Algeébre linéaire avancée I, Section de Physique automne 2024 Prof. Donna Testerman

Corrigé 7
29 octobre

Notation: Soit p un nombre premier. On note F, le corps fini & p éléments et écrira simplement a pour @, pour un
élément a de IF,,.

On fixe un corps K.

On écrira M, (K) pour M, . (K).

A cette série, vous pouvez rendre pour correction I'exercice 77. Il faut le donner a un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 5 novembre.

A cette série il y a deux exercices notés avec *. Ils sont en plus car ils ressemblent & d’autres exercices. Vous pouvez
éventuellement les garder pour la période des révisions

Exercice 1. On considére les sous-espaces vectoriels suivants de X = May3(C) :

a b ¢
U = {<d . f>€X|a—b—c—dete—|—f—0},

B 10 4\ (i+1 0 1\ (0 0 1\ (2+i 0 2+i
V_VeCt((010)’<o 00)’(100)’<1 1 0))'

a) Caleuler dim(U) et dim(V).
b) Trouver dim(U NV).
¢) Montrer que U +V = May5(C).

Solution 1. a) Une matrice (a

d ;) appartient & U si et seulement si f = —e et d = b+ ¢ — a. Donc U

a b ¢
b+c—a e —e

100 010 00 1 00 0
CL(—loo)“’<100)“(100)”(01—1)'
goq(L 0 0) (0 10y (00 1y 00 0y
=100/t 0o0) 1 00)lo1 4

est une famille génératrice de U.

est ’ensemble des matrices de la forme ( ) Une telle matrice s’écrit comme la combinaison

linéaire

En particulier,

On vérifie aisément que S est une famille libre et donc dimU = 4.
Pour V, il s’agit d’extraire une base de la famille génératrice donnée.

On cherche d’abord a savoir si les vecteurs donnés sont linéairement indépendants. Soient «, 3,y,d € C tels que

1 0 < 1+1 0 1 0 0 1 244 0 244\ (0 0 O
O‘(010)+ﬁ(0 00)*7(100>+‘5(1 1 o)_(ooo)'
Onaquea+pB(i+1)+d2+i)=0; ia+8+v+06(2+4+i)=0; v+5=0; o+ =0. On déduit que v = a,

6 = —a, et § = «a. Les équations sont alors toutes vérifiées en prenant a = =y =1 et § = —1. Les vecteurs
sont linéairement dépendants et de plus on voit que le 4° vecteur est la somme des 3 premiers. Donc

B 10 i\ (i+1 0 1\ (0 0 1
V_VeCt((o 1 o>’<0 0 0)’(1 0 0>)'

Ensuite, on vérifie que les trois matrices restantes sont linéairement indépendantes et par conséquent dim V' = 3.



. a b ¢ . N
b) Soit A = <b—|— c—a e —e) € U. Alors A € V si et seulement s’il existe a, 8, € C tels que

(10 i1 0 1 00 1
AO‘(O 1 o>+5( 0 0 0)*7(1 0 0)’
ce qui est possible seulement si e = 0, ce qui implique o = 0 (comparer les composantes (2, 3) et (2,2) des deux
matrices), et ensuite b = 0 (voir la composante (1,2)). On a maintenant

a 0 ¢\ _(BGi+1) 0 B+y
c—a 0 0) 5y 0 0o )’

0 0 ¢

et on déduit que f =0 = a et ¢ =. On vérifie ainsi que UﬂVz{(c 0 O) |[ceC}. Onadim(UNV)=1.

c¢) Par la formule pour la dimension d’une somme de deux sous-espaces vectoriels, on a que dim(U 4+ V) = dim U +
dimV —dim(UNV)=443—1=6 et comme dim Ms43(C) = 6, on déduit que U + V = Ma3(C).

