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Notation: Soit p un nombre premier. On note Fp le corps fini à p éléments et écrira simplement a pour ā, pour un
élément ā de Fp.
On fixe un corps K.
On écrira Mn(K) pour Mn×n(K).

A cette série, vous pouvez rendre pour correction l’exercice ??. Il faut le donner à un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 5 novembre.

A cette série il y a deux exercices notés avec ⋆. Ils sont en plus car ils ressemblent à d’autres exercices. Vous pouvez
éventuellement les garder pour la période des révisions

Exercice 1. On considère les sous-espaces vectoriels suivants de X =M2×3(C) :

U = {
(
a b c
d e f

)
∈ X| a− b = c− d et e+ f = 0},

V = Vect
( (

1 0 i
0 1 0

)
,

(
i+ 1 0 1
0 0 0

)
,

(
0 0 1
1 0 0

)
,

(
2 + i 0 2 + i
1 1 0

) )
.

a) Calculer dim(U) et dim(V ).

b) Trouver dim(U ∩ V ).

c) Montrer que U + V =M2×3(C).

Solution 1. a) Une matrice

(
a b c
d e f

)
appartient à U si et seulement si f = −e et d = b + c − a. Donc U

est l’ensemble des matrices de la forme

(
a b c

b+ c− a e −e

)
. Une telle matrice s’écrit comme la combinaison

linéaire

a

(
1 0 0
−1 0 0

)
+ b

(
0 1 0
1 0 0

)
+ c

(
0 0 1
1 0 0

)
+ e

(
0 0 0
0 1 −1

)
.

En particulier,

S = {
(

1 0 0
−1 0 0

)
,

(
0 1 0
1 0 0

)
,

(
0 0 1
1 0 0

)
,

(
0 0 0
0 1 −1

)
}

est une famille génératrice de U .

On vérifie aisément que S est une famille libre et donc dimU = 4.

Pour V , il s’agit d’extraire une base de la famille génératrice donnée.

On cherche d’abord à savoir si les vecteurs donnés sont linéairement indépendants. Soient α, β, γ, δ ∈ C tels que

α

(
1 0 i
0 1 0

)
+ β

(
i+ 1 0 1
0 0 0

)
+ γ

(
0 0 1
1 0 0

)
+ δ

(
2 + i 0 2 + i
1 1 0

)
=

(
0 0 0
0 0 0

)
.

On a que α + β(i + 1) + δ(2 + i) = 0; iα + β + γ + δ(2 + i) = 0; γ + δ = 0; α + δ = 0. On déduit que γ = α,
δ = −α, et β = α. Les équations sont alors toutes vérifiées en prenant α = β = γ = 1 et δ = −1. Les vecteurs
sont linéairement dépendants et de plus on voit que le 4e vecteur est la somme des 3 premiers. Donc

V = Vect
( (

1 0 i
0 1 0

)
,

(
i+ 1 0 1
0 0 0

)
,

(
0 0 1
1 0 0

) )
.

Ensuite, on vérifie que les trois matrices restantes sont linéairement indépendantes et par conséquent dimV = 3.



b) Soit A =

(
a b c

b+ c− a e −e

)
∈ U . Alors A ∈ V si et seulement s’il existe α, β, γ ∈ C tels que

A = α

(
1 0 i
0 1 0

)
+ β

(
i+ 1 0 1
0 0 0

)
+ γ

(
0 0 1
1 0 0

)
,

ce qui est possible seulement si e = 0, ce qui implique α = 0 (comparer les composantes (2, 3) et (2, 2) des deux
matrices), et ensuite b = 0 (voir la composante (1, 2)). On a maintenant(

a 0 c
c− a 0 0

)
=

(
β(i+ 1) 0 β + γ

γ 0 0

)
,

et on déduit que β = 0 = a et c = γ. On vérifie ainsi que U ∩ V = {
(
0 0 c
c 0 0

)
| c ∈ C}. On a dim(U ∩ V ) = 1.

c) Par la formule pour la dimension d’une somme de deux sous-espaces vectoriels, on a que dim(U +V ) = dimU +
dimV − dim(U ∩ V ) = 4 + 3− 1 = 6 et comme dimM2×3(C) = 6, on déduit que U + V =M2×3(C).

Exercice 2. Soit V = R[t]≤3 le R-espace vectoriel de polynômes à coefficients réels de degré au plus 3.

