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Corrigé 9
12 novembre

Notation: Soit p un nombre premier. On note Fp le corps fini à p éléments et écrira simplement a pour ā, pour un
élément ā de Fp.
On fixe un corps K.
On écrira Mn(K) pour Mn×n(K).
Dans cette série et toutes les suivantes, on utilisera les deux notations A ⊂ B et A ⊆ B pour indiquer qu’une partie
A est un sous-ensemble d’une partie B, c’est-à-dire que tout élément de la partie A appartient à la partie B.

A cette série, vous pouvez rendre pour correction l’exercice 3. Il faut le donner à un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 19 novembre.

Les exercices notés avec (†) sont plus difficiles, mais un bon entrainement pour utiliser la théorie du cours.

Exercice 1. Soit α : C[t]≤3 → C[t]≤3 l’application linéaire envoyant f(t) vers 2f ′(t)− f(t) et
β : C[t]≤3 → C[t]≤2 l’application linéaire envoyant f(t) vers f ′(t).

a) Déterminer la matrice de α par rapport à la base ordonnée E = (1, t, t2, t3) de C[t]≤3.

b) Déterminer la matrice de β par rapport aux bases E de C[t]≤3 et E′ = (1, t, t2) de C[t]≤2.

c) Déterminer la matrice de β ◦ α par rapport aux bases E et E′ de C[t]≤3 et de C[t]≤2.

Solution 1. a) Comme
α(1) = −1 = (−1) · 1 + 0 · t+ 0 · t2 + 0 · t3,
α(t) = 2− t = 2 · 1 + (−1) · t+ 0 · t2 + 0 · t3,
α(t2) = 4t− t2 = 0 · 1 + 4 · t+ (−1) · t2 + 0 · t3,
α(t3) = 6t2 − t3 = 0 · 1 + 0 · t+ 6 · t2 + (−1) · t3,

la matrice de α par rapport à la base E de C[t]≤3 est (α)EE =


−1 2 0 0
0 −1 4 0
0 0 −1 6
0 0 0 −1

 .

b) Comme
β(1) = 0 = 0 · 1 + 0 · t+ 0 · t2,
β(t) = 1 = 1 · 1 + 0 · t+ 0 · t2,
β(t2) = 2t = 0 · 1 + 2 · t+ 0 · t2,
β(t3) = 3t2 = 0 · 1 + 0 · t+ 3 · t2,

la matrice de β par rapport aux bases E et E′ est (β)E
′

E =

 0 1 0 0
0 0 2 0
0 0 0 3

 .

c) D’après le cours,

(β ◦ α)E′

E = (β)E
′

E · (α)EE

=

 0 1 0 0
0 0 2 0
0 0 0 3




−1 2 0 0
0 −1 4 0
0 0 −1 6
0 0 0 −1


=

 0 −1 4 0
0 0 −2 12
0 0 0 −3

 .

Exercice 2 (Résultat à retenir). Soit ϕ :Mr×s(K) →Ms×r(K) l’application définie par ϕ(A) = At.

(a) Démontrer que pour toute matrices A ∈Mp×q(K), B ∈Mq×r(K), on a (AB)t = BtAt.



(b) Montrer que ϕ est une application K-linéaire bijective.

(c) Dans le cas particulier r = 1 et s = 3, donner la matrice de ϕ par rapport aux bases ordonnées E = (E11, E12, E13)
et F = (E31, E21, E11) de M1×3(K) et M3×1(K), respectivement. (Attention à l’ordre dans la base F .)

Solution 2. (a) Posons AB = C ∈Mp×r(K). On a Cik =

q∑
j=1

AijBjk et donc

(AB)t = Ct = C ′, avec C ′
ki = Cik =

q∑
j=1

AijBjk.

D’autre part At = A′ avec A′
ji = Aij , Bt = B′ avec B′

kj = Bjk et par conséquent

BtAt = D, avec Dki =

q∑
j=1

B′
kjA

′
ji =

q∑
j=1

BjkAij = Cik = C ′
ki.

On voit donc que D = Ct.

(b) Soient X,Y ∈Mr×s(K) et λ ∈ K. On a

((λX + Y )t)ij = (λX + Y )ji = (λX)ji + Yji = λ(Xji) + Yji = λ(Xt)ij + (Y t)ij .

Cette dernière égalité montre que (λX + Y )t = λ ·Xt + Y t.