Exercice 2. Soit V =R[t]<3 le R-espace vectoriel de polynémes & coefficients réels de degré au plus 3.
(a) Vérifier que B = {1 —t,t +12 3t — 3t> + 3,1 — t?} est une base de V.
(b) Trouver les coordonnées de chacun des vecteurs suivants par rapport d la base B :

pr=1,py=t, p3 =12, pa =13, et ps = a+ bt + ct?> + dt3, pour a,b,c,d € R.

1
Solution 2. (a) En effet, on observe que (1 —t) + (¢ + %) + (1 — t?) = 2. Ainsi, 1 = 52 € Vect (B). Ensuite on a que

t=1—(1—t) € Vect (B) et t? = 1—(1—t2) € Vect (B). Finalement, on a t3 = (3t —3t2+3) -3t +3t% € Vect (B) et
donc a bien que B engendre V. Ensuite, comme dim(V) = 4, on a bien que les vecteurs dans B sont linéairement
indépendants.

(b) Pour un vecteur v € V, v = A(1 —t) + Aa(t + %) + A3(3t — 3% + ¢3) + M\4(1 — ¢2), nous noterons les coordonnées
de v par rapport & la base B comme (A1, A2, A3, A\4). On note aussi que si v et w ont coordonnées (A1, Ao, Az, Ag),
respectivement (g1, pa, fi3, pta), alors les coordonnées de v + w sont (Ay + p1, Ao + pa, Az + pig, Ay + pa).

11 1
En utilisant le point (a), on voit que les coordonnées de v = 1 sont (5, 2 0, 5), cellesde v =t=1— (1 —1t) sont
11 1 11 1 11 1 11 1
(5, > 0, 5) +(-1,0,0,0) :1(715, 51,0, 5), (lzellles de t12 sont (5, 3 0, 5) +(0,0,0,—1) = (5, 5,0, 75), et enfin celles
de #3 sont (0,0,1,0) — 3( 0,2) +3(2, =,0,—=) = (3,0,1, —3).

272772 2°277 2
Et donc, on a que pour ps = a + bt + ct? + dt2 pour a,b,c,d € R, les coordonnées de ps sont

1 1 1
(E(aberc)+3d,§(a+b+c),d,§(a+b70)—3d).

Exercice 3. Soit V = Myys(F2).
(a) Montrer que Card(V') = 64.
(b) (facultatif, un peu plus difficile) Soit X C V. Montrer que si X posséde plus que 32 éléments, alors Vect (X) =V

p . (1 1 0 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 . L .
(c) Déterminer sz{(o 1 0) , (0 0 1) , < 1 O> , (1 1 1> , (O 1 O) , <1 1 1)} est une famille génératrice
de V.

p . (1 11 1 10 1 10 1 00 ) .
(d) Determmersz{(o 1 O>’<O 0 1),(1 1 0),(1 1 1)}est une famille libre dans V.

Solution 3. (a) Soit M € V. Alors on peut écrire M = (a; as a3) ol a; € F3 pour i = 1,2, 3. Comme Card(F3) = 4.
On a 4-4-4 =64 choix pour ay, as et a3 et donc Card(V') = 64.

—_

(b) Posons W = Vect (X). Si W # V, alors dimW = d < 5. Comme Card(W) = 2¢ < 2° = 32, on a une
contradiction.



(¢c) Appelons ces éléments A;,...,Ag. C’est bien une famille génératrice. Il suffit de montrer que les matrices
Er1, Eva, Ev3, Eo1, Eoo, Eag, qui forment une base de May5(F2), appartiennent a Vect ({Ay, ..., 4g}). On a

Ei3 = A5 + Ay,

Eos = Ay + As,

Eos = Ay + Ay + Ay + As, et on voit que Eis, Eag, Fag € Vect ({41, ..., Ag}).

Aussi on a A + Ag = Fa1 + Eb3 et donc

Eo; = A5 + Ag + Eoz € Vect ({A1, ..., Ag}); et E11 + Eoy = A1 + As + Ay, d'ou

Eyy = A1+ As + Ay + Eoq € Vect ({Ay, ..., Ag}). Enfin, on a E1; + Ej2 + Ay = E22 et on conclut comme avant.