(a) Vérifier que B = {1− t, t+ t2, 3t− 3t2 + t3, 1− t2} est une base de V .

(b) Trouver les coordonnées de chacun des vecteurs suivants par rapport à la base B :

p1 = 1, p2 = t, p3 = t2, p4 = t3, et p5 = a+ bt+ ct2 + dt3, pour a, b, c, d ∈ R.

Solution 2. (a) En effet, on observe que (1− t) + (t+ t2) + (1− t2) = 2. Ainsi, 1 =
1

2
2 ∈ Vect (B). Ensuite on a que

t = 1−(1−t) ∈ Vect (B) et t2 = 1−(1−t2) ∈ Vect (B). Finalement, on a t3 = (3t−3t2+t3)−3t+3t2 ∈ Vect (B) et
donc a bien que B engendre V . Ensuite, comme dim(V ) = 4, on a bien que les vecteurs dans B sont linéairement
indépendants.

(b) Pour un vecteur v ∈ V , v = λ1(1− t) + λ2(t+ t2) + λ3(3t− 3t2 + t3) + λ4(1− t2), nous noterons les coordonnées
de v par rapport à la base B comme (λ1, λ2, λ3, λ4). On note aussi que si v et w ont coordonnées (λ1, λ2, λ3, λ4),
respectivement (µ1, µ2, µ3, µ4), alors les coordonnées de v + w sont (λ1 + µ1, λ2 + µ2, λ3 + µ3, λ4 + µ4).

En utilisant le point (a), on voit que les coordonnées de v = 1 sont (
1

2
,
1

2
, 0,

1

2
), celles de v = t = 1− (1− t) sont

(
1

2
,
1

2
, 0,

1

2
)+(−1, 0, 0, 0) = (−1

2
,
1

2
, 0,

1

2
), celles de t2 sont (

1

2
,
1

2
, 0,

1

2
)+(0, 0, 0,−1) = (

1

2
,
1

2
, 0,−1

2
), et enfin celles

de t3 sont (0, 0, 1, 0)− 3(−1

2
,
1

2
, 0,

1

2
) + 3(

1

2
,
1

2
, 0,−1

2
) = (3, 0, 1,−3).

Et donc, on a que pour p5 = a+ bt+ ct2 + dt3 pour a, b, c, d ∈ R, les coordonnées de p5 sont

(
1

2
(a− b+ c) + 3d,

1

2
(a+ b+ c), d,

1

2
(a+ b− c)− 3d).

Exercice 3. Soit V =M2×3(F2).

(a) Montrer que Card(V ) = 64.

(b) (facultatif, un peu plus difficile) Soit X ⊂ V . Montrer que si X possède plus que 32 éléments, alors Vect (X) = V .

(c) Déterminer si {
(
1 1 0
0 1 0

)
,

(
1 1 0
0 0 1

)
,

(
1 0 0
1 1 0

)
,

(
1 0 0
1 1 1

)
,

(
1 1 1
0 1 0

)
,

(
1 1 1
1 1 1

)
} est une famille génératrice

de V .

(d) Déterminer si {
(
1 1 1
0 1 0

)
,

(
1 1 0
0 0 1

)
,

(
1 1 0
1 1 0

)
,

(
1 0 0
1 1 1

)
} est une famille libre dans V .

Solution 3. (a) Soit M ∈ V . Alors on peut écrire M = (a1 a2 a3) où ai ∈ F2
2 pour i = 1, 2, 3. Comme Card(F2

2) = 4.
On a 4 · 4 · 4 = 64 choix pour a1, a2 et a3 et donc Card(V ) = 64.

(b) Posons W = Vect (X). Si W ̸= V , alors dimW = d ≤ 5. Comme Card(W ) = 2d ≤ 25 = 32, on a une
contradiction.



(c) Appelons ces éléments A1, . . . , A6. C’est bien une famille génératrice. Il suffit de montrer que les matrices
E11, E12, E13, E21, E22, E23, qui forment une base de M2×3(F2), appartiennent à Vect ({A1, . . . , A6}). On a

E13 = A5 +A1,

E23 = A4 +A3,

E22 = A1 +A2 +A4 +A3, et on voit que E13, E23, E22 ∈ Vect ({A1, . . . , A6}).
Aussi on a A5 +A6 = E21 + E23 et donc

E21 = A5 +A6 + E23 ∈ Vect ({A1, . . . , A6}); et E11 + E21 = A1 +A2 +A4, d’où

E11 = A1 +A2 +A4 +E21 ∈ Vect ({A1, . . . , A6}). Enfin, on a E11 +E12 +A1 = E22 et on conclut comme avant.

