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Corrigé 4
1 octobre

A cette série, vous pouvez rendre pour correction l’exercice 5. Il faut le donner à un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 8 octobre.

Exercice 1. Soit z ∈ C, z = x + yi, pour x, y ∈ R. On définit le conjugué complexe de z, noté z̄, comme suit :
z̄ = x− yi. Montrer que l’application f : C → C donnée par f(z) = z̄ est un homomorphisme d’anneaux.

Solution 1. On prend z1 = x1 + y1i et z2 = x2 + y2i, pour xi, yi ∈ R, i = 1, 2. On a

(x1 + y2i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i = (x1 + x2)− (y1 + y2)i = x1 − y1i + x2 − y2i = x1 + y1i + x2 + y2i,

ce qui montre que f(z1 + z2) = f(z1) + f(z2). On a aussi

(x1 + y1i)(x2 + y2i) = (x1x2 − y1y2) + (x1y2 + x2y1)i = (x1x2 − y1y2)− (x1y2 + x2y1)i.

Et
x1 + y1i · x2 + y2i = (x1 − y1i)(x2 − y2i) = x1x2 − y1y2 − (x1y2 + y1x2)i,

d’où f(z1z2) = f(z1)f(z2).
Enfin on vérifie que 1̄ = 1. Ces trois calculs démontrent que la conjugaison complexe est un morphisme d’anneaux

unitaires.

Exercice 2. Soit z ∈ C, z = x + yi, pour x, y ∈ R. On définit le module de z, un nombre réel, noté |z| par

|z| =
√
x2 + y2 ∈ R. Vérifier les propriétés suivantes :

(a) zz = |z|2

(b) Pour z ̸= 0, on a z−1 = z
|z|2 .

(c) Pour z ̸= 0, on a z−1 = z−1.

(d) |z1 · z2| = |z1| · |z2|

Solution 2. (a) zz = (x+ iy)(x− iy) = x2 + y2 + i(xy − yx) = x2 + y2 = |z|2.
(b) découle de (a) et (c) découle de (b).
(d). En utilisant l’exercice précédent et la commutativité de la multiplication complexe, on obtient

|z1 · z2|2 = z1 · z2 · z1 · z2 = z1 · z2 · z1 · z2 = z1 · z1 · z2 · z2 = |z1|2 · |z2|2.

Exercice 3. Utiliser l’exercice 1. pour montrer que si z ∈ C est une racine du polynôme p(x) ∈ R[x] alors z̄ est aussi
une racine de p.

Solution 3. On a p(x) = a0 + a1x + · · · + amxm pour certains ai ∈ R. Par l’hypothèse on a que p(z) = 0 =
a0 + a1z + · · ·+ amzm.

On utilise la conjugaison complexe, qui est un morphisme d’anneaux

0 = p(z) = a1 + a1z + · · ·+ amzm = a0 + a1z + · · ·+ amzm =

a0 + a1 · z + · · ·+ am · zm = a0 + a1 · z + · · ·+ am · (z)m.

L’égalité 0 = a0 + a1 · z + · · ·+ am · (z)m montre que z̄ est une racine de p.



Exercice 4. Soit z une variable. Résoudre dans C l’équation suivante:

z − 3i

2z + 1
=

4 + 3i

2− i

Solution 4. On calcule

z − 3i

2z + 1
=

4 + 3i

2− i
⇐⇒ (z − 3i)(2− i) = (2z + 1)(4 + 3i)

⇐⇒ z(2− i)− 6i− 3 = z(8 + 6i) + 4 + 3i
⇐⇒ z(−6− 7i) = 7 + 9i

⇐⇒ z = −7 + 9i

6 + 7i
= − (7 + 9i)(6− 7i)

(6 + 7i)(6− 7i)
= −105 + 5i

85
= −21 + i

17
.

Exercice 5. (a) Soit ϕ : R[t] → C l’application d’évaluation en i, c’est-à-dire que pour tout p ∈ R[t], ϕ(p) = p(i).
On admet que ϕ est un morphisme d’anneaux et en particulier un morphisme de groupes de (R[t],+) dans (C,+).
(C’est un bon exercice de vérifier que ϕ est un morphisme d’anneaux.) Trouver le sous-groupe ker(ϕ)

(b) Soit ei : C[t] → C l’application d’évaluation en i. Trouver ker(ei).

