Algeébre linéaire avancée I, Section de Physique automne 2024 Prof. Donna Testerman

Corrigé 5
8 octobre

Notation: Soit p un nombre premier. On note F, le corps fini & p éléments et écrira simplement a pour @, pour un
élément a de IFp.

On fixe un corps K.

On écrira M, (K) pour M, x,(K).

A cette série, vous pouvez rendre pour correction l’exercice 7. Il faut le donner a un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 15 octobre.

Exercice 1. Parmi les parties suivantes de R*, préciser lesquelles sont des sous-espaces vectoriels de R*.

a) {(z,y,2,t) eRY | 3z —y — 22+ 3t = 0}.

C) { z,Y, 2,1 6R4 | .732—:1/2:0}.

( )

b) {(z,y,2,t) ER* |3z —y—2=0et 2 —t=1}.
( )
( )

d) {(z,y,2,t) € R* | (2,9,2,t) = (—a+b, 2a + 3b, —2a, —b) pour a,b € R}.

Solution 1. a) Notons V' la partie en question. On va utiliser le critére des sous-espaces.

Tout d’abord V' n’est pas vide car (0,0,0,0) € V.
Si(x,y,2,t),(2,y,2',t') € V,alors 3t —y — 2z + 3t =0=32" —y' — 22’ + 3¢’ et donc

Ba+a) = (y+y) =20z +2) +3(t+1) = Bz —y— 22+ 3t) + (32" —y' — 22/ +3t') = 0.

On obtient que (z+ ',y +y',z+ 2/, t+t') e V.

Soient (z,y,z,t) € Vet A € R. Alors 3x—y—22z+43t = 0 implique que 3Az—Ay—2Az+3At = A\(Bz—y—22+3t) =0
et donc (A\x, Ay, Az, At) € V.

On a ainsi vérifié que V est un sous-espace vectoriel de R*.

Non, ce n’est pas un sous-espace vectoriel de R*. Par exemple, (0,0,0,—1) € V, o1 V est la partie en question,
mais 2-(0,0,0,—1) = (0,0,0,—2) £ V.

Non. Par exemple, (1,1,0,0) et (1,—1,0,0) appartiennent & cette partie, mais pas leur somme (2,0, 0,0), puisque
92 02 =4 £0.
Oui. Notons V la partie en question. Comme (0,0,0,0) € V (pour a =b=0) , V n’est pas vide.
Si (z,y,2,t), (z',y,2',t') € V, alors il existe a,b,a’,b’ € R tels que (z,y,2,t) = (—a+ b, 2a + 3b, —2a, —b) et
(' y, 2, t) = (—d + V', 2a’ + 3V, —2da', V'), et donc
(42, y+y, 2+2, t+1)

= (—a+b, 2a+3b, —2a, —b) + (—d' + V', 2a’ + 3V, —2a’, V')

= ((at+ad)+(b+V), 2(a+ad)+30+V), —2(a+d), —(b+)).
On obtient que (z+ ',y +y',z+ 2/, t+t') e V.
Soient (z,y,z,t) € Vet A € R. Alors il existe a,b € R tel que (z,y,2,t) = (—a + b, 2a + 3b, —2a, —b) et donc

A (z,y,2,t) = (= Aa+ Ab, 2Xa + 3\b, —2Xa, —Ab) € V.

On a ainsi vérifié que V est un sous-espace vectoriel de R*.

Solution alternative et plus courte: On note que pour v € V, on a v = a(—1,2,—-2,0) + b(1,3,0, —1) pour
certains a,b € R. Ceci montre que V = Vect ((—1,2,—2,0), (1,3,0,—1)), qui est un sous-espace vectoriel de R*.




Exercice 2. Soit F(R,R) le R-espace vectoriel des applications de R vers lui-méme. Les sous-ensembles suivants
sont-ils des sous-espaces vectoriels de F(R,R)?

a) L’ensemble des fonctions qui sont continues sur l'intervalle 10, 1][.
b) L’ensemble des fonctions qui s’annulent sur l'intervalle [0, 1].
¢) L’ensemble des fonctions continues valant 1 en 0.

d) L’ensemble des fonctions f: R — R telles que f(x +2) = f(x) pour tout x € R.

