Algeébre linéaire avancée I, Section de Physique automne 2024 Prof. Donna Testerman

Corrigé 4
1 octobre

A cette série, vous pouvez rendre pour correction I'exercice 5. Il faut le donner a un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 8 octobre.

Exercice 1. Soit z € C, z = x + yi, pour z,y € R. On définit le conjugué complexe de z, noté z, comme suit :
z = x —yi. Montrer que Uapplication f : C — C donnée par f(z) = z est un homomorphisme d’anneauz.

Solution 1. On prend z; = 1 + y1i et 23 = T2 + yoi, pour z;,y;, € R, :=1,2. On a

(x1 + yol) + (z2 + y2i) = (21 + 22) + (Y1 + y2)i = (1 + 22) — (Y1 + y2)i = 1 — y1i + 22 — Yol = 1 + 111 + 22 + y2l,

ce qui montre que f(z1 + 22) = f(z1) + f(22). On a aussi

(x1 4+ yii)(z2 + yoi) = (z122 — Y1y2) + (Z1y2 + 2y1)i = (122 — Y1y2) — (T1y2 + T2y1)i

Et

i xo +yol = (1 — yud) (2 — y2i) = z122 — Y12 — (T1y2 + Y122)i,
d’olt f(2122) = f(21)f(22).

Enfin on vérifie que 1 = 1. Ces trois calculs démontrent que la conjugaison complexe est un morphisme d’anneaux
unitaires.

Exercice 2. Soit z € C, z = z + yi, pour z,y € R. On définit le module de z, un nombre réel, noté |z| par
|z| = V&% + y? € R. Vérifier les propriétés suivantes :

(a) 2z = |2|?

(b) Pour z#0, on a 27! = %

(¢c) Pour z#0, on a z~1 =771,

(d) |21+ 22| = |21] - |22

Solution 2. (a) 2z = (z +iy)(x — iy) = 22 + y* +i(vy — yz) = 2% + ¢y = |2|%.

(b) découle de (a) et (c) découle de (b).
(d). En utilisant I'exercice précédent et la commutativité de la multiplication complexe, on obtient

|21 2> =21 20 Z1 Za =212 F1 B =21 71 20 T2 = |21) - 2]

Exercice 3. Utiliser l’exercice 1. pour montrer que si z € C est une racine du polynéme p(x) € Rlz] alors Z est aussi
une racine de p.

Solution 3. On a p(z) = ap + a1z + -+ + apx™ pour certains a; € R. Par 'hypotheése on a que p(z) = 0 =
apg+ a1z + -+ anz™.
On utilise la conjugaison complexe, qui est un morphisme d’anneaux

O=pz)=a1+a1z+ - Fapzm =0+ @z + - +anz™m =

afo+a*1.g+...+ﬁ.27m:ao+al.§_|_..._|_am.(§)m.

L'égalité 0 =ag + a1 -Z+ -+ + an, - (Z)™ montre que Z est une racine de p.




Exercice 4. Soit z une variable. Résoudre dans C [’équation suivante:

z— 31 4+ 3

2z+1 2—1

Solution 4. On calcule

z—3i 44 3i . . .
el 2 — (2-30)(2—1)=(224+1)(4 4+ 3i)
— 2(2—i)—6i—3=2(8+6i)+4+3i
— 2(-6-Ti)=T+9
— O T+9%  (T499)(6-Ti) 105450 214
647 (6+7i)(6—Ti) 8 17

Exercice 5. (a) Soit ¢ : R[t] — C Uapplication d’évaluation en i, c’est-a-dire que pour tout p € R[t], ¢(p) = p(i).
On admet que ¢ est un morphisme d’anneauz et en particulier un morphisme de groupes de (R[t],+) dans (C,+).
(C’est un bon exercice de vérifier que ¢ est un morphisme d’anneaux.) Trouver le sous-groupe ker(¢)

(b) Soit e; : C[t] — C lapplication d’évaluation en i. Trouver ker(e;).

Solution 5. (a) On rappelle que ker(¢) = {p € R[t] | #(p) = 0} = {p € R[t] | p(i) = 0}. Soit p € ker(¢). Par le cours,
il existe g € C[t] tel que p = (t — 1)g. Par Pexercice 3, on a aussi que p(—i) = 0 et donc (—i —1i)g(—i) = 0 et on
déduit que g(—i) = 0. De nouveau par le cours, il existe ¢ € C[t] tel que g = (t 4 1)g, et en mettant ces résultats
ensemble on obtient que p = (t—i)(t+i)g = (t>+1)g. On déduit que g € R[t]. Donc ker(¢) C {q(t*+1) | ¢ € R[t]}.
Il est aussi clair que {g(t* + 1) | ¢ € R[t]} C ker(¢), ce qui montre que

ker(¢) = {q(t> + 1) | ¢ € R[t]} = {(ao + art +--- + amt™)(t* +1) | m € N, a; € R}
= {ao + a1t + (ap + a2)t> + (a1 + a3)t® + - + (am—2 + @ )t"™ + @1t + @yt | m € N,q; € R}

(b) On raisonne comme dans la partie précédente : si p € ker(e;) on a p = (¢t —i)g pour un certain g € C[t]. On
conclut que ker(e;) = {(t —1)g | g € C[¢]}.