(d) Appelons ces éléments A1, . . . , A4. Si λ1, λ2, λ3, λ4 ∈ F2 tels que
∑4

i=1 λiAi =

(
0 0 0
0 0 0

)
, on a

λ1 + λ2 + λ3 + λ4 = 0, et λ1 + λ2 + λ3 = 0, donc λ4 = 0. En considérant la composante (1, 3) de la matrice, on
trouve que λ1 = 0.

Aussi λ2 + λ4 = 0, car c’est égale à la composante (2, 3) de cette somme. On a trouvé donc que λi = 0 pour tout
i, ce qui montre que la famille est libre.

Exercice 4. Pour chacun des espaces vectoriels suivants, trouver une base et donner la dimension.

a) Le C-espace vectoriel T des matrices A = (Aij)1≤i,j≤n ∈Mn(C) telles que Aij = Aji pour tous i ̸= j,

b) Le K-espace vectoriel des polynômes p(t) ∈ K[t] de degré ≤ 3 qui s’annulent en 0 et 1.

c) Le F7-espace vectoriel V = {(x, y, z) ∈ (F7)
3 | x+ y + 2z = 0 et 3y + z = 0}.

Solution 4. a) Pour 1 ≤ i, j ≤ n, notons Eij la matrice dont le coefficient en position (i, j) vaut 1 et zéro partout
ailleurs. On va montrer que la famille

B := {Eii, Ejk + Ekj | 1 ≤ i ≤ n, 1 ≤ j < k ≤ n}

est une base de T .

Cette famille est évidemment contenue dans T . Supposons qu’il existe des scalaires Aii, 1 ≤ i ≤ n, et Ajk,
1 ≤ j < k ≤ n, tels que

n∑
i=1

AiiEii +
∑

1≤j<k≤n

Ajk(Ejk + Ekj) = 0.

Alors comme cette matrice est nulle, tout coefficient s’annule. En position (i, i) pour tout 1 ≤ i ≤ n, on trouve
Aii = 0 et pour tous 1 ≤ j < k ≤ n, on trouve Ajk = 0 en position (j, k). Donc la famille B est libre. Pour une
matrice A = (Aij) ∈ T , on a

A =

n∑
i=1

AiiEii +
∑

1≤j<k≤n

Ajk(Ejk + Ekj),

car pour tous 1 ≤ j < k ≤ n, Ajk = Akj . Par conséquent, cette famille est génératrice.

On a montré que la famille B est libre et génératrice dans T , donc elle est une base de T .

La dimension de T est donc Card(B) = n+
(
n
2

)
= n+ n(n−1)

2 = n(n+1)
2 .

b) Notons V le sous-espace en question. Soit f(t) = a0 + a1t+ a2t
2 + a3t

3 avec a0, a1, a2, a3 ∈ K un polynôme de
degré au plus 3. Il s’annule en 0 et 1 si et seulement si f(0) = a0 = 0 et f(1) = a0+a1+a2+a3 = 0. Donc a0 = 0
et a1 = −a2 − a3. On considère a2 et a3 comme des “variables libres”. On obtient −t+ t2 en posant a2 = 1 et
a3 = 0, et on a le polynôme −t+ t3 en posant a2 = 0 et a3 = 1. On montre que la famille A := {−t+ t2,−t+ t3}
est une base de V . En effet, les deux polynômes −t+ t2,−t+ t3 satisfont les conditions et donc appartiennent
à V . S’il existe des scalaires a, b ∈ K tels que a(−t+ t2) + b(−t+ t3) = 0, alors (−a− b)t+ at2 + bt3 = 0 et cela
implique que a = b = 0. Cette famille est donc libre. Pour tout f(t) = a0 + a1t + a2t

2 + a3t
3 ∈ V , on sait que

a0 = 0 et a1 = −a2 − a3. Donc f(t) = a2(−t + t2) + a3(−t + t3) et cette famille est génératrice. On a montré
que A est libre et génératrice et donc elle est une base de V .