Donc ϕ(λX + Y ) = (λX + Y )t = λXt + Y t = λϕ(X) + ϕ(Y ) et ϕ est K-linéaire.

Pour la bijectivité on montrera que ker(ϕ) est la matrice nulle, par conséquent ϕ est injective, et comme dimMr×s(K) =
rs = dimMs×r(K) on a la bijectivité par un des critères de bijectivité du cours.

Soit X ∈Mr×s(K) telle que ϕ(X) = 0. Donc Xji = 0 pour tous j, i et on déduit que X est la matrice nulle.

(c) On a ϕ(E11) = E11 et donc la première colonne de la matrice (ϕ)FE est

0
0
1

. On fait de même pour les autres

vecteurs de la base E et on trouve (ϕ)FE =

0 0 1
0 1 0
1 0 0

.

Exercice 3. Soit α : R4 → R3 l’application linéaire définie par

α(x, y, z, t) = (2x− y, x+ y + z + t, 3y − 2z + x− t).

a) Déterminer la matrice de α par rapport aux bases canoniques de R4 et de R3.

b) Quelle est le vecteur colonne de α(0, 1, 0, 0) par rapport à la base canonique de R3?

c) Montrer que F = ((−1, 0, 0, 1), (0, 4, 0, 1), (0, 0, 3, 1), (0, 0, 0, 1)) est une base de R4.

d) Déterminer le vecteur colonne de v = (1, 4, 3,−1) par rapport à la base canonique de R4?

e) Déterminer le vecteur colonne de v par rapport à la base F .

Solution 3. a) Soient E = (e1, e2, e3, e4) la base canonique de R4 et E′ = (e1, e2, e3) celle de R3. Alors comme

α(e1) = α(1, 0, 0, 0) = (2, 1, 1) = 2 · e1 + 1 · e2 + 1 · e3,
α(e2) = α(0, 1, 0, 0) = (−1, 1, 3) = (−1) · e1 + 1 · e2 + 3 · e3,
α(e3) = α(0, 0, 1, 0) = (0, 1,−2) = 0 · e1 + 1 · e2 + (−2) · e3,
α(e4) = α(0, 0, 0, 1) = (0, 1,−1) = 0 · e1 + 1 · e2 + (−1) · e3,

par définition, la matrice (α)E
′

E =

 2 −1 0 0
1 1 1 1
1 3 −2 −1

 .



b) On note w = (0, 1, 0, 0). Alors comme w = e2 = 0 · e1 + 1 · e2 + 0 · e3 + 0 · e4, on a (w)E =


0
1
0
0

. D’après le

cours,
(α(w))E′ = (α)E

′

E (w)E

=

 2 −1 0 0
1 1 1 1
1 3 −2 −1




0
1
0
0


=

 −1
1
3

 .

Noter bien que cette dernière égalité est cohérente avec le fait que α((0, 1, 0, 0)) = (−1, 1, 3).

c) Notons F = (f1, f2, f3, f4).

Première méthode: On voit aisément que

e1 = −f1 + f4 = (−1) · f1 + 0 · f2 + 0 · f3 + 1 · f4
e2 = 1

4 (f2 − f4) = 0 · f1 + 1
4 · f2 + 0 · f3 + (− 1

4 ) · f4
e3 = 1

3 (f3 − f4) = 0 · f1 + 0 · f2 + 1
3 · f3 + (− 1

3 ) · f4
e4 = f4 = 0 · f1 + 0 · f2 + 0 · f3 + 1 · f4.

Donc F engendre tout élément de la base canonique E et comme F est de cardinal 4 qui est la dimension de R4,
F est une base de R4. De plus, on obtient

(id )FE =


−1 0 0 0
0 1

4 0 0
0 0 1

3 0
1 − 1

4 − 1
3 1

 .

Deuxième méthode: On peut montrer aisément que F est libre, donc elle est une base de R4, puisqu’elle est
de cardinal 4 qui est la dimension de R4.

d) Comme v = (1, 4, 3,−1) = 1 · e1 + 4 · e2 + 3 · e3 + (−1) · e4, on a (v)E =


1
4
3
−1

.

e) D’après le cours,
(v)F = (id )FE · (v)E

=


−1 0 0 0
0 1

4 0 0
0 0 1

3 0
1 − 1

4 − 1
3 1




1
4
3
−1


=


−1
1
1
−2

 .

Exercice 4. Soit la matrice A =

(
a b
c d

)
∈M2×2(K).