Solution 5. (a) On rappelle que ker(ϕ) = {p ∈ R[t] | ϕ(p) = 0} = {p ∈ R[t] | p(i) = 0}. Soit p ∈ ker(ϕ). Par le cours,
il existe g ∈ C[t] tel que p = (t − i)g. Par l’exercice 3, on a aussi que p(−i) = 0 et donc (−i − i)g(−i) = 0 et on
déduit que g(−i) = 0. De nouveau par le cours, il existe q ∈ C[t] tel que g = (t+ i)q, et en mettant ces résultats
ensemble on obtient que p = (t− i)(t+i)q = (t2+1)q. On déduit que q ∈ R[t]. Donc ker(ϕ) ⊂ {q(t2+1) | q ∈ R[t]}.
Il est aussi clair que {q(t2 + 1) | q ∈ R[t]} ⊂ ker(ϕ), ce qui montre que

ker(ϕ) = {q(t2 + 1) | q ∈ R[t]} = {(a0 + a1t+ · · ·+ amtm)(t2 + 1) | m ∈ N, ai ∈ R}

= {a0 + a1t+ (a0 + a2)t
2 + (a1 + a3)t

3 + · · ·+ (am−2 + am)tm + am−1t
m+1 + amtm+2 | m ∈ N, ai ∈ R}.

(b) On raisonne comme dans la partie précédente : si p ∈ ker(ei) on a p = (t − i)g pour un certain g ∈ C[t]. On
conclut que ker(ei) = {(t− i)g | g ∈ C[t]}.

Addendeum : Vérification que l’application d’évaluation est un morphisme d’anneaux.

Soient (A,+, ·) un anneau unitaire avec K ⊂ A tel que (K,+, ·) est un corps et 1A est l’élément neutre pour
la multiplication dans K. Pour c ∈ A on a une application, dite “d’évaluation en c”, ec : K[t] → A définie par
ec(b1 + b1t+ · · ·+ bmtm) = b0 + b1c+ · · ·+ bmcm. On vérifie que ec est un morphisme d’anneaux.

Soit p = a0 + a1t+ · · ·+ amtm, q = b0 + b1t+ · · ·+ bnt
n ∈ K[t]. On suppose, sans perte de généralité, que n ≥ m

et pour la preuve on pose aj = 0 pour tout j > m. On a

ϕ(p+ q) = ϕ((a0 + b0) + (a1 + b1)t+ · · ·+ (an + bn)t
n)

= (a0 + b0) + (a1 + b1)c+ · · ·+ (an + bn)c
n = (a0 + a1c+ · · ·+ anc

n) + (b0 + b1c+ · · ·+ bnc
n) = ϕ(p) + ϕ(q).

La troisième égalité découle des axiomes de distributivité et la commutativité de l’addition dans A.
On a aussi

ϕ(pq) = ϕ(a0b0 + (a0b1 + a1b0)t+ · · ·+ (
∑

i+j=k

(aibj))t
k + · · ·+ anbnt

2n

= a0b0+(a0b1+a1b0)c+ · · ·+(
∑

i+j=k

(aibj))c
k + · · ·+anbnc

2n = (a0+a1c+ · · · ancn)(b0+ b1c+ · · ·+ bnc
n) = ϕ(p)ϕ(q).

Ici l’avant dernière égalité découle des axiomes de distributivité et la commutativité de l’addition dans A.
Enfin, ec(1K) = 1K = 1A. Ca complète la vérification.

Exercice 6. Vérifier que pour tout c̄ ∈ F3 on a c̄3 − c̄ = 0̄, et de même que dans F5 on a b̄5 − b̄ = 0̄ pour tout b̄ ∈ F5.
Montrer que le polynôme t3 − t ∈ F3[t] est scindé et que le polynôme t5 − t ∈ F5[t] est scindé.



