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A General Outline of the Genesis of Vector Space Theory
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The following article presents a general outline of the genesis of the elementary concepts
of vector space theory. It presents the main works that contributed to the development of
these basic elements and analyzes how they developed and how they influenced each other.
The study of systems of linear equations and the search for an intrinsic geometric analysis
were the two main sources which gave rise to the theory of linearity. The fact of going beyond
the third dimension in geometry in the middle of the 19th century, as well as the dialectical
development between algebra and geometry from the creation of analytical geometry on,
brought about the development of an initial unification of linear questions around the concept
of determinant. This framework was generalized to the countably infinite dimension following
work on functional analysis. Axiomatization, which was carried out at the end of the 19th
century, although only really put to use after 1920, is a wider process which is part of the
general development of mathematics in the beginning of the 20th century. I will analyze how
this phenomenon came into existence and how it finally established its influence. ©1995
Academic Press, Inc.

Larticle qui suit, présente une vue générale de la genése des concepts élémentaires de la
théorie des espaces vectoriels. Il présente les principaux travaux qui ont ceuvré dans ce sens
en analysant leurs interactions et les grandes lignes de développement. L’étude des systemes
d’équations linéaires et la recherche d’un calcul géométrique intrinseque sont les deux princi-
pales sources de constitution d’une théorie de la linéarité. Le dépassement de la dimension
3 en géométrie au milieu du XIXéme siécle, ainsi qu'un développement dialectique entre
algebre et géométrie depuis la création de la géométrie analytique ont amené la constitution
d’une premiére unification des questions linéaires autour de la notion de déterminant. Ce
cadre fut généralisé 4 la dimension infinie dénombrable lors de travaux d’analyse fonctionnelle.
L’axiomatisation réalisée a la fin du XIX&me siécle, mais vraiement utilisée seulement aprés
1920, est un processus plus large qui s’inscrit dans un développement général des mathéma-
tiques au début du XX&me siécle. J’analyserai comment ce phénoméne a pu naftre et comment
il a fini par s’imposer. © 1995 Academic Press, Inc.

El articulo que sigue presenta una visién general sobre la génesis de los conceptos elemen-
tales de la teoria de espacios vectoriales. Aqui se presentan los principales trabajos que se
han desarrollado en este sentido, analizando sus interacciones y las grandes lineas de desarrollo.
El estudio de sistemas de ecuacién linear y la investigacién de un cdlculo geométrico intrinseco
son las dos principales fuentes de constitucién de una teoria de la linearidad. La superacién
de la dimensién 3 en geometria, a mediados del siglo XIX, asi como el desarrollo dialectico
entre el algebra y la geometria, después de la creacion de la geometria analitica, han llevado
a la constitucién de una primera unificacién des los aspectos lineares alrededor de la notion
de determinante. Este cuadro fue generalizado a la dimensién infinita enumerable con los
trabajos de analisis funcional. La axiomatisacion realizada a fines del siglo XX, pero realmente
utilisada después de 1920, es un proceso mds largo que se inscribe en un desarrollo general
de la matematica a comienzos del siglo XX. Yo analizare como ese fenémeno pudo nacer y
como €l a terminado por imponerse. © 1995 Academic Press, Inc.
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INTRODUCTION

The axiomatic theory of vector space is a recent achievement in mathematics.
Giuseppe Peano gave the first axiomatic definition of a vector space in 1888 [76,
141-152], but the theory was not actually developed before 1920. From the thirties,
this theory rapidly became a frame—almost a language—in use in many branches
of mathematics as well as in various sciences. Not only did it serve as a basis for
new discoveries, but it also helped to renew proofs or methods in already well-
established areas of mathematics. In this sense, vector space theory is essentially a
unifying and generalizing theory, as it gave more cohesion to mathematics as well
as leading to new discoveries.

My goal in this paper is to recall the main aspects of the evolution of the concept
of linearity up to its final stage in vector space theory. I focus my research on
those elementary concepts, which appeared to be essential: linear combination,
independence—dependence, rank-dimension, linear transformation [29]. I show
how these different concepts have been developed in various fields of mathematics
(although I concentrate on geometry and linear equations), and I try to point out
the different stages in the process of unification and theorization of linear problems.

This work could have taken as its starting point ancient civilizations, all of which
developed ad hoc techniques for solving linear equations. Nevertheless, until the
middle of the 18th century, it can be said that, apart from the improvement of
techniques to solve systems of linear equations and the development of symbolic
algebra after Francois Viete and René Descartes, nothing substantial occurred with
regard to linear algebra.

LINEAR EQUATIONS: BUILDING THE FIRST CONCEPTS

The year 1750 is an important date for our subject, as it is the date of publication
of two crucial works in the history of the vector space concept. The first is the
famous treatise, Introduction a I'analyse des courbes algébriques, by Gabriel Cramer,
in which he set up the frame for the theory of determinants [24].! The second is
entitled Sur une contradiction apparente dans la doctrine des lignes courbes and was
written by Leonhard Euler [34]. It concerns Cramer’s paradox, which is related to
algebraic curves. Two propositions were thought to be true, although only partially
proven, at the beginning of the 18th century [34, 220-221}:

(1) Two distinct algebraic curves of order m and n have mn points in common.
It was known that some could be multiple, complex, or infinite, but mathematicians
also knew of examples for which these points were all simple and real.

(2) n(n + 3)/2 points are necessary and sufficient to determine a curve of
order n.

! The name *‘determinant” was introduced by Cauchy in [17]. In fact, in 1693, Gottfried Wilhelm
Leibniz, in a letter to the Marquis de I’'Hospital [67, 2:238-240] (for an English translation, see [88,
267-269]), had given the first notation with double index of a system of linear equations and a rule to
calculate the determinant. This letter was only published for the first time in 1850, so Cramer’s text is
usually referred to as the starting point of the theory of determinants.
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The paradox appears for n more than two because then n(n + 3)/2 = n?, so it
seems that two algebraic curves may have more points in common than is sufficient
to determine each of them. Colin MacLaurin, in 1720, was one of the first to identify
this paradox, and Cramer reformulated it in 1750 in the treatise quoted above. Also
in 1750, Euler identified the nature of the problem. In his work, after a close analysis
of the situation, Euler explained that in some cases Proposition (2) might not be
true, as n equations might not be sufficient to determine n values. He gave some
examples to show that one equation might be comprised (comprise in French) in
one or several others. This text is quite unusual for its time, as mathematicians
then talked about linear equations only in order to develop methods for solving
them. Euler’s approach is more qualitative, and his text is one of the first in which
the question of the dependence of linear equations is raised and pointed out,
although the issue of the solution is still important, and marks a difference compared
to the modern definition of linear dependence. Indeed, he starts with the case of
two equations and gives the example “3x — 2y = 5 and 4y = 6x — 10.” He says
“It is not possible to determine the two unknowns x and y, as while eliminating x,
the other disappears and an identical equation remains, of which nothing can be
deduced. The reason for such an incident is at first quite obvious, as the second
equation can be changed into 6x — 4y = 10, which, being nothing but the double
of the first 3x — 2y = 5, does not differ from it at all”” [34, 226].

No one can doubt that something so “obvious” could not have been noticed by
any mathematician of Euler’s time, but one equation being the double of the other
is not sufficient in itself to assert that one unknown is not determined; Euler had
to solve the system by elimination and substitution in order to give a convincing
proof and to point out the actual “incident.”

For three equations, he gave an example with two similar equations, and another
example in which one equation is the double of the sum of the two others. In these
two cases, there is no trial for solving the equations. The conclusion is: ‘““Thus, when
one says that to determine three unknowns, it is sufficient to have three equations,
the restriction needs to be added that these three equations are so different that
none is already comprised in the others” [34, 226].

For four equations, Euler remarked that, in some cases, two unknowns may not
be determined, and he provided the following example:

Sx+7y —4z+3v—24 =0,
2x — 3y + 5z — 6v — 20 =0,
x+ 13y — 14z + 15v + 16 = 0,
3x + 10y — 92+ 9v — 4 =0,
they are only worth two, as after extracting from the third the value of
x = —13y + 14z — 15v — 16,
and after its substitution in the second, one gets:

_B-dv-2 . D43+
Y= 29 29 ;
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the substitution of these two values of x and y in the first and fourth equations leads to identical
equations, therefore the quantities z and v will remain undetermined. [34, 227)

Here again the proof turns on eliminations and substitutions, and Euler does not
mention any linear relations between the equations, although they are quite obvious
(1) — (2) = (4) and (1) — 2 X (2) = (3), for instance).

After these examples, he concluded with a general statement: “When one says
that to determine n unknown quantities, it is sufficient to have n equations giving
their mutual relations, the restriction must be added that they are all different or
that none is confined [enfermée] in the others” [34, 228]. The terms ‘“comprised”
or “confined” are not clearly defined. In a modern context, they would point out
a linear relation between the equations, but this is not exactly the meaning given
by Euler. In his approach, these terms refer to an “incident” in the final process
of elimination and substitution that results in one or several unknowns remaining
undetermined. Of course, he notes, although not systematically, the linear relations
between the equations, but his proofs never rely on this fact. So in the nature of
this definition there is nothing a priori linear. This is why I propose to say that
Euler introduced the notion of inclusive dependence rather than linear dependence.
Of course, the two notions coincide when applied to linear equations, and the
distinction may seem superfluous, but inclusive dependence is embedded in the
context of equations and cannot be transferred into other linear situations (like n-
tuples). We will see that this had an influence on the development of linear algebra
over the next hundred years.

