqueness of the 
number of elements in a basis. Nor did they quote the exchange theorem, which 
is closely related to the problem of minimality of generators. In fact, they focused 
on applications to geometry, using the axiomatic definition as mere formality. What 
they failed to retain from Grassmann was the richness of the dialectic between the 
real and formal aspects which governed his process of generalization. Therefore, 
dimension, for Peano or Burali-Forti and Marcolongo, was, as in geometric space, 
a measure of the degree of freedom, whereas for Grassmann, it was a measure of 
extension. Indeed, space is more often characterized by its limitation to three 
dimensions than by its expansion from one point into three dimensions. 

In the first edition of his Raum-Zeit-Materie of 1918 [100], Hermann Weyl also 
gave an axiomatic definition of what he called linear vector-manifolds. He did not 
mention his Italian predecessors, but he referred to Grassmann's Ausdehnungslehre 
as an "epoch making work" [100, 17, note 4]. Indeed, his definition is closer to 
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Grassmann's 1862 fundamental formulas than to Peano's definition. Regarding the 
question of dimension, Weyl chose to add a dimensional axiom to his definition: 
"There are n linearly independent vectors, but every n + 1 are dependent on one 
another" [100, 17]. But he also commented that: "From this property (which may 
be deduced from our original definition with the help of elementary results on 
linear equations) it follows that n, the dimensional number, is as such a characteristic 
of the manifold, and is not dependent on the special vector base by which we map 
it out" [100, 17]. 

So Weyl's approach to the concept of dimension did not differ that much from 
Peano's, except that his note shows concern about the invariants related to the 
number of dimensions. Moreover, Weyl seemed to refer to the fact that if all vectors 
of a linear vector-manifold E derive from n vectors, then any set of n + I are 
dependent on each other. 12 This result is another preliminary theorem (different 
from the exchange theorem) from which the invariance of the number of elements 
in a basis may be proven. Yet, this is still ambiguous, even if Weyl's approach is 
considered as an improvement over that of the Italians. 

In fact, in 1862, Grassmann had made a remark about the central theorem on 
dimension that he had deduced from the exchange theorem: "This important theo- 
rem can also be derived directly from the theory of elimination . . . .  But the proof 
presented here is not only elementary, but in addition has the advantage that 
thereby the essential, simple relation between the extensive magnitudes appears 
more clearly" [52, 21]. This proves that Grassmann was far ahead of his time on 
several levels. 

Moreover, the question of dimension was discussed, somehow more accurately, 
in the theory of fields. Indeed, a field extension is a vector space on the original 
field whose dimension is the order of extension. In this context, as in Grassmann's 
Ausdehnungslehre, the notion of generation was intrinsically present in the first 
notions of the theory. Although the question of the invariance of the number 
of elements in a basis of the field extension was considered obvious for a while, 
it was raised and solved with great care by Richard Dedekind in 1893 in the 
l l th  supplement to the fourth edition of Gustav Peter Lejeune-Dirichlet's 
Vorlesungen tiber Zahlentheorie [28]. In this supplement, one paragraph constitutes 
a very general approach to linear structure, and gives it a form very modern 
for its time. 

Dedekind opened with the definition and properties of linear independence 
(he called it irreducibility). Then he defined a space [Schaar] II as the set of 
all linear combinations of an irreducible set of n numbers in a field A. He 
called these n elements a basis of l~ and defined the coordinates of an element 
of ~.  Immediately thereafter, he presented three properties that he proved to 
be characteristic of l): 

12 This is an obvious consequence of the fact (well known since around 1800) that a system of n + 1 
homogeneous linear equations in n unknowns always has a nonzero solution. 
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I. The numbers  of 1) reproduce themselves through addit ion and subtraction, i.e., the sum 
and the difference by any two numbers  are in ~q. 

II. Any  product  of a number  in f~ by a number  in A is a number  of 1). 
III. There are n independent  numbers  in l~, but any n + 1 such numbers  are dependent.  

[28, 468] 

To deduce the properties from the definition, as Dedekind pointed out, only the 
second part of III required a proof, and for that he used induction. Assuming the 
property for any space having a basis of less than n elements, he took n + 1 elements 
0 / ,  at,  0/2 . . . .  , 0/n in a space 1) with a basis of n elements. 