(a) Montrer que si ad− bc ̸= 0 alors A est inversible et A−1 = 1
ad−bc

(
d −b
−c a

)
.

(b) On considère l’application C-linéaire ϕ : C[t]≤1 → M2×1(C) définie par ϕ(f) =

(
f(i)
f(0)

)
. On pose les bases

ordonnées suivantes des deux espaces vectoriels :



B1 = (1, t), B2 = (t− i, i), des bases de C[t]≤1 et

C1 = (

(
1
0

)
,

(
0
1

)
), et C2 = (

(
1
1

)
,

(
0
i

)
), des bases de M2×1(C).

Trouver les matrices de passage suivantes :

(id)B2

B1
, (id)B1

B2
, (id)C2

C1
, (id)C1

C2
.

(c) Trouver les matrices de ϕ par rapport aux differents choix des bases, comme suit :

(ϕ)C1

B1
, (ϕ)C2

B1
, et (ϕ)C2

B2
.

Solution 4. Pour (a), on vérifie que 1
ad−bc

(
d −b
−c a

)(
a b
c d

)
=

(
1 0
0 1

)
, et le produit également dans l’autre sens.

(b) On exprime chaque élément de la base B2 en termes de la base B1 : t− i = −i · 1 + 1 · t et i = i · 1 + 0 · t et on

trouve ainsi que (id)B1

B2
=

(
−i i
1 0

)
. Ensuite, on trouve (id)B2

B1
= ((id)B1

B2
)−1 =

(
0 1
−i 1

)
, où la dernière égalité vient

de la formule de la partie (a).
On fait de même pour trouver (id)C2

C1
et (id)C1

C2
:

(id)C1

C2
=

(
1 0
1 i

)
et (id)C2

C1
=

(
1 0
i −i

)
.

Pour (c), on calcule ϕ(1) =

(
1
1

)
et ϕ(t) =

(
i
0

)
. Ainsi nous avons (ϕ)C1

B1
=

(
1 i
1 0

)
. Ensuite on utilise les résultats

du cours :

(ϕ)C2

B1
= (id)C2

C1
(ϕ)C1

B1
=

(
1 0
i −i

)(
1 i
1 0

)
=

(
1 i
0 −1

)
.

Ensuite, on a

(ϕ)C2

B2
= (id)C2

C1
(ϕ)C1

B1
(id)B1

B2
=

(
1 0
i −i

)(
1 i
1 0

)(
−i i
1 0

)
=

(
0 i
−1 0

)
.

Exercice 5. Soit R[t]≤2 l’espace vectoriel des polynômes de degré ≤ 2 à coefficients dans R. Soient E = (1, t, t2)
la base ordonnée de R[t]≤2 et F = (1 + t, t + t2, t2). Soit α : R[t]≤2 → R[t]≤2 l’application R-linéaire définie par
α(a+ bt+ ct2) = b+ 2ct pour tous a, b, c ∈ R.

a) Montrer que F est une base de R[t]≤2.

b) Trouver les matrices de changement de base (id )FE et (id )EF .

c) Déterminer (α)EE.

d) Déterminer (α)FF .

Solution 5. a) Notons F = (f1, f2, f3) = (1 + t, t+ t2, t2).

Soient a, b, c ∈ R tels que a(1+ t)+ b(t+ t2)+ ct2 = 0. Alors en comparant les coefficients des termes, on obtient
a = 0, a+ b = 0 et b+ c = 0, ce qui donne a = b = c = 0. Donc F est libre.

Comme le cardinal de F , qui vaut 3, est égal à la dimension de R[t]≤2. On obtient que F est bien une base de
R[t]≤2.

b) Comme  f1 = 1 + t = 1 · 1 + 1 · t+ 0 · t2,
f2 = t+ t2 = 0 · 1 + 1 · t+ 1 · t2,
f3 = t2 = 0 · 1 + 0 · t+ 1 · t2,

la matrice de changement de base S = (id )EF =

 1 0 0
1 1 0
0 1 1

 .

