Algeébre linéaire avancée I, Section de Physique automne 2024 Prof. Donna Testerman

Corrigé 14
17 décembre

Notation: Soit p un nombre premier. On note F, le corps fini & p éléments et écrira simplement a pour @, pour un
élément a de IFp.

On fixe un corps K.

On écrira M, (K) pour M, x,(K).

Dans cette série et toutes les suivantes, on utilisera les deux notations A C B et A C B pour indiquer qu'une partie
A est un sous-ensemble d’une partie B, c’est-a-dire que tout élément de la partie A appartient & la partie B.

Les exercices notés () sont “en plus” car ils ressemblent & d’autres exercices. Vous pouvez éventuellement les garder
pour la période des révisions

Exercice 1. On considére l’application de transposition « : My(R) — Mo (R) définie par a(4) = A VA € My(R).
Voir l’exercice 2 de la série 13.
Montrer que o est diagonalisable.

Solution 1. On reprend les résultats de la solution de ’exercice 2 de la série 13.

Les 4 vecteurs propres obtenus en (b), & savoir Ej1, E9s, F12 + Fo1, F12 — Fo1, forment une base de l’espace
entier M(R) (vérification facile !). L’existence d’une base formée de vecteurs propres est une caractérisation des
transformations linéaires diagonalisables. Donc « est diagonalisable.

Argument alternatif : Le polynéme caractéristique de « est scindé et pour chaque valeur propre, la multiplicité
géométrique de la valeur propre est égale a sa multiplicité algébrique.

Exercice 2. Soit b € R fizé et a: Ma(R) — Ms(R) Uapplication suivante:

(TP (paim ©):

On admettra que o est une application R-linéaire.

a) Calculer le polynéme caractéristique de o et trouver ses valeurs propres.
b) Trouver les espaces propres correspondants.

¢) Déterminer si « est diagonalisable. Le cas échéant, trouver une base formée de vecteurs propres et expliciter la
formule de changement de base.

Solution 2. a) Les images des matrices de la base canonique de M3(R) sont:
a(E11) = Eia, a(B12) = B, a(E2) = (b+1)Ey + Ex, a(E») = —bEy

de sorte que la matrice de o dans cette base est

0 1 0 0
10 0 0
Mo = 0 0 b+1 —b
0 0 1 0

On utilise le résultat de l'exercice 2 Série 12 pour calculer det(My — t14):

-t 1 0 0

Lot 0 0| (-t o1 b+1—t —b
o 0 br1-t - _det<1 —t>det( 1 —t)
0 0 1

=2 —=1)(t—0b)(t—1)=(t—1)%(t +1)(t — b). Les valeurs propres de a sont donc 1, —1 et b.



b)

Supposons d’abord que b # +1. Les cas de b = 1 et b = —1 sont couverts dans la partie (c), ci-dessous. Une

matrice A = ( z y > appartient a I’espace propre F; si et seulement si

t
(27)=Coetfeom )=

Toutes ces relations se rameénent a =y et ¢ = z. On a donc

|
R

+1)z—0bt

IR S SIS
|

Ey = Vect (E11 + B2, Fo1 + Ey) et dim(Ep) = 2.

Une matrice A = ( JZC ty ) appartient a I’espace propre F_;<=
—x =y
—r -y ) _ y x —y ==
(—z —t)<(b+1)z—bt z><:> -z =(b+1)z-0bt
-t =z
Ces relations donnent © = —y et t = —z = (2b+ 1)z. Comme on a supposé que b # —1, il résulte que z = ¢t = 0.
Par conséquent E_; = Vect (E1; — E12). On a donc dim(E_;) = 1.
Enfin, une matrice A = ( i Zt/ ) appartient a I’espace propre Ej si et seulement si
bx =y
bxr by \ _ Y x by ==x
<bz bt>_<(b—|—1)z—bt z) bz =(b+1)z—-10t
bt ==z

Les deux premieres équations donnent bz = x, donc z = y = 0, car b # +1. Les deux derniéres impliquent
z = bt et avec z € R quelconque. En conclusion Ej, = Vect (bE2; + Ess), de dimension 1.