If one is zero, for instance 00 = 0, then these elements  are dependent;  if not, one can assume 
that  for instance the first coordinate of 00 is not zero; so one can obviously find n numbers  cl, 

c2, ..., cn, in A, such that  the first coordinate of each number  

001 + C100, 002 q- C200, . . . ,  Otn -}- Cn00, 

is zero; thus these numbers  belong to a space whose basis contains only the n - 1 elements 

arz, o3, . . . ,  ton, and are therefore dependent  on each other; consequently there are n numbers  
aa, a2, . . . ,  an,  in A, which are not all zero and such that  

a1(001 + cl00) + az(002 + cz00) + " ' "  + an(00. + Cn00) = O, 

and as the sum a = alc~ + azc2 + • "" + a,,cn is also in A, it follows that  the n + 1 numbers  

00, 001, 00z . . . . .  00., are dependent  on each other. [28, 468] 

This result is equivalent to what Grassmann obtained with the exchange theorem, 
although the approach is quite different. Moreover, this proof does not use the 
theory of linear equations although it does use representation with coordinates. 

The proof that these three properties are characteristic of a space as defined by 
Dedekind was quite simple; he also immediately deduced that any irreducible 
system of n numbers is a basis of ll. Raising the problem of change of basis, he 
showed moreover that a system of n numbers is irreducible if and only if the 
determinant of their coordinates on the original basis is not zero. The impossibility 
of finding a system of less than n generators is not explicitly stated, but as with 
Grassmann in 1844, this question could be easily solved, since the definition put 
the emphasis on the original set of n independent generators. 

At the end of the paragraph, Dedekind turned to the case of an extension field, 
i.e., when the space is also closed under multiplication. In this context, Dedekind 
proved the following main results: 

(1) In an extension field with a basis of n elements, any number is algebraic 
and its grade is at most n. 

(2) Such an extension field B is said to be of nth grade with respect to A, and 
therefore any system of n independent elements constitutes a basis of B. 

(3) If 0 is algebraic with respect to A and of grade n, then A(O) is an extension 
field of A of nth grade and 1, 0, 0 z . . . . .  0 "-1 constitute a basis of A(O). 

In this last supplement, Dedekind also studied the properties of modules, and 
especially of their bases, but this goes beyond the scope of the present study. In 
Section 164, the main results of which have just been sketched, Dedekind's approach 
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was very close to a modern  axiomatic presentat ion of the e lementary results on 
finite dimensional vector  spaces. The question of dimension was examined with 
care, and using original tools, compared  to Grassmann ' s  use of  the exchange theorem 
and what  had been done in the theory of equations. 

In 1910, Ernst  Steinitz published his A l g e b r a i s c h e  Theor ie  der  KOrper  [90], which 
marked  an important  stage in the history of modern  algebra and which served as 
a reference work for at least a quarter  of  a century. In this major  work, Steinitz 
gave a precise definition of linear dependence over  a field R, and defined a finite 
extension of order  n: "Le t  R be a subfield of  L, L will be said to be finite with 
respect to R and of order  n - - w h i c h  will be designed by: [L:R] = n - - i f  there are 
in L, n elements  linearly independent  over  R, while any set of  more  than n elements  
of  L are linearly dependent  over  R "  [90, 198]. This definition is identical to that 
given by Peano or Burali-Forti and Marcolongo for the number  of dimensions of 
a linear space. Since the Italians'  works were practically unknown in Germany,  
however,  it likely had no influence on Steinitz's or Weyl 's  formulation. Explicit 
references to Dedekind are also absent in the works of Weyl and Steinitz, but there 
is a natural  proximity which has to be taken into account. 

