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8 octobre

Notation: Soit p un nombre premier. On note Fp le corps fini à p éléments et écrira simplement a pour ā, pour un
élément ā de Fp.
On fixe un corps K.
On écrira Mn(K) pour Mn×n(K).

A cette série, vous pouvez rendre pour correction l’exercice 7. Il faut le donner à un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 15 octobre.

Exercice 1. Parmi les parties suivantes de R4, préciser lesquelles sont des sous-espaces vectoriels de R4.

a) {(x, y, z, t) ∈ R4 | 3x− y − 2z + 3t = 0}.

b) {(x, y, z, t) ∈ R4 | 3x− y − z = 0 et z − t = 1}.

c) {(x, y, z, t) ∈ R4 | x2 − y2 = 0}.

d) {(x, y, z, t) ∈ R4 | (x, y, z, t) = (−a+ b, 2a+ 3b, −2a, −b) pour a, b ∈ R}.

Solution 1. a) Notons V la partie en question. On va utiliser le critère des sous-espaces.

Tout d’abord V n’est pas vide car (0, 0, 0, 0) ∈ V .

Si (x, y, z, t), (x′, y′, z′, t′) ∈ V , alors 3x− y − 2z + 3t = 0 = 3x′ − y′ − 2z′ + 3t′ et donc

3(x+ x′)− (y + y′)− 2(z + z′) + 3(t+ t′) = (3x− y − 2z + 3t) + (3x′ − y′ − 2z′ + 3t′) = 0.

On obtient que (x+ x′, y + y′, z + z′, t+ t′) ∈ V .

Soient (x, y, z, t) ∈ V et λ ∈ R. Alors 3x−y−2z+3t = 0 implique que 3λx−λy−2λz+3λt = λ(3x−y−2z+3t) = 0
et donc (λx, λy, λz, λt) ∈ V .

On a ainsi vérifié que V est un sous-espace vectoriel de R4.

b) Non, ce n’est pas un sous-espace vectoriel de R4. Par exemple, (0, 0, 0,−1) ∈ V , où V est la partie en question,
mais 2 · (0, 0, 0,−1) = (0, 0, 0,−2) ̸∈ V .

c) Non. Par exemple, (1, 1, 0, 0) et (1,−1, 0, 0) appartiennent à cette partie, mais pas leur somme (2, 0, 0, 0), puisque
22 − 02 = 4 ̸= 0.

d) Oui. Notons V la partie en question. Comme (0, 0, 0, 0) ∈ V (pour a = b = 0) , V n’est pas vide.

Si (x, y, z, t), (x′, y′, z′, t′) ∈ V , alors il existe a, b, a′, b′ ∈ R tels que (x, y, z, t) = (−a + b, 2a + 3b, −2a, −b) et
(x′, y′, z′, t′) = (−a′ + b′, 2a′ + 3b′, −2a′, −b′), et donc

(x+ x′, y + y′, z + z′, t+ t′)
= (−a+ b, 2a+ 3b, −2a, −b) + (−a′ + b′, 2a′ + 3b′, −2a′, −b′)
= (−(a+ a′) + (b+ b′), 2(a+ a′) + 3(b+ b′), −2(a+ a′), −(b+ b′)).

On obtient que (x+ x′, y + y′, z + z′, t+ t′) ∈ V .

Soient (x, y, z, t) ∈ V et λ ∈ R. Alors il existe a, b ∈ R tel que (x, y, z, t) = (−a+ b, 2a+ 3b, −2a, −b) et donc

λ · (x, y, z, t) = (−λa+ λb, 2λa+ 3λb, −2λa, −λb) ∈ V.

On a ainsi vérifié que V est un sous-espace vectoriel de R4.

Solution alternative et plus courte: On note que pour v ∈ V , on a v = a(−1, 2,−2, 0) + b(1, 3, 0,−1) pour
certains a, b ∈ R. Ceci montre que V = Vect ((−1, 2,−2, 0), (1, 3, 0,−1)), qui est un sous-espace vectoriel de R4.