La dimension de V est 2, puisque A est de cardinal 2.



c) Soit (x, y, z) ∈ V , Alors 3y + z = 0 implique que z = −3y et on remplace z par −3y dans x + y + 2z = 0
et on obtient x = 5y. On obtient donc que (x, y, z) = (5y, y,−3y) et si on pose y = 1, on obtient le vecteur
(5, 1,−3) = (5, 1, 4), puisque −3 = 4 ∈ F7. On montre que le vecteur (5, 1, 4) engendre V . En effet, il est clair que
cet élément appartienne à V . Comme on a vu que tout élément (x, y, z) vérifie (x, y, z) = (5y, y, 4y) = y(5, 1, 4),
ce vecteur non nul engendre V . On a montré que {(5, 1, 4)} est une base de V et donc V est de dimension 1.

Exercice 5. (⋆) On considère les sous-espaces vectoriels suivants de R4 :

U = {(x, y, z, t) ∈ R4 | x− 2z + t = 0 et z + 3t = 0},

V = Vect
(
(1, 0, 0, 0), (0,−1, 0, 0), (−1, 1, 0, 0), (0, 0, 0, 1)

)
.

a) Calculer dim(U) et dim(V ).

b) Montrer que U + V = R4.

c) Trouver dim(U ∩ V ) sans déterminer U ∩ V .

d) Déterminer U ∩ V .

Solution 5. a) On va trouver une base de U comme suit. Soit (x, y, z, t) ∈ U . Alors x− 2z + t = 0 et z + 3t = 0.
La deuxième égalité donne z = −3t et si on remplace z par −3t dans la première, on obtient x = −7t. Donc
(x, y, z, t) = (−7t, y,−3t, t) et y et t sont des “variables libres”. Si on prend y = 0 et t = 1, on obtient le vecteur
v1 = (−7, 0,−3, 1); si on pose t = 0 et y = 1, on obtient le vecteur e2 = (0, 1, 0, 0).

On montre que la partie A = {v1, e2} est une base de U . Ces deux vecteurs appartiennent clairement à U .
On a montré, dans le premier paragraphe, que pour tout (x, y, z, t) ∈ U , on a (x, y, z, t) = (−7t, y,−3t, t) =
t(−7, 0,−3, 1) + y(0, 1, 0, 0). Donc cette partie est génératrice. D’autre part, s’il existe a, b ∈ R tels que

a(−7, 0,−3, 1) + b(0, 1, 0, 0) = 0 ,

alors a = b = 0. Donc la partie A est libre. On a ainsi montré que A est une base de U et donc la dimension de
U est 2.

Pour l’espace V , la partie C = {e1, v2, v3, e4} est une partie génératrice, où e1 = (1, 0, 0, 0), v2 = (0,−1, 0, 0),
v3 = (−1, 1, 0, 0), e4 = (0, 0, 0, 1). On va trouver une base de V en prenant une partie de C. On va montrer que
B = {e1, v2, v4} est une base de V . Il est évident que v3 = −e1 − v2 et donc tout élément de C est engendré
par B. Mais comme C est génératrice de V , il s’ensuit que B est aussi génératrice de V . Maintenant s’il existe
a, b, c ∈ R tels que ae1+bv2+ce4 = 0, alors ae1+bv2+ce4 = (a,−b, 0, c) est le vecteur nul et donc a = b = c = 0.
La partie B est par conséquent libre. On a montré que c’est une base de V et donc V est de dimension 3.

b) On montre que l’union A ∪ B trouvée dans a) engendre la base canonique {e1, e2, e3, e4}. Evidemment, e1, e4 ∈
A ∪ B, e2 = −v2 et e3 = − 1

3 (v1 + 7e1 − e4). Donc A ∪ B engendre R4 et U + V = R4, puisque U + V =
Vect (A) + Vect (B) = Vect (A ∪ B) = R4.

c) On utilise la formule des dimensions et on obtient

dim(U ∩ V ) = dim(U) + dim(V )− dim(U + V ) = 2 + 3− 4 = 1.

d) Il est évident que e2 ∈ U ∩ V et d’après c), dim(U ∩ V ) = 1, donc U ∩ V = Vect (e2).

Exercice 6. Soit V un K-espace vectoriel de dimension 5. Parmi les assertions suivantes, lesquelles sont correctes?

a) Une partie à 6 éléments est toujours génératrice.

b) Soient U et W deux sous-espaces vectoriels de V tels que dim(U) = 3 et dim(W ) = 2. Si U ∩W = {0}, alors
V = U ⊕W .

c) Pour deux sous-espaces vectoriels U et W de V avec dim(U) = 3 et dim(W ) = 4, on a dim(U ∩W ) = 2.

d) Une partie à 4 éléments est toujours libre.