After  this definition, Steinitz showed that in an extension of order  n, for any 
set of  n elements,  the linear independence is equivalent to the fact that any 
e lement  of the extension cannot be expressed in more  than one way as a linear 
combinat ion of these n elements. This follows quite obviously f rom the preceding 
definition, and indeed there is nothing new compared  to his Italian predecessors.  
In fact, Steinitz pursued a goal that he had not explicitly stated. For  him, a 
basis of L is a set of elements  such that any element  of L can be expressed 
uniquely as a linear combination of them. Steinitz aimed to prove that any basis 
has n elements  and that any set of n independent  elements is a basis of  L. To  
achieve this goal, he needed to prove that the order of  an extension cannot 
exceed the number  of generators.  In other  words, he had to connect  a result 
concerning generat ion with a proper ty  of  dependence.  He  cast his definition of 
a basis in terms of the coordinate system, so his proof  was set up within the 
context of n-tuples and linear equations: 

If one knows that every element fl of L can be expressed as: fl = ctoq + • • • + c,,ot,,; then 
for any (n + 1) elements/3o,/31 . . . . .  /3n, there are expressions like: 

B i  = CilOll  -{- " ' "  q- CinOln; (i = 0 . . . . .  n)  

and therefore, according to the theorem of Section 1 about homogeneous linear equations, 13 
(n + 1) elements do, dl  . . . . .  dn can be found such that doff0 + dlfll + "'" + d~fln = O. The 
extension L is thus finite and its order is at most n. [90, 200] 

After  Grassmann 's  1862 A u s d e h n u n g s l e h r e ,  this was the first explicit p roof  of  
the fact that a set of generators cannot  have fewer elements than the number  of 
dimensions, although this was implicit in Dedekind ' s  work and very easily deducible. 

13 This theorem proves that a system of less than n homogeneous linear equations with n unknowns 
has a nonzero solution. 
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Yet the approaches and tools of Steinitz and Grassmann were very different. 
Grassmann knew that a proof could be given with the use of elimination theory, 
but he preferred the exchange theorem for explicit reasons given in 1862 (cf. his 
remark quoted above). 

In fact, further on in his theory, Steinitz used something very close to the 
exchange theorem, but in the context of transcendental extensions where algebraic 
dependence replaces linear dependence: "Let S be a system of elements of an 
extension field L, an element a of L is said to be algebraically dependent on 
S (with respect to R), if a is algebraic with respect to the field R(S)" [90, 288]. 
Two systems are said to be equivalent if any element of each system is algebraically 
dependent on the other system. On the other hand, a system is said to be 
irreducible if it is not equivalent to any of its subsystems. Transferred into the 
context of linearity, two equivalent irreducible systems correspond to two bases 
of the same linear space. After a few preparatory results, Steinitz gave three 
final theorems which contain, for algebraic dependence, results equivalent to 
the exchange theorem, the theorem about the completion of an independent 
system into a basis, the invariance of the number of elements in the bases of 
a linear space, and properties of the dimension of a subspace of a finite 
dimensional linear space: 

7. Let  S be an irreducible system (with respect to R), a a t ranscendental  e lement  with 
respect to R, but  algebraically dependent  on S, then  S contains a finite subsys tem L with the 
following properties: a is algebraically dependen t  on L; any subsys tem of S, on which a is 
algebraically dependent ,  contains the  system L; if any e lement  of  L is replaced by a, S is 
changed into an equivalent  irreducible system; none of the other  e lements  of  S have the 
same property . . . .  

8. Let  U and B be finite irreducible systems with respectively m and n elements;  let us 
assume that n -< m and B is algebraically dependent  on U. Then  if m = n the systems U and 
B are equivalent,  and if on the contrary n < m, U is equivalent  to an irreducible system made  
of B and m - n e lements  of  U . . . .  

9. A n  irreducible system B, which is algebraically dependent  on a finite system U, cannot  
have more  e lements  than  this one; in case they have the same number  of e lements  they are 
equivalent.  [90, 290-292] 

Steinitz presented these results in such a progressive, deductive way that they 
are close to an axiomatic definition of a general concept of dependence (which 
would include algebraic as well as linear dependence) from which the concepts 
of dimension and basis could be deduced. Therefore, little needs to be done in 
order to translate the preceding results into the linear context, but Steinitz did 
not mention (at least here) this possibility. About twenty years later, two of 
his successors, Bartel L. van der Waerden in [95, 1:96] and Emanuel Sperner 
setting up Otto Schreier's work in [87, 20], used the exchange theorem (and 
used this term) for one of the first times, in the context of linear dependence. 
Although both of them referred to Steinitz, I have never found proof that 
Steinitz actually used the exchange theorem in the context of linear dependence. 
On the other hand, there is no reference to Grassmann, although his work was 
well known by German algebraists of this time. Nevertheless, even if an influential 
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filiation could be conjectured, in spite of the gap of nearly a century, the two 
approaches are embedded in very different mathematical and philosophical con- 
texts. 