Exercice 2. Soit F(R,R) le R-espace vectoriel des applications de R vers lui-même. Les sous-ensembles suivants
sont-ils des sous-espaces vectoriels de F(R,R)?

a) L’ensemble des fonctions qui sont continues sur l’intervalle ]0, 1[.

b) L’ensemble des fonctions qui s’annulent sur l’intervalle [0, 1].

c) L’ensemble des fonctions continues valant 1 en 0.

d) L’ensemble des fonctions f : R → R telles que f(x+ 2) = f(x) pour tout x ∈ R.

Solution 2. a) Oui. En effet, notons V ce sous-ensemble. Si f, g ∈ V , alors f+g est encore continue sur l’intervalle
]0, 1[ et donc f + g ∈ V . Soit λ ∈ R. Alors λf est encore continue sur l’intervalle ]0, 1[ et λf ∈ V . Cela montre
que V est un sous-espace vectoriel de F(R,R).

b) Oui. La preuve est similaire à celle de a).

c) Non, si f est une telle fonction, alors 2f vaut 2 en 0 et n’appartient pas à ce sous-ensemble.

d) Oui. La preuve est similaire à celle de a).

Exercice 3. Soit V un K-espace vectoriel avec sous-espaces vectoriels W1,W2 ⊂ V .

a) Démontrer que W1 +W2 est un sous-espace vectoriel de V .

b) Démontrer que W1 ∩W2 est un sous-espace vectoriel de V .

c) Donner un exemple dans V = R2 de sous-espaces vectoriels W1 et W2 tels que W1 ∪W2 n’est pas un sous-espace
vectoriel de V .

d) Donner un exemple dans V = R2 de sous-espaces vectoriels W1 et W2 tels que W1∪W2 est un sous-espace vectoriel
de V .

e) Donner un exemple dans V = R3 de trois sous-espaces vectoriels W1,W2,W3 tels que le sous-espace W1+W2+W3

n’est pas la somme directe des sous-espaces W1,W2,W3.

f) Soient W1, . . . ,Wr des sous-espaces vectoriels de V . Montrer que W1+ · · ·+Wr est un sous-espace vectoriel de V .

Solution 3. a) Comme Wi est non vide pour i = 1, 2, W1+W2 est non vide. Soient x, y ∈ W1+W2 et α, β ∈ K. Donc
il existe w1, v1 ∈ W1 et w2, v2 ∈ W2 tels que x = w1+w2 et y = v1+v2. Donc αx+βy = α(w1+w2)+β(v1+v2) =
αw1 +αw2 + βv1 + βv2 = (αw1 + βv1) + (αw2 + βv2). Comme W1 et W2 sont des sous-espaces vectoriels on a que
αw1 + βv1 ∈ W1 et αw2 + βv2 ∈ W2. Donc αx + βy ∈ W1 +W2 et on conclut que W1 +W2 est un sous-espace
vectoriel de V .

b) L’ensemble W1 ∩W2 contient le vecteur nul 0, et donc n’est pas vide. Soient x, y ∈ W1 ∩W2 et α, β ∈ K. Alors
x, y ∈ W1, et le fait que W1 soit un sous-espace vectoriel implique que αx + βy ∈ W1. De même pour W2. Donc
αx+ βy ∈ W1 ∩W2, d’où W1 ∩W2 est un sous-espace vectoriel de V .

c) Prenons W1 = {(a, 0) | a ∈ R} et W2 = {(0, b) | b ∈ R}. Alors (1, 0), (0, 1) ∈ W1 ∪W2, mais (1, 0) + (0, 1) = (1, 1)
n’appartient ni à W1 ni à W2. Donc W1 ∪ W2 n’est pas stable par l’addition et n’est donc pas un sous-espace
vectoriel de V .

d) Prenons W1 = {(0, 0)} et W2 comme dans l’exemple précédent.

e) Prenons W1 = {(a, a, 0) | a ∈ R}, W2 = {(0, b, b) | b ∈ R}, et W3 = Vect ((2, 3, 1)). Alors W3 ⊂ W1 +W2 et par
conséquent W1 +W2 +W3 n’est pas la somme directe des 3 sous-espaces.

f) On rappelle d’abord la définition de l’ensemble W1 + · · ·+Wr:

W1 + · · ·+Wr = {x1 + · · ·+ xr | xi ∈ Wi pour 1 ≤ i ≤ r}.