Solution 6. On vérifie que 03 − 0 ≡ 0 mod 3; 13 − 1 ≡ 0 mod 3; et 23 − 2 ≡ 0 mod 3. De même,

05 − 0 ≡ 0 mod 5; 15 − 1 ≡ 0 mod 5; 25 − 2 ≡ 0 mod 5; 35 − 3 ≡ 0 mod 5; et 45 − 4 ≡ 0 mod 5.

Maintenant, on sait d’après le cours que pour un corps K et c ∈ K, si c est une racine d’un polynôme p ∈ K[t],
alors (t− c) est un facteur de p.

On utilise les calculs ci-dessus et on vérifé que t3 − t = t(t− 1̄)(t− 2̄) dans F3[t] et

t5 − t = t(t− 1̄)(t− 2̄)(t− 3̄)(t− 4̄), dans F5[t].

Exercice 7. Dans chacun des cas suivants, l’ensemble V est-il un K-espace vectoriel pour la loi évidente d’addition
et la multiplication scalaire donnée?

a) K = C, V = C2 et λ(x, y) = (Re(λ)x,Re(λ)y) pour λ ∈ C et (x, y) ∈ V .

b) K = R, V = R2 et λ(x, y) = (λx, λ2y) pour λ ∈ R et (x, y) ∈ V .

c) K = F2, V = F2
2 et λ(x, y) = (λx, λ2y) pour λ ∈ F2 et (x, y) ∈ V .

d) K = R, V = {f ∈ R[t] | f(a) = 0} pour a ∈ R fixé et la multiplication scalaire au sens usuel.

e) K = R, V = {f ∈ R[t] | f(−a) = −f(a) ∀a ∈ R} et la multiplication scalaire au sens usuel.

Solution 7. a) Non, car par exemple, si λ = 2 + i et µ = i on a que

(λµ)(1, 1) = (−1 + 2i)(1, 1) = (−1,−1), et

λ(µ(1, 1)) = (2 + i)(0, 0) = (0, 0).

b) Non, car si λ, µ ∈ R sont les deux non nuls,

(λ+ µ)(x, y) = ((λ+ µ)x, (λ+ µ)2y) ̸= λ(x, y) + µ(x, y) = ((λ+ µ)x, (λ2 + µ2)y).

c) Oui, cela est évident si on tient compte du fait que λ2 = λ ∀λ ∈ F2.

d) Tous les axiomes définissant un espace vectoriel sont facilement vérifiés.

e) Tous les axiomes définissant un espace vectoriel sont facilement vérifiés. L’espace vectoriel V est constitué par
les polynômes ayant uniquement des termes de degré impair.

Exercice 8. Dans chacun des cas suivants, l’ensemble V est-il un K-espace vectoriel (pour les lois évidentes d’addition
et de multiplication scalaire)?

a) K = R, V = {f : R → R | f(n) ≥ 0, ∀ n ∈ Z},

b) K = R, V = {a+ bt ∈ R[t] | a, b ∈ R},

c) K = C, V = {f ∈ C[t] | f(0) ∈ R},

d) K = R, V = {f ∈ C[t] | f(0) ∈ R}.

Solution 8. a) Non, car si f ∈ V tel que f(n) > 0 pour un certain n ∈ N, alors −f(n) < 0, donc −f ̸∈ V .

b) Oui. Les vérifications des axiomes sont faciles.

c) Non, car si f ∈ V tel que 0 ̸= f(0) ∈ R, alors if(0) ̸∈ R et donc if ̸∈ V .

d) Oui. Les vérifications des axiomes sont faciles.

Exercice 9. On pose A l’ensemble des fonctions de R dans R dont la dérivée est définie sur R, donc A ⊂ F(R,R),
l’anneau des fonctions de R dans R (comme défini en cours). Alors comme la somme de deux fonctions dérivables est
dérivable, le produit de deux fonctions dérivables l’est aussi, et la fonction f(x) = 1 pour tout x ∈ R est également
dérivable, A est un anneau unitaire avec les lois de + et · héritées de F(R,R). On considère l’application D : A →
F(R,R), donnée par D(f) = f ′, c’est-à-dire, D est l’application qui associe à une fonction f sa dérivée.