Comme  1 = f1 + f3 − f2 = 1 · f1 + (−1) · f2 + 1 · f3,
t = f2 − f3 = 0 · f1 + 1 · t+ (−1) · t2,
t2 = f3 = 0 · f1 + 0 · f2 + 1 · f3,



la matrice de changement de base S−1 = (id )FE =

 1 0 0
−1 1 0
1 −1 1

 .

c) Comme  α(1) = 0 = 0 · 1 + 0 · t+ 0 · t2,
α(t) = 1 = 1 · 1 + 0 · t+ 0 · t2,
α(t2) = 2t = 0 · 1 + 2 · t+ 0 · t2,

on obtient la matrice A = (α)EE =

 0 1 0
0 0 2
0 0 0

 .

d) D’après la formule de changement de base, on a

B = (α)FF = S−1AS

=

 1 0 0
−1 1 0
1 −1 1

 0 1 0
0 0 2
0 0 0

 1 0 0
1 1 0
0 1 1


=

 1 1 0
−1 1 2
1 −1 −2

 .

On peut aussi calculer directement (α)FF par définition comme suit:

Comme  α(f1) = 1 = 1 · f1 + (−1) · f2 + 1 · f3,
α(f2) = 1 + 2t = 1 · f1 + 1 · f2 + (−1) · f3,
α(f3) = 2t = 0 · f1 + 2 · f2 + (−2) · f3,

on obtient la matrice B = (α)FF =

 1 1 0
−1 1 2
1 −1 −2

 .

Exercice 6 (Cet exercice complète la preuve d’une des propriétés de la multiplication des matrices). Soient A,B ∈
Mr×s(K) et soit C ∈Ms×ℓ(K). Montrer que (A+B)C = AC +BC.

Solution 6. On compare les composantes (i, j) des deux matrices :

((A+B)C)ij =

s∑
k=1

(A+B)ikCkj =

s∑
k=1

(Aik+Bik)Ckj =

s∑
k=1

(AikCkj+BikCkj) =

s∑
k=1

AikCkj+

s∑
k=1

BikCkj = (AC)ij+(BC)ij .

Exercice 7 (Cet exercice complète la preuve du 5.3.3 des notes du cours). Soient V et W des K-espaces vectoriels
de dimension finie avec bases ordonnées respectives BV et BW . Soient ϕ, ψ ∈ L(V,W ). Montrer que (ϕ + ψ)BW

BV
=

(ϕ)BW

BV
+ (ψ)BW

BV
et que pour tout λ ∈ K on a que (λϕ)BW

BV
= λ · (ϕ)BW

BV
.

Solution 7. On considère la (i, j) composante de la matrice C = (ϕ+ ψ)BW

BV
:

si BV = (e1, . . . , en) et BW = (f1, . . . , fm) alors (ϕ+ ψ)(ej) = C1jf1 + · · ·+ Cijfi + · · ·+ Cmjfm.
Mais (ϕ+ ψ)(ej) = ϕ(ej) + ψ(ej).

Si A = (ϕ)BW

BV
et D = (ψ)BW

BV
, alors ϕ(ej) = A1jf1 + · · ·+Aijfj + · · ·Amjfm et

ψ(ej) = D1jf1 + · · ·+Dijfj + · · ·Dmjfm.
Maintenant on compare les expressions

C1jf1 + · · ·+ Cijfi + · · ·+ Cmjfm et A1jf1 + · · ·+Aijfj + · · ·Amjfm +D1jf1 + · · ·+Dijfj + · · ·Dmjfm,

pour conclure que Cij = Aij +Dij . La preuve pour la deuxième assertion est pareille.



Exercice 8. Soit K un corps. Démontrer qu’une matrice A ∈Mn(K) est scalaire si et seulement si A commute avec
toutes les matrices de Mn(K).
Indication : Faire commuter A avec chacune des matrices Ers de la base usuelle de Mn(K).

Solution 8. Si A commute avec toute matrice de Mn(K), alors A commute avec toute matrice Ers et on va calculer
le coefficient (i, j) de ErsA = AErs. Rappelons que la matrice Ers a pour coefficients (Ers)ij = δriδsj . On obtient

(ErsA)ij =

n∑
k=1

(Ers)ikAkj =

n∑
k=1

δriδskAkj = δriAsj ,

(AErs)ij =

n∑
l=1

Ail(Ers)lj =

n∑
l=1

Ailδrlδsj = Airδsj ,

et par conséquent δriAsj = Airδsj . En prenant i = r, on obtient

Asj = Arrδsj .

Si s ̸= j, cela donne Asj = 0, et comme cela vaut pour tout s ̸= j, la matrice A est diagonale. Si s = j, cela donne
Ass = Arr, et comme cela vaut pour tout s et r, la matrice A est scalaire.

La réciproque est évidente (i.e. une matrice scalaire commute avec toute matrice de Mn(K)).