On note que W1 + · · · +Wr est non vide car chacun des sous-espaces vectoriels Wi possède l’élément neutre 0 de
V et donc 0 = 0 + · · ·+ 0 ∈ W1 + · · ·+Wr.



Soient maintenant u, v ∈ W1 + · · ·+Wr et λ ∈ K. Donc u = w1 + · · ·+ wr et v = y1 + · · ·+ yr, pour wi, yi ∈ Wi,
1 ≤ i ≤ r. Donc

λu+ v = λ(w1 + · · ·+ wr) + (y1 + · · ·+ yr)

= (λw1 + y1) + · · ·+ (λwr + yr).

Comme Wi est un sous-espace vectoriel pour tout i, on a λwi + yi ∈ Wi pour tout i, et par conséquent (λw1 +
y1) + · · ·+ (λwr + yr) ∈ W1 + · · ·+Wr.

Preuve alternative: Par la partie (a), le résultat est vrai pour r = 2 (et pour r = 1 par hypothèse). On suppose
maintenant que r > 2 et que le résultat est vrai pour r − 1.

Par cette hypothèseW1+· · ·+Wr−1 est un sous-espace vectoriel de V , appelons-le U . Par définitionW1+· · ·+Wr =
U +Wr, et par l’exercice 1, U +Wr est un sous-espace vectoriel de V . Donc par récurrence le résultat est vrai pour
tout r ≥ 1.

Exercice 4. (a) Dans le F3-espace vectoriel M2×3(F3), montrer que

Vect (

(
1 2 1
0 1 0

)
,

(
1 1 1
1 0 1

)
,

(
−1 0 2
1 −2 1

)
) = Vect (

(
2 2 2
2 0 2

)
,

(
0 2 0
1 2 1

)
).

(b) Soit V = R[t]≤2. Déterminer si le sous-espace vectoriel W = Vect (t2 − 2, t2 + t, 2t2 + t+ 2) est égal à V et pareil
pour U = Vect (t2 − 2, t2 + t, 2t2 + t− 2).

(c) Vrai ou faux : Vect (tk | k ≥ 1) = K[t].

Solution 4. (a) PosonsA =

(
1 2 1
0 1 0

)
, B =

(
1 1 1
1 0 1

)
, C =

(
−1 0 2
1 −2 1

)
,D =

(
2 2 2
2 0 2

)
, et E =

(
0 2 0
1 2 1

)
,

et U1 = Vect (A,B,C), U2 = Vect (D,E). On montre les deux inclusions U1 ⊂ U2 et U2 ⊂ U1. Pour la première
inclusion on note que A = 2D + 2E, B = 2D et C = D + 2E. Donc toute combinaison linéaire de A,B et C
appartient à U2 et nous avons U1 ⊂ U2. Pour l’inclusion U2 ⊂ U1 on note que D = 2B et E = 2A + B et on
conclut comme avant. Les deux inclusions impliquent l’égalité U1 = U2.

(b) On note que t2 − 2 + t2 + t− (2t2 + t+ 2) = −4 ∈ W et ainsi 1 ∈ W . On déduit ensuite que t2 − 2 + 2 = t2 ∈ W
et enfin que t = t2 + t− t2 ∈ W . Cela suffit pour voir que tout polynôme at2 + bt+ c ∈ W . On a W = V .

Pour U , par contre, on montre que le polynôme t n’appartient pas à U ; on suppose le contraire et donc il existe
a, b, c ∈ R tels que a(t2− 2)+ b(t2+ t)+ c(2t2+ t− 2) = t. De cette égalité on déduit que (a+ b+2c)t2+(b+ c)t+
(−2a− 2c) = t et de suite que a+ b+2c = 0, b+ c = 1 et −2a− 2c = 0. De la troisième et première équations on
a que b+ c = 0 ce qui contredit la deuxième égalité. Donc t ̸∈ U et U ̸= R[t].