1. Montrer que D est un homomorphisme de groupes du groupe (A,+) dans le groupe (F(R,R),+).

2. Montrer que D n’est pas un homomorphisme d’anneaux entre les anneaux (F(R,R),+, ·) et (A,+, ·).

Solution 9. On rappelle que (f+g)′ = f ′+g′ et donc D(f+g) = D(f)+D(g) pour tout f, g ∈ A, et on déduit que D
est un homomorphisme de groupes. Par contre, comme (fg)′ = f ′g+ fg′, nous n’avons pas que D(fg) = D(f)D(g) et
D ne préserve pas la loi de multiplication dans les deux anneaux. Par exemple, D(x ·x) = D(x2) = 2x ̸= D(x) ·D(x) =
1 · 1 = 1. Ceci montre que D n’est pas un homomorphisme d’anneaux.

Exercice 10 (Facultatif). Soient d, n ∈ Z avec d ≥ 1 et n ≥ 1 où d est un diviseur de n (c’est-à-dire que n est un
multiple entier de d). Pour cet exercice on ecrira ā pour un élément de Z/dZ et [b] pour un élément de Z/nZ, pour
bien distinguer à quel ensemble chaque élément appartient. Montrer que l’application

f : Z/nZ → Z/dZ, donnée par f([b]) = b̄

est bien définie. Ensuite, montrer que f est un morphisme d’anneaux.

Solution 10. Pour la première partie, on doit montrer que si [a] = [b] alors f([a]) = f([b]). On suppose donc que
[a] = [b], ce qui est vrai si et seulement si b = a + kn pour un entier k. On rappelle que d divise n, donc n = dm
pour un entier m. On trouve ainsi que b = a + kn = a + kdm, ce qui implique que b̄ = ā dans Z/dZ et de suite que
f([a]) = f([b]) comme souhaité.

Pour les propriétés d’un morphisme d’anneaux : f([a] + [c]) = f([a + c]) = a+ c = ā + c̄ = f([a]) + f([c]), où la
première et la troisième égalités proviennent de la définition de la loi + dans Z/nZ, et Z/dZ.

Pour la deuxième loi ·, l’argument est pareil et f([1]) = 1̄, ce qui complète la vérification que f est un morphisme
d’anneaux.

Exercice 11 (Facultatif). On définit une loi de composition ∗ sur l’ensemble E = R \ {0} comme suit : pour tout
x, y ∈ E on a x ∗ y = |x|y.

(i) Montrer que ∗ est associative.

(ii) Montrer qu’il existe un élément neutre e à gauche pour ∗, c’est-à-dire qu’il existe e ∈ E tel que e ∗ b = b pour
tout b ∈ E.

(iii) Montrer qu’il n’existe aucun élément neutre à droite.

(iv) Montrer que tout élément a ∈ E possède un inverse à droite, c’est-à-dire qu’il existe a′ ∈ E tel que a ∗ a′ = e, où
e est l’élément neutre à gauche trouvé dans (ii).

On remarque donc que (E, ∗) n’est pas un groupe et que l’existence d’une loi de composition associative, d’un élément
neutre à gauche et des inverses à droite n’est pas suffisant pour définir une structure de groupe.

Solution 11. Pour (i), on a que (a ∗ b) ∗ c = |a ∗ b| · c = ||a|b| · c = ||a|| · |b| · c = |a| · |b| · c, et a ∗ (b ∗ c) = |a|(b ∗ c) =
|a| · (|b|c) = |a| · |b| · c = (a ∗ b) ∗ c. Pour (ii), on vérifie que 1 ∗ a = |1|a = a pour tout a ∈ E, donc 1 est un élément
neutre à gauche. (iii) Pour a, f ∈ E, on a que a ∗ f = |a|f = a si et seulement si f = a

|a| et si a > 0, on trouvera f = 1

et si a < 0 on trouvera f = −1. Donc il n’existe aucun élément de E qui satisfait la condition pour être un élément
neutre à droite. Enfin pour (iv), comme a ∗ 1

|a| = |a| 1
|a| = 1, l’élément 1

|a| est un inverse à droite de l’élément a.