Addendeum : Vérification que I'application d’évaluation est un morphisme d’anneaux.

Soient (A,+,-) un anneau unitaire avec K C A tel que (K,+,-) est un corps et 14 est 1’élément neutre pour
la multiplication dans K. Pour ¢ € A on a une application, dite “d’évaluation en ¢”, e. : K[t] — A définie par
ec(by + b1t + - 4+ bpt™) =bo+ bic+ - -+ + by™. On vérifie que e, est un morphisme d’anneaux.

Soit p=ag + art + -+ amt™,q = bg + bt + - - - + bt™ € K[t]. On suppose, sans perte de généralité, que n > m
et pour la preuve on pose a; = 0 pour tout 7 > m. On a

d(p+q) =od((ao+bo) + (a1 +b1)t+ - + (an + bp)t™)

= (ap+bo) + (a1 +b1)e+ -+ (an +by)c" = (ap + arc+ - - + anc™) + (bg + bic+ - - + byc™) = ¢(p) + ¢(q).

La troisieme égalité découle des axiomes de distributivité et la commutativité de ’addition dans A.
On a aussi
d(pq) = d(aobo + (agby + arbo)t +--- + ( Z (aib))tF + -+ anb,t™
i+j=k

= apbo + (aob1 +a1bo)c+-- -+ ( Z (aibj))c® + -+ anbnc®™ = (ap +arc+---anc®)(bo +brc+---+buc™) = d(p)o(q).
i+j=k
Ici avant derniere égalité découle des axiomes de distributivité et la commutativité de I'addition dans A.
Enfin, e.(1x) = 1x = 14. Ca compléte la vérification.

Exercice 6. Vérifier que pour tout ¢ € F3 on a & —¢ =0, et de méme que dans Fs on a b°> —b = 0 pour tout b € Fs.
Montrer que le polynéme t> —t € F3[t] est scindé et que le polynéme t> —t € F5[t] est scindé.



Solution 6. On vérifie que 02 —0=0 mod 3; 1> —1=0 mod 3; et 2®—-2=0 mod 3. De méme,
0°—-0=0 mod5; 1°—1=0 mod5; 2°—-2=0 mod5; 3°—-3=0 mod5; et4°—4=0 mod 5.

Maintenant, on sait d’apres le cours que pour un corps K et ¢ € K, si ¢ est une racine d’un polynéme p € K|[t],
alors (t — ¢) est un facteur de p.
On utilise les calculs ci-dessus et on vérifé que t> —t = t(t — 1)(t — 2) dans F3[t] et

t5—t=t(t —1)(t —2)(t —3)(t — 4), dans Fs[t].

Exercice 7. Dans chacun des cas suivants, l’ensemble V' est-il un K-espace vectoriel pour la loi évidente d’addition
et la multiplication scalaire donnée?

a) K=C, V=C? et Aaz,y)=Re(A\)z,Re(\y) pour A€ C et (z,y) V.
b)) K=R, V=R? et Az,y) = (Ax,\%y) pour A€ R et (x,y) €V.
¢c) K=Fy, V=F% et ANz,y)= Az, \%y) pour A\ € Fy et (z,y) € V.
d) K=R, V={feR[t]| f(a) =0} poura€R firé et la multiplication scalaire au sens usuel.
e) K=R, V=A{feR[t]|f(-a)=—Ff(a) Va € R} et la multiplication scalaire au sens usuel.
Solution 7. a) Non, car par exemple, si A =2+1et p=1on a que
Ap)(1,1) = (=14 2i)(1,1) = (-1,-1), et
A(p(1,1)) = (241)(0,0) = (0,0).

b) Non, car si A, u € R sont les deux non nuls,

A+ ), y) = (A + )z, A+ 1)) # Ma,y) + ple,y) = (A + )z, (0 + 4)y).
c¢) Oui, cela est évident si on tient compte du fait que A2 = A VA € Fa.
d) Tous les axiomes définissant un espace vectoriel sont facilement vérifiés.

e) Tous les axiomes définissant un espace vectoriel sont facilement vérifiés. L’espace vectoriel V est constitué par
les polynomes ayant uniquement des termes de degré impair.

Exercice 8. Dans chacun des cas suivants, l’ensemble V' est-il un K -espace vectoriel (pour les lois évidentes d’addition
et de multiplication scalaire)?

a) K=R, V={f:R—=>R]| f(n)>0, VneZ}

b)) K=R,V={a+bt € R[t]|a,beR},

¢) K=C, V={feC[]|f(0)eR},

d) K=R, V={feC[t]| f(0) e R}.