Solution 2. a) Oui. En effet, notons V' ce sous-ensemble. Si f,g € V, alors f+g¢ est encore continue sur I'intervalle

10,1[ et donc f+ g € V. Soit A € R. Alors Af est encore continue sur U'intervalle |0,1[ et Af € V. Cela montre
que V est un sous-espace vectoriel de F(R, R).

b) Oui. La preuve est similaire & celle de a).
¢) Non, si f est une telle fonction, alors 2f vaut 2 en 0 et n’appartient pas & ce sous-ensemble.

d) Oui. La preuve est similaire & celle de a).

Exercice 3. Soit V un K-espace vectoriel avec sous-espaces vectoriels Wy, Wy C V.

a

) Démontrer que Wi + Ws est un sous-espace vectoriel de V.

b) Démontrer que W1 N Wy est un sous-espace vectoriel de V.

c) Donner un exemple dans V = R? de sous-espaces vectoriels Wy et Wo tels que W1 U Wy n’est pas un sous-espace
vectoriel de V.

d) Donner un exemple dans V = R2 de sous-espaces vectoriels Wi et Wy tels que W1 UWsy est un sous-espace vectoriel
de V.

e) Donner un exemple dans V = R3 de trois sous-espaces vectoriels Wy, Wo, W3 tels que le sous-espace Wy +Wa+ W3
n’est pas la somme directe des sous-espaces W1, Wy, Ws.

f) Soient Wy, ..., W, des sous-espaces vectoriels de V.. Montrer que Wy + - - -+ W, est un sous-espace vectoriel de V.

Solution 3. a) Comme W; est non vide pour i = 1,2, Wi+ W5 est non vide. Soient z,y € W1 +Ws et o, 5 € K. Donc

il existe wy,v1 € Wy et wa,ve € Wh tels que = wy +wsq et y = v1 +va. Donc ax+ By = a(wy +ws) + B(v1 +v2) =
awy + awy + Puy + Puy = (awy + Bu1) + (aws + fvg). Comme Wy et Wo sont des sous-espaces vectoriels on a que
awy + pv; € Wy et awy + Bvs € Wy, Donc ax + By € Wy + Ws et on conclut que Wi + W5 est un sous-espace
vectoriel de V.

L’ensemble Wy N W5 contient le vecteur nul 0, et donc n’est pas vide. Soient z,y € W1 N Wy et o, 8 € K. Alors
x,y € Wy, et le fait que Wi soit un sous-espace vectoriel implique que ax + By € Wi. De méme pour Ws. Donc
ax + By € W1 N Wy, d’ou W1 N Wy est un sous-espace vectoriel de V.

Prenons Wy = {(a,0) | a € R} et Wo = {(0,b) | b € R}. Alors (1,0),(0,1) € W3 U Wy, mais (1,0) + (0,1) = (1,1)
n’appartient ni a Wi ni a Wy. Donc W7 U W5 n’est pas stable par 1'addition et n’est donc pas un sous-espace
vectoriel de V.

Prenons Wi = {(0,0)} et Ws comme dans I’exemple précédent.

Prenons W7 = {(a,a,0) | a € R}, Wy = {(0,6,b) | b € R}, et W3 = Vect ((2,3,1)). Alors W3 C Wy + Wy et par
conséquent Wy + Wy + W3 n’est pas la somme directe des 3 sous-espaces.

On rappelle d’abord la définition de ’ensemble Wy + - - - + W,

Wi+ +We={z1+ - +a | 2, € W; pour 1 <i<r}.

On note que Wy + --- + W, est non vide car chacun des sous-espaces vectoriels W, possede ’élément neutre 0 de
VetdoncO=0+---+0€ Wy +---+W,.