DIFFERENTIAL EQUATIONS AND FUNCTIONAL ANALYSIS 

Differential equations have been an important point of interest in mathematics 
since the 18th century, and their study became the starting point of what would be 
dubbed functional analysis around the turn of this century. 14 Furthermore, the 
study of linear differential equations played an important part in the theorization 
of linearity. 

In the middle of the 18th century, Jean le Rond D'Alembert, Lagrange, and 
Euler had noticed that the general solution of a linear homogeneous differential 
equation of order n could be expressed as a linear combination of a set of n 
"fundamental" solutions. This was not expressed in these terms, of course, and no 
rigorous proof was given. Moreover, the question of the independence of the 
"fundamental" solutions had not been raised. In fact, the solution was considered 
as a power series in the neighborhood of each point, and its derivatives were 
obtained by taking the derivative of each term of the series. Then, the summation, 
term by term, led to a linear recurrent equation which determined the coefficients 
of the series as functions of the n first, according to a well-established method (see, 
e.g., [65, 4:151-165]). Around the same time, it was fairly commonly known that 
the general solution of a differential equation could be obtained by the addition 
of a particular solution and the general solution of the homogeneous equation, and 
by around 1770, Lagrange had discovered his method of "variation of constants" 
to find a particular solution for the whole equation [65, 4:159]. Nevertheless, it was 
only in the first half of the 19th century that Cauchy, in his Cours de l'Ecole 
Polytechnique, clarified these notions and gave rigorous proofs. 

Moreover, the developments in the study of differential and partial differential 
equations led to sophisticated questions dealing with linearity. In this framework, 
in many occurrences, one can trace unlabeled and more or less implicit methods 
or concepts which are today essential components of linear algebra. For instance, 
as early as 1770, Lagrange introduced a method using what would today be called 
an adjoint operator; he also used, implicitly, some tools of duality to solve systems 
of linear differential equations [65, 1:472-478]. The spectral theory and the concepts 
of eigenvalue and eigenvector were developed to a great extent in the field of 
differential equations. For instance, twice around 1762 and 1776, Lagrange, while 
solving systems of simultaneous differential equations with several functions, used 
similar methods which involved the search for what we now call the eigenvalues 
of a matrix, but he did not mention the similarity of the two problems [65, 1:520-534 
and 6:655-666]. Indeed, most of the concepts and methods remained implicit and 
ununified for at least another century. 

14 For more  details on this subject, see [27]. 
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In 1822, in his Thdorie analytique de la chaleur, Joseph Fourier,  while solving 
differential equations by power  series, used methods to solve systems of countably 
infinite linear equations in countably infinite unknowns [42, 168 or 212]. The lack 
of understanding of the convergence of power  series did not allow him to give a 
correct solution to his problem, but this work was to give the basic principle of  the 
method: study the square finite subsystem of order  n and then let n tend to infinity. 
In fact, for more  than half a century, no one really investigated the solution of 
infinite linear systems. One of the first texts presenting consistent results on this 
type of method was published in 1886 by Henri  Poincar6 who referred to a text by 
George  William Hill of 1877 [77]. Af ter  Poincar6's work, many  mathematicians 
such as, David Hilber t  [63], F r rd r r i c  Riesz [81], Erhard  Schmidt [86], Jacques 
Hadamard  [54], and Maurice Fr rche t  [43], studied infinite systems of linear equa- 
tions. Their  methods were based on Fourier ' s  ideas, but they considered different 
restrictive boundary  conditions on the power  series which ensured the convergence 
of the infinite determinant.  Of  course, the difficult goal of their works was mainly 
to obtain a result with the most  general boundary conditions. In fact, most  of what 
was known in the finite dimensional case was investigated in the context of countably 
infinite dimension. Therefore ,  up to the 1920s and, in many  ways, even in the 
following decade, the theories of determinant,  matrix and quadratic and bilinear 
forms, generalized to countably infinite dimension served as the f ramework for a 
unified theory of linearity. 

