Algeébre linéaire avancée I, Section de Physique automne 2024 Prof. Donna Testerman

Corrigé 9
12 novembre

Notation: Soit p un nombre premier. On note F,, le corps fini & p éléments et écrira simplement a pour @, pour un
élément a de IFp,.

On fixe un corps K.

On écrira M, (K) pour M, x,(K).

Dans cette série et toutes les suivantes, on utilisera les deux notations A C B et A C B pour indiquer qu'une partie
A est un sous-ensemble d’une partie B, c’est-a-dire que tout élément de la partie A appartient & la partie B.

A cette série, vous pouvez rendre pour correction l'exercice 3. Il faut le donner a un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 19 novembre.

Les exercices notés avec (f) sont plus difficiles, mais un bon entrainement pour utiliser la théorie du cours.

Exercice 1. Soit « : Clt]<s — C[t]|<3 Uapplication linéaire envoyant f(t) vers 2f'(t) — f(t) et
B : Cltl<s — Clt]<2 Uapplication linéaire envoyant f(t) vers f'(t).

a) Déterminer la matrice de o par rapport a la base ordonnée E = (1,t,t%,t%) de Clt]<s.
b) Déterminer la matrice de 3 par rapport auzx bases E de Clt]<3 et E' = (1,t,t?) de C[t]<s.

¢) Déterminer la matrice de 3 o a par rapport auz bases E et E' de Clt]|<s et de C[t]<a.

Solution 1. a) Comme
a(l) = -1 = (=1)-140-t+0-t24+0-13,
alt) = 2-t = 21+ (=1)-t+0-t240-,
at?) = 4t—t2 = 0-1+4-t+(=1)-t24+0-13,
at®) = 62—t = 0-14+0-t+6-12+ (1)1,
-1 2 0 0
. X . 0 -1 4 0
la matrice de « par rapport a la base E de Clt]<s est (o) = 0 0 -1 6
0 0 0 -1
b) Comme
B(l) = 0 = 0-14+0-t+0-1,
Bty = 1 = 1-140-t+0-t%,
B?) = 2t = 0-1+2-t+0-12,
B3 = 32 = 0-1+0-t+3-12,
01 0 O
la matrice de 3 par rapport aux bases E et E' est (3)5 = 0 0 2 0
0 0 0 3
¢) D’apres le cours,
Boa)E = (B (@
01 00 bz 00
0 -1 4 0
= 00 2 0
000 3 0 0 —1 6
0 0 0 -1
0o -1 4 0
= 0o 0 -2 12
0 0 0 -3

Exercice 2 (Résultat a retenir). Soit ¢ : M, xs(K) — Mgx,(K) Uapplication définie par ¢(A) = A*.
(a) Démontrer que pour toute matrices A € Myy,(K), B € Myx,(K), on a (AB)" = B'A*.



(b) Montrer que ¢ est une application K -linéaire bijective.

(c) Dans le cas particulier r = 1 et s = 3, donner la matrice de ¢ par rapport auz bases ordonnées E = (E11, E1a, E13)

So

et F'= (Es31, E21, FE11) de Myys(K) et Msx1(K), respectivement. (Attention a l'ordre dans la base F'.)

q
lution 2. (a) Posons AB = C € Mpy,(K). Ona Cy, = ZAiijk et donc
j=1

q
(AB)! =C'=C', avec Cj;=Cip=) AyBj.
D’autre part A" = A" avec A); = A;;, B' = B’ avec By,; = Bjk et par conséquent

q q
BtAt = D, avec Dki = E Blle]A;z = E BjkAij = Cik = Ollm
: =1

On voit donc que D = C*.
Soient X,Y € M,y (K)et A€ K. On a
(AX +Y))ij = AX +Y)ji = (AX)ji + Yii = MXji) + Vi = MX)ij + (Y15
Cette derniere égalité montre que (AX +Y)! = X- X' + Y.
Donc ¢(AX +Y) = (AX + V) = AX'+ V! = Ap(X) + ¢(Y) et ¢ est K-lindaire.

Pour la bijectivité on montrera que ker(¢) est la matrice nulle, par conséquent ¢ est injective, et comme dim M, s(K) =
rs = dim Mgy, (K) on a la bijectivité par un des criteéres de bijectivité du cours.