Soient maintenant u,v € Wi +---+ W, et A€ K. Donc v = wy +---+w, et v =y +--- + y,., pour w;,y; € Wi,
1 <¢ < 7. Donc
M+v=ANwy +-+w.)+ (y1+ -+ )

= (Awr +y1) + -+ Qwr +95).
Comme W; est un sous-espace vectoriel pour tout i, on a \w; + y; € W; pour tout 4, et par conséquent (Aw; +
yi) + -+ Qwr +yr) € Wi+ + W,
Preuve alternative: Par la partie (a), le résultat est vrai pour r = 2 (et pour r = 1 par hypothése). On suppose
maintenant que r > 2 et que le résultat est vrai pour r — 1.

Par cette hypothese Wy +- - -4+W,._1 est un sous-espace vectoriel de V', appelons-le U. Par définition W1 +---+W, =
U + W, et par l'exercice 1, U + W, est un sous-espace vectoriel de V. Donc par récurrence le résultat est vrai pour
tout » > 1.

Exercice 4. (a) Dans le Fz-espace vectoriel Mayx3(F3), montrer que

R N R N e I e N U

(b) Soit V =R[t|<a. Déterminer si le sous-espace vectoriel W = Vect (t2 — 2,t% +¢,2t> +t +2) est égal a V et pareil
pour U = Vect (12 — 2,12 +¢,2t> +t — 2).

(¢c) Vrai ou fauw : Vect (t* | k > 1) = K[t].

. 1201\, (111 ., (-1 0 2\, (222 (0 20
Solution 4. (a) PosonsA—(O 1 O)’B_(l 0 1>7C—<1 9 1),D—<2 0 2>,etE—(1 9 1),

et Uy = Vect (A, B,C), Uy = Vect (D, E). On montre les deux inclusions U; C Uy et Us C U;y. Pour la premiére
inclusion on note que A = 2D + 2FE, B = 2D et C = D + 2E. Donc toute combinaison linéaire de A, B et C
appartient a Us et nous avons Uy C Us. Pour l'inclusion Us C U; on note que D = 2B et E = 2A + B et on
conclut comme avant. Les deux inclusions impliquent 1'égalité Uy = Us.

(b) On note que t> —2+t2 +t— (2t2+t+2) = —4 € W et ainsi 1 € W. On déduit ensuite que t> —2+2 =12 € W
et enfin que t = t2 + ¢t — t2 € W. Cela suffit pour voir que tout polynéme at?> +bt +c€ W. Ona W =V.
Pour U, par contre, on montre que le polynéme ¢ n’appartient pas a U; on suppose le contraire et donc il existe
a,b, c € R tels que a(t? —2) +b(t? +1) +c(2t? +t —2) = t. De cette égalité on déduit que (a+ b+ 2¢)t? + (b+c)t +
(—2a—2c) =t et desuite quea+b+2c=0,b+c=1et —2a — 2c = 0. De la troisieme et premiere équations on
a que b+ ¢ = 0 ce qui contredit la deuxiéme égalité. Donc t € U et U # R][t].

(c) Faux, car les polynémes constants n’appartiennet pas & Vect (t* | k > 1).

Exercice 5. Soient K un corps et K|t]<q l’espace vectoriel des polynémes de degré au plus d a coefficients dans K.
Soit A € K fizé. Soient U = K|t|<a et V = {byt + \b3t® + A\2bst* | by, b3, by € K}.

a) Montrer que U et V' sont des sous-espaces vectoriels de K|t]<a.
b) CalculerUNV, UUV etU+V.

¢) Montrer que UUV 1’ est pas un sous-espace vectoriel de K[t]<4 sauf pour une valeur spécifique de A (a trouver).

Solution 5.  a) On utilise le critere des sous-espaces.
Les ensembles U et V ne sont pas videscar 0 e U et 0 € V.

Pour f,g € U = KJt]<2 et p € K, alors f et g sont deux polynémes de degré au plus 2, il en est de méme pour
leur somme f + g et p- f. Donc U est un sous-espace vectoriel de K[t]<4.