Yet  some mathematicians started to feel the inaccuracy of some methods which 
had become highly technical and difficult to manipulate.  For  instance in a text of  
1909, Ot to  Toeplitz proved certain theorems without the use of  determinants,  but 
with a sophisticated use of elimination, to obtain triangular equivalent systems [94]. 
Moreover ,  gradually, mathematicians changed their approach to the problem by 
considering more  and more  general vector spaces of functions; this would lead 
finally to the axiomatization of functional analysis. One  of the most  decisive steps 
in this direction was made by Riesz, in a paper  of  1916, which was translated into 
G e r m a n  in 1918 under  the title, " U b e r  lineare Funktionalgleichungen" [82]. This 
is one of the first papers  to give a general definition of a normal  and of a closed 
vector  subspace of functions: 

We call [the set of continuous functions from [a, b] into R] to be brief, the functional space. 
Moreover we call Norm of f(x) the maximum value of If(x)l, and we denote it by Ilfll; the 
magnitude Ilfll is therefore always positive and is zero only if f(x) is always zero. The following 
relations hold: 

Ilcfl[ = Ic[ Ilfll; Ilfl + f211 <-- I[flll + [If21l .... 

We come now to the similar problem for linear transformations. A transformation T, which 
associates to every element f of our functional space another element T(f), will be said to be 
linear, when it is distributive and bounded. The transformation is said to be distributive if the 
following properties hold for any f: 

T[cf] = cT[f], T[fl + f21 = T[fl] + T[f2]. 
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And  T is said to be bounded when there is a constant M, such that, for all f :  

liT(011-< M[Ifll. 

[82, 72] 

Riesz's main achievement was to establish the foundation of what is now 
known as the Riesz-Fredholm theory of compact operators. Although the entire 
paper is set in the space of continuous functions on a real compact interval, 
most of the results could be generalized to other functional spaces, as, most of 
the time, only the axiomatic definitions are used. In 1921, Eduard Helly considered 
a general normed sequence vector space and hence also marked a new stage 
in the axiomatization of functional analysis [62]. Finally, the decisive step towards 
axiomatization was taken independently by Stefan Banach in his thesis, defended 
in 1920 and published in 1922 [6, 2:306-348], and Hans Hahn, in two papers 
of 1922 [55] and 1927 [56]. 

In the introduction to his dissertation, entitled Sur les opdrations darts les ensem- 
bles abstraits et leut applicatinoux equations integrables Banach stated that: 

The present book follows the goal of establishing a few theorems valid for various functional 
fields, which I will specify. Nevertheless, so that I do not have to prove them separately for 
each field, which would be painful, I have chosen a different method, that is: I will consider 
in a general sense the sets of elements of which I will postulate certain properties, I will deduce 
some theorems and then I will prove for each specific functional field that the chosen postulates 
are true. [6, 2:308] 

This quotation shows that Banach was fully aware of what an axiomatic approach 
was, and of what he could do with it, and, indeed, axiomatic approaches were quite 
familiar among Polish mathematicians at that time. The basic structure defined in 
his work, as in Hahn's, is what we call today a Banach space (i.e., a complete 
normed vector space). Banach makes no reference to Peano or Burali-Forti or 
anyone else, but his definition of a vector space is closer to that used by Burali- 
Forti and is also not strictly correct as some axioms are redundant and some are 
missing. The functional spaces he has to deal with are mostly of uncountably infinite 
dimension, which makes the use of an axiomatic approach compulsory. In 1932, he 
published a treatise, entitled Th(orie des opdrateurs lin~aires [5], in which he gave 
the general framework and most of the results of axiomatic functional analysis and 
infinite-dimensional linear algebra; this book was an enormous success and rapidly 
opened a new era in these two fields of mathematics. 