Soit X € M,y (K) telle que ¢(X) = 0. Donc X;; = 0 pour tous j,i et on déduit que X est la matrice nulle.
0

On a ¢(E11) = Eq; et donc la premiere colonne de la matrice (¢)5 est | 0 ]. On fait de méme pour les autres
1

vecteurs de la base E et on trouve (¢)L =

= o O
o = O

1
0
0

Exercice 3. Soit a : R* = R3 lapplication linéaire définie par

alz,y,z,t) = 2x —y,z+y+2z+t3y —2z+x —t).

a) Déterminer la matrice de a par rapport auz bases canoniques de R* et de R3.

b) Quelle est le vecteur colonne de a(0,1,0,0) par rapport a la base canonique de R3?

¢) Montrer que F = ((—1,0,0,1),(0,4,0,1),(0,0,3,1),(0,0,0,1)) est une base de R*.

d) Déterminer le vecteur colonne de v = (1,4,3,—1) par rapport d la base canonique de R*?

So

e) Déterminer le vecteur colonne de v par rapport o la base F.

lution 3.  a) Soient E = (e, es, e3,e4) la base canonique de R* et E' = (e, e, e3) celle de R3. Alors comme
aler) = «(1,0,0,0) =(2,1,1) = 2-e1+1-ea+1-e3,
ales) = «(0,1,0,0) =(-1,1,3) = (-1)-e1+1-ex+3-e3,
ales) = «(0,0,1,0)=(0,1,-2) = 0-e;+1-ex+(-2) e3,
aleg) = «(0,0,0,1) =(0,1,—-1) = 0-e1+1-e3+(=1)-e3,
2 -1 0 0
par définition, la matrice (a)g/ =1 1 1 1
1 3 -2 -1



OO = O

b) On note w = (0,1,0,0). Alors comme w =€z =0-e3+1-e2+0-e3+0-e4, 0na (w)g = . D’apres le
cours,
(a(w)p = ()& (w)e
2 -1 0 0 (1)
= 1 1 1 0
1 -2 -1 0

Noter bien que cette derniére égalité est cohérente avec le fait que «((0,1,0,0)) = (—1,1,3).

c) Notons F' = (f1, fa, f3, fa)-

Premiére méthode: On voit aisément que

e1r. = —fitha (1) - fi+0-fo+0-fs+1-f4
€2 %(fz*f@ = 0-fit: fot0-f34+(=3) fu
es = 5(fs—f1) = 0-fi+0-fo+ i fs+(—=3) fa
es = fa 0-f1i+0-fo+0-f3+1-fs

Donc F engendre tout élément de la base canonique E et comme F est de cardinal 4 qui est la dimension de R*,
F est une base de R*. De plus, on obtient

Onl= O
w= O O
= o O O

NI
Wl

Deuxieme méthode: On peut montrer aisément que F est libre, donc elle est une base de R?, puisqu’elle est
de cardinal 4 qui est la dimension de R*.

Lo

d) Comme v =(1,4,3,-1)=1-e1+4-e2+3-e3+(—1)-eq,0na (v)g =

e) D’apres le cours,

(wr = (d)g- ()
-1 0 0 0 1
_ 0 %+ 0 0 4
B 0o 0 & 0 3
1 -3 -1 -1
-1
B 1
B 1
—2

Exercice 4. Soit la matrice A = (Z Z) € Myyo(K).

: ) . _ d -b
(a) Montrer que si ad —bc # 0 alors A est inversible et A™H = —1— < >

—C a

(b) On considére lapplication C-linéaire ¢ : Cltl<1 — Max1(C) définie par ¢(f) = <j:((é))> On pose les bases

ordonnées suivantes des deux espaces vectoriels :



By = (1,t), By = (t —1,1), des bases de C[t]<1 et

) = ((é) , (‘D) et Cy = (G) 7 (‘2)) des bases de Moy, (C).

Trouver les matrices de passage suivantes :
. \B : \B iNC2 (:\C
(ld)Bf, (1d)B;, (1d)cf, (1d)C;.
(c) Trouver les matrices de ¢ par rapport aux differents choix des bases, comme suit :

(@)5:, (D)5, et (9

Solution 4. Pour (a), on vérifie que — dibc ( _dc _ab> (‘CL Z) = ((1) ?), et le produit également dans l’autre sens.

(b) On exprime chaque élément de la base Bs en termes de labase By : t —i=—i-1+1-teti=4-14+0-t et on
trouve ainsi que (id)j! = <1Z é) Ensuite, on trouve (id)}}? = ((id)5}) ! = (_Oz }
de la formule de la partie (a).