0 0 0

A+ A+ A3+ 2 =0,et Ay + Ao+ A3 =0, donc Ay = 0. En considérant la composante (1,3) de la matrice, on
trouve que A; = 0.

(d) Appelons ces éléments Ay, ..., Aq. Si A1, A2, Az, Ay € Fy tels que Zi NA; = 000 ,on a
=1

Aussi Ao + Ay = 0, car c’est égale a la composante (2,3) de cette somme. On a trouvé donc que A; = 0 pour tout
1, ce qui montre que la famille est libre.

Exercice 4. Pour chacun des espaces vectoriels suivants, trouver une base et donner la dimension.
a) Le C-espace vectoriel T' des matrices A = (Aij)1<ij<n € Mn(C) telles que A;; = Aj; pour tous i # j,
b) Le K-espace vectoriel des polynomes p(t) € K|[t] de degré < 3 qui s’annulent en 0 et 1.
¢) Le Fr-espace vectoriel V = {(z,y,2) € (F7)® | z +y+22=0et 3y + 2z = 0}.

Solution 4.  a) Pour 1 <4, j < n, notons E;; la matrice dont le coefficient en position (7, ;) vaut 1 et zéro partout
ailleurs. On va montrer que la famille

est une base de 7.

Cette famille est évidemment contenue dans T'. Supposons qu’il existe des scalaires Ay, 1 < i < n, et Ajpg,
1 <j <k <n, tels que

n

> AiEi+ > Ap(Ej+ Eyy) =0.
i=1 1<j<k<n

Alors comme cette matrice est nulle, tout coefficient s’annule. En position (,4) pour tout 1 < ¢ < n, on trouve

A;; =0 et pour tous 1 < j < k < n, on trouve Aj; = 0 en position (j, k). Donc la famille B est libre. Pour une

matrice A = (A4;;) € T, on a

A= ZA“E“ + Z Ajk(Ejk + Ekj)7
=1

1<j<k<n
car pour tous 1 < j < k <n, Aj, = Aj;. Par conséquent, cette famille est génératrice.
On a montré que la famille B est libre et génératrice dans T, donc elle est une base de T'.

La dimension de T est donc Card(B) =n + (3) =n+ w = TL("TH)

b) Notons V le sous-espace en question. Soit f(t) = ag + a1t + ast? + ast® avec ag, a1, as, a3 € K un polynéme de
degré au plus 3. Il s’annule en 0 et 1 si et seulement si f(0) = ap =0 et f(1) = ap+a1+az+as =0. Donc ag =0
et a1 = —as — as. On consideére as et a3 comme des “variables libres”. On obtient —t + 2 en posant as = 1 et
az = 0, et on a le polynéme —t+t> en posant as = 0 et a3 = 1. On montre que la famille A := {—t +2, —t +13}
est une base de V. En effet, les deux polynomes —t + t2, —t + t3 satisfont les conditions et donc appartiennent
a V. Sl existe des scalaires a,b € K tels que a(—t +t2) + b(—t +t3) = 0, alors (—a — b)t + at® + bt = 0 et cela
implique que a = b = 0. Cette famille est donc libre. Pour tout f(t) = ag + a1t + ast? + azt® € V, on sait que
ap =0 et a; = —az —az. Donc f(t) = az(—t + t?) + az(—t + t3) et cette famille est génératrice. On a montré
que A est libre et génératrice et donc elle est une base de V.

La dimension de V est 2, puisque A est de cardinal 2.



c¢) Soit (z,y,z) € V, Alors 3y + z = 0 implique que z = —3y et on remplace z par —3y dans  +y + 2z = 0
et on obtient z = 5y. On obtient donc que (z,y,z) = (5y,y, —3y) et si on pose y = 1, on obtient le vecteur
(5,1,—3) = (5,1,4), puisque —3 = 4 € F7. On montre que le vecteur (5,1, 4) engendre V. En effet, il est clair que
cet élément appartienne & V. Comme on a vu que tout élément (x,y, z) vérifie (x,y, z) = (5y,y,4y) = y(5,1,4),
ce vecteur non nul engendre V. On a montré que {(5,1,4)} est une base de V et donc V est de dimension 1.