Exercice 9. (†) Soit V un espace vectoriel de dimension finie m sur un corps K et ϕ : V −→ V une application
linéaire.

a) Démontrer qu’il existe un nombre 1 ≤ n ∈ N tel que Ker (ϕk−1) = Ker (ϕk) pour tout k ≥ n.

b) Formuler et démontrer une affirmation similaire pour les images de ϕk, k ∈ N.

c) Montrer par un exemple que l’affirmation a) devient fausse sans l’hypothèse que dim(V ) <∞.

d) Donner un exemple d’un espace vectoriel de dimension infinie et d’une application linéaire ϕ : V −→ V telle que
ϕ soit surjective, mais pas bijective.

Solution 9. a) Soit 1 ≤ k ∈ N et v ∈ V . On a Ker (ϕk−1) ⊂ Ker (ϕk), car si ϕk−1(v) = 0, alors ϕk(v) =
ϕ(ϕk−1(v)) = 0. Si

Ker (ϕ) ⊂ Ker (ϕ2) ⊂ · · ·Ker (ϕk) ⊂ · · ·

est une suite strictement croissante de sous-espaces vectoriels de V , alors

dim(Ker (ϕ)) < dim(Ker (ϕ2)) < · · · < dim(Ker (ϕk)) < . . .

ce qui est impossible car dim(V ) = m < ∞. Donc la suite croissante des noyaux ne peut pas être strictement
croissante et elle doit s’arrêter (en fait la suite peut avoir au plus m termes) et il existe k tel que Ker (ϕk) =
Ker (ϕk+1). On montre maintenant par récurrence que Ker (ϕn) = Ker (ϕk) pour tout n > k.

Pour n = k + 1, c’est le cas par hypothèse. Supposons que Ker (ϕr) = Ker (ϕk) pour tout k ≤ r ≤ n, et soit
v ∈ Ker (ϕn+1). Comme ϕn+1(v) = 0, on a que ϕ(v) ∈ Ker (ϕn). Comme Ker (ϕn) = Ker (ϕn−1), on a aussi
ϕ(v) ∈ Ker (ϕn−1), et donc ϕn(v) = ϕn−1(ϕ(v)) = 0, ce qui montre que v ∈ Ker (ϕn). Donc on a montré que
Ker (ϕn+1) ⊆ Ker (ϕn) ⊆ Ker (ϕn+1), d’où l’égalité Ker (ϕn+1) = Ker (ϕn) = Ker (ϕk). Ceci conclut la preuve de
a).

b) On montre qu’il existe k ∈ N, k ≥ 1 tel que Im (ϕn+1) = Im (ϕn) pour tout n ≥ k.

Soit 1 ≤ ℓ ∈ N et v ∈ Imϕℓ. Il existe u ∈ V avec v = ϕℓ(u), alors v = ϕℓ−1(ϕ(u)), donc v ∈ Im (ϕℓ−1) et
Im (ϕℓ) ⊆ Im (ϕℓ−1). On considère la suite d’inclusions de sous-espaces vectoriels :

Im (ϕ) ⊃ Im (ϕ2) ⊃ · · · ⊃ Im (ϕℓ) · · · .

Si cette suite est une suite strictement décroissante de sous-espaces vectoriels de V , alors

dim(V ) > dim(Im (ϕ)) > dim(Im (ϕ2)) > · · · > dim(Im (ϕk)) > . . .

ce qui est impossible car dim(V ) = m <∞. Donc la suite décroissante des images ne peut pas être strictement
décroissante et elle doit s’arrêter (en fait la suite peut avoir au plus m termes). Ceci prouve qu’il existe un
nombre 1 ≤ k ∈ N tel que Im (ϕk−1) = Im (ϕk).



Maintenant on montre par récurrence que Im (ϕn) = Im (ϕk−1) pour tout n ≥ k. On vient de voir que c’est le
cas pour n = k. Supposons que Im (ϕn) = Im (ϕk) pour un certain n ≥ k. On considère w ∈ Im (ϕn+1). Donc
w = ϕn+1(u) pour un certain u ∈ V . Maintenant ϕn(u) ∈ Im (ϕn) = Im (ϕk−1) et donc ϕn(u) = ϕk−1(z) pour
un certain z ∈ V et w = ϕn+1(u) = ϕk(z) ∈ Im (ϕk) = Im (ϕk−1). Donc Im (ϕn+1) = Im (ϕk−1).

c), d) Considérons K = C, V = C[t] et ϕ la dérivation des polynômes. On a

Ker (ϕ) = C ⊊ Ker (ϕ2) = C[t]≤1 ⊊ . . .