On fait de méme pour trouver (1d)gf et (id)gé:

e {10\ e (10
(id)c; = (1 z) et (id)c; = <z z)
i 1

Pour (c), on calcule ¢(1) = G) et ¢(t) = <0> Ainsi nous avons (gb)gi = (1 0). Ensuite on utilise les résultats

du cours :
@i =wen=( )0 o= 1)

(¢)§Z=(id)8f(¢)§i(id)§§:G i-) G 3) (f 3):<—01 0)

Exercice 5. Soit R[t]<a l'espace vectoriel des polynémes de degré < 2 a coefficients dans R. Soient E = (1,t,1%)
la base ordonnée de R[t|<o et F = (1 +t,t +t,t%). Soit a : R[t]<a — R[t]<a Uapplication R-linéaire définie par
a(a+ bt + ct?) = b+ 2ct pour tous a,b,c € R.

), ol la derniere égalité vient

Ensuite, on a

a) Montrer que F' est une base de R[t]<s.

b) Trouver les matrices de changement de base (id )L et (id)E.

¢) Déterminer (a)E.

d) Déterminer (o).

Solution 5.  a) Notons F' = (fi, fo, f3) = (1 +t,t +t2,t2).

Soient a, b, ¢ € R tels que a(1+1t) +b(t+1%) +ct> = 0. Alors en comparant les coefficients des termes, on obtient
a=0,a+b=0et b+ c=0, ce qui donne a =b =c = 0. Donc F est libre.

Comme le cardinal de F', qui vaut 3, est égal & la dimension de R[t]<2. On obtient que F' est bien une base de

R[t]<2.
b) Comme
fi = 14+t = 1-14+1-t+0-¢3,
fo = t+t? = 0-14+1-t+1-¢3,
f3 = t? = 0-1+4+0-t+1-¢%
1 0 0
la matrice de changement de base S = (id)E=1 1 1 0
011
Comme
1 = fitfa-fo = 1-fi+(=1)-fat1fs
t = fao—f3 = 0-fi+1l-t+(-1) -t

t? = f3 = 0-fi+0-fot+1-fs,



1 0 O
la matrice de changement de base S~ = (id)E=| -1 1 0
1 -1 1
¢) Comme
a(l) = 0 = 0-140-t+0-12
at) = 1 = 1-140-t+0-¢2
at?) = 2t = 0-14+2-t+0-t2
01 0
on obtient la matrice A= ()2 = 0 0 2
0 00

d) D’apres la formule de changement de base, on a

B=(a)k = S7'AS
1 0 0 010 1 00
= -1 1 0 0 0 2 1 1 0
1 -1 1 0 0 O 0 1 1
1 1 0
= -1 1 2
1 -1 -2
On peut aussi calculer directement ()£ par définition comme suit:
Comme
a(fi) = 1 = 1-fit (1) -fao+1-fs
a(fe) = 142t = 1-fi+1-fo+(-1) fs,
a(fs) = 2t = 0-fi+2 fot+(-2) fs,
1 1 0
on obtient la matrice B= ()b = -1 1 2
1 -1 -2

Exercice 6 (Cet exercice complete la preuve d’une des propriétés de la multiplication des matrices). Soient A, B €
M, s(K) et soit C € Mgyyo(K). Montrer que (A+ B)C = AC + BC.

Solution 6. On compare les composantes (4, ) des deux matrices :

S S S

((A+B)C)ij = Z(A+B)ikckj = Z(Aik+Bik)ij = Z(Aikckj—‘rBikaj) = ZAikaj—l—Z Bikaj = (AC)”—F(BC)”
k=1 k=1

k=1 k=1 k=1

Exercice 7 (Cet exercice compléte la preuve du 5.3.3 des notes du cours). Soient V' et W des K-espaces vectoriels
de dimension finie avec bases ordonnées respectives By et By . Soient ¢, € L(V,W). Montrer que (¢ + 1/1)53/ =

(qﬁ)g&v + (w)gy et que pour tout A\ € K on a que ()\(b)gg’ =\ ((b)gg’.

Solution 7. On considére la (4,j) composante de la matrice C = (¢ + w)gz‘/ :
si By = (e1,...,en) et By = (f1,..., fm) alors (¢ +¢)(e;) = Cijfi+ -+ Cijfi+ -+ Crjfm.
Mais (¢ +9)(e;) = ¢(e;) + 1(e;).
Si A= (¢)5" et D= (V)5 alors ¢(e;) = Arjfi+ -+ Aifj + -+ Amj fm b
Y(e;) = Dijfi+ -+ Dijfj + - Dmjfn-
Maintenant on compare les expressions

Cijfi+-+Cijfit -+ Cnjfm et Ayifit+-+Ayfi+ - Amjfm + Dijfr+ -+ Dijfj + -+ Dij fm,

pour conclure que C;; = A;; + D;;. La preuve pour la deuxieme assertion est pareille.