Soient f,g € V et u € K. Alors il existe by, bs, by, by, 05,0, € K tels que f = byt + \bst3 + N\2bytt et g =
byt + Ab5t3 + A2bst*. Donc on a pf + g = (uby + b))t + A(ubs + b5)t3 + A2 (uby + b))t* € V. On a montré que V
est un sous-espace vectoriel de K[t]<4.



b) Supposons que f € UNV. Comme f € U, il existe ag,a,as € K tels que f = ag + ait + ast? et comme f € V,
il existe by, b3, by € K tel que f = bit + Abst® + A2bstt. Donc ag + a1t + ast? = bit + Abst® + A2bst? et cela
implique que ag = 0,a; = by, as = 0, \bg = 0, \2b4 = 0. On obtient que U NV = {a1t | a; € K}.
SiA=0,alors VCU et UUV =U = KJt]<2. Si A # 0, alors

UUV = Kltl<o U{c1t + est? + eqt? | ¢1,¢3,c4 € K}.

En effet, si A # 0, alors cit + cst® + cut* = et + )\(073)753 + )\2(%)75‘1 = by + Abst3 + A2byt?, ol by = ¢, by = et
by = 5% . Donc

{bit + Abst?® + N2bat? | b1, bs, by € K} = {1t + cst® + cat® | 1, 03,04 € K}

Sid=0,alors VCcUetU+V={f+g|feUgeV}=U=K[t]l<a. SiA#0, alors U +V = K[t]<4. En
effet, on a montré dans le paragraphe précédent que

V= {b1t + /\b3t3 + /\2b4t4 | b1,b3,by € K} = {C1t + 63t3 + C4t4 | C1,C3,Cq4 € K}

Alors pour tout polynéme de degré < 4, disons f = ag + a1t + ast? + azt® + ast*, on obtient f = (ag + ast?) +
(art + ast3 + agt?) € U + V, puisque ag + ast® € U et art + ast® + agt* € V. Donc K[t]<y C U + V. L'autre
inclusion est évidente et 'assertion s’en déduit.

c) Si A =0, alors UUV = U est un sous-espace de K[t]<4. Si A # 0, U UV n’est pas un sous-espace vectoriel de
K|t]<4, car par exemple, si on prend 1 € U et t +t* € V, alors leur somme 1 +t+¢> ¢ UUV.

Exercice 6. a) Une matrice A = (A;j) € M, (C) est dite scalaire s’il existe d € C tel que
_ [0 sii#],
A”_{ d sii=yj.

Montrer que l’ensemble V' des matrices scalaires est un sous-espace vectoriel de M, (C).

b) On définit la trace d’une matrice A = (A;;) € M, (C) par Tr(A) = Y| A;i. Montrer que Uensemble W des
matrices de trace nulle est un sous-espace vectoriel de M, (C).

¢) Montrer que M, (C) =V & W.

d) Considérons maintenant ’espace vectoriel Ms(F3) et posons V' le sous-espace vectoriel des matrices scalaires dans
M3(F3) et W le sous-espace vectoriel de M3(F3) des matrices a traces nulles. (On admet que ces deuz sous-
ensembles sont des sous-espaces. Les preuves données pour (a) et (b) ne dépendent pas du corps C.) Montrer
que M3(Fs) #V & W.

Solution 6. a) Onremarque que la matrice nulle est une matrice scalaire et donc V' n’est pas vide. Soient A = (4;;)
et B = (B;;) deux éléments de V et A € C. Alors il existe d,d’ € C tels que

0 siiA] 0 sii#]
A”_{d sig=j B”_{d’ sii=j
Donc A - A = (MA;j) et A+ B = (A;j + B;j) satisfont

_ 0 sii#j N o 0 sii#j
’\A”_{ M osii=g A”JFB”_{ d+d sii=j
Cela implique que A+ A, A+ B € V. L’ensemble V est par conséquent un sous-espace vectoriel de M, (C) par
le critere des sous-espaces.

b) On note que W contient la matrice nulle comme la trace de celle-ci est 0. Soient A = (4;;) et B = (B;;) deux
éléments de W et A € C. Alors Tr(A) = Y | A;; = 0 et Te(B) = Y., Bi; = 0. Considérons la trace de la
matrice A - A = (AA;;) et celle de A+ B = (A;; + B;j). Donc

i=1 i=1



et

i=1 i=1 i=1
Cela implique que A+ A, A+ B € W. L’ensemble W est par conséquent un sous-espace vectoriel de M, (C) par
le critere des sous-espaces.