(c) Faux, car les polynômes constants n’appartiennet pas à Vect (tk | k ≥ 1).

Exercice 5. Soient K un corps et K[t]≤d l’espace vectoriel des polynômes de degré au plus d à coefficients dans K.
Soit λ ∈ K fixé. Soient U = K[t]≤2 et V = {b1t+ λb3t

3 + λ2b4t
4 | b1, b3, b4 ∈ K}.

a) Montrer que U et V sont des sous-espaces vectoriels de K[t]≤4.

b) Calculer U ∩ V , U ∪ V et U + V .

c) Montrer que U ∪V n’ est pas un sous-espace vectoriel de K[t]≤4 sauf pour une valeur spécifique de λ (à trouver).

Solution 5. a) On utilise le critère des sous-espaces.

Les ensembles U et V ne sont pas vides car 0 ∈ U et 0 ∈ V .

Pour f, g ∈ U = K[t]≤2 et µ ∈ K, alors f et g sont deux polynômes de degré au plus 2, il en est de même pour
leur somme f + g et µ · f . Donc U est un sous-espace vectoriel de K[t]≤4.

Soient f, g ∈ V et µ ∈ K. Alors il existe b1, b3, b4, b
′
1, b

′
3, b

′
4 ∈ K tels que f = b1t + λb3t

3 + λ2b4t
4 et g =

b′1t+ λb′3t
3 + λ2b4t

4. Donc on a µf + g = (µb1 + b′1)t+ λ(µb3 + b′3)t
3 + λ2(µb4 + b′4)t

4 ∈ V . On a montré que V
est un sous-espace vectoriel de K[t]≤4.



b) Supposons que f ∈ U ∩ V . Comme f ∈ U , il existe a0, a1, a2 ∈ K tels que f = a0 + a1t+ a2t
2 et comme f ∈ V ,

il existe b1, b3, b4 ∈ K tel que f = b1t + λb3t
3 + λ2b4t

4. Donc a0 + a1t + a2t
2 = b1t + λb3t

3 + λ2b4t
4 et cela

implique que a0 = 0, a1 = b1, a2 = 0, λb3 = 0, λ2b4 = 0. On obtient que U ∩ V = {a1t | a1 ∈ K}.

Si λ = 0, alors V ⊂ U et U ∪ V = U = K[t]≤2. Si λ ̸= 0, alors

U ∪ V = K[t]≤2 ∪ {c1t+ c3t
3 + c4t

4 | c1, c3, c4 ∈ K}.

En effet, si λ ̸= 0, alors c1t+ c3t
3 + c4t

4 = c1t+ λ( c3λ )t3 + λ2( c4
λ2 )t

4 = b1 + λb3t
3 + λ2b4t

4, où b1 = c1, b3 = c3
λ et

b4 = c4
λ2 . Donc

{b1t+ λb3t
3 + λ2b4t

4 | b1, b3, b4 ∈ K} = {c1t+ c3t
3 + c4t

4 | c1, c3, c4 ∈ K}.

Si λ = 0, alors V ⊂ U et U + V = {f + g | f ∈ U, g ∈ V } = U = K[t]≤2. Si λ ̸= 0, alors U + V = K[t]≤4. En
effet, on a montré dans le paragraphe précédent que

V = {b1t+ λb3t
3 + λ2b4t

4 | b1, b3, b4 ∈ K} = {c1t+ c3t
3 + c4t

4 | c1, c3, c4 ∈ K}.

Alors pour tout polynôme de degré ≤ 4, disons f = a0 + a1t+ a2t
2 + a3t

3 + a4t
4, on obtient f = (a0 + a2t

2) +
(a1t + a3t

3 + a4t
4) ∈ U + V , puisque a0 + a2t

2 ∈ U et a1t + a3t
3 + a4t

4 ∈ V . Donc K[t]≤4 ⊂ U + V . L’autre
inclusion est évidente et l’assertion s’en déduit.

c) Si λ = 0, alors U ∪ V = U est un sous-espace de K[t]≤4. Si λ ̸= 0, U ∪ V n’est pas un sous-espace vectoriel de
K[t]≤4, car par exemple, si on prend 1 ∈ U et t+ t3 ∈ V , alors leur somme 1 + t+ t3 ̸∈ U ∪ V .