Exercice 5. (x) On considére les sous-espaces vectoriels suivants de R* :
U = {(z,y,2,t) eERY |2 —224+t=0 et z+3t=0},
V= Vect((1,0,0,0), (0,-1,0,0), (-1,1,0,0), (0,0,0,1) ).
a) Calculer dim(U) et dim(V).
b) Montrer que U +V = R*.
¢) Trouver dim(U N'V') sans déterminer UNV.

d) Déterminer UNV.

Solution 5. a) On va trouver une base de U comme suit. Soit (z,y,2,t) € U. Alors x —2z+t=0¢et 2+ 3t = 0.
La deuxieme égalité donne z = —3t et si on remplace z par —3t dans la premiere, on obtient z = —7¢. Donc
(z,y,2,t) = (=Tt y,—3t,t) et y et t sont des “variables libres”. Si on prend y = 0 et ¢t = 1, on obtient le vecteur
vy = (—=7,0,—3,1); si on pose t =0 et y = 1, on obtient le vecteur e5 = (0, 1,0,0).

On montre que la partie A = {v1,ea} est une base de U. Ces deux vecteurs appartiennent clairement & U.
On a montré, dans le premier paragraphe, que pour tout (z,y,z2,t) € U, on a (x,y,z,t) = (=Tt,y, —3t,t) =
t(=7,0,-3,1) +y(0,1,0,0). Donc cette partie est génératrice. D’autre part, s'il existe a,b € R tels que

a(=7,0,-3,1) + b(0,1,0,0) = 0,

alors a = b = 0. Donc la partie A est libre. On a ainsi montré que A est une base de U et donc la dimension de
U est 2.

Pour l'espace V', la partie C = {e1,vq,v3,e4} est une partie génératrice, ot e; = (1,0,0,0), vo = (0,—1,0,0),
vy = (=1,1,0,0), e4 = (0,0,0,1). On va trouver une base de V en prenant une partie de C. On va montrer que
B = {e1,v2,v4} est une base de V. 1l est évident que vy = —e; — vy et donc tout élément de C est engendré
par B. Mais comme C est génératrice de V', il s’ensuit que B est aussi génératrice de V. Maintenant s’il existe
a,b, c € R tels que aeq +bvg +ceq = 0, alors aeq +buy +ceq = (a, —b, 0, ¢) est le vecteur nul et donca =b=c=0.
La partie B est par conséquent libre. On a montré que c’est une base de V' et donc V est de dimension 3.

b) On montre que 'union .4 U B trouvée dans a) engendre la base canonique {e1, 2, e3,e4}. Evidemment, e1,e4 €
AUB, eg = —vy et ez = —%(vl + Te; — eq4). Donc AU B engendre R* et U +V = R*, puisque U +V =
Vect (A) + Vect (B) = Vect (AU B) = R™.

¢) On utilise la formule des dimensions et on obtient

dim(UNV) =dim(U) +dim(V) —dim(U+V)=2+3-4=1.

d) Il est évident que e € UNV et d’apres ¢), dim(U NV) =1, donc U NV = Vect (ez).

Exercice 6. Soit V un K-espace vectoriel de dimension 5. Parmi les assertions suivantes, lesquelles sont correctes?

a) Une partie 6 6 éléments est toujours génératrice.

b) Soient U et W deux sous-espaces vectoriels de V' tels que dim(U) = 3 et dim(W) = 2. Si UNW = {0}, alors
V=UasW.

¢) Pour deux sous-espaces vectoriels U et W de V' avec dim(U) = 3 et dim(W) =4, on a dim(UNW) = 2.

d) Une partie a 4 éléments est toujours libre.