De ce qui précede il est clair que si b # +1, alors ¢, (t) est scindé et les multiplicités algébriques et géométriques
coincident pour chaque valeur propre. L’application « est diagonalisable. La matrice de passage de la base
canonique F & la base F' = {E11 + F12, Eo1 + Fao, E11 — Fi12, bEo1 + Fao} est

1 0 10
CoE 1 0 =1 0
(ld)F/_ 0 1 0 b ’
01 01
et

1 0 0 0
(@)pr = (i ()rld)i = | o 23
00 0 b

Si b=1,0na c4(t) = (t—1)3(t +1). Les espaces propres ne changent pas et o n’est pas diagonalisable dans
ce cas, car 2 = Mgeom (1) < Mmgig(l) = 3.

Sib=—1,alors co(t) = (t—1)?(t+1)2. Parcourant 'étude de E_; on constate que la condition —z = (2b+ 1)z
est satisfaite pour tout z € R, donc F_; = Vect (E1; — E12, Ea1 — Fa23). Dans ce cas dim(E_1) =2 et

Mgeom (1) = Matg(1) = Mgeom (—1) = Marg(—1) = 2,

donc « est diagonalisable. La matrice de passage de la base canonique F & la base F” = {Fy; + Ei2, Eo1 +
Ess, By — Era, Eo1 — Ena} est

1 F
ldF// =

OO ==
_ =0 o
|
OO ==
_= =0 o



et on vérifie que (id)E" (@)p(id)E, =

co o~
oo~ o
[
_

at+b b

Exercice 3. Pour quelles valeurs de a et b la matrice M = ( b ab

) est-elle diagonalisable ¢

Solution 3. Le polynéme caractéristique vaut

b—t b
) =des (700 Y — a2

Donc la seule valeur propre est a. Les vecteurs propres correspondants sont les solutions non nulles du systeme

(M —a-I)X =0, ce qui donne
b b z\ _ (0
-b —b y ) \0 )’

1
-1
seuls vecteurs propres de M, on voit que I'espace entier, qui est de dimension 2, ne peut pas avoir une base formée de
vecteurs propres. Donc M n’est pas diagonalisable.

autrement dit b(x +y) = 0.

Si b # 0, on trouve y = —x et donc l'espace propre est Vect( ( > ), de dimension 1. Comme ce sont les

Si b =0, alors le systéme ci-dessus se réduit a 0 = 0. Par conséquent, tous les vecteurs ( za; ) sont des solutions,

donc des vecteurs propres (pour la valeur propre a). Dans ce cas, il existe une base formée de vecteurs propres (on

peut prendre par exemple ( (1) ) et ( ? ) ). Donc M est diagonalisable. En fait, cela saute aux yeux car, si b = 0,

la matrice M est déja diagonale.
En résumé, M est diagonalisable si et seulement si b = 0 (indépendamment de la valeur de a).

Exercice 4. (a) Soit o : V — V une transformation linéaire d’un K-espace vectoriel V. On suppose que V est de
dimension 5, que « posséde exactement 4 valeurs propres distinctes, et que Im («) est de dimension 3. Montrer
que o est diagonalisable.

2 0 C
0 2
(b) Soit A= |0 0 € M5(C), ot C' € May3(C) et D € M3(C). Supposons que ca(t) = (t — 2)*2(t + 1) et
0 0 D
0 0

que rang(D) = 2. Montrer que A n’est pas diagonalisable.

Solution 4. (a) Commengons par constater que le polyndéme caractéristique ¢, (t) est de degré 5 avec 4 racines
distinctes, donc il est scindé, 'une des 4 racines est de multiplicité algébrique 2, et les 3 autres sont de multiplicité
algébrique 1.

Par le théoréme du rang, Ker (o) est de dimension 5 —3 = 2. Donc A\; = 0 est une valeur propre de «, avec espace
propre correspondant Ker (a), et donc mgeom (0) = dim(Ker (o)) = 2. Il s’ensuit que mq;4(0) > 2. Comme toutes
les valeurs propres sont de multiplicité algébrique 1, sauf une qui est de multiplicité 2, on doit avoir mg,(0) = 2.
En particulier mgeom (0) = Maqiq(0).