Exercice 6. a) Une matrice A = (Aij) ∈ Mn(C) est dite scalaire s’il existe d ∈ C tel que

Aij =

{
0 si i ̸= j,
d si i = j.

Montrer que l’ensemble V des matrices scalaires est un sous-espace vectoriel de Mn(C).

b) On définit la trace d’une matrice A = (Aij) ∈ Mn(C) par Tr(A) =
∑n

i=1 Aii. Montrer que l’ensemble W des
matrices de trace nulle est un sous-espace vectoriel de Mn(C).

c) Montrer que Mn(C) = V ⊕W .

d) Considérons maintenant l’espace vectoriel M3(F3) et posons V le sous-espace vectoriel des matrices scalaires dans
M3(F3) et W le sous-espace vectoriel de M3(F3) des matrices à traces nulles. (On admet que ces deux sous-
ensembles sont des sous-espaces. Les preuves données pour (a) et (b) ne dépendent pas du corps C.) Montrer
que M3(F3) ̸= V ⊕W .

Solution 6. a) On remarque que la matrice nulle est une matrice scalaire et donc V n’est pas vide. Soient A = (Aij)
et B = (Bij) deux éléments de V et λ ∈ C. Alors il existe d, d′ ∈ C tels que

Aij =

{
0 si i ̸= j
d si i = j

et Bij =

{
0 si i ̸= j
d′ si i = j

.

Donc λ ·A = (λAij) et A+B = (Aij +Bij) satisfont

λAij =

{
0 si i ̸= j

λd si i = j
et Aij +Bij =

{
0 si i ̸= j

d+ d′ si i = j
.

Cela implique que λ · A, A + B ∈ V . L’ensemble V est par conséquent un sous-espace vectoriel de Mn(C) par
le critère des sous-espaces.

b) On note que W contient la matrice nulle comme la trace de celle-ci est 0. Soient A = (Aij) et B = (Bij) deux
éléments de W et λ ∈ C. Alors Tr(A) =

∑n
i=1 Aii = 0 et Tr(B) =

∑n
i=1 Bii = 0. Considérons la trace de la

matrice λ ·A = (λAij) et celle de A+B = (Aij +Bij). Donc

Tr(λ ·A) =

n∑
i=1

λAii = λ(

n∑
i=1

Aii) = λTr(A) = 0



et

Tr(A+B) =

n∑
i=1

(Aii +Bii) =

n∑
i=1

Aii +

n∑
i=1

Bii = Tr(A) + Tr(B) = 0.

Cela implique que λ ·A, A+B ∈ W . L’ensemble W est par conséquent un sous-espace vectoriel de Mn(C) par
le critère des sous-espaces.

c) Soit A = (Aij) ∈ Mn(C). On définit B = Tr(A)
n · In et C = (Cij) = A−B. Evidemment B ∈ V , et comme

Cij =

{
Aij si i ̸= j

Aii − Tr(A)
n si i = j

on a

Tr(C) =

n∑
i=1

(Aii −
Tr(A)

n
) =

n∑
i=1

Aii − n× Tr(A)

n
= Tr(A)− Tr(A) = 0

et donc C ∈ W . On a montré que A = B + C avec B ∈ V et C ∈ W , et donc Mn(C) = V +W .