⊊ Ker (ϕn) = C[t]≤n−1 ⊊ Ker (ϕn+1) = C[t]≤n ⊊ . . .

D’autre part, l’application ϕ est évidemment surjective, mais pas injective, car Ker (ϕ) = C.

Exercice 10. (†) Soit K un corps et α, β : Kn −→ Kn deux applications linéaires. Démontrer l’inégalité:

rang (α) + rang (β)− n ≤ rang (α ◦ β) ≤ min{rang (α), rang (β)}.

Solution 10. On montre d’abord la borne supérieure :
Observons déjà que puisque Ker (β) ⊆ Ker (α◦β), dimKer (β) ≤ dimKer (α◦β). En utilisant le théorème du rang,

nous obtenons n− rang (β) ≤ n− rang (α ◦ β), c’est-à-dire rang (α ◦ β) ≤ rang (β). De plus,

Im (α ◦ β) = {α(β(x)) : x ∈ Kn} = {α(y) : y ∈ Im (β)} ⊆ {α(y) : y ∈ Kn} = Im (α).

Ainsi rang (α ◦ β) ≤ rang (α) et rang (α ◦ β) ≤ rang (β), d’où rang (α ◦ β) ≤ min{rang (α), rang (β)}, ce qui prouve la
borne supérieure.

Pour prouver la borne inférieure, notons s = dimKer (β) et B = {u1, . . . , us} une base de Ker (β). Puisque
Ker (β) ⊆ Ker (α ◦ β), cette base peut être complétée en une base B ∪W de Ker (α ◦ β) avec W = {w1, . . . , wt} telle
que dimKer (α◦β) = s+ t. Notons V = {β(w1), . . . , β(wt)}, W = Vect (W), V = Vect (V) et montrons que dimV = t,
c’est-à-dire que V est linéairement indépendant. En effet, si

t∑
i=1

λiβ(wi) = β(

t∑
i=1

λiwi) = 0

alors
∑t

i=1 λiwi ∈ Ker (β) donc
∑t

i=1 λiwi =
∑s

j=1 µjuj . Mais puisque {u1, . . . , us, w1, . . . , wt} est une base, λi = 0
et µj = 0 pour tout i = 1, . . . , t et tout j = 1, . . . , s, ce qui montre que V est linéairement indépendant.

Puisque W ⊆ Ker (α ◦ β), pour wi ∈ W, on a α(β(wi)) = 0 et donc β(wi) ∈ Ker (α). On déduit que V ⊆ Ker (α),
donc t = dimV ≤ dimKer (α). Enfin, nous avons

dimKer (α ◦ β) = s+ t ≤ dimKer (α) + dimKer (β).

Finalement, en appliquant le théorème du rang

rang (α ◦ β) = n− dimKer (α ◦ β) ≥ n− dimKer (α)− dimKer (β) = rang (α) + rang (β)− n.

Exercice 11 (Facultatif). Soit V un K-espace vectoriel de dimension finie et soit W ⊆ V un sous-espace vectoriel.
Posons H = {θ ∈ GL(V ) | θ(W ) ⊆ W} (on l’appelle le stabilisateur dans GL(V ) de W ). Montrer que H est un
sous-groupe de GL(V ). (On rappelle que la loi de composition dans le groupe GL(V ) est la composition d’applications.)

Solution 11. On note que H ̸= ∅ car idV ∈ H. Soient maintenant θ1, θ2 ∈ H et soit w ∈ W . Alors (θ1 ◦ θ2) =
θ1(θ2(w)). Comme θ2 ∈ H, θ2(w) ∈W et comme θ1 ∈ H, θ1(θ2(w)) ∈W et on déduit que θ1 ◦ θ2 ∈ H.

Soit θ ∈ H. Comme W est de dimension finie et θ est bijective (donc injective), on a par le théorème du rang
(appliqué à l’application θ :W →W ) que dimW = dim θ(W ) et donc θ(W ) =W . Maintenant, pour w ∈W , il existe
u ∈ W avec θ(u) = w. On trouve que θ−1(w) = θ−1(θ(u)) = u ∈ W , ce qui montre que θ−1(W ) ⊂ W et θ−1 ∈ H
aussi.

Ces deux vérifications montrent que H est un sous-groupe de GL(V ).