Par ailleurs a possede 3 autres valeurs propres As, Az, A4, avec des multiplicités algébriques 1, donc des multiplicités
géométriques aussi égales & 1 (car 1 < Mgeom(Ai) < Marg(Ai)). On voit que chaque multiplicité géométrique est
égale a la multiplicité algébrique correspondante. Par conséquent, o est diagonalisable.

(b) On note que (1,0,0,0,0)" et (0,1,0,0,0)" sont des vecteurs propres linéairement indépendants pour la valeur
propre 2 et donc Mmgeom(2) = Mag(2). Pour la valeur propre 0: comme rang(D) = 2, on déduit que rang(A4) =4
et donc dim(ker(A)) =1 et Mgeom(0) =1 < 2 = myi4(0). Donc A n’est pas diagonalisable.




Exercice 5. On considere la matrice A =

S M4(Q)

coc oW

cowmo
=
—

o oo

a) Montrer que A est trigonalisable.

b) Trigonaliser A en explicitant la formule de changement de base.

Solution 5. a) Le polynéme caractéristique est
2—t 0 0 0
_ 0 2—t 0 0 _ 9
CA(t)_ 0 0 —1—¢ 9 _(t_2) (t_l)(t_3)
0 0 -4  5—t

qui est scindé. Donc A est trigonalisable.

En regardant les deux premieres colonnes de A, on voit que les deux premiers vecteurs de base e; et es sont
déja des vecteurs propres, pour la valeur propre 2. On cherche maintenant des vecteurs propres pour la valeur
0
0
1
1
On prend donc f3 comme 3éme vecteur de base. Pour obtenir une matrice triangulaire supérieure, on n’a pas
besoin de se préoccuper du dernier vecteur de base. On prend donc un 4éme vecteur de base f4, par exemple
fa = ey, afin d’obtenir une base B = (e, e, f3,e4). La matrice de changement de base et son inverse sont alors

propre 1. Le systéeme A — I, = 0 a un espace de solutions de dimension 1, engendré par le vecteur f3 =

10 0 0 10 0 O
_..hc_| O 1 0 0 NB_a-1_| 0O 1 0 0
S =(id)p = 001 0 (id)e = 87" = 00 1 0]’
0 0 1 1 00 -1 1
et la formule de changement de base nous donne
2 0 00
el 102 00
B=5"A5= o0 1 2]’
0 0 0 3

qui est bien triangulaire supérieure.

Exercice 6. Soit A € M3(C) une matrice non inversible vérifiant Tr(A) = —2i et Tr(A2%) = 0.

a)
b)
y
4)

La matrice A est-elle trigonalisable?
Soient ai,as,as les valeurs propres de A. Exprimer les valeurs propres de A% en termes de a1, az, as.
Déterminer les valeurs propres de A.

La matrice A est-elle diagonalisable?

Solution 6. a) Comme tout polynoéme dans C[t] est scindé, le polynome caractéristique de A est scindé, et la

matrice A est trigonalisable. Donc il existe une matrice inversible P € M3(C) telle que P~1 AP soit triangulaire
supérieure.

Une observation importante est la suivante: Pour une matrice triangulaire supérieure avec ay,as,- - ,a, sur la
diagonale, alors a1, as, - ,a, sont les valeurs propres de cette matrice.

Comme A est trigonalisable, on peut trouver une matrice inversible P € M3(C) telle que B := P~! AP soit trian-
gulaire supérieure ayant ai, ag, as sur la diagonale. Alors P~'A%2P = P~1APP~'AP = B? et on voit facilement
que B? est une matrice triangulaire supérieure ayant a?, a3, a3 sur la diagonale. Donc d’apreés I'observation de
a), a?,a3,a? sont les valeurs propres de A%. (On rappelle que Tr(A) = Tr(B) et det(A) = det(B).)



¢) Comme A n’est pas inversible, le déterminant de A vaut zéro et donc 'une des valeurs propres est nulle. Sans
perte de généralité, on peut supposer que az = 0.