On the other hand, Euler’s definition is very close to intuition and suited his
purpose. When he treated the case n = 4 (cf. the quotation above), he developed
arguments in which one can recognize an empirical intuition of the notion of rank.
Moreover, at the end of his text, Euler developed similar considerations in relation
to Cramer’s paradox:

When two lines of fourth order meet in 16 points, as 14 points, when they lead to different
equations, are sufficient to determine one line of this order, these 16 points will always be
such that three or more equations are already comprised in the others. In this way, these 16

points do not determine more than if there were 13 or 12 or even less points and in order to
determine the curve entirely, one must add to these 16 points one or two others.. .. [34, 223]

This kind of reasoning on equations is based on intuition and uses little theory.
Yet it was to remain an isolated approach. Indeed, after Cramer’s work, the theory
of determinants became a very prosperous branch of mathematical activity [74].
As a consequence, the study of linear equations became a part of this new theory
and Euler’s ideas did not immediately generate further investigations. In fact, for
nearly a century, the questions related to undetermined and inconsistent systems
of linear equations were neglected, whereas it is only through these questions that
one can approach the notions of dependence and rank. From around 1840 to 1879,
within the theory of determinants, the concepts of rank took shape. In the context
of linear equations, rank is an invariant which determines the size of the set of
solutions (minimal number of generators/maximal number of independent solu-
tions) and, by a process of duality, the number of relations of dependence (minimal
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number of equations describing the set of solutions/maximal number of independent
equations). To create the concept of rank containing these different aspects, mathe-
maticians had to overcome several obstacles and change their point of view on
certain elementary notions. I analyzed this process in detail in [30]. I give just the
main outlines here.

One can list three main sources of obstacles and difficulties:

(1) the recognition of the invariance which was, if not unseen, at least assumed
without necessity of proof,

(2) the possibility of the same definition of dependence between equations
and n-tuples, and

(3) the anticipation of the concept of duality and the consideration of all the
systems of equations which have the same set of solutions.

Of course, these three points are not independent, and the progress relative to
each of them influenced the progress of the other two. The concept of inclusive
dependence, as I pointed out in Euler’s work, remained but was also rapidly con-
nected to the evanescence of the main determinant of a square system of linear
equations. Moreover, the notion of minor allowed a determination of the “size”
of the set of solutions in relation to the maximal number of independent equations.
Indeed, the maximal order r of nonevanescent minors in a system of p linear
equations in n unknowns gives the number n-r of arbitrary unknowns to be chosen
to describe the set of solutions of a consistent system and represents the maximal
number of independent equations in the system. Such ideas became well known
by the middle of the 19th century.? The classical method consists in first isolating
the part of the equations corresponding to a nonzero minor of maximal order and
then using Cramer’s rule with the other unknowns as parameters appearing in the
second members. This manipulation requires theoretical justifications, which prior
discoveries on determinants made explicit. Moreover, this first phase opened new
ways to more systematic investigation into systems of equations. However, it was
more the search for a practical method than concern for theoretical achievement
that led to this first step. Henry J. S. Smith’s approach pointed out a change of
point of view which marked a fundamental step. Indeed, in a paper of 1861 [89],
he showed that the maximal order of a nonzero minor is also related to the maximal
number of independent solutions. This does not help, directly, to describe the set
of solutions better. In this sense it is more a theoretical than a practical result, and
this shows the slight but decisive change of approach marked by Smith, who not
only was interested in giving ways to solve the systems of equations, but also studied
them on a theoretical basis.

Between 1840 and 1879 the concept of rank is, therefore, implicitly central to

2 The first results in this direction were developed by several mathematicians (for a conjoint overview,
I give some references in [74}: Sylvester in 1840 [91 or 74, 1:227-235], Cayley in 1843 [20 or 74, 2:14-17],
Sylvester in 1850 [92 or 74, 2:50-52], Baltzer in 1857 [3], Trudi in 1862 [74, 3:84-85], Baltzer in 1864
[74, 3:227-235], Dodgson in 1867 [74, 2:85-86], Rouché in 1880 [85 or 74, 3:86-90], and Fontené
[74, 3:90-92].
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the description of systems of linear equations. With the use of determinants, an
analogous treatment of the question of dependence relative to equations and »n-
tuples is possible. Yet the technicality of demonstrations involving determinants
seems to have made it difficult to provide a clear and concise overview of all the
relations of invariance and duality involved. The work developed in this period is
very different from Euler’s [34]. The tools are more sophisticated, but their use
requires so much technique that intuition is averted.

Georg Ferdinand Frobenius managed to achieve this goal of clarity and concise-
ness, while also defining premises without the use of determinant. Indeed, in a
paper of 1875, “Uber das Pfaffsche Problem” [44], his first original idea was to
give a common definition of independence for equations and n-tuples without
using determinants:

Several particular solutions
AP, AP, (x=1,....k),

will be said to be independent or different, when ¢;AL + --- + ;AP cannot be zero for
a =1, ..., n, without ¢y, ..., ¢, being all zero, in other words, when the k linear forms
ABy + -« + APy, are independent. [44, 236]

This is the modern definition still in use today.

Frobenius then introduced the notion of “associate” [“zugeordnet” or “adjung-
irt”’] system. A system of linear homogeneous equations being given, a homogeneous
system will be called an “associate” system if the coefficients of its equations
constitute a basis of solutions of the original system. Of course, this correspondence
is a symmetrical relation. In the two first pages of this section, Frobenius set up
the basis for the notion of duality by considering n-tuples and equations as similar
objects that can be seen from two different angles. Given a system of n linear
homogeneous equations in p unknowns, with maximal order of nonevanescent
minor equal to r, he showed that one can find a maximum of p-r independent
solutions. Given one of this set of solutions (a basis), he built an ““associate” system
by simply reversing the role of coefficients and unknowns in the equations, and
showed that any basis for solution of the “associate” system has an “associate”
system with the same set of solutions as the initial system of equations. He then
easily pointed out and related all the invariants attached to the number r. His
approach used technical theorems and methods of the theory of determinants, but
most of his results are expressed without the use of determinants, except for the
potential definition of rank. In a paper of 1879, “Uber homogene totale Differen-
tialgleichungen”™ [45], he used the term rank for the first time and defined it in
these terms: “When in a determinant, all minors of order (m + 1) vanish, but those
of order m are not all zero, I call the rank [Rang] of the determinant the value of
m” [45, 1].

With Frobenius, it can be considered that within the theory of determinants the
concept of rank reached its maturity. This can be seen in a paper of 1905, entitled
“Zur Theorie der linearen Gleichungen’ [46], in which he gave a complete struc-
tured report of theoretical results on the study of linear equations.
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A few interesting complementary results were established by Alfredo Capelli
and Giovanni Gabrieri between 1886 and 1891 [74, 4:102-106]. First, they showed
that any system of rank r is equivalent to a triangular system of r equations. Then
they pointed out and proved that the rank of the lines of a matrix is the same as
the rank of its rows. They also showed that a system of equations is consistent if
and only if the rank of the array of their coefficients is the same as the rank of the
array augmented by the row of second members.

At this stage of the analysis, the main aspect to keep in mind is that the study
of linear equations and the theory of determinants represent the context in which
the first theoretical concepts (dependence, rank, and duality) related to vector space
theory were created and applied in finite dimension. Between 1750 and the beginning
of the 20th century, determinants were omnipresent in all problems—both practical
and theoretical—involving linearity (except in some works related to geometry,
which will be studied in the following sections). This fact had an influence on the
nature of the concepts, even if the role of determinants has been minimized by the
axiomatic approach which gave a rather drastically different organization and order
of priority in the coordination of elementary concepts. In particular, the concept
of rank in the axiomatic theory of vector spaces is inseparable from the concept
of dimension, which is a synthesis of the relations between the concepts of generators
and dependence and can be (and usually is) introduced before the idea of duality.
Still, even today, the concept of rank (not of dimension) is important in many
problems of linear algebra, and the meaning it acquired over nearly two centuries,
during which determinants were its support, is still an inevitable component of
its nature.

THE CONCEPT OF VECTOR IN GEOMETRY?

The relation between vector space theory and geometry seems somehow obvious
to many people, because of the use of geometric representation to illustrate vectorial
ideas, because of the use of a common vocabulary in the two fields, and because
vectorial geometry is a very powerful method. The parallelogram of velocities,
which is a geometric representation for the addition of vectors, has been used since
the Middle Ages and even since Antiquity, but, as we shall see, it was far from
adequate for the creation of the concept of directed line segment. Linearity refers
to line in geometry, which is one of the basic figures. But the circle is also basic.
The analytical method, introduced independently by René Descartes in his Géomé-
trie [26] and Pierre de Fermat in Ad Locos Planos et Solidos Isagoge [37], organized
geometry according to different criteria. The equation of a line being of the first
order, it became the first level. The change of coordinates, useful, for instance, in
the search for invariants to categorize curves, gave a framework for the study of
linear transformations. Therefore, with the use of analytical methods in geometry,
linearity became a starting point or a central question in many problems.

As early as 1679, in a letter to Christian Huygens (which remained unpublished

3 For work complementary to the ideas presented in this section, see [25].
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until 1833), Gottfried Wilhelm Leibniz criticized the analytical method and tried—
although unsuccessfully—to create an intrinsic geometric analysis which he called
the “geometry of situation” [66]. The reasons for his failure, so obvious to a modern
reader, are less interesting than the content of his criticism, which gave an accurate
analysis not only of the weakness of the analytical method but also of the nature
of what an intrinsic geometric analysis should be. He wrote: “I am still not satisfied
with algebra because it does not give the shortest methods or the most beautiful
constructions in geometry. This is why I believe that, as far as geometry is concerned,
we need still another analysis which is distinctly geometrical or linear and which
will express situation directly as algebra expresses magnitudes” [67, 2:18-19]. And
he continued: ““Algebra is the characteristic for undetermined numbers or magni-
tudes only, but it does not express situation, angles and motion directly. Hence it
is often difficult to analyze the properties of a figure by calculation, and still more
difficult to find very convenient geometrical demonstrations and constructions, even
when the algebraic calculation is completed” [67, 2:20].