Solution 6. a) Non. Par exemple, soit v ∈ R5 un élément non nul et prenons la partie {v, 2v, 3v, 4v, 5v, 6v}.
Cette partie n’est pas génératrice, puisqu’elle est contenue dans Vect (v) qui est un sous-espace propre de R5

(sous-espace de dimension 1).

b) Oui. En effet, d’après la formule des dimensions,

dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ) = 3 + 2− 0 = 5.

Donc U +W est un sous-espace de V de dimension 5, donc il est égal à l’espace entier V . Comme U ∩W = {0},
on a V = U +W = U ⊕W .

c) Non. Par exemple, si U ⊂W , alors U ∩W = U et donc dim(U ∩W ) = dim(U) = 3 ̸= 2.

d) Non. Par exemple, soit v ∈ R5 un élément non nul et prenons la partie {v, 2v, 3v, 4v}. Cette partie n’est pas
libre, puisqu’elle est contenue dans Vect (v) qui est un sous-espace de R5 de dimension 1.

Exercice 7. (⋆) Soit V un K-espace vectoriel de dimension 4. Parmi les affirmations suivantes, lesquelles sont
correctes?

a) Si {v1, v2} et {v3, v4} sont linéairement indépendants, alors {v1, v2, v3, v4} le sont aussi.

b) Si U et W sont des sous-espaces vectoriels de dimension 2 de V tels que V = U +W , alors U ∩W = {0V }.

c) Il existe un sous-ensemble S ⊂ V , composé de 4 éléments linéairement indépendants, mais qui ne forme pas une
base de V .

d) Si K = F5, alors V possède au moins 10 vecteurs distincts et au plus 100 vecteurs distincts.

Solution 7. a) Non. Le plus simple est de prendre un vecteur commun dans les deux ensembles: {v1, v2} =
{(1, 0, 0, 0), (0, 1, 0, 0)} ⊂ R4 et {v3, v4} = {1, 0, 0, 0), (0, 0, 1, 0)} ⊂ R4.

b) Juste, car V = U +W par hypothèse, donc

4 = dim(U +W ) = dim(U) + dim(W )− dim(U ∩W ) = 2 + 2− dim(U ∩W ),

donc dim(U ∩W ) = 0. (On peut noter aussi que V = U ⊕W comme V = U +W et U ∩W = {0V }.)

c) Impossible, dans tout espace vectoriel de dimension finie n, un ensemble de n vecteurs linéairement indépendants
forme une base. (résultat du cours)

d) Soient B = {v1, v2, v3, v4} une base de V . Chaque vecteur s’écrit comme α1v1+α2v2+α3v3+α4v4, pour αi ∈ F5,
et pour chaque vecteur les coordonnées sont uniquement déterminées par le vecteur. Donc V possède 54 = 625
vecteurs distincts et l’affirmation est fausse.

Exercice 8.

Soit p, q ∈ C et considérons les vecteurs u = (p, 0, p− q), v = (0, p, q) et w = (1, p, p) ∈ C3. Laquelle des affirmations
suivantes est vraie?

� Les vecteurs u, v, w sont linéairement dépendants si et seulement si p = 0.

� Les vecteurs u, v, w sont linéairement dépendants si et seulement si p = q.

� Les vecteurs u, v, w sont linéairement indépendants si p ̸∈ {0, 1} et q = ip.

Solution 8. La troisième réponse est la bonne. Si p = 0, alors u = −v, donc les vecteurs sont linéairement dépendants.
Si p = 1, alors w = u+ v, et les vecteurs sont linéairement dépendants. Si p = q, alors u+ pv− pw = 0, et les vecteurs
sont linéairement dépendants. Pour prouver que les vecteurs u, v, w sont linéairement indépendants si p ̸∈ {0, 1} et
q = ip, montrons que Vect (u, v, w) = C3. Si p ̸∈ {0, 1} et q = ip, alors w − u − v = (1 − p, 0, 0). Comme p ̸= 1, on a
1−p ̸= 0, et donc (1, 0, 0) ∈ Vect ((u, v, w)). On a donc aussi w−(1, 0, 0) = (0, p, p) ∈ Vect ((u, v, w)). Cela implique que
(0, p, p)−v = (0, 0, p−q) ∈ Vect ((u, v, w)). Comme p ̸= q, (car q = ip et p ̸= 0) cela implique (0, 0, 1) ∈ Vect ((u, v, w)).
Finalement, on a v − q(0, 0, 1) = (0, p, 0) ∈ Vect ((u, v, w)), et comme p ̸= 0, (0, 1, 0) ∈ Vect ((u, v, w)).