Comme Tr(A) = —2i, on obtient a; + az = —2i; comme Tr(A?) = 0, d’apres b), on obtient Tr(A4%) = a? + a3 =

N N 5z . a] +ax = —2i . a; = —1—1
0. 1l reste a résoudre le systeme d’équations { 2tad = 0 On obtient que { 4 = 1—i ou
= 1—i _
{ Zl B 1 ! i Donc les valeurs propres de A sont +1 — 7, 0.
y = —1-—

d) Comme les trois valeurs propres de A sont distinctes, A est diagonalisable.

Exercice 7. Trouver la matrice des cofacteurs de A et de B (des matrices dans M3(K)) et vérifier dans chaque cas
que A((cof (A))! = det(A)I5 et (cof (B))!B = det(B)I5. Soita € K.

a 1 1 1 3 5
A=10 2 —-1| eB=|0 1 2
a —1 2 1 01

Solution 7. On calcule
detA(1]1) = 3, detA(1|2) = a, detA(1]3) = —2a, detA(2]|1) =3,

detA(2|2) = a, detA(2|3) = —2a, detA(3|1) = —3, detA(3]2) = —a, detA(3|3) = 2a.

Ensuite on reporte ces valeurs dans la matrice des cofacteurs, en mettant aussi le signe approprié.

3 —a —2a
Par conséquent, cof(A) = [ =3 a  2a | et on vérifie que A (cof(A))" = 0. On vérifie que det(A) = 0 et donc
-3 a 2a

A - (cof (A))t = det(A) - I3.
Pour B, on calcule

detB(1]1) = 1, detB(1]2) = -2, detB(1]3) = —1, detB(2]1) = 3,

detB(2]2) = —4, detB(2)3) = —3, detB(3|1) = 1, detB(3]2) = 2, detB(3[3) = 1,

1 2 -1
donc cof(B)=| -3 —4 3
1 -2 1
1 -3 1 1 3 5
On vérifie que (cof(B)))B=| 2 -4 —=2| |0 1 2| =2-1I3etdet(B)=2.
-1 3 1 1 0 1

Exercice 8 (Faites référence a 'exercice 13 de la série 13.). Soit a € R fizé. On considére la transformation linéaire
a de M3(R) définie par
a(x y)_((l—a)x—i—ay m)
z t 2z +1 t )

Déterminer si a est diagonalisable. Le cas échéant, trouver une base formée de vecteurs propres et expliciter la
formule de changement de base.

Solution 8. Si a # —1,—2, alors d’aprés les résultats dans la série précédente, dim(F3) = 1,dim(F;) = 2 et
dim(F_,) = 1. Comme dim(V) =4 =142+ 1 = dim(E>) + dim(E;) 4+ dim(E_,). Comme la somme des espaces
propres de valeurs propres différentes est une somme directe, on en déduit que V = Ey @ E; & E_, et donc « est
diagonalisable.

Sia=—1, dim(F2) = 1,dim(E;) = 2. Par conséquent, dim(V) =4 > 1+ 2 = dim(E>) + dim(E;) et donc a n’est
pas diagonalisable.

Si a = —2, alors dim(F3) = 2,dim(F;) = 2. Un argument similaire & celui utilisé dans le premier paragraphe
montre que « est diagonalisable.

En résumé, a est diagonalisable si et seulement si a # —1.

Pour la formule de changement de base, on ne donne que les résultats et les calculs sont laissés au lecteur.



Supposons que a # —1,—2. Alors d’apres les résultats de la série précédente F' = (v, vs3,v4,v5) est une base de

01 0 -—a
V = My(R). La matrice de changement de base de E & F est S = (Id)& = (1) (1] f)l (1) . Son inverse est
00 1 0
0 0 1 1
S (qgE o | e el 000
S~t={Id)E = 0 0 o0 1 . La formule de changement de base donne
ot a1 00
B = (a)h=57"148
0 0 1 1 l1—a a 0 O 01 0 —a
1
_ o1 apr 00 1 000 01 0 1
0 0 0 1 0 0 2 1 1 0 -1 0
ajrll a%rl 00 0 0 01 00 1 O
2 00 O
- 01 0 0
o 0 0 1 0
00 0 —a
Supposons que a = —2. On a vu que G = (v, v2,v3,v4) est une base de V= M3(R). La matrice de changement
2 01 O 1 -1 0 0
1 01 O 0 0 1 1
5 _ E _ ; -1 _ G _
de base de F & G est S = (Id)g = 01 0 -1 . Son inverse est ST = (Id)g = 1 2 0 0 . La
0 00 1 0 0 01
formule de changement de base donne
B = (a)f=5148
1 -1 0 0 3 =2 0 0 2 01 O
_ 0 0 1 1 1 0 00 101 0
o -1 2 00 0 0 21 01 0 -1
0 0 01 0 0 01 0 00 1
2 0 00
o200
a 0 010
0 0 01