The arbitrary choice of a system of coordinates being a transitory and external
step in a geometrical demonstration was also a major philosophical concern in the
use of the analytical method. From the beginning of the 19th century, the search
for an intrinsic geometrical analysis became a preoccupation for several mathemati-
cians on the basis of the criticism of the analytical methods as expressed above. In
fact, an initial answer to this problem came, somewhat indirectly, from the geometri-
cal representation of complex numbers. I say indirectly, because the principles for
the geometrical representation of complex numbers came not only from the search
for a geometric analysis but also, and sometimes mainly, from the motivation to
legitimize the use of these numbers which were rejected by mathematicians as being
inadequate to mathematical reality.* The question of the geometrical representation
of complex numbers has been analyzed in various historical works (e.g., [15; 60,
3:117-158; 18; 11; 25; or 2]). In John Wallis’s work [96, 2:286-295], one finds an
initial attempt to illustrate complex numbers in geometry, but his model of gained
and lost surfaces under the sea failed to give an illustration of multiplication. Within
a few years, and independently, five practically unknown mathematicians from
various countries set up the principle of the geometric representation of complex
numbers: Caspar Wessel in 1799 [99], I’abbé Buée in 1805 [12], Jean Robert Argand
in 1806 [1], C. V. Mourey in 1828 [73], and John Warren in 1828 [97]. However, it
was only with Carl Friedrich Gauss around 1831 [49] and Augustin-Louis Cauchy
around 1849 [18], that these principles became widely known and accepted among
mathematicians. Complex numbers provided a model for a bidimensional geometri-
cal analysis. In some of the works quoted above (especially Wessel’s), the authors
tried to generalize their ideas on space geometry, but their attempts always foun-
dered on the difficult problem of multiplication. During the same period of time,
two mathematicians—August Ferdinand Mébius and Giusto Bellavitis—developed

4 They were still called impossible or imaginary quantities.
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two different systems of geometrical analysis valid for dimension three as well as
for dimension two, which laid the basis for vectorial geometry.

Mobius was one of the first mathematicians to have drawn out the notion of
directed line segment. In the first chapter of his Barycentrische Calcul [70], the
principles of which were first conceived around 1818, he designated a line segment
from a point A to a point B by the notation AB and stated that AB = —BA [70,
1-5]; he then defined the addition of collinear segments. The central theorem of
barycentric calculus is:

Given any number (¥) of points, A, B, C, ..., N with coefficients 4, b, c, ..., n where the sum
of the coefficients does not equal zero, there can always be found one (and only one) point
S—the centroid—which point has the property that if one draws parallel lines (pointing in
any direction) through the given points and the point S, and if these lines intersect some plane
in the points A’, B, C’, ..., N, §’, then one always has:

aAA' + bBB' + cCC' +---+nNN =(@+b+c+---+ n)S§
and consequently if the plane goes through S itself, then
aAA' + bBB' + ¢cCC' + --- + nNN' = 0.
[70, 9-101}

In the case where the sum of the coefficients equals zero, Mobius noted, without
further comment, that the point is sent to infinity.> Mobius’ theory provided an
algebra of points, but his goal was not to present an algebraic “structure” in all its
details; he wanted rather to exhibit a tool for solving geometrical and physical
problems. Indeed, the applications he gave are convincing and numerous. Moreover,
his influence is important on a theoretical level; he inspired Christian von Staudt
in the invention of projective coordinates, which freed projective geometry from
any metric consideration and allowed a better understanding of the nature of
projective properties.

It is somehow surprising that Mobius did not define the addition of noncollinear
segments in his barycentric calculus; in fact, he did so eventually, but only in 1843,
in his Elemente der Mechanik des Himmels [71]:°

The position of a point B towards a point A is given, when its distance from A and the direction
of the line AB are given. A third point B’ will therefore have the same position towards a
fourth point A’, as B towards A, if the segments AB and A’B’ have the same length and direction
(not opposite), which will be shortly formulated by: AB = A’B’. With this characterization, we
can easily prove the following theorems, with elementary geometry:

3 In his 1844 Ausdehnungslehre (cf. below), Grassmann rediscovered barycentric calculus as an applica-
tion of his more general theory, and he studied this case, showing that the linear combination of points
is to be considered as a vector, when the sum of the coefficients is zero. Grassmann had great admiration
for Mobius, who was one of the rare mathematicians to recognize his value; they wrote to each other
over a long period.

6 Mobius may have been influenced by Bellavitis, who had already discovered his Calcolo delle
Equipollenze (see below) and had written to Mobius in 1835 [72, 4:717-718]. He had already been in
contact with Grassmann as early as 1840.
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L. If AB = A'B’, then we also have: AA’ = BB'.
I1. If AA’ = BB’ and BB’ = CC’, then we also have: AA’ = CC'.
III. If AB = A’B’ and BC = B'C/, then we also have: AC = A'C’. [71, 1-2]

He also defined the multiplication by a non-negative number.

Finally, in 1862, M&bius wrote “Uber geometrische Addition und Multiplication,”
which was only published in 1887, in the first edition of his collected work after
being revised in 1865 [72, 4:659-697]. There, he defined addition of noncollinear
segments, multiplication by any number, and two kinds of products of segments,
which were directly inspired by Grassmann’s work.

Mobius had the recognition of various famous mathematicians including Gauss,
Cauchy, Jacobi, and Dirichlet (cf. Baltzer’s remarks in [72, 1:xi—xii]). He created
an efficient and practical method of solving geometrical problems; but although he
pointed out some fundamental aspects of vectorial geometry, his theory, based on
an intuitive perception of space, failed to offer the possibility of extension towards
a more general concept of vector (or barycentric) space.

With his Calcolo delle Equipollenze, Giusto Bellavitis may be considered as the
first mathematician to have defined, in 1833 [7], the addition of vectors in space:

(2°) Two straight lines are called equipollent if they are equal, parallel and directed in the
same sense.

(3°) If two or more straight lines are related in such a way that the second extremity of each
line coincides with the first extremity of the following, then the line which together with these
forms a polygon (regular or irregular), and which is drawn from the first extremity of the last
line is called the equipollent-sum. [8, 246]

He also defined the multiplication of coplanar directed line segments. In fact,
the calculus of equipollences offered no more possibilities than complex numbers.
Bellavitis himself admitted that his discovery was based on his reading of Buée’s
work [12], but throughout his life, he refused to accept complex numbers as part
of mathematics. Indeed, his presentation is especially original for two main reasons:
the objects on which the calculus is created are purely geometrical entities (not
like complex numbers), and the first part of the calculus can be applied in space
geometry, although, like many others, Bellavitis failed to generalize the product of
directed line segments to space. This generalization was to be achieved by the Irish
mathematician, Sir William Rowan Hamilton.

Hamilton had long been interested in a generalization to three dimensions of
the geometric representation of complex numbers, when he finally invented the
quaternions around 1843. His philosophical position towards the nature of algebra
and his ““Science of Pure Time” have been discussed in several works (for references,
see [61] and [25, 17-46]). For the purpose of this work and in this paragraph, I will
focus on the role of quaternions in the evolution of the concept of vector. From
1835 at least, Hamilton sought the equivalent of complex numbers for dimension
three. Like all his predecessors, and quite naturally, he was looking for triplets with
an addition and a multiplication. He had established the list of properties the two
operations should have (equivalent to the structure of a field). After several at-
tempts, all of which failed, Hamilton changed his point of view slightly by focusing
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on the geometrical nature of multiplication in dimension 2 rather than on general
algebraic properties. He then pointed out that this multiplication is based on the
ratio of lengths of the two vectors and the angle they form. He then transposed
this idea in dimension three. An analysis of the problem [59, 1:106-110] led him
to show that the multiplication in dimension 3 should take into account the ratio
of lengths, and the rotation between the two directions of the vectors. The first is
a one-dimensional value, and the second depends on the direction of the axis of
the rotation (a two-dimensional value) and the angle (a one-dimensional value).

This change towards the geometric signification of multiplication pointed out the
fact that quadruplets suited the problem of three-dimensional geometric algebra,
whereas triplets did not. It also showed the impossibility of preserving commutativ-
ity, as rotations in space do not commute. In 1844, Hamilton was able to publish
the first results of his discovery [58]. The quaternions are algebraic numbers which
allow a geometric representation in space. The multiplication represents, at the
same time, the scalar product and the vector product. Hamilton’s discovery had
widespread influence on the development of vector analysis [25, 17-46]. Yet this
development, initiated by quaternions, is not the most important for the theory of
vector spaces. Indeed, it is mostly because of the change they introduced in algebra
that quaternions had a strong influence on the emergence of linear algebra. This
point will be discussed below.

More generally, the elaboration of systems of geometric calculus seems to have
had, in the long term, more influence on the development of vector analysis than
on the theory of vector space. Yet its historical importance should not be underesti-
mated. Indeed, geometry is a central part of mathematics, potentially rich in ques-
tioning. The possibility of a geometric interpretation of algebraic results is therefore
a source of enrichment as it gives to concepts an intuitive background and more
consistency. The use of geometric terms in the general theory of vector spaces is
proof of this fact and highlights the privileged relations between geometry and
linear algebra.