Solution 6. a) Non. Par exemple, soit v € R® un élément non nul et prenons la partie {v,2v,3v,4v,5v,6v}.
Cette partie n’est pas génératrice, puisqu’elle est contenue dans Vect (v) qui est un sous-espace propre de R®
(sous-espace de dimension 1).

b) Oui. En effet, d’aprés la formule des dimensions,
dim(U + W) =dim(U) + dim(W) —=dim(UNW)=3+2-0=15.

Donc U + W est un sous-espace de V' de dimension 5, donc il est égal a I’espace entier V. Comme U NW = {0},
onaV=U+W=UeqW.

c) Non. Par exemple, si U C W, alors UNW = U et donc dim(U NW) = dim(U) = 3 # 2.

d) Non. Par exemple, soit v € R un élément non nul et prenons la partie {v,2v,3v,4v}. Cette partie n’est pas
libre, puisqu’elle est contenue dans Vect (v) qui est un sous-espace de R® de dimension 1.

Exercice 7. (x) Soit V un K-espace vectoriel de dimension 4. Parmi les affirmations suivantes, lesquelles sont
correctes?

a) Si{vi,va} et {vs,vs} sont linéairement indépendants, alors {v1,va,v3,v4} le sont aussi.
b) SiU et W sont des sous-espaces vectoriels de dimension 2 de V tels que V. =U + W, alors UNW = {0y }.

¢) Il existe un sous-ensemble S C V', composé de 4 éléments linéairement indépendants, mais qui ne forme pas une
base de V.

d) Si K =Ts, alors V posséde au moins 10 vecteurs distincts et au plus 100 vecteurs distincts.

Solution 7. a) Non. Le plus simple est de prendre un vecteur commun dans les deux ensembles: {vy,v2} =
{(1,0,0,0),(0,1,0,0)} Cc R* et {v3,v4} = {1,0,0,0),(0,0,1,0)} C R%.

b) Juste, car V = U + W par hypothese, donc
4 =dim(U + W) = dim(U) + dim(W) — dim(U N W) = 2 + 2 — dim(U N W),
donc dim(U N W) = 0. (On peut noter aussi que V=U @ W comme V=U+W et UNW = {0v}.)

¢) Impossible, dans tout espace vectoriel de dimension finie n, un ensemble de n vecteurs linéairement indépendants
forme une base. (résultat du cours)

d) Soient B = {v1,v2,vs3,v4} une base de V. Chaque vecteur s’écrit comme a3 vy + vy + 3vs + vy, pour o; € Fs,
et pour chaque vecteur les coordonnées sont uniquement déterminées par le vecteur. Donc V possede 5% = 625
vecteurs distincts et affirmation est fausse.

Exercice 8.

Soit p,q € C et considérons les vecteurs u = (p,0,p — q), v = (0,p,q) et w = (1,p,p) € C>. Laquelle des affirmations
suivantes est vraie?

o Les vecteurs u,v,w sont linéairement dépendants si et seulement st p = 0.
e Les vecteurs u,v,w sont linéairement dépendants si et seulement si p = q.
o Les vecteurs u,v,w sont linéairement indépendants si p ¢ {0,1} et ¢ = ip.

Solution 8. La troisieme réponse est la bonne. Sip = 0, alors u = —v, donc les vecteurs sont linéairement dépendants.
Sip =1, alors w = u+ v, et les vecteurs sont linéairement dépendants. Si p = ¢, alors u + pv — pw = 0, et les vecteurs
sont linéairement dépendants. Pour prouver que les vecteurs u,v,w sont linéairement indépendants si p & {0,1} et
q = ip, montrons que Vect (u,v,w) = C3. Sip & {0,1} et ¢ = ip, alors w —u — v = (1 — p,0,0). Comme p # 1, on a
1—p # 0, et donc (1,0,0) € Vect ((u,v,w)). On a donc aussi w—(1,0,0) = (0,p, p) € Vect ((u,v,w)). Cela implique que
(0,p,p)—v = (0,0,p—q) € Vect ((u,v,w)). Comme p # q, (car ¢ = ip et p # 0) cela implique (0,0, 1) € Vect ((u, v, w)).
Finalement, on a v — ¢(0,0,1) = (0, p,0) € Vect ((u, v, w)), et comme p # 0, (0,1,0) € Vect ((u, v, w)).