Exercice 9. Les applications suivantes sont-elles R-linéaires?

a) α1 : R3 → R2, α1(x, y, z) = (x+ 2y − z, 2z + λ), où λ ∈ R est fixé.

b) α2 : R2 → R2, α2(x, y) = (0, xy);

c) α3 : C([a, b],R) → R, α3(f) = f(a) +
∫ b

a
f(x)dx, où C([a, b],R) est l’ensemble des fonctions continues de [a, b]

dans R.

d) α4 : R[t]≤4 → R[t]≤4, α4(p(t)) = p(t+ 1)− p(t).

Solution 9. a) Si λ = 0, α1 est une application linéaire; sinon, elle ne l’est pas.

En effet, si λ = 0, alors pour a ∈ R et (x, y, z), (x′, y′, z′) ∈ R3, on a

α1(a(x, y, z) + (x′, y′, z′)) = α1(ax+ x′, ay + y′, az + z′)
= ((ax+ x′) + 2(ay + y′)− (az + z′), 2(az + z′))
= a(x+ 2y − z, 2z) + (x′ + 2y′ − z′, 2z′)
= aα1(x, y, z) + α1(x

′, y′, z′).

Donc si λ = 0, α1 est linéaire.

Si λ ̸= 0, alors α1(2(x, y, z)) = α1(2x, 2y, 2z) = (2x+ 4y − 2z, 4z + λ), mais

2α1(x, y, z) = (2x+ 4y − 2z, 4z + 2λ) ̸= (2x+ 4y − 2z, 4z + λ) = α1(2(x, y, z)),

puisque 4z + 2λ ̸= 4z + λ. Donc α1 n’est pas linéaire si λ ̸= 0.

b) Non. Par exemple, α2(2(1, 1)) = α2(2, 2) = (0, 4) ̸= (0, 2) = 2(0, 1) = 2α2(1, 1).

c) Oui. Soient λ ∈ R et f, g ∈ C([a, b],R). Alors

α3(λf + g) = (λf(a) + g(a)) +
∫ b

a
(λf(x) + g(x))dx

= λ(f(a) +
∫ b

a
f(x)dx) + (g(a) +

∫ b

a
g(x)dx)

= λα3(f) + α3(g).

d) Oui. Soient a ∈ R et p(t), q(t) ∈ R[t]. Alors

α4(ap(t) + q(t)) = (ap(t+ 1) + q(t+ 1))− (ap(t) + q(t))
= a(p(t+ 1)− p(t)) + (q(t+ 1)− q(t))
= aα4(p(t)) + α4(q(t)).

Exercice 10 (Vérifications d’un résultat du cours). Soient V et W des K-espaces vectoriels et soient ϕ : V → W et
ψ : V →W des applications K-linéaires.

(a) Montrer que ϕ+ ψ est une application K-linéaire.

(b) Soit λ ∈ K. Montrer que λϕ est une application K-linéaire.

Solution 10. a) Soient u, v ∈ V et µ ∈ K. On a (ϕ+ψ)(µu+v) = ϕ(µu+v)+ψ(µu+v), par la définiton de la somme
de ϕ et ψ. Comme ϕ et ψ sontK-linéaires, ce dernier est égal à µϕ(u)+ϕ(v)+µψ(u)+ψ(v) = µ(ϕ+ψ)(u)+(ϕ+ψ)(v),
ce qui prouve que ϕ+ ψ est K-linéaire.

b) La démonstration est pareille.

Exercice 11 (Vérification d’un exemple du cours). Soit φ : K[t] → K[t] l’application définie par φ(p(t)) = p(t2),
c’est-à-dire qu’on a

φ(a0 + · · ·+ amt
m) = a0 + a1t

2 + · · ·+ amt
2m.

Montrer que φ est une application K-linéaire.



Solution 11. Soient p, q ∈ K[t] et λ ∈ K. On a p = a0 + a1t+ · · ·+ amt
m et q = b0 + b1t+ · · ·+ bnt

n, pour n,m ∈ N
et ai, bj ∈ K. On suppose n ≥ m.