LINEAR ALGEBRA IN THE DIALECTIC EXCHANGES BETWEEN
GEOMETRY AND ALGEBRA

The attempts described above to create an intrinsic geometrical analysis can be
viewed either as a desire to free geometry from the external invasion of arithmetic
or as an attempt to import some aspects of algebra into geometry. In any case,
from the discovery of the analytical method, the new relation between algebra and
geometry meant that the evolution of the two fields was henceforth intrinsically
linked in a dialectical process. In this sense, the use of the analytical method in
geometry generated the creation of most of the tools of matrix algebra through the
study of linear substitutions (i.e., change of coordinates). The concept of geometric
transformation as something which applies to the whole space or plane is recent
and was really only fully established through Felix Klein’s Erlangen Program [64].
Yet many problems in analytical geometry led to the application of changes of
coordinates, and the study of linear substitutions (as they were known at the time)
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is similar to that of linear transformations. Moreover, the use of linear substitution
appeared not only in geometry but also, for instance, in the study of quadratic
forms with integral coefficients in various problems of arithmetic and in the solution
of differential equations.

In 1770, Euler, in “Problema algebricum ob affectiones prorsus singulares memor-
abile,” studied questions which can be interpreted in terms of orthogonal linear
substitutions [35]. In fact, the objects he was interested in were squares of numbers,
which he compared to a magic square:

A, B, C,
D,E,F,
G,H, I,

which satisfies the following conditions:

1.A2+ B2+ C?*=1, 4.AB+ DE+ GH =0,
2D+ E*+ F?=1, 5.AC+ DF+ GI=0,
3G2+H*+ P =1, 6.BC+ EF+ HI=0,
7.A2+ D>+ G*>=1, 10.AD + BE+ CF=0,
8. B*+E*+ H*=1, 11.AG+ BH+ CI=0,
9.C2+F2+ =1, 12.DG+ EH+ FI=0.

[35, 75]

He first established that these 12 conditions are equivalent to the fact that the
transformation

X=Ax+By+ Cz; Y=Dx+ Ey + Fz; Z = Gx + Hy + Iz;

is such that XX + YY + ZZ = xx + yy + zz [35, 77]. He also noted that the first
6 relations imply the last 6. Then he showed that these relations are equivalent to
9 others, which, in modern terms, states that the matrix equals the opposite of the
matrix of cofactors.” He did not raise the question of independence of the relations,
but used the intuitive reasoning that the n? coefficients being bound by n(n + 1)/
2 conditions, an orthogonal substitution depends on n(n — 1)/2 parameters.

For n = 3 he showed that an orthogonal transformation can be written as the
product of n(n — 1)/2 = 3 orthogonal substitutions which only modify two axes at
a time. Euler’s method introduced three angles (which are still known in mechanics
as Euler’s angles) to characterize an orthogonal substitution. Moreover, Euler did
not stop with n = 3; using only algebra, he gave a full solution for n = 4 and 5.
Finally, he said that for any n, an orthogonal substitution can be represented by
n(n — 1)/2 parameters as its n* coefficients depend on n(n + 1)/2 relations.

Euler’s approach remained essentially algebraic (even if his results have very
interesting geometrical interpretations for n = 3), which is why he did not limit

7 In fact, Euler made a small mistake that led him to ignore positive isometries. Indeed, if A is an
orthogonal matrix, then A™ = A' and A™! = (1/det(A))C(A)", therefore A = (1/det(A))C(A). Thus,
Euler’s proof is only valid when det(4) = —1.
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himself to dimension three; the situation was quite different in geometry, as we
will see below.

Between 1773 and 1775 in his “Recherche d’arithmétique,” Joseph Louis La-
grange was led to study the effect of linear substitutions with integral coefficients
in a quadratic form of two variables, while studying the properties of numbers
which are the sum of two squares [65, 3:695/795]. He established the fact that the
discriminant (he did not give it a name) of the new quadratic form is the product
of the old discriminant by the square of a quantity which has since been known
as the determinant of the linear substitution. Around 1798, in his Disquisitiones
arithmeticae, Gauss studied the same question with two and three variables [48].
He introduced a notation which was very similar to a matrix to characterize the
linear substitution and, moreover, established the formula for the composition of
two linear substitutions:®

268. If a ternary form f, in the variables x, x’, x", and determinant D, is transformed into
a ternary form g, whose determinant is E, by the substitution

"o

x=ay+ By +yy, x'=dy+ By +yy, X =a"y+ 8y +yY,

the coefficients &, 8, v, ¢, ... being integers, we will say briefly that the form fis transformed
into g by the substitution

a By o, B,y o, B,y ... (8),

and that f contains g or that g is contained in f....
270. If the ternary form f contains the ternary form f’ and this one contains f”, the form
f also contains f”. Thus it is easy to see that if fis transformed into f’ by the substitution

o B,y o, 8,7 o, B, ¥,
and f’ into f” by the substitution
8¢ 8,8,0; 8,6,

f will be transformed into f” by the substitution

ab+ B8 +vy&, ae + Be' + ye", al+ B + vy
'+ B8 +y' 8, a's + B's" +y'e, a'l+ B+,
a”6+ Bllal + ‘yﬂsl, a"s + B”el + YIISII’ a"§+ B"f’ + ,yﬂgl;'...

[48, 306-309]

This marks a fundamental step towards the concept of a matrix; not only did this
text introduce a symbolic notation for linear substitutions, but it used it to represent
multiplication.

Yet, for a certain time, the concept of determinant was not clearly identified as
separate from the concept of matrix, which was a source of confusion. For instance,
this might have been a reason why the noncommutativity of the product of matrices
had not been pointed out whereas, on the contrary, it was known that det(AB) =

8 In his memoir on determinants [17], Cauchy showed that the product of two determinants of the
same order is also a determinant, and he recognized the influence of Gauss in his discovery.
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det(A)det(B) = det(BA). There are, however, some even more fundamental rea-
sons, like the fact that the multiplication of matrices was not seen as an algebraic
operation but just as a local process. This attitude towards the algebraic status of
matrices changed around the middle of the 19th century, when matrices appeared
to be connected to various objects and when recent developments (like the discovery
of quaternions) had enlarged the field of algebra. From this perspective, the English
algebraic school—most notably Arthur Cayley and James Joseph Sylvester—was
the most active center for progress in this direction. But one can find similar ideas
around the same time in Germany, for instance. Indeed, one of the first attempts
to give a systematic listing of algebraic properties of matrices appeared in Ferdinand
G. M. Eisenstein’s work [33]; in particular, noncommutativity is singled out. He
also used one single letter to refer to a matrix and to describe algebraic relations,
which was one of the most important changes in the treatment of matrix operations.
The study of the algebraic operations on matrices (square or rectangular) reached
a first stage of maturation with the publication in 1858 of Cayley’s famous “Memoir
on the Theory of Matrices” [22], in which the author gathered, in a detailed and
carefully organized report, all the results discovered within the two preceding de-
cades.

As I pointed out above, the use of coordinates made the generalization of geome-
try to more than three dimensions possible and, in a way, natural. But the desire
for legitimacy towards reality prevented such a generalization until the middle of
the 19th century. For instance, Mébius, in his barycentric calculus, defined two
figures as equal and similar when they are such that every point of the first figure
can be associated with a point in the other, so that the distance between any two
points in the first figure is equal to the distance between the two associated points
in the second figure [70, 181-183]. He then showed that two equal and similar
figures in the same plane can be brought into coincidence, and he remarked that
this is not true for solid figures. He concluded that

for the coincidence of two equal and similar systems A, B, C,D, ... and A", B’, C',D’, ... in
space of three dimensions, in which the points D, E, ... and D', E’, ... lie on opposite sides
of the planes ABC and A’B'C’, it will be necessary, we must conclude from analogy, that we
should be able to let one system make a half revolution in a space of four dimensions. But
since such a space cannot be thought of, so is also coincidence, in this case, impossible. [70, 526]

Mobius’ attitude is usual for his time. He could have ventured into space of more
than three dimensions, but, since it lay beyond the realm of possibility, neither he
nor his contemporaries went further into this field. Cayley, in 1846, was one of the
first to have made a decisive step in this direction. In his paper, entitled “Sur
quelques résultats de géométrie de position,” he showed how one can obtain results
in three-dimensional geometry by working in a space of more than three dimensions:

One can, without using any metaphysical notions towards the possibility of a four-dimensional
space, reason as follows (everything may also be easily translated into purely analytical lan-
guage): Assuming four dimensions in space, one must consider Jines determined by two points,
half-planes determined by three points, planes determined by four points; (the intersection of
two planes is therefore a half-plane, etc.). Ordinary space must be considered as a plane, and
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its intersection with another plane is an ordinary plane, with a half-plane, an ordinary line,
and with a line, an ordinary point. [21, 217-218]

On the other hand, the development of mathematics in the 19th century facilitated
and justified the use of spaces of more than three dimensions. In this sense, two
types of events were fundamental:

(1) The discussions of the foundations of geometry, with the discovery of non-
Euclidean geometry and the development of projective and algebraic geometry,
enlarged the traditional field of investigation of geometry.

(2) The discovery of the quaternions by Hamilton annihilated George Pea-
cock’s principle of equivalent forms, which stated that any algebra should have the
law of arithmetic as a foundation. This opened the way to many discoveries of new
types of algebra and ultimately resulted in the evolution of algebra as an independent
field of arithmetic. (See [75; 80; 78; 79}].)

In the second half of the 19th century, linear algebra still did not exist as a unified
field, but a geometry in dimension n was developed on the basis of analytic geometry
and the theory of determinants and matrices. In this new field, one of the most
productive branches was the study of n-ary forms which was the continuation of
the work of Lagrange and Gauss on quadratic forms. Many mathematicians worked
in this direction, and their investigations led, among other things, to most of the
results concerning the reduction of matrices.