Exercice 8. Soit K un corps. Démontrer qu’une matrice A € My, (K) est scalaire si et seulement si A commute avec
toutes les matrices de M, (K).

Indication : Faire commuter A avec chacune des matrices Ers de la base usuelle de M, (K).

Solution 8. Si A commute avec toute matrice de M, (K), alors A commute avec toute matrice F,, et on va calculer
le coefficient (i,j) de E ;A = AE,,. Rappelons que la matrice E,; a pour coefficients (E,s);; = 0,;05;. On obtient

n

(ETSA)ij = Z(Ers)ikAkj = ZériéskAkj = 6riAsj )
k=1 k=1

(AErs)ij = ZAil(Ers)lj = ZAil(S'r‘l(ssj = Air(ssj )
=1 =1

et par conséquent 6,;As; = Airdg;. En prenant ¢ = r, on obtient
Asj = Appdsj .

Si s # j, cela donne A,; = 0, et comme cela vaut pour tout s # j, la matrice A est diagonale. Si s = j, cela donne
Ags = A, et comme cela vaut pour tout s et r, la matrice A est scalaire.
La réciproque est évidente (i.e. une matrice scalaire commute avec toute matrice de M, (K)).

Exercice 9. (f) Soit V un espace vectoriel de dimension finie m sur un corps K et ¢ : V.— V une application
linéaire.

a) Démontrer qu’il existe un nombre 1 < n € N tel que Ker (¢F~1) = Ker (¢*) pour tout k > n.
b) Formuler et démontrer une affirmation similaire pour les images de ¢*, k € N.
¢) Montrer par un exemple que Uaffirmation a) devient fausse sans l'hypothése que dim(V) < co.

d) Donner un exemple d’un espace vectoriel de dimension infinie et d’une application linéaire ¢ : V. — V telle que
¢ soit surjective, mais pas bijective.

Solution 9. a) Soit 1 < k € Net v € V. On a Ker(¢F!) C Ker(¢¥), car si ¢*~1(v) = 0, alors ¢*(v) =
$(¢*~1(v) = 0. Si
Ker (¢) C Ker (¢?) C ---Ker (¢¥) C -

est une suite strictement croissante de sous-espaces vectoriels de V', alors
dim(Ker (¢)) < dim(Ker (¢?)) < --- < dim(Ker (¢*)) < ...

ce qui est impossible car dim(V') = m < oco. Donc la suite croissante des noyaux ne peut pas étre strictement
croissante et elle doit s’arréter (en fait la suite peut avoir au plus m termes) et il existe k tel que Ker (¢*) =
Ker (¢**1). On montre maintenant par récurrence que Ker (¢") = Ker (¢*) pour tout n > k.

Pour n = k + 1, c’est le cas par hypothese. Supposons que Ker (¢") = Ker (¢*) pour tout k& < r < n, et soit
v € Ker (¢"1). Comme ¢"1(v) = 0, on a que ¢(v) € Ker (¢"). Comme Ker (¢") = Ker (¢" 1), on a aussi
d(v) € Ker (¢"71), et donc ¢"(v) = ¢" L(¢p(v)) = 0, ce qui montre que v € Ker (¢"). Donc on a montré que
Ker (¢"*1) C Ker (¢") C Ker (¢"*1), d’ot1 Iégalité Ker (¢"1) = Ker (¢") = Ker (¢*). Ceci conclut la preuve de
a).

b) On montre qu’il existe k € N, k > 1 tel que Im (¢"*!) = Im (¢™) pour tout n > k.

Soit 1 < ¢ € NetwveImgl. Ilexisteu € V avec v = ¢(u), alors v = ¢*~(p(u)), donc v € Im (¢*~1) et
Im (¢*) € Im (¢*~!). On consideére la suite d’inclusions de sous-espaces vectoriels :

Im (¢) D Im (¢?) D --- D Im (¢°) -~ .
Si cette suite est une suite strictement décroissante de sous-espaces vectoriels de V', alors
dim(V) > dim(Im (¢)) > dim(Im (¢%)) > --- > dim(Im (¢¥)) > ...

ce qui est impossible car dim(V) = m < oo. Donc la suite décroissante des images ne peut pas étre strictement
décroissante et elle doit s’arréter (en fait la suite peut avoir au plus m termes). Ceci prouve qu’il existe un
nombre 1 < k € N tel que Im (¢¥~1) = Im (¢*).