On montre maintenant que V ∩W = {0}. Soit A = (Aij) ∈ V ∩W . Alors par définition, il existe d ∈ C tel que

Aij =

{
0 si i ̸= j
d si i = j

et Tr(A) =
∑n

i=1 Aii = 0. Mais dans ce cas, pour tout 1 ≤ i ≤ n, Aii = d et donc Tr(A) = nd = 0. Cela
implique que d = 0 et A est réduit à la matrice nulle. On a montré que V ∩W = {0} et donc Mn(C) = V ⊕W .

d) Ici V ∩W n’est pas {0} car la matrice

1 0 0
0 1 0
0 0 1

 ∈ V ∩W , et donc V ⊆ W , d’où V +W = W ̸= M3(F3) car

par exemple

1 0 0
0 1 0
0 0 0

 /∈ W .

Exercice 7. Soit V = U ⊕W une somme directe de K-espaces vectoriels avec W = Vect (w), où w ∈ W est non nul.

a) Pour chaque y ∈ U , posons Wy = Vect (y + w). Montrer que Wy est un supplémentaire de U dans V .

b) Soit y′ ∈ U et Wy′ = Vect (y′ +w). Montrer que Wy = Wy′ si et seulement si y = y′. (Cela montre que tous les
Wy sont différents (lorsque y varie dans U) donc qu’il y a beaucoup de supplémentaires de U dans V .)

Solution 7. a) On doit montrer que V = U +Wy et que U ∩Wy = {0}. Soit v ∈ V . On peut écrire v = u+ λw
avec u ∈ U et λ ∈ K. Mais comme on a w = −y + (y + w) et comme y ∈ U , on obtient

v = (u− λy) + λ(y + w) ∈ U +Vect (y + w) = U +Wy .

Donc V = U +Wy.

Soit u ∈ U ∩Wy. Comme u ∈ Wy, il existe a ∈ K tel que u = a(y+w). Alors le vecteur u− ay = aw appartient
à la fois à U (car u, y ∈ U) et à W (car w ∈ W ). Donc il est nul, car U ∩W = {0} (vu que la somme U ⊕W
est directe). Ainsi aw = 0, et cela implique que a = 0, puisque w ̸= 0. Par conséquent u = a(y+w) = 0, si bien
que U ∩Wy = {0}. On a ainsi montré que V = U ⊕Wy, donc Wy est un supplémentaire de U dans V .

b) Supposons que Wy = Wy′ . Comme y′ +w ∈ Wy′ , on a y′ +w ∈ Wy, donc y′ +w = a(y+w), où a ∈ K. Alors le
vecteur y′−ay = −w+aw appartient à la fois à U et à W et donc il est nul (car, comme ci-dessus, U ∩W = {0}
vu que la somme U ⊕ W est directe). Ainsi −w + aw = 0, donc (a − 1)w = 0, donc a − 1 = 0 car w ̸= 0,
c’est-à-dire a = 1. Comme y′ − ay = 0, il s’ensuit que y′ = ay = y.

La réciproque est évidente.

Exercice 8. Soit K1 ⊂ K2 deux corps avec les mêmes opérations d’addition et de multiplication. Soit V un K2-espace
vectoriel. On a l’application f : K2 × V → V qui définit la multiplication par scalaire, f(α, v) = αv. Montrer que V
est aussi un K1-espace vectoriel où on prend l’addition déjà donnée et avec la multiplication par scalaire donnée par
K1 × V → V , (β, v) 7→ f(β, v) = βv, c’est-à-dire que l’on restreint la multiplication par scalaire au plus petit corps
K1.



Solution 8. On sait que (V,+) est un groupe abélien car V est un K2-espace vectoriel.
Aussi on a une loi de multiplication par scalaireK2×V → V . Cette loi vérifie (λ+µ)v = λv+µv, λ(u+v) = λu+λv,

λ(µv) = (λµ)v, et 1 · v = v pour tout λ, µ ∈ K2, u, v ∈ V . Comme K1 ⊂ K2, ces propriétés sont aussi vérifiées pour
la multiplication par scalaire K1 × V → V . Ainsi V est un K1-espace vectoriel. (voir le prochain exercice pour
voir que cette situation n’est pas symétrique.)

Exercice 9. Soit X = {
(
a ib
0 d

)
| a, b, d ∈ R} ⊂ M2×2(C). On définit l’addition usuelle des éléments de X (vus

comme des éléments du C-espace vectoriel M2×2(C)).