GRASSMANN’S AUSDEHNUNGSLEHRE: AN ISOLATED
SINGULARITY?®

In 1844, Hermann Grassmann published the first version of his Lineale Ausdehn-
ungslehre (literally “linear theory of extension”) [51]. This was announced by the
author as the first part of a general theory, die Ausdehnungslehre, never completed
by Grassmann. This work was highly original for its time and remains so today.
The roots of the Ausdehnungslehre are varied from both a mathematical and a
philosophical point of view, but geometry and the nature of space represent im-
portant sources of Grassmann’s reflection, even though his theory of extension
contains more ambitious prospects. Grassmann, who studied theology and philoso-
phy, was a self-taught mathematician and was mainly influenced by the work of his
father, Justus Grassmann. His research on geometrical analysis can be traced back
at least to 1832; in 1840, in order to obtain a better position as a secondary school
teacher, he wrote a long essay (over 200 pages) on the theory of tides (“Theorie
der Ebbe und Flut”), which was published only posthumously in his collected works
[53, 3:1-238]. In this work, he laid the bases of his geometrical analysis and gave
substantially simplified solutions to many results in Lagrange’s Mécanique analytique
and Laplace’s Mécanique céleste. In the foreword of the Ausdehnungslehre, he
recalled the origins of his mathematical inspiration:

9 For more details on Grassmann, one can consult, e.g., [68; 69; 38; 39; 40; 41, preface; 31; 32).
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The initial incentive was provided by the consideration of negatives in geometry; I was used
to regarding displacements AB and BA as opposite magnitudes. From this it follows that if
A, B, C are points of a straight line, then AB + BC = AC is always true, whether AB and
BC are directed similarly or oppositely, that is even if C lies between A and B. In the latter case
AB and BC are not interpreted merely as length, but rather their directions are simultaneously
retained as well, according to which they are precisely oppositely oriented. Thus the distinction
was drawn between the sum of lengths and the sum of such displacements in which the directions
were taken into account. From this there followed the demand to establish this latter concept
of a sum, not only for the case that the displacements were similarly or oppositely directed,
but also for all other cases. This can most easily be accomplished if the law AB + BC = AC
is imposed even when A, B, C do not lie on a single straight line.

Thus the first step was taken toward an analysis that subsequently led to the new branch of
mathematics presented here. However I did not then recognize the rich and fruitful domain
I had reached; rather, that result seemed scarcely worthy of note until it was combined with
a related idea.

While 1 was pursuing the concept of product in geometry as it has been established by my
father,'® I concluded that not only rectangles but also parallelograms in general may be regarded
as products of an adjacent pair of their sides, provided one again interprets the product, not
as the product of their lengths, but as that of the two displacements with their directions taken
into account. When I combined this concept of the product with that previously established
for the sum, the most striking harmony resulted. ...

This harmony did indeed enable me to perceive that a completely new domain had thus
been disclosed, one that could lead to important results.. ..

Thus I felt entitled to hope that in this new analysis I have found the only natural way in
which mathematics should be applied to nature, and likewise that in which geometry should
be treated if it is to lead to general and fruitful results. [51, v-viii]

Grassmann claimed that he had created a new theory which, although it could
be applied to geometry, mechanics, and various other scientific fields, was indepen-
dent of them. Indeed, he thought that geometry should not be part of mathematics,
since it refers to reality which validates some of its processes: it is a science outside
mathematics, and the theory of extension is the mathematical model to be applied
to it. Moreover, Grassmann made his theory self contained and independent of the
rest of mathematics, in the sense that it relied only on the elementary rules of
mathematical reasoning. As a consequence, it included many preliminary definitions
and introduced many new notions with new words, which Grassmann carefully took
from German rather than Latin roots. Grassmann also had precise ideas on the
type of presentation mathematical work should follow: “Now we characterize a
method of treatment as scientific if the reader is thereby on the one hand led
necessarily to recognize the individual truths, and on the other is placed in a position
from which he can survey the broader sweep of the development” [51, xxix—xxx].

This implies a dialectical presentation based on the contrast between formal and
real aspects of the theory: general results must be deduced from general objects
and their properties, but at each step of the theory, the reader must be able to see
from which concrete situation and by which means the general theory proceeds.
The choice of presentation is essential in Grassmann’s work; this was also an obstacle

9Cf. J. G. Grassmann, Raumlehre, Teil II, p. 194, and Trigonometrie, p- 10 (Berlin; G. Reimer, 1824
and 1835). [This note is Grassmann’s.)
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that most of Grassmann’s contemporaries did not get beyond. As a matter of
fact, critics of Grassmann’s work often pointed out its lack of clarity, due to an
overwhelming tendency to mix up mathematical results with obscure philosophical
considerations. Grassmann was also often reproached for giving applications only
after general results, which made his ideas very hard to follow.

For instance, Ernst Friedrich Apelt, in a letter to Mobius, written on 3 September,
1845, asked:

Have you read Grassmann’s strange Ausdehnungslehre? 1 know it only from Grunter’s Archiv;
it seems to me that a false philosophy of mathematics lies at its foundation. The essential
character of mathematical knowledge, its intuitiveness [Anschaulichkeit], seems to have been
expelled from the work. Such an abstract theory of extension as he seeks could only be
developed from concepts. But the source of mathematical knowledge lies not in concepts but
in intuition. [53, 3:101; English translation, 25, 79]

Ernst Eduard Kummer, who was asked to give an expert report on Grassmann’s
work wrote in a similar vein on 12 June, 1847:

Regarding first what concerns the form or the representation of the treatise, one has to admit
in general that it is a failure; for, even though the style is good and full of spirit, it lacks
everywhere a suitable organization of its content in which essential points could be clearly
distinguished from things of less importance. {41, 19]

Grassmann’s philosophical position was not common in his time and cannot be
separated from his mathematical work, of which it is an essential component. In
his thoroughly documented paper [68], Albert C. Lewis has pointed out many
aspects of this fact, and, in particular, the influence of Schleiermacher’s Dialektik
on Grassmann, the main result of which is the use of a dialectic of contrast as an
important source of progress in Grassmann’s theory. The contrasts used by
Grassmann can be listed pairwise: equal-different, discrete—continuous, general—-
particular, real-formal, etc. Grassmann’s mathematical work could not and still
cannot be fully appreciated, if one does not make the effort to understand the
philosophy on which it is based. In 1862, Grassmann published a completely revised
version of the Ausdehnungslehre [52], from which most of the philosophical consid-
erations had been deleted, and he also adopted a more classical mathematical
presentation. Nevertheless, this version met with no more success than the first
one. Certainly, the disappearance of any philosophical background, if it avoided
an initial superficial obstacle, made the mathematical content somewhat difficult
to accept. Moreover, as in 1844, many readers were discouraged by the strict
Euclidean organization, which did not permit a partial reading of the theory, as
one had to read it from the first page in order to understand the meaning of
any concept.

In spite of this lack of success, Grassmann’s theory contained the bases for a
unified theory of linearity, as it introduced, with great accuracy and in a very general
context, elementary concepts such as linear dependence, basis, and dimension.
Furthermore, the mathematical content went quite beyond this point, and some of
the concepts introduced by Grassmann have been a source of inspiration for recent
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theories, such as Elie Cartan’s exterior algebra [16] or more recently, Gian-Carlo
Rota’s exterior calculus [84].1! Let us now turn to a brief analysis of some of
Grassmann’s key ideas.

The 1844 Ausdehnungslehre starts with a long philosophical introduction, in which
Grassmann explains what mathematics is for him, compared to philosophy or other
sciences. This is followed by an introductory chapter about the “General Theory of
Forms,” which attempts to formalize the concept of algebraic addition, subtraction,
multiplication, and division. This could be seen as quite close to an axiomatic
presentation of the structures of group, ring, and field, but, as Lewis noticed, “what
is presented is not a set of unproven statements from which succeeding statements
are deduced; rather, principles of connection, expressed by means of the general
concepts equality and difference, and connection and separation, are symbolized”
[68, 140].

This introductory chapter gives the rule for the investigation of the formal aspect
of the theory of extension as well as the rules for the construction and comparison
of new entities by connections with others. Generation is an important concept in
Grassmann’s work. Entities are not given a priori and are not defined according
to the properties of their operations; they are created through the “evolution” or
the connection of other entities.

The concept of “‘extensive magnitude” is introduced as follows: a given element
is to generate a “system of first order” by the “continuous action of the same
fundamental evolution” (or its opposite); then another “evolution,” applied to each
element of the system of first order will generate a system of second order, etc.,
with no limitation on the number of orders. The concept of “evolution” corresponds
in geometry to a movement along a straight line, but in Grassmann’s theory, it has
a more general meaning, based on “the fundamental intuition of space and time,”
which is given “a priori,”” and is “originally inherent to us like the body is to
the soul” (cf. foreword of [51]). Furthermore, Grassmann, careful to develop an
autonomous theory, did not use the concept of number at the beginning of his
theory. He deduced it, in the fourth chapter only, from the concept of division of
colinear extensive magnitudes. This choice restricted him from using any multiplica-
tion by a scalar (until Chapter 4) and therefore any linear combination. This made
the first third of the 1844 version rather difficult to understand (at least for a modern
reader). Still this framework, with its intuitive basis, proved its effectiveness in
generating a rich model for linearity, as Grassmann managed to define the essential
objects and to prove most of the elementary properties of finite-dimensional vec-
tor spaces.