Exercice 9 (Facultatif). Soient K et F des corps avec K C F. On considére les espaces vectoriels K™ et F™.
On rappelle que F™ posséde une structure de F-espace vectoriel ainsi qu’une structure de K-espace vectoriel. Soit
(v1,...,vy,) une base du K-espace vectoriel K™. Alors v; € F™ pour tout i. Montrer que (vy,...,v,) est une base du
F-espace vectoriel F™.

Solution 9. Soit C' = (eq,...,e,) la base canonique de K", qui est aussi une base de F™. On considere 'application
lindaire ¢ : K™ — K™ définit par ¢(e;) = v;. Soit A = (¢)& € M, (K).

Comme ¢ envoie la base C sur une base de K", ¢ est bijective. Par le critére d’inversibilité on a que A est une
matrice inversible et donc det(A) # 0.

Maintenant soit ¢ : F — F™ I'application linéaire dont la matrice (¥)& = A. On déduit que 1 est bijective par
les mémes critéres et par conséquent (vi,...,v,) est une base de F™ aussi.

Exercice 10 (Facultatif). Soient K un corps, A € M, (K) et B,X € M,x1(K). On considére le systéme linéaire
AX = B.

On suppose que det(A) # 0, auquel cas le systéme linéaire posséde une solution unique. On donne ici une formule
pour l'unique solution en termes des déterminants de certaines matrices.

Soit S € My x1(K) lunique solution du systéme et écrivons St = (s1 sa ... Syp).

a) A lUaide de S, exprimer B comme combinaison linéaire des colonnes de A.



b) Pour 1 <k <n, désignons par Cy la matrice obtenue a partir de A en remplagant la k-éme colonne de A par la
colonne B. Montrer la formule de Cramer

_ det(C’k) _
Sk—m (k=1,...,n).

Notons que cette formule est intéressante du point de vue théorique, mais est trés peu utilisable pour les calculs.

Solution 10. a) Comme S est la solution du systeme, AS = B, donc a;181 + a;es2 + ... + aipns, = b; pour
chaque i = 1,...,n. En désignant par A7 la j-eéme colonne de A, cela donne A's; + ...+ A"s, = B. Ainsi
B = Z?:l SjAj.

b) Par définition, la matrice Cy, vaut
Cp = (AY,--- JAF71 B AT ... 4™

ot A7 désigne la j-éme colonne de A. La k-éme colonne B peut s’écrire comme la combinaison linéaire obtenue
N . n y 7 7 . . ’ oy 7 N \

en (b), a savoir B= )" =1 s;A7. On développe alors le déterminant par linéarité par rapport a la k-eme colonne

et on obtient

det(Cy) = s; det(Al -+ AFTL AT ARFL L AT,
j=1

On voit que, si j # k, deux colonnes sont égales et le déterminant est donc nul. Il ne reste alors que le terme
pour j = k et on obtient

det(Cy) = sp det(AL,--- AP AR ARFL .0 A" = ;. det(A) .

On trouve alors sy en divisant par det(A), qui est différent de 0.

Exercice 11 (x). Soient a,b € R fizés et n > 2.
On considére la matrice A = (A;j)1<ij<n € Mn(R) avec

ao={ 5 5izh
a) Montrer que a — b est une valeur propre de A et trouwver lespace propre correspondant.
b) Montrer que le vecteur (1,1,---,1) est un vecteur propre. Pour quelle valeur propre?
¢) Montrer que A est diagonalisable.
d) Trouver une base formée de vecteurs propres, et quand n = 3, expliciter la formule de changement de base.