Soit A = (Ay) € M,(C). On définit B = A [ ot C = (C;;) = A — B. Evidemment B € V, et comme

A si i # j
Cij = { Aij T4 !

- sii=j

on a

Tr(C) = Zn:(A“- _ By zn:A“- S B oy a0

n n

et donc C € W. On a montré que A= B+ C avec BeV et C € W, et donc M,,(C) =V + W.
On montre maintenant que V NW = {0}. Soit A = (A4;;) € VN W. Alors par définition, il existe d € C tel que
0 sii#j
Aij = { d sii=j

et Tr(A) = > i~ A;; = 0. Mais dans ce cas, pour tout 1 < i < n, A;; = d et donc Tr(A) = nd = 0. Cela
implique que d = 0 et A est réduit a la matrice nulle. On a montré que VNW = {0} et donc M,,(C) =V o W.

1 00
Ici VN W n’est pas {0} car la matrice |0 1 0] e VNW,etdonc VCW,douV+W =W # M3(Fs) car
0 0 1

par exemple ¢w.

o O
O = O
o O O

Exercice 7. Soit V. =U @& W une somme directe de K -espaces vectoriels avec W = Vect (w), ot w € W est non nul.

a) Pour chaque y € U, posons W, = Vect (y + w). Montrer que W, est un supplémentaire de U dans V.

b) Soity € U et W, = Vect (v +w). Montrer que W, = W, si et seulement si y =y'. (Cela montre que tous les

W, sont différents (lorsque y varie dans U) donc qu’il y a beaucoup de supplémentaires de U dans V'.)

Solution 7.  a) On doit montrer que V =U + W, et que U N W, = {0}. Soit v € V. On peut écrire v = u + Aw

avec u € U et A € K. Mais comme on a w = —y + (y + w) et comme y € U, on obtient
v=(u—Ay)+ Ay +w) €U+ Vect (y +w) =U+W,.

Donc V =U + W,,.

Soit u € UNW,. Comme u € Wy, il existe a € K tel que u = a(y +w). Alors le vecteur v — ay = aw appartient
a la fois & U (car u,y € U) et & W (car w € W). Donc il est nul, car U NW = {0} (vu que la somme U @ W
est directe). Ainsi aw = 0, et cela implique que a = 0, puisque w # 0. Par conséquent u = a(y + w) = 0, si bien
que U NW, = {0}. On a ainsi montré que V =U & W,, donc W, est un supplémentaire de U dans V.

Supposons que W, = W,,. Comme ' +w € Wy, on ay’' +w € W, donc ¥ + w = a(y +w), o a € K. Alors le
vecteur y' — ay = —w + aw appartient & la fois & U et & W et donc il est nul (car, comme ci-dessus, UNW = {0}
vu que la somme U @ W est directe). Ainsi —w + aw = 0, donc (a — 1)w = 0, donc a — 1 = 0 car w # 0,
c’est-a-dire a = 1. Comme 3y’ — ay = 0, il s’ensuit que ¥’ = ay = v.

La réciproque est évidente.

Exercice 8. Soit K1 C Ko deux corps avec les mémes opérations d’addition et de multiplication. Soit V un Ks-espace
vectoriel. On a Uapplication f: Ko X V. =V qui définit la multiplication par scalaire, f(a,v) = av. Montrer que V
est ausst un Ki-espace vectoriel ot on prend l’addition déja donnée et avec la multiplication par scalaire donnée par
Ky xV =V, (B,v) = f(B,v) = Pv, c’est-a-dire que l’on restreint la multiplication par scalaire au plus petit corps

K.



Solution 8. On sait que (V,+) est un groupe abélien car V est un Ks-espace vectoriel.