Alors λp+ q = (λa0 + b0) + (λa1 + b1)t+ · · ·+ (λam + bm)tm + bm+1t
m+1 + · · ·+ bnt

n.
Ensuite

φ(λp+ q) = (λa0 + b0) + (λa1 + b1)t
2 + · · ·+ (λam + bm)t2m + bm+1t

2(m+1) + · · ·+ bnt
2n =

λa0 + λa1t
2 + · · ·+ λamt

2m + b0 + b1t
2 + · · ·+ bnt

2n = λφ(p) + φ(q).

On a donc vérifié que φ est une application K-linéaire.

Exercice 12 (Vérification d’un exemple du cours). Soit m ∈ R. On considère l’application π : R2 → R2, la projection

orthogonale sur la droite D : y = mx. Montrer que π(a, b) = (a+mb
m2+1 ,

ma+m2b
m2+1 ) pour tous a, b ∈ R.

Solution 12. Si m = 0, l’application π est la projection orthogonale sur l’axe des abscisses , donc π(a, b) = (a, 0) et
le résultat est vérifié. Pour le cas m ̸= 0, on pose la droite D′ qui passe par le point (a, b) et qui est perpendiculaire à
la droite D. On cherche le point d’intersection de D′ et D, ce qui donnera l’image π(a, b). La droite D′ a pente −1/m
et donc son équation est y − b = − 1

m (x− a). La formule se déduit ensuite par des calculs simples.

Exercice 13 (Facultatif). Soit V un K-espace vectoriel avec sous-espaces vectoriels U et W tels que V = U ⊕W .
On définit une application linéaire θ : V → U par θ(x + y) = x, où x ∈ U, y ∈ W . On note que cette application est
bien définie car tout élément de V s’écrit de façon unique comme une somme d’un élément de U et un élément de W .

a) Montrer que θ est une application K-linéaire.

b) Déterminer ker(θ) .

c) Déterminer Im (θ).

d) Montrer que θ ◦ θ = θ.

On appelle θ la projection sur U le long de W .

Solution 13. (a) On montre que θ est une application K-linéaire. Soit v1, v2 ∈ V et λ ∈ K. On a vi = ui + wi pour
ui ∈ U et wi ∈W , pour i = 1, 2. Donc λv1 + v2 = λ(u1 +w1) + (u2 +w2) = λu1 + u2 + λw1 +w2 et λu1 + u2 ∈ U et
λw1 + w2 ∈ W . On a que θ(λv1 + v2) = θ(λu1 + u2 + λw1 + w2) = λu1 + u2. Comme θ(vi) = ui pour i = 1, 2, on a
que θ(λv1 + v2) = λθ(v1) + θ(v2) et θ est K-linéaire.
(b) Si v = u+ w ∈ ker(θ) alors u = 0 et par conséquent v ∈ W . De plus on voit que pour tout x ∈ W on a θ(x) = 0.
Donc ker(θ) =W .
(c) On a par définition que Im (θ) ⊂ U . Mais aussi pour u ∈ U , θ(u) = θ(u+ 0) = u ∈ Im (θ). Donc Im (θ) = U .
(d) Enfin on prend v ∈ V et on calcule θ(θ(v)) : On écrit v = u+ w pour u ∈ U et w ∈W .

On a
θ(θ(v)) = θ(θ(u+ w)) = θ(u) = u = θ(v).

Exercice 14 (Facultatif). On rappelle que pour V un K-espace vectoriel avec sous-espaces vectoriels V1 et V2 qui sont
les deux de dimension finie, on a dim(V1 +V2) = dimV1 +dimV2 − dim(V1 ∩V2). Trouver un exemple qui montre que
pour trois sous-espaces V1, V2, V3 (de dimension finie) de V , la formule

dim(V1 + V2 + V3) = dimV1 + dimV2 + dimV3 − dim(V1 ∩ V2 ∩ V3)

n’est pas valable.

Solution 14. Prenons V = R2 et V1 = Vect ((1, 0)), V2 = Vect ((1, 1)) et V3 = Vect ((0, 1)). Donc V1 ∩ V2 ∩ V3 ⊂
V1 ∩ V3 = {(0, 0)}. Donc dim(V1) + dim(V2) + dim(V3)− dim(V1 ∩ V2 ∩ V3) = 1+ 1+ 1− 0 = 3. Mais V1 + V2 + V3 est
un sous-espace de R2 et ne peut être de dimension plus grande que 2.