Solution 11.  a) Le scalaire a — b est une valeur propre de A si et seulement si la matrice A — (a — b) - I,, n’est pas
inversible si et seulement si det(A — (a — b) - I,,) = 0. Or, par défintion de A, on voit que A — (a — b) - I, est la
matrice dont tous les coefficients sont b, donc est de déterminant nul. Par conséquent, a — b en est une valeur
propre.

L’espace propre associé a la valeur propre a — b est le noyau de A — (a — b) - I,,. On distingue deux cas.
Sib=0,alors A— (a —0) - I, est la matrice nulle, donc F,_, =V = R", I'espace entier. La base canonique de
V' = R"™ en est une base.

Si b # 0, on effectue les opérations élémentaires suivantes sur les lignes de A — (a — b) - I;:

1
Dl(g)7L21(—b)7L31(—b),“' s Ln1 (=)
1 1 - 1 1
. . P o --- 0 0 .
et on obtient une matrice échelonnée réduite: | Doncuxz,- -z, sont les variables
0 0o --- 0 0

libres et ’espace propre E,_; est de dimension n — 1. Plus précisément,
Eop={(-22— 23— — 2, 22,23, ,Tp) | T2,73, -+ 2, € R}.
Une base de E,_; est donnée par

((_1a170707"' 70)7(_1707170"" 70)a"' 7(_170707"' 7071a0)7(_1a0507"' ,0,1))



b) Notonsv = (1,1,---,1) le vecteur qui vaut 1 partout. Soit E la base canonique de R™. Alorsw = (v)g =
1
Un simple calcul donne Aw = (a+ (n — 1)b)w. Donc a + (n — 1)b est une valeur propre de A et v est un vecteur
propre associé a cette valeur propre. Donc dim(Eqq(n—1)s) > 1.

Constatons que si b # 0, a + (n — 1)b # a — b et ces deux valeurs propres sont distinctes.

c¢) Si b= 0, la matrice A = al,, qui est une matrice diagonale, qui est bien sir diagonalisable.

On peut aussi remarquer que 'on a trouvé une base formée de vecteurs propres lorsque b = 0, donc A est
diagonalisable.

Sib #£ 0, alors d’apres a), a — b est une valeur propre de A et E,_p est de dimension n— 1; d’apres b), a+ (n—1)b
est une autre valeur propre et ’espace propre correspondant est de dimension au moins 1. Comme la somme
d’espaces propres associés a des valeurs propres différentes est une somme directe, la somme directe de E,_
et de E,y(n—1)p est de dimension > (n—1)4+1=mn. DoncV =FE, , & Eqt(n—1)p- Par conséquent, A est
diagonalisable lorsque b # 0. Constatons que cela montre aussi que dim(E,4(,—1y) = 1.

En résumé, dans les deux cas, A est diagonalisable.

d) Sib=0, d’apres c), la base canonique F' := FE est une base formée de vecteurs propres.
Si b # 0, une base formée de vecteurs propres est donnée par 1'union d’une base de F,_; et d’'une base de
Eq4 (n—1)p, par exemple, on peut prendre

F:.=((-1,1,0,---,0,0),(-1,0,1,---,0,0),---,(-1,0,0,---,1,0),(-1,0,0,---,0,1),(1,1,1,--- ,1,1)).

Supposons maintenant que n = 3. On note « la transformation linéaire de V' = R"™ définie par A par rapport a
la base canonique F.

Sib =0, alors F = E. Donc la matrice de changement de base de E a F ainsi que celle de F' & E sont la matrice
identité et la formule de changement de base donne

B=()h=UdE - A-(IdE=1,-A-1, = A

-1 -1 1
Sib+#0,alors F=((-1,1,0),(-1,0,1),(1,1,1)). Donc S = (Id)E = 1 0 1 et S71 = (Id)E =
0o 1 1
1 2 _1
3 3
fz f% % . La formule de changement de base donne
1 1
3 3 3
B = (a)k=57148
—% 2 -1 a b b -1 -1 1
= -3 —3 % b a b 1 0 1
T b b a 0 1 1
a—b 0 0
= 0 a—b 0

Exercice 12. (x)
Soit V =Clt]<s et o: V — V définie par

a(P(t)) = P(t) — (t + 1)P'(t).