His approach to the concepts of bases and dimension is particularly interesting,
According to the original mode of generation (which represents the real aspect of
the theory), a system of nth order is generated by n fundamental methods of
evolution, which are given as independent (i.e., none is included in a system gener-

! See also Arno Zaddach’s study of Grassmann’s Algebra [101].
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ated by some of the others). Therefore, the order of a system, which is the “natural”
dimension, is intrinsically related to the concepts of generation and dependence;
it represents the measure of the extension. In order to contrast this particular mode
of generation by a general approach to the theory, the main explicit goal of the
first seven paragraphs of Grassmann’s theory (Section 13 to 20) is to make the
higher order system independent from this initial model of generation. This is
done by using the contrast between the formal and real aspects of the addition of
displacement (the equivalents of our vectors) [51, Section 17-19], in order to attain
the final result: “[A] system of mth order is generable by any m methods of evolution
belonging to it that are mutually independent” [51, 30].

This provides a notion equivalent to the modern concept of basis and gives the
value m a general meaning close to the concept of dimension. Nevertheless, one
aspect is missing, as nothing proves that fewer than m methods of evolution could
not generate the system. In fact, in his proof Grassmann gives a resuit from which
this fact can easily be deduced:

First I will show that if the system is generated by m methods of evolution whatever, I can
replace any given one of them by a new method of evolution (p) belonging to the same system

of mth order and independent of the remaining (m-1), and, using this in combination with the
other (m-1), generate the given system. {51, 30]

This is exactly what is now known as the exchange theorem. In 1844, Grassmann
did not explicitly deduce from this result that a system of mth order cannot be
generated by less than m methods of evolutions, although he admitted it implicitly.
In 1862, the exchange theorem and its consequences were given explicitly in a series
of six theorems [52, 19-21]. Yet, as we shall see below, most of Grassmann’s readers
did not see the importance of this result.

Linear dependence and dimension are also central concepts in Grassmann’s
theory, as they are in modern vector space theory. In the two versions, he gave an
elegant proof of a result equivalent to the formula about the dimension of the sum
and intersection of two subspaces [51, 183-185]:

dim(E + F) + dim(E N F) = dim E + dim F.

The two concepts are related to the two types of products (exterior and regressive)
which are original creations of Grassmann, but a detailed analysis of these would
take us too far afield in this paper.

As mentioned above, Grassmann employed a very different theoretical frame-
work in 1862. In particular, objects are given a priori and defined through operations,
which is closer to modern presentations: given a system of m units (i.e., m linear
independent magnitudes), Grassmann defined a system of order m as the system
of all linear combinations of the units. Then he defined addition and subtraction,
and multiplication and division by a number. A list of ‘“fundamental properties”
for the four operations followed, with the acknowledgment that all the algebraic
laws of addition, subtraction, multiplication, and division will follow from them.
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8. For extensive magnitudes a, b, ¢, the following fundamental formulas hold:
Q) at+tb=>b+a
2) a+b+c)=(a+b)+c
3) at+tb-b=a
“) a-b+b=a...

12. For the multiplication and division of extensive magnitudes (a, b) by numbers («, 8) the
following fundamental formulas hold:

1) aB=pa

2 aBy =a(By)

(3 (@a+byy=ay+by

@ aB+y)=aB+ay

(5) al=a

(6) aB=0ifandonlyifa=0o0rg =0
(7 aB = a(l/B)if B # 0. [52, 15-16]

This presentation can be seen as a kind of a posteriori axiomatization of linear
structure. Moreover, the fundamental properties given by Grassmann are almost
the same as the axioms of the modern structure of vector space, except for (1) and
(7) about multiplication, which are mere conventions; (6), which is a redundant
property; and the ambiguous use of subtraction, which made the concept of zero
and opposite somewhat unclear. In fact, this last point had been carefully analyzed
in the general theory of forms of the 1844 version [51, 8-9]. This shows that the
1862 version could not be read independently of the original 1844 work. Moreover,
the mathematical content was not drastically changed in 1862, in spite of some
improvements and new applications.

In many ways, Grassmann’s theory remains a singularity. Even if all its results
correspond to modern concepts and theories, it contributed to the creation of very
few of them. For the theory of vector spaces, it played an important role in the
discovery of the axiomatic theory, but most of the concepts of this theory were
reestablished independently of Grassmann’s work. Yet, because of its original ap-
proach, the 1844 version remains unique and offers an alternative to vector space
theory, which gives a rich analysis of the relations between the formal concepts of
linear algebra and geometrical intuition that cannot be found elsewhere.

THE FIRST AXIOMATIC APPROACHES

In 1888, Peano published a condensed version of his own reading of Grassmann’s
Ausdehnungslehre entitled Calcolo geometrico. At the end of this treatise, in a small
final chapter, he gave an axiomatic definition of what he called a linear system,
which is the first axiomatic definition of a vector space (in modern terms) [76,
141-142]. Peano’s axioms are very similar to Grassmann’s fundamental properties,
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but Peano’s contribution is fundamental; he really put forward the properties of
the operations to describe the structure, unlike Grassmann who had deduced them
from the definition of the operations on the coordinates. Moreover, Peano, aware
of axiomatic approaches, improved the formulation of properties by suppressing
the convention and the redundancy built into Grassmann’s fundamental properties;
he also defined more clearly the concepts of zero and opposite elements. Yet this
definition was not quickly followed by many new developments, and his approach
was not taken up immediately.

Following Peano, in 1897, Cesare Burali-Forti published a book on differential
geometry [13] in which he used Grassmann’s ideas and pointed out Peano’s role
in making the Ausdehnungslehere more accessible. Nothing is said, however, about
the axiomatic approach introduced in the Calcolo geometrico. In 1909, with another
Italian mathematician, Roberto Marcolongo, Burali-Forti published Omografie vet-
torialli con applicazioni alle derivate respetto ad un punto et alla fisica-matematica
[14], which opened with an axiomatic presentation of linear systems. However, the
definition Burali-Forti and Marcolongo gave conforms less than Peano’s to the
model of an axiomatic definition (some axioms are redundant and some are missing),
and they did not provide more substantial results and applications. But their work
is important because it is the first to have such an introduction (in Peano’s book
it appeared only in the final chapter). Although their work does not seem to
have generated immediate followers either, it helped make the axiomatic approach
known (if not used) especially in Italy and in France.

In spite of their important contribution to axiomatic vector space theory, one
has to admit that Peano, Burali-Forti, and Marcolongo were, on some points, less
accurate than Grassmann. This is especially true relative to the concept of dimension.
Indeed, they defined it, before the concept of basis, as the maximal number of
independent vectors in the space. This is sufficient to prove easily that any set of
n independent vectors in an n-dimensional space constitutes a system of generators
and therefore a basis. They overlooked however the question of minimality of a
system of generators, which is necessary for the proof of the uniqueness of the
number of elements in a basis. Nor did they quote the exchange theorem, which
is closely related to the problem of minimality of generators. In fact, they focused
on applications to geometry, using the axiomatic definition as mere formality. What
they failed to retain from Grassmann was the richness of the dialectic between the
real and formal aspects which governed his process of generalization. Therefore,
dimension, for Peano or Burali-Forti and Marcolongo, was, as in geometric space,
a measure of the degree of freedom, whereas for Grassmann, it was a measure of
extension. Indeed, space is more often characterized by its limitation to three
dimensions than by its expansion from one point into three dimensions.

In the first edition of his Raum-Zeit—Materie of 1918 [100], Hermann Weyl also
gave an axiomatic definition of what he called linear vector-manifolds. He did not
mention his Italian predecessors, but he referred to Grassmann’s Ausdehnungslehre
as an “‘epoch making work” [100, 17, note 4]. Indeed, his definition is closer to
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Grassmann’s 1862 fundamental formulas than to Peano’s definition. Regarding the
question of dimension, Weyl chose to add a dimensional axiom to his definition:
“There are n linearly independent vectors, but every n + 1 are dependent on one
another” [100, 17]. But he also commented that: “From this property (which may
be deduced from our original definition with the help of elementary results on
linear equations) it follows that n, the dimensional number, is as such a characteristic
of the manifold, and is not dependent on the special vector base by which we map
it out” [100, 17].

So Weyl’s approach to the concept of dimension did not differ that much from
Peano’s, except that his note shows concern about the invariants related to the
number of dimensions. Moreover, Weyl seemed to refer to the fact that if all vectors
of a linear vector-manifold E derive from n vectors, then any set of n + 1 are
dependent on each other.!? This result is another preliminary theorem (different
from the exchange theorem) from which the invariance of the number of elements
in a basis may be proven. Yet, this is still ambiguous, even if Weyl’s approach is
considered as an improvement over that of the Italians.

In fact, in 1862, Grassmann had made a remark about the central theorem on
dimension that he had deduced from the exchange theorem: ‘“This important theo-
rem can also be derived directly from the theory of elimination. ... But the proof
presented here is not only elementary, but in addition has the advantage that
thereby the essential, simple relation between the extensive magnitudes appears
more clearly” [52, 21]. This proves that Grassmann was far ahead of his time on
several levels.

Moreover, the question of dimension was discussed, somehow more accurately,
in the theory of fields. Indeed, a field extension is a vector space on the original
field whose dimension is the order of extension. In this context, as in Grassmann’s
Ausdehnungslehre, the notion of generation was intrinsically present in the first
notions of the theory. Although the question of the invariance of the number
of elements in a basis of the field extension was considered obvious for a while,
it was raised and solved with great care by Richard Dedekind in 1893 in the
11th supplement to the fourth edition of Gustav Peter Lejeune-Dirichlet’s
Vorlesungen iiber Zahlentheorie [28]. In this supplement, one paragraph constitutes
a very general approach to linear structure, and gives it a form very modern
for its time.

Dedekind opened with the definition and properties of linear independence
(he called it irreducibility). Then he defined a space [Schaar] Q as the set of
all linear combinations of an irreducible set of n numbers in a field A. He
called these n elements a basis of ) and defined the coordinates of an element
of (. Immediately thereafter, he presented three properties that he proved to
be characteristic of )

12 This is an obvious consequence of the fact (well known since around 1800) that a systemof n + 1
homogeneous linear equations in n unknowns always has a nonzero solution.
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I. The numbers of {) reproduce themselves through addition and subtraction, i.e., the sum
and the difference by any two numbers are in ().