Exercice 9. Les applications suivantes sont-elles R-linéaires?
a) a; :R3 —- R2, ai(z,y,2) = (x+ 2y — 2,22+ ), ou A\ € R est fizé.
b) (e RQ — RQ? Oég(l',y) = (O,J)y),

¢) ag : C([a,b],R) = R, as3(f) = f(a) + f: f(z)dz, ou C([a,b],R) est l’ensemble des fonctions continues de [a,b]
dans R.

d) g Rlt]<a = Rlt]<a, aa(p(t)) = p(t + 1) = p(t).

Solution 9. a) Si A =0, a7 est une application linéaire; sinon, elle ne l'est pas.

En effet, si A = 0, alors pour a € R et (z,v, 2), (2,9, 2') € R3, on a

ai(a(z,y, 2) + (2, y',2')) = ai(az +2',ay +y',az + 2')
((ax+2")+2(ay+ ') — (az + 2'),2(az + 7))
alx + 2y — z,22) + (¢/ + 2y — 2/,227)

= aai(z,y,2) + (2, y, ).

Donc si A = 0, a; est linéaire.
Si XA #£0, alors aq(2(x,y, 2)) = a1(2x, 2y, 22) = (22 + 4y — 22,42 + \), mais
201 (2,y,2) = (20 + 4y — 22,42+ 2)\) # (22 + 4y — 22,42 4+ \) = a1 (2(z, 9, 2)),
puisque 4z + 2\ # 4z 4+ A. Donc «; n’est pas linéaire si A # 0.
b) Non. Par exemple, az(2(1,1)) = a2(2,2) = (0,4) # (0,2) = 2(0,1) = 2a2(1,1).
¢) Oui. Soient A € Ret f,g € C([a,b],R). Alors

ag(\f+g) = ( (a) +9(a)) + f (Af(x) + g(xb))dﬂ«“
+(g(a) + [, g(x)dx)

I
_|_

2
t:

d) Oui. Soient a € R et p(t), q(t) € R[t]. Alors

as(ap(t) +q(t)) = (ap(t+1)+q(t+1)) — (ap(t) + (1))
= a(p(t+1) —p(t)) + (¢t +1) — q(t))
= acu(p(t)) + calq(t)).

Exercice 10 (Vérifications d’un résultat du cours). Soient V' et W des K -espaces vectoriels et soient ¢ : V. — W et
vV — W des applications K-linéaires.

(a) Montrer que ¢ + 1 est une application K -linéaire.
(b) Soit A € K. Montrer que A$ est une application K-linéaire.

Solution 10. a) Soient u,v € Vet u € K. On a (¢p+9)(pu+v) = ¢(pu+v)+¢(pu+wv), par la définiton de la somme
de ¢ et ¢. Comme ¢ et 1) sont K-linéaires, ce dernier est égal & ud(u)+¢(v)+u(u)+¢(v) = p(o+v)(u)+(p+1)(v),
ce qui prouve que ¢ + ¥ est K-linéaire.

b) La démonstration est pareille.

Exercice 11 (Vérification d'un exemple du cours). Soit ¢ : K[t] — K]|t] Uapplication définie par o(p(t)) = p(t?),
c’est-a-dire qu’on a
olag + -+ amt™) = ag + art® + - - + apt>™.

Montrer que ¢ est une application K -linéaire.



Solution 11. Soient p,q € K[tjet A€ K. Onap=ag+ait+---+an,t™ et ¢ =by+ b1t +---+b,t", pour n,m € N
et a;,b; € K. On suppose n > m.