(a) Montrer que X n’est pas un sous-espace vectoriel de M2×2(C).

(b) Comme dans l’exercice précédent, M2×2(C) est un R-espace vectoriel. Montrer que X est un sous-espace vectoriel
du R-espace vectoriel M2×2(C).

Solution 9. (a) On note que

(
1 i
0 1

)
∈ X, mais i

(
1 i
0 1

)
=

(
i −1
0 i

)
̸∈ X. Donc X n’est pas un sous-espace

vectoriel du C-espace vectoriel M2×2(C).

(b) La matrice nulle appartient à X, donc X n’est pas vide. Pour A =

(
a ib
0 d

)
et B =

(
r is
0 t

)
dans X, donc avec

a, b, d, r, s, t ∈ R, et pour α ∈ R, on a αA + B =

(
αa+ r i(αb+ s)

0 αd+ t

)
qui appartient aussi à X. Donc X est un

sous-espace vectoriel du R-espace vectoriel M2×2(C).

La matière des deux exercices suivants sera reprise, utilisée et élaborée dans vos cours d’analyse et de physique. La
formule de Moivre sera éventuellement utile aussi dans la résolution d’équations polynomiales dans le cours d’algèbre
linéaire avancée II. Par contre, nous n’en aurons pas besoin ce semestre.

Exercice 10. On considère le point (x, y) ∈ R2 \ {(0, 0)}. En notant r =
√

x2 + y2 > 0, la longueur du segment entre
(0, 0) et le point (x, y), et θ = arctan y

x ∈] − π, π] l’angle entre l’axe des abscisses positives et le vecteur associé au
point (x, y), on peut écrire

(x, y) = (r cos θ, r sin θ).

Ainsi, on a
z = x+ iy = r cos θ + ir sin θ = r(cos θ + i sin θ),

où θ est défini à 2kπ près avec k ∈ Z. On l’appelle la forme polaire de z. L’angle θ = Arg(z) est l’argument de z.

Soit z1, z2 ∈ C deux nombres complexes, avec |zi| = ρi et Arg(zi) = φi pour i = 1, 2.

(a) Montrer que |z1z2| = ρ1ρ2.

(b) Montrer (en utilisant les identités trigonométriques) que Arg(z1z2) = Arg(z1) + Arg(z2), c’est-à-dire que

z1z2 = ρ1(cosφ1 + i sinφ1) · ρ2(cosφ2 + i sinφ2)

= ρ1ρ2
(
cos(φ1 + φ2) + i sin(φ1 + φ2)

)
. (1)

Remarque
La récurrence sur n peut être utilisée pour établir la Formule de Moivre: Pour tous r > 0, θ ∈ R et n ∈ N on a(

r(cos θ + i sin θ)
)n

= rn
(
cos(nθ) + i sin(nθ)

)
.



Solution 10. On pose z1 = x+ yi et z2 = a+ bi et on vérifie que (xa− yb)2 + (xb+ ay)2 = (x2 + y2)(a2 + b2), ce qui
montre que |z1z2|2 = ρ21ρ

2
2 et comme le module est non négatif, on a le résultat.

Pour (b), on rappelle que cosφ1 cosφ2 − sinφ1 sinφ2 = cos(φ1 +φ2) et cosφ1 sinφ2 + sinφ1 cosφ2 = sin(φ1 +φ2)
et en développant des deux côtés de l’égalité, on conclut.

Exercice 11. La fonction exponentielle complexe permet de faire une représentation plus compacte des nombres
complexes.

Définition
Pour z = x+ iy ∈ C on définit

ez = exp(z) := ex(cos y + i sin y)

où ex est la fonction exponentielle réelle usuelle.

Montrer que ew+z = ew · ez pour tous w, z ∈ C

Solution 11. On pose w = a + bi et z = x + yi. On a ew = ea(cos b + i sin b) et ez = ex(cos y + i sin y). Ensuite, on
utilise la formule de l’exercice précédent pour le produit de deux nombres complexes écrits sous forme polaire.