II. Any product of a number in £} by a number in A is a number of ().

III. There are n independent numbers in €}, but any n + 1 such numbers are dependent.
[28, 468]

To deduce the properties from the definition, as Dedekind pointed out, only the
second part of III required a proof, and for that he used induction. Assuming the
property for any space having a basis of less than n elements, he took n + 1 elements
o, ay, &, ..., @, in a space () with a basis of n elements.

If one is zero, for instance & = 0, then these elements are dependent; if not, one can assume
that for instance the first coordinate of « is not zero; so one can obviously find n numbers c;,
€3, ..., Cp, I A, such that the first coordinate of each number

a; + o, a; + oo, ..., e + cpa,

is zero; thus these numbers belong to a space whose basis contains only the n — 1 elements
@y, w3, ..., W,, and are therefore dependent on each other; consequently there are n numbers
ay, as, ..., a,, in A, which are not all zero and such that

aj(oq + ca) + a(og + o) + - + ala, + c@) = 0,

and as the sum a = a,¢c; + a,c; + - -+ + a,c, is also in A, it follows that the » + 1 numbers
a, aj, 0, ..., ap, are dependent on each other. [28, 468]

This result is equivalent to what Grassmann obtained with the exchange theorem,
although the approach is quite different. Moreover, this proof does not use the
theory of linear equations although it does use representation with coordinates.

The proof that these three properties are characteristic of a space as defined by
Dedekind was quite simple; he also immediately deduced that any irreducible
system of n numbers is a basis of (). Raising the problem of change of basis, he
showed moreover that a system of n» numbers is irreducible if and only if the
determinant of their coordinates on the original basis is not zero. The impossibility
of finding a system of less than n generators is not explicitly stated, but as with
Grassmann in 1844, this question could be easily solved, since the definition put
the emphasis on the original set of n independent generators.

At the end of the paragraph, Dedekind turned to the case of an extension field,
i.e., when the space is also closed under multiplication. In this context, Dedekind
proved the following main results:

(1) In an extension field with a basis of n elements, any number is algebraic
and its grade is at most n.

(2) Such an extension field B is said to be of nth grade with respect to A, and
therefore any system of n independent elements constitutes a basis of B.

(3) If @is algebraic with respect to A and of grade n, then A(6) is an extension
field of A of nth grade and 1, 6, &, ..., 6"! constitute a basis of A(6).

In this last supplement, Dedekind also studied the properties of modules, and
especially of their bases, but this goes beyond the scope of the present study. In
Section 164, the main results of which have just been sketched, Dedekind’s approach
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was very close to a modern axiomatic presentation of the elementary results on
finite dimensional vector spaces. The question of dimension was examined with
care, and using original tools, compared to Grassmann’s use of the exchange theorem
and what had been done in the theory of equations.

In 1910, Ernst Steinitz published his Algebraische Theorie der Kérper [90], which
marked an important stage in the history of modern algebra and which served as
a reference work for at least a quarter of a century. In this major work, Steinitz
gave a precise definition of linear dependence over a field R, and defined a finite
extension of order n: “Let R be a subfield of L, L will be said to be finite with
respect to R and of order n—which will be designed by: [L:R] = n—if there are
in L, n elements linearly independent over R, while any set of more than »n elements
of L are linearly dependent over R [90, 198]. This definition is identical to that
given by Peano or Burali-Forti and Marcolongo for the number of dimensions of
a linear space. Since the Italians’ works were practically unknown in Germany,
however, it likely had no influence on Steinitz’s or Weyl’s formulation. Explicit
references to Dedekind are also absent in the works of Weyl and Steinitz, but there
is a natural proximity which has to be taken into account.

After this definition, Steinitz showed that in an extension of order n, for any
set of n elements, the linear independence is equivalent to the fact that any
element of the extension cannot be expressed in more than one way as a linear
combination of these n elements. This follows quite obviously from the preceding
definition, and indeed there is nothing new compared to his Italian predecessors.
In fact, Steinitz pursued a goal that he had not explicitly stated. For him, a
basis of L is a set of elements such that any element of L can be expressed
uniquely as a linear combination of them. Steinitz aimed to prove that any basis
has n elements and that any set of n independent elements is a basis of L. To
achieve this goal, he needed to prove that the order of an extension cannot
exceed the number of generators. In other words, he had to connect a result
concerning generation with a property of dependence. He cast his definition of
a basis in terms of the coordinate system, so his proof was set up within the
context of n-tuples and linear equations:

If one knows that every element 3 of L can be expressed as: 8 = cia; + -+ + cpo,; then
for any (n + 1) elements By, By, ..., Ba, there are expressions like:

Bi=caon + -+ cpoy; (i=0,...n

and therefore, according to the theorem of Section 1 about homogeneous linear equations,'?
(n + 1) elements dy, di, ..., d, can be found such that dyBy + di8; + --- + d,B8, = 0. The
extension L is thus finite and its order is at most n. [90, 200]

After Grassmann’s 1862 Ausdehnungslehre, this was the first explicit proof of
the fact that a set of generators cannot have fewer elements than the number of
dimensions, although this was implicit in Dedekind’s work and very easily deducible.

3 This theorem proves that a system of less than n homogeneous linear equations with n unknowns
has a nonzero solution.
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Yet the approaches and tools of Steinitz and Grassmann were very different.
Grassmann knew that a proof could be given with the use of elimination theory,
but he preferred the exchange theorem for explicit reasons given in 1862 (cf. his
remark quoted above).

In fact, further on in his theory, Steinitz used something very close to the
exchange theorem, but in the context of transcendental extensions where algebraic
dependence replaces linear dependence: “Let S be a system of elements of an
extension field L, an element a of L is said to be algebraically dependent on
S (with respect to R), if a is algebraic with respect to the field R(S)” [90, 288].
Two systems are said to be equivalent if any element of each system is algebraically
dependent on the other system. On the other hand, a system is said to be
irreducible if it is not equivalent to any of its subsystems. Transferred into the
context of linearity, two equivalent irreducible systems correspond to two bases
of the same linear space. After a few preparatory results, Steinitz gave three
final theorems which contain, for algebraic dependence, results equivalent to
the exchange theorem, the theorem about the completion of an independent
system into a basis, the invariance of the number of elements in the bases of
a linear space, and properties of the dimension of a subspace of a finite
dimensional linear space:

7. Let S be an irreducible system (with respect to R), a a transcendental element with
respect to R, but algebraically dependent on S, then S contains a finite subsystem L with the
following properties: a is algebraically dependent on L; any subsystem of S, on which a is
algebraically dependent, contains the system L; if any element of L is replaced by a, S is
changed into an equivalent irreducible system; none of the other elements of S have the
same property....

8. Let U and B be finite irreducible systems with respectively m and n elements; let us
assume that n < m and B is algebraically dependent on U. Then if m = n the systems U and
B are equivalent, and if on the contrary n < m, U is equivalent to an irreducible system made
of B and m — n elements of U....

9. An irreducible system B, which is algebraically dependent on a finite system U, cannot
have more elements than this one; in case they have the same number of elements they are
equivalent. [90, 290-292]

Steinitz presented these results in such a progressive, deductive way that they
are close to an axiomatic definition of a general concept of dependence (which
would include algebraic as well as linear dependence) from which the concepts
of dimension and basis could be deduced. Therefore, little needs to be done in
order to translate the preceding results into the linear context, but Steinitz did
not mention (at least here) this possibility. About twenty years later, two of
his successors, Bartel L. van der Waerden in [95, 1:96] and Emanuel Sperner
setting up Otto Schreier’s work in [87, 20], used the exchange theorem (and
used this term) for one of the first times, in the context of linear dependence.
Although both of them referred to Steinitz, I have never found proof that
Steinitz actually used the exchange theorem in the context of linear dependence.
On the other hand, there is no reference to Grassmann, although his work was
well known by German algebraists of this time. Nevertheless, even if an influential
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filiation could be conjectured, in spite of the gap of nearly a century, the two
approaches are embedded in very different mathematical and philosophical con-
texts.

DIFFERENTIAL EQUATIONS AND FUNCTIONAL ANALYSIS

Differential equations have been an important point of interest in mathematics
since the 18th century, and their study became the starting point of what would be
dubbed functional analysis around the turn of this century.!* Furthermore, the
study of linear differential equations played an important part in the theorization
of linearity.

In the middle of the 18th century, Jean le Rond D’Alembert, Lagrange, and
Euler had noticed that the general solution of a linear homogeneous differential
equation of order n could be expressed as a linear combination of a set of n
“fundamental” solutions. This was not expressed in these terms, of course, and no
rigorous proof was given. Moreover, the question of the independence of the
“fundamental” solutions had not been raised. In fact, the solution was considered
as a power series in the neighborhood of each point, and its derivatives were
obtained by taking the derivative of each term of the series. Then, the summation,
term by term, led to a linear recurrent equation which determined the coefficients
of the series as functions of the n first, according to a well-established method (see,
e.g., [65, 4:151-165]). Around the same time, it was fairly commonly known that
the general solution of a differential equation could be obtained by the addition
of a particular solution and the general solution of the homogeneous equation, and
by around 1770, Lagrange had discovered his method of “variation of constants”
to find a particular solution for the whole equation [65, 4:159]. Nevertheless, it was
only in the first half of the 19th century that Cauchy, in his Cours de I’Ecole
Polytechnique, clarified these notions and gave rigorous proofs.