Alors Ap +q = (Mag +bo) + (Nay + b))t + -+ (Aam + by )t™ + b1 8™+ -+ b t™.

Ensuite

©(Ap +q) = (Aag + bo) + (Aay 4+ 1)t + - -+ (Aam + b )™ + by 1 82D o b 127 =

Aag + Aart? + -+ + Aamt®™ + by + bit® + - + b, t*" = Ap(p) + ©(q).

On a donc vérifié que ¢ est une application K-linéaire.

Exercice 12 (Vérification d'un exemple du cours). Soit m € R. On considére 'application 7 : R? — R2, la projection

a+mb ma+m2b
m2+1’ m2+1

orthogonale sur la droite D : y = mxz. Montrer que w(a,b) = ( ) pour tous a,b € R.

Solution 12. Si m = 0, Papplication 7 est la projection orthogonale sur axe des abscisses , donc 7(a,b) = (a,0) et
le résultat est vérifié. Pour le cas m # 0, on pose la droite D’ qui passe par le point (a,b) et qui est perpendiculaire &
la droite D. On cherche le point d’intersection de D’ et D, ce qui donnera l'image 7(a,b). La droite D" a pente —1/m
et donc son équation est y — b = —-L(x — a). La formule se déduit ensuite par des calculs simples.

m

Exercice 13 (Facultatif). Soit V' un K-espace vectoriel avec sous-espaces vectoriels U et W tels que V.=U @ W.
On définit une application linéaire 0 : V. — U par (x +y) =z, ot x € U,y € W. On note que cette application est
bien définie car tout élément de V' s’écrit de fagon unique comme une somme d’un élément de U et un élément de W.

a) Montrer que 0 est une application K -linéaire.
b) Déterminer ker(0) .
¢) Déterminer Im (6).
d) Montrer que 806 = 0.
On appelle 0 la projection sur U le long de W.

Solution 13. (a) On montre que 6 est une application K-linéaire. Soit v1,v2 € V et A € K. On a v; = u; + w; pour
u; € U et w; € W, pour ¢ = 1,2. Donc Avy 4+ vy = Mug + wy) + (ue + we) = Aug + ug + Awy + wa et Aug +ug € U et
Awy +we € W. On a que (Avy + v2) = 0(Auy + us + Awy + we) = Aug + uz. Comme 0(v;) = u; pour i = 1,2, on a
que §(Avy + v2) = A0(v1) + O(vs2) et 0 est K-linéaire.
(b) Si v =u+ w € ker(#) alors u = 0 et par conséquent v € W. De plus on voit que pour tout x € W on a 6(z) = 0.
Donc ker(6) = W.
(¢) On a par définition que Im (¢) C U. Mais aussi pour u € U, 6(u) = 6(u+0) = u € Im (). Donc Im (0) = U.
(d) Enfin on prend v € V et on calcule §(f(v)) : On écrit v =u+ w pour u € U et w € W.

On a

0(0(v)) =0(0(u+ w)) = 0(u) =u = 6(v).

Exercice 14 (Facultatif). On rappelle que pour V un K -espace vectoriel avec sous-espaces vectoriels V1 et Vo qui sont
les deux de dimension finie, on a dim(Vy + V2) = dim V; + dim V, — dim(V; N'V3). Trouver un exemple qui montre que
pour trois sous-espaces Vi, Vo, Vs (de dimension finie) de V', la formule

dim(V; + Vo + V3) = dim V; + dim V5 4+ dim V5 — dim(Vy N V2 N V3)
n’est pas valable.

Solution 14. Prenons V = R? et V; = Vect ((1,0)), Va2 = Vect ((1,1)) et V3 = Vect ((0,1)). Donc V3 NVa N V3 C
V1NV3 ={(0,0)}. Donc dim(V;) + dim(Vs) + dim(V3) —dim(Vi; NVanNV3) =1+141—0=3. Mais V] + Vo + V5 est
un sous-espace de R? et ne peut étre de dimension plus grande que 2.