CONCLUSION 

Many examples of implicit linear methods in different contexts in mathematics 
or physics can be traced from Antiquity, but, until the 19th century at least, they 
remained isolated methods; the same author could use the same idea twice (in 
terms of the theory of linear algebra) in different contexts without noticing the 
similarity of the methods. In this sense, linear algebra long remained implicit because 
of a lack of unification. Nevertheless, its origins can be found in various contexts, 
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and linearity has always been a question which has penetrated nearly every branch 
of mathematics. 

The first step on the way to a unified theory was made through the use of 
determinants. Until the beginning of the 20th century, this was the only point of 
commonality in the treatment of many linear problems. Here, I have analyzed how 
the elementary concepts of a theory of linearity were set up within this context. 
Furthermore, in the middle of the 19th century, the generalization of geometrical 
questions to spaces of more than three dimensions reinforced the cohesion of linear 
problems. The model of R n, with the use of tools and concepts inherited from the 
theory of determinants and the use of geometric vocabulary and visual representa- 
tions, gradually formed the theoretical background for any question of linearity. 
This process, which unified questions of linearity both inside and outside geometry, 
was very important for the further development of vector space theory. The above 
analysis underscores the differences in the nature of the contributions from geometry 
and from the theory of determinants to the formation of a theory of vector spaces 
and shows how that theory resulted from a synthesis of the two. 

The 19th century also witnessed a fundamental change in the nature of algebra 
in general which contributed to the development of a consistent algebraic framework 
for the theory of linearity, with the investigation of the operations on n-tuples and 
on matrices. In this process, the use of geometric language provided an intuitive 
background for the theory. On the other hand, as noted, the study of systems of 
linear equations was generalized to countably infinite dimension by the end of the 
19th century. In spite of the importation of tools from analysis like the notion of 
the convergence of series, this generalization corresponded to a linear process; it 
improved the foundation of the previous unification and extended the field of 
prospect, but it did not radically change the main concepts and tools on which it 
was based. 

In the meantime, the concept of algebraic structure was emerging from a 
need to unify a rapidly expanding number of new theories in mathematics. 
Dedekind gave the first definitions of an axiomatic type of ring, ideal, field, and 
module in 1893 [28]. In his Lehrbuch der Algebra of 1894, Heinrich Weber gave 
the first axiomatic definition of a group [98]. The first thirty years of the 20th 
century, found several mathematicians, especially in Germany, setting up the 
framework for what would soon be called modern algebra. The theories of 
groups and field extensions brought out the most important issues in this new 
approach. In 1930, van der Waerden published the first volume of the first 
edition of his Moderne Algebra; the second volume was published the following 
year [95]. In this first edition, linear algebra centered on the structure of module, 
although most of the first concepts and results such as linear combinations, 
dependence, basis, and dimension were, in fact, established in a previous chapter 
on field extensions. But in the later editions, the place of linear algebra and 
vector space became more important and central. The study of systems of linear 
equations was then presented as an application of the theory of vector spaces 
and the role of determinants was considerably reduced. Rapidly, the popularity 
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of modern algebra changed the way problems dealing with linearity were solved: 
determinants were dropped for the axiomatic approach which unified finite and 
infinite-dimensional questions. In 1941, Garrett Birkhoff and Saunders MacLane 
published their Survey of Modern Algebra [9], and in 1942, Paul R. Halmos's 
Finite-Dimensional Spaces [57] appeared. These two books were among the first 
to attempt to present the new theories for educational purposes to undergraduate 
students. In 1947, in France, Nicolas Bourbaki published the second chapter of 
book II of his Elements de math~matique under the title Algdbre lin~aire [10]. 
At first, this publication remained in the shadow of Halmos's very popular book, 
but its influence became stronger as Bourbaki's fame increased. Nevertheless, 
these three books have had a notable and long influence on the axiomatic theory 
of vector spaces, both in its use in mathematics and in its teaching. 

The quasi-simultaneous publication of the first edition of van der Waerden's 
Moderne Algebra and Banach's Th~orie des op&ateurs lin~aires marked two major 
events in the history of modern mathematics, which were to be essential in the 
unification of an axiomatic theory of vector spaces of finite or infinite dimension. 
From that time on, this theory has increasingly moved towards the central position 
it now holds in mathematics, as a basis for more elaborate theories and as a general 
framework for modeling many problems within and outside of mathematics. 
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