Moreover, the developments in the study of differential and partial differential
equations led to sophisticated questions dealing with linearity. In this framework,
in many occurrences, one can trace unlabeled and more or less implicit methods
or concepts which are today essential components of linear algebra. For instance,
as early as 1770, Lagrange introduced a method using what would today be called
an adjoint operator; he also used, implicitly, some tools of duality to solve systems
of linear differential equations [65, 1:472-478]. The spectral theory and the concepts
of eigenvalue and eigenvector were developed to a great extent in the field of
differential equations. For instance, twice around 1762 and 1776, Lagrange, while
solving systems of simultaneous differential equations with several functions, used
similar methods which involved the search for what we now call the eigenvalues
of a matrix, but he did not mention the similarity of the two problems [65, 1:520-534
and 6:655-666]. Indeed, most of the concepts and methods remained implicit and
ununified for at least another century.

4 For more details on this subject, see [27].
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In 1822, in his Théorie analytique de la chaleur, Joseph Fourier, while solving
differential equations by power series, used methods to solve systems of countably
infinite linear equations in countably infinite unknowns [42, 168 or 212]. The lack
of understanding of the convergence of power series did not allow him to give a
correct solution to his problem, but this work was to give the basic principle of the
method: study the square finite subsystem of order n and then let n tend to infinity.
In fact, for more than half a century, no one really investigated the solution of
infinite linear systems. One of the first texts presenting consistent results on this
type of method was published in 1886 by Henri Poincaré who referred to a text by
George William Hill of 1877 [77]. After Poincaré’s work, many mathematicians
such as, David Hilbert [63], Frédéric Riesz [81], Erhard Schmidt [86], Jacques
Hadamard [54], and Maurice Fréchet [43], studied infinite systems of linear equa-
tions. Their methods were based on Fourier’s ideas, but they considered different
restrictive boundary conditions on the power series which ensured the convergence
of the infinite determinant. Of course, the difficult goal of their works was mainly
to obtain a result with the most general boundary conditions. In fact, most of what
was known in the finite dimensional case was investigated in the context of countably
infinite dimension. Therefore, up to the 1920s and, in many ways, even in the
following decade, the theories of determinant, matrix and quadratic and bilinear
forms, generalized to countably infinite dimension served as the framework for a
unified theory of linearity.

Yet some mathematicians started to feel the inaccuracy of some methods which
had become highly technical and difficult to manipulate. For instance in a text of
1909, Otto Toeplitz proved certain theorems without the use of determinants, but
with a sophisticated use of elimination, to obtain triangular equivalent systems [94].
Moreover, gradually, mathematicians changed their approach to the problem by
considering more and more general vector spaces of functions; this would lead
finally to the axiomatization of functional analysis. One of the most decisive steps
in this direction was made by Riesz, in a paper of 1916, which was translated into
German in 1918 under the title, “Uber lineare Funktionalgleichungen” [82]. This
is one of the first papers to give a general definition of a normal and of a closed
vector subspace of functions:

We call [the set of continuous functions from [a, b] into R] to be brief, the functional space.
Moreover we call Norm of f(x) the maximum value of |f(x)|, and we denote it by ||f]|; the

magnitude ||f]| is therefore always positive and is zero only if f(x) is always zero. The following
relations hold:

llctll = e} el ey + £l = JEall + NEad. ...

We come now to the similar problem for linear transformations. A transformation T, which
associates to every element f of our functional space another element T(f), will be said to be
linear, when it is distributive and bounded. The transformation is said to be distributive if the
following properties hold for any f:

Tlef] = cT[f], Tif, + £] = T[f] + T[f.].
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And T is said to be bounded when there is a constant M, such that, for all f:
(IT@EN = Ml
[82, 72]

Riesz’s main achievement was to establish the foundation of what is now
known as the Riesz-Fredholm theory of compact operators. Although the entire
paper is set in the space of continuous functions on a real compact interval,
most of the results could be generalized to other functional spaces, as, most of
the time, only the axiomatic definitions are used. In 1921, Eduard Helly considered
a general normed sequence vector space and hence also marked a new stage
in the axiomatization of functional analysis [62]. Finally, the decisive step towards
axiomatization was taken independently by Stefan Banach in his thesis, defended
in 1920 and published in 1922 [6, 2:306-348], and Hans Hahn, in two papers
of 1922 [55] and 1927 [56].

In the introduction to his dissertation, entitled Sur les opérations dans les ensem-
bles abstraits et leut applicatinoux equations integrables Banach stated that:

The present book follows the goal of establishing a few theorems valid for various functional
fields, which I will specify. Nevertheless, so that I do not have to prove them separately for
each field, which would be painful, I have chosen a different method, that is: I will consider
in a general sense the sets of elements of which I will postulate certain properties, I will deduce
some theorems and then I will prove for each specific functional field that the chosen postulates
are true. [6, 2:308]

This quotation shows that Banach was fully aware of what an axiomatic approach
was, and of what he could do with it, and, indeed, axiomatic approaches were quite
familiar among Polish mathematicians at that time. The basic structure defined in
his work, as in Hahn’s, is what we call today a Banach space (i.e., a complete
normed vector space). Banach makes no reference to Peano or Burali-Forti or
anyone else, but his definition of a vector space is closer to that used by Burali-
Forti and is also not strictly correct as some axioms are redundant and some are
missing. The functional spaces he has to deal with are mostly of uncountably infinite
dimension, which makes the use of an axiomatic approach compulsory. In 1932, he
published a treatise, entitled Théorie des opérateurs linéaires [5], in which he gave
the general framework and most of the results of axiomatic functional analysis and
infinite-dimensional linear algebra; this book was an enormous success and rapidly
opened a new era in these two fields of mathematics.

CONCLUSION

Many examples of implicit linear methods in different contexts in mathematics
or physics can be traced from Antiquity, but, until the 19th century at least, they
remained isolated methods; the same author could use the same idea twice (in
terms of the theory of linear algebra) in different contexts without noticing the
similarity of the methods. In this sense, linear algebra long remained implicit because
of a lack of unification. Nevertheless, its origins can be found in various contexts,
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and linearity has always been a question which has penetrated nearly every branch
of mathematics.

The first step on the way to a unified theory was made through the use of
determinants. Until the beginning of the 20th century, this was the only point of
commonality in the treatment of many linear problems. Here, I have analyzed how
the elementary concepts of a theory of linearity were set up within this context.
Furthermore, in the middle of the 19th century, the generalization of geometrical
questions to spaces of more than three dimensions reinforced the cohesion of linear
problems. The model of R”, with the use of tools and concepts inherited from the
theory of determinants and the use of geometric vocabulary and visual representa-
tions, gradually formed the theoretical background for any question of linearity.
This process, which unified questions of linearity both inside and outside geometry,
was very important for the further development of vector space theory. The above
analysis underscores the differences in the nature of the contributions from geometry
and from the theory of determinants to the formation of a theory of vector spaces
and shows how that theory resulted from a synthesis of the two.

The 19th century also witnessed a fundamental change in the nature of algebra
in general which contributed to the development of a consistent algebraic framework
for the theory of linearity, with the investigation of the operations on n-tuples and
on matrices. In this process, the use of geometric language provided an intuitive
background for the theory. On the other hand, as noted, the study of systems of
linear equations was generalized to countably infinite dimension by the end of the
19th century. In spite of the importation of tools from analysis like the notion of
the convergence of series, this generalization corresponded to a linear process; it
improved the foundation of the previous unification and extended the field of
prospect, but it did not radically change the main concepts and tools on which it
was based.

In the meantime, the concept of algebraic structure was emerging from a
need to unify a rapidly expanding number of new theories in mathematics.
Dedekind gave the first definitions of an axiomatic type of ring, ideal, field, and
module in 1893 [28]. In his Lehrbuch der Algebra of 1894, Heinrich Weber gave
the first axiomatic definition of a group [98]. The first thirty years of the 20th
century, found several mathematicians, especially in Germany, setting up the
framework for what would soon be called modern algebra. The theories of
groups and field extensions brought out the most important issues in this new
approach. In 1930, van der Waerden published the first volume of the first
edition of his Moderne Algebra; the second volume was published the following
year [95]. In this first edition, linear algebra centered on the structure of module,
although most of the first concepts and results such as linear combinations,
dependence, basis, and dimension were, in fact, established in a previous chapter
on field extensions. But in the later editions, the place of linear algebra and
vector space became more important and central. The study of systems of linear
equations was then presented as an application of the theory of vector spaces
and the role of determinants was considerably reduced. Rapidly, the popularity
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of modern algebra changed the way problems dealing with linearity were solved:
determinants were dropped for the axiomatic approach which unified finite and
infinite-dimensional questions. In 1941, Garrett Birkhoff and Saunders MacLane
published their Survey of Modern Algebra [9], and in 1942, Paul R. Halmos’s
Finite-Dimensional Spaces [57] appeared. These two books were among the first
to attempt to present the new theories for educational purposes to undergraduate
students. In 1947, in France, Nicolas Bourbaki published the second chapter of
book II of his Eléments de mathématique under the title Algébre linéaire [10].
At first, this publication remained in the shadow of Halmos’s very popular book,
but its influence became stronger as Bourbaki’s fame increased. Nevertheless,
these three books have had a notable and long influence on the axiomatic theory
of vector spaces, both in its use in mathematics and in its teaching.

The quasi-simultaneous publication of the first edition of van der Waerden’s
Moderne Algebra and Banach’s Théorie des opérateurs linéaires marked two major
events in the history of modern mathematics, which were to be essential in the
unification of an axiomatic theory of vector spaces of finite or infinite dimension.
From that time on, this theory has increasingly moved towards the central position
it now holds in mathematics, as a basis for more elaborate theories and as a general
framework for modeling many problems within and outside of mathematics.
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