Solution 8. a) Non, car si f € V tel que f(n) > 0 pour un certain n € N, alors —f(n) < 0, donc —f ¢ V.
b) Oui. Les vérifications des axiomes sont faciles.

c) Non, car si f € V tel que 0 # f(0) € R, alors if(0) ¢ R et donc if ¢ V.

d) Oui. Les vérifications des axiomes sont faciles.

Exercice 9. On pose A l'ensemble des fonctions de R dans R dont la dérivée est définie sur R, donc A C F(R,R),
Uanneau des fonctions de R dans R (comme défini en cours). Alors comme la somme de deuz fonctions dérivables est
dérivable, le produit de deux fonctions dérivables l'est aussi, et la fonction f(x) = 1 pour tout © € R est également
dérivable, A est un anneau unitaire avec les lois de + et - héritées de F(R,R). On considére lapplication D : A —
F(R,R), donnée par D(f) = f', c¢’est-a-dire, D est Uapplication qui associe ¢ une fonction f sa dérivée.



1. Montrer que D est un homomorphisme de groupes du groupe (A,+) dans le groupe (F(R,R),+).
2. Montrer que D n’est pas un homomorphisme d’anneauz entre les anneaux (F(R,R),+,-) et (A, +,").

Solution 9. On rappelle que (f+g)' = f'+¢’ et donc D(f+g) = D(f)+ D(g) pour tout f, g € A, et on déduit que D
est un homomorphisme de groupes. Par contre, comme (fg)’ = f'g+ f¢’, nous n’avons pas que D(fg) = D(f)D(g) et
D ne préserve pas la loi de multiplication dans les deux anneaux. Par exemple, D(z-z) = D(2?) = 22 # D(x)-D(x) =
1-1=1. Ceci montre que D n’est pas un homomorphisme d’anneaux.

Exercice 10 (Facultatif). Soient d,n € Z avecd > 1 et n > 1 ot d est un diviseur de n (c’est-a-dire que n est un
multiple entier de d). Pour cet exercice on ecrira @ pour un élément de Z/dZ et [b] pour un élément de Z/nZ, pour
bien distinguer a quel ensemble chaque élément appartient. Montrer que ’application

f:Z/n7 — Z)dZ, donnée par f([b]) = b
est bien définie. Ensuite, montrer que f est un morphisme d’anneaut.

Solution 10. Pour la premiere partie, on doit montrer que si [a] = [b] alors f([a]) = f([b]). On suppose donc que
[a] = [b], ce qui est vrai si et seulement si b = a + kn pour un entier k. On rappelle que d divise n, donc n = dm
pour un entier m. On trouve ainsi que b = a + kn = a + kdm, ce qui implique que b = @ dans Z/dZ et de suite que
f([a]) = f([b]) comme souhaité.

Pour les propriétés d’un morphisme d’anneaux : f([a] + [c]) = f(la+¢]) =a+c=a+ ¢ = f([a]) + f([¢]), ou la
premiere et la troisieme égalités proviennent de la définition de la loi + dans Z/nZ, et Z/dZ.

Pour la deuxiéme loi -, 'argument est pareil et f([1]) = 1, ce qui complete la vérification que f est un morphisme
d’anneaux.

Exercice 11 (Facultatif). On définit une loi de composition x sur l’ensemble E = R\ {0} comme suit : pour tout
x,y € E onaxxy=|zly.

(i) Montrer que x est associative.

(i) Montrer qu’il existe un élément neutre e & gauche pour *, c’est-a-dire qu’il existe e € E tel que e xb = b pour
tout b € E.

(iii) Montrer qu’il n’existe aucun élément neutre & droite.

(iv) Montrer que tout élément a € E posséde un inverse a droite, ¢’est-a-dire qu’il existe ' € E tel que axa’ = e, ot
e est I'élément neutre a gauche trouvé dans (ii).

On remarque donc que (E,*) n’est pas un groupe et que existence d’une loi de composition associative, d’un élément
neutre a gauche et des inverses a droite n’est pas suffisant pour définir une structure de groupe.

Solution 11. Pour (i), on a que (axb)xc=|a*xb|-c=||alb]-c=||a|| - |b] - c=la| - |b] - ¢, et a* (bxc) =|a|(bxc) =

lal - (|b]c) = |a| - |b] - ¢ = (a % b) * ¢. Pour (ii), on vérifie que 1 xa = |1ja = a pour tout a € E, donc 1 est un élément

neutre & gauche. (iii) Pour a, f € F, on a que a* f = |a|f = a si et seulement si f = ﬁl et si @ > 0, on trouvera f =1

et si a < 0 on trouvera f = —1. Donc il n’existe aucun élément de E qui satisfait la condition pour étre un élément
1

neutre & droite. Enfin pour (iv), comme a * Tl = |a\ﬁ = 1, I’élément Wl\ est un inverse a droite de ’élément a.