Maintenant on montre par récurrence que Im (¢") = Im (¢*~!) pour tout n > k. On vient de voir que c’est le
cas pour n = k. Supposons que Im (¢™) = Im (¢*) pour un certain n > k. On considére w € Im (¢"*!). Donc
w = ¢" 1 (u) pour un certain u € V. Maintenant ¢"(u) € Im (¢") = Im (¢*~1) et donc ¢"(u) = ¢*~1(2) pour
un certain z € Vet w = ¢" 1 (u) = ¢*(2) € Im (¢*) = Im (¢*~1). Donc Im (¢"+1) = Im (¢*~1).

¢), d) Considérons K = C, V = CJt] et ¢ la dérivation des polynémes. On a

Ker (¢) = C ¢ Ker (¢%) = C[t

J<1 &
g Ker (d) ) C[ ]<n 1 g Ker (¢n+1) [t]<n g e

D’autre part, application ¢ est évidemment surjective, mais pas injective, car Ker (¢) = C.

Exercice 10. (f) Soit K un corps et a, B : K" — K™ deux applications linéaires. Démontrer l'inégalité:

rang () + rang () —n < rang (o o ) < min{rang («), rang (8)}.

Solution 10. On montre d’abord la borne supérieure :
Observons déja que puisque Ker (8) C Ker (a0 ), dim Ker (8) < dim Ker (a0 ). En utilisant le théoréme du rang,
nous obtenons n — rang (8) < n — rang (a o 3), c’est-a~dire rang (o o ) < rang (). De plus,

m (o f) ={a(f(x)): z € K"} ={a(y): y € Im (B)} € {a(y): y € K"} = Im ().

Ainsi rang (a o 8) < rang (a) et rang (a o §) < rang (3), d’ott rang (a0 8) < min{rang («),rang (3)}, ce qui prouve la
borne supérieure.

Pour prouver la borne inférieure, notons s = dimKer (8) et B = {uq,...,us} une base de Ker(8). Puisque
Ker (8) C Ker (a0 ), cette base peut étre complétée en une base BUW de Ker (a0 3) avec W = {wq, ..., w;} telle
que dim Ker (a0 8) = s+t. Notons V = {B(w1),...,B(w)}, W = Vect (W), V = Vect (V) et montrons que dimV = ¢,
c’est-a-dire que V est linéairement indépendant. En effet, si

D AiB(wi) = B Awi) =0
i=1 =1

alors 22:1 Aiw; € Ker (8) donc 22:1 Aw; = Z‘;:l piuj. Mais puisque {u1,...,us,wi,...,w;} est une base, A; =0
et p; = 0 pour tout 4 =1,...,t et tout j =1,...,s, ce qui montre que V est linéairement indépendant.

Puisque W C Ker (o ), pour w; € W, on a a(fB(w;)) = 0 et donc S(w;) € Ker (a)). On déduit que V' C Ker (),
donc t = dim V' < dim Ker («). Enfin, nous avons

dimKer (a0 ) = s + ¢t < dim Ker («) + dim Ker (3).
Finalement, en appliquant le théoréeme du rang

rang (o ) = n — dimKer (a0 8) > n — dimKer () — dim Ker (8) = rang () + rang (8) — n.

Exercice 11 (Facultatif). Soit V' un K-espace vectoriel de dimension finie et soit W C V un sous-espace vectoriel.
Posons H = {0 € GL(V) | 6(W) C W} (on lappelle le stabilisateur dans GL(V) de W). Montrer que H est un
sous-groupe de GL(V'). (On rappelle que la loi de composition dans le groupe GL(V') est la composition d’applications.)

Solution 11. On note que H # @ car idy € H. Soient maintenant 61,02 € H et soit w € W. Alors (61 0 63) =
01(02(w)). Comme 65 € H, O3(w) € W et comme 0y € H, 61(02(w)) € W et on déduit que 6y 0 6 € H.

Soit # € H. Comme W est de dimension finie et 6 est bijective (donc injective), on a par le théoréme du rang
(appliqué & Papplication 6 : W — W) que dim W = dim (W) et donc (W) = W. Maintenant, pour w € W, il existe
u € W avec 6(u) = w. On trouve que 0~ (w) = 071 (0(u)) = u € W, ce qui montre que =1 (W) C W et 6~ € H
aussi.

Ces deux vérifications montrent que H est un sous-groupe de GL(V).