Déterminer les valeurs propres de a et les espaces propres correspondants en indiquant une base pour chacun. L’application
« est-elle diagonalisable?



Solution 12. Soit F = {1, ¢, t?, t3} la base canonique de C[t]<3. On calcule

(%

a(l) =1

alt) =t—(t+1)=-1

at?) = —(t+1)2t=—t> -2t
(

t3) =13 — (t+1)3t? = 23 — 3t2

donc la matrice de « par rapport a la base I est

1 -1 0 0
0o 0 -2 0
Mo = 0 0 -1 =3
0o 0 0 -2

On a ¢, (t) = det(My —tly) = t(t—1)(t+1)(t+2). On note que ce polynome est scindé. Les valeurs propres sont donc
0,1, —1 et —2. Il y a 4 valeurs propres distinctes, dont les multiplicités géométriques et algébriques sont forcément
égales et par conséquent « est diagonalisable.

Pour étudier les espaces propres, écrivons P(t) = a + bt + ct? + dt?, avec a, b, ¢, d € C.

Calcul de Ey = Ker (). On a P(t) € Ker (o) <

1 -1 0 0 a 0 a—>b =0
0 0 -2 0 b | |0 — —2c =0
0 0 -1 -3 c 0 —c—3d =0
0 0 0 -2 d 0 —2d =0

ce qui donne ¢ =d =0 et a = b. Par conséquent Ker () = Vect (1 +¢).
On procede de maniere similaire pour les autres valeurs propres. Les coordonnées des vecteurs de F; satisfont le
systeme:

a—b =a
—2c =b
—c—3d =c¢
—2d =d
d’ot d=c=b=0et F; = Vect (1).
Pour E_; on obtient le systeme
a—1>b =—a
—2c =-b
—c—3d =—c
—2d =—d

avec les solutions d = 0, a = ¢ € C, b = 2a, donc E_; = Vect (1 + 2t + t2).
Finalement, pour £_5 on a

a—b = —2a
—2c =-2b
—c—3d =—-2¢
—2d =—-2d

avec comme solutions a = d € C, b = ¢ = 3a, donc E_s = Vect (1 + 3t + 3t2 + t3) = Vect ((1 + t)3).
Notons par F' = {t+1, 1, 1 + 2t + 2, 1+ 3t + 3t> + t3}. Nous avons

11 1 1

.o F _ |10 2 3

S= (’LdV)F’ - 00 1 3

0 0 01

La matrice de « par rapport a la base F’ est

0 0 0 0
-1 Fgo __ ! 0 1 0 0
SRS =Ma=1 14 ¢ -1 o
0 0 0 -2




Exercice 13 (Cet exercice compleéte une preuve du cours). Soient Wy, ..., W, des sous-espaces vectoriels d'un K-
espace vectoriel V tels que Wi+ -+ W, =W, & --- @ W,.. Soit B; une base de W;, pour 1 <i <r. Montrer que la
réunion B = B; U---U B, est une base de W1 + --- + W,..

Solution 13. Posons W = W7 + .-+ W,.. Soit w € W, donc il existe w; € W; tels que w = Z:Zl w;. Pour chaque 14,
w; € Vect (B;) et donc w € Vect (By U---U B,;), ce qui montre que B est une partie génératrice de W.

Tl reste & montrer que B est une partie libre. On fixe B; = {fi1, ..., fim, }, pour chaque i. Soient o, € K, 1 < i <r
et 1 <k <m,, tels que >\, S oy fir = Oy. Fixons j : On a

T

ki_jlajkfjk = —( Z (iaikfik>)-

i=1,i#j k=1

Ce vecteur appartient a W, N (W1 +---+W,_1 + Wi 1+ -+ W,.). Comme W est une somme directe des W;, cette
J J J+

intersection est le vecteur nul. Donc Zzzl aji fir = Oy et par I'indépendance linéaire de B;, on trouve que aj, = 0

pour tout 1 <k < m;. Le choix de j étant arbitraire, on a que o, = 0 pour tout j et pour tout £, ce qui montre que

B est une partie libre de W et donc une base de W.