Aussi on a une loi de multiplication par scalaire Ko xV — V. Cette loi vérifie (A+p)v = Av+pv, A(u+v) = Au+Av,
Apw) = (Ap)v, et 1-v = v pour tout A\, p € Ko, u,v € V. Comme K; C Ko, ces propriétés sont aussi vérifiées pour
la multiplication par scalaire K1 x V' — V. Ainsi V est un Kj-espace vectoriel. (voir le prochain exercice pour
voir que cette situation n’est pas symétrique.)

b
d

comme des éléments du C-espace vectoriel May2(C)).

Exercice 9. Soit X = {(g | a,b,d € R} C Max2(C). On définit l'addition usuelle des éléments de X (vus

(a) Montrer que X n’est pas un sous-espace vectoriel de Mayo(C).

(b) Comme dans Uezercice précédent, Max2(C) est un R-espace vectoriel. Montrer que X est un sous-espace vectoriel
du R-espace vectoriel Mayo(C).

Solution 9. (a) On note que <é i) € X, mais ¢ ((1) i) = <é _ll) ¢ X. Donc X n’est pas un sous-espace

vectoriel du C-espace vectoriel May2(C).

(b) La matrice nulle appartient & X, donc X n’est pas vide. Pour A = (8 zé)) et B= (6 Z:) dans X, donc avec

aa+r i(ab+s)

a,b,d,r,s,tER,etpouraeR,onaaA+B:( 0 ad 4+t

) qui appartient aussi & X. Donc X est un

sous-espace vectoriel du R-espace vectoriel Max2(C).

La matiere des deux exercices suivants sera reprise, utilisée et élaborée dans vos cours d’analyse et de physique. La
formule de Moivre sera éventuellement utile aussi dans la résolution d’équations polynomiales dans le cours d’algebre
linéaire avancée II. Par contre, nous n’en aurons pas besoin ce semestre.

Exercice 10. On considére le point (z,y) € R?\{(0,0)}. En notant r = \/z2 +y2 > 0, la longueur du segment entre
(0,0) et le point (x,y), et 0 = arctan £ €] — m, 71| I'angle entre l'ave des abscisses positives et le vecteur associé au
point (x,y), on peut écrire

(z,y) = (rcos@,rsinf).

Ainsi, on a
z=x+iy=rcosf +irsinf = r(cosf +isinh),

ot 0 est défini a 2km prés avec k € Z. On Uappelle la forme polaire de z. L’angle 6 = Arg(z) est l'argument de z.
Soit z1,z9 € C deuz nombres complexes, avec |z;| = p; et Arg(z;) = @; pouri=1,2.
(a) Montrer que |z122| = p1p2.

(b) Montrer (en utilisant les identités trigonométriques) que Arg(z1z2) = Arg(z1) + Arg(zq), c’est-a-dire que

z12z2 = pi(cosyr +isinpr) - pa(cos g + isin pg)
= pip2(cos(pr + o) +isin(pr + ¢2)). (1)

Remarque
La récurrence sur n peut étre utilisée pour établir la Formule de Moivre: Pour tous r > 0,0 € Ret n € Non a

(r(cos@ + isin 9))” = 7" (cos(nf) + isin(nd)).



Solution 10. On pose z; = x + yi et 29 = a + bi et on vérifie que (ra — yb)? + (b + ay)? = (22 + y?)(a® + b?), ce qui
montre que |z122|? = p?p3 et comme le module est non négatif, on a le résultat.

Pour (b), on rappelle que cos 1 cos o — sin 1 sin g = cos(p1 + ¢2) et cos p1 sin @y + sin 1 cos Yy = sin(p; + @)
et en développant des deux cotés de I’égalité, on conclut.

Exercice 11. La fonction exponentielle complexe permet de faire une représentation plus compacte des nombres
complezes.
Définition
Pour z=x + iy € C on définit
e = exp(z) := €”(cosy +isiny)

ou € est la fonction exponentielle réelle usuelle.

Montrer que e*T* = e¥ - €% pour tous w,z € C

Solution 11. On pose w = a+bi et z =z + yi. On a ¥ = e*(cosb +isinbd) et e* = e(cosy + isiny). Ensuite, on
utilise la formule de ’exercice précédent pour le produit de deux nombres complexes écrits sous forme polaire.




