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Notation: Soit p un nombre premier. On note Fp le corps fini à p éléments et écrira simplement a pour ā, pour un
élément ā de Fp.
On fixe un corps K.
On écrira Mn(K) pour Mn×n(K).
Dans cette série et toutes les suivantes, on utilisera les deux notations A ⊂ B et A ⊆ B pour indiquer qu’une partie
A est un sous-ensemble d’une partie B, c’est-à-dire que tout élément de la partie A appartient à la partie B.

Les exercices notés (⋆) sont “en plus” car ils ressemblent à d’autres exercices. Vous pouvez éventuellement les garder
pour la période des révisions

Exercice 1. On considère l’application de transposition α :M2(R) −→M2(R) définie par α(A) = At ∀A ∈M2(R).
Voir l’exercice 2 de la série 13.

Montrer que α est diagonalisable.

Solution 1. On reprend les résultats de la solution de l’exercice 2 de la série 13.
Les 4 vecteurs propres obtenus en (b), à savoir E11, E22, E12 + E21, E12 − E21, forment une base de l’espace

entier M2(R) (vérification facile !). L’existence d’une base formée de vecteurs propres est une caractérisation des
transformations linéaires diagonalisables. Donc α est diagonalisable.

Argument alternatif : Le polynôme caractéristique de α est scindé et pour chaque valeur propre, la multiplicité
géométrique de la valeur propre est égale à sa multiplicité algébrique.

Exercice 2. Soit b ∈ R fixé et α :M2(R) −→M2(R) l’application suivante:

α
(( x y

z t

))
=

(
y x

(b+ 1)z − bt z

)
.

On admettra que α est une application R-linéaire.

a) Calculer le polynôme caractéristique de α et trouver ses valeurs propres.

b) Trouver les espaces propres correspondants.

c) Déterminer si α est diagonalisable. Le cas échéant, trouver une base formée de vecteurs propres et expliciter la
formule de changement de base.

Solution 2. a) Les images des matrices de la base canonique de M2(R) sont:

α(E11) = E12, α(E12) = E11, α(E21) = (b+ 1)E21 + E22, α(E22) = −bE21

de sorte que la matrice de α dans cette base est

Mα =


0 1 0 0
1 0 0 0
0 0 b+ 1 −b
0 0 1 0

 .

On utilise le résultat de l’exercice 2 Série 12 pour calculer det(Mα − tI4):

det


−t 1 0 0
1 −t 0 0
0 0 b+ 1− t −b
0 0 1 −t

 = det

(
−t 1
1 −t

)
det

(
b+ 1− t −b

1 −t

)

= (t2 − 1)(t− b)(t− 1) = (t− 1)2(t+ 1)(t− b). Les valeurs propres de α sont donc 1, −1 et b.



b) Supposons d’abord que b ̸= ±1. Les cas de b = 1 et b = −1 sont couverts dans la partie (c), ci-dessous. Une

matrice A =

(
x y
z t

)
appartient à l’espace propre E1 si et seulement si

(
x y
z t

)
=

(
y x

(b+ 1)z − bt z

)
⇐⇒


x = y
y = x
z = (b+ 1)z − bt
t = z

Toutes ces relations se ramènent à x = y et t = z. On a donc

E1 = Vect (E11 + E12, E21 + E22) et dim(E1) = 2.

Une matrice A =

(
x y
z t

)
appartient à l’espace propre E−1⇐⇒

(
−x −y
−z −t

)
=

(
y x

(b+ 1)z − bt z

)
⇐⇒


−x = y
−y = x
−z = (b+ 1)z − bt
−t = z

Ces relations donnent x = −y et t = −z = (2b+1)z. Comme on a supposé que b ̸= −1, il résulte que z = t = 0.
Par conséquent E−1 = Vect (E11 − E12). On a donc dim(E−1) = 1.

Enfin, une matrice A =

(
x y
z t

)
appartient à l’espace propre Eb si et seulement si

(
bx by
bz bt

)
=

(
y x

(b+ 1)z − bt z

)
⇐⇒


bx = y
by = x
bz = (b+ 1)z − bt
bt = z

Les deux premières équations donnent b2x = x, donc x = y = 0, car b ̸= ±1. Les deux dernières impliquent
z = bt et avec z ∈ R quelconque. En conclusion Eb = Vect (bE21 + E22), de dimension 1.

c) De ce qui précède il est clair que si b ̸= ±1, alors cα(t) est scindé et les multiplicités algébriques et géométriques
cöıncident pour chaque valeur propre. L’application α est diagonalisable. La matrice de passage de la base
canonique F à la base F ′ = {E11 + E12, E21 + E22, E11 − E12, bE21 + E22} est

(id)FF ′ =


1 0 1 0
1 0 −1 0
0 1 0 b
0 1 0 1

 ,

et

(α)F ′ = (id)F
′

F (α)F (id)
F
F ′ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 b

 .

Si b = 1, on a cα(t) = (t − 1)3(t + 1). Les espaces propres ne changent pas et α n’est pas diagonalisable dans
ce cas, car 2 = mgeom(1) < malg(1) = 3.

Si b = −1, alors cα(t) = (t− 1)2(t+1)2. Parcourant l’étude de E−1 on constate que la condition −z = (2b+1)z
est satisfaite pour tout z ∈ R, donc E−1 = Vect (E11 − E12, E21 − E22). Dans ce cas dim(E−1) = 2 et

mgeom(1) = malg(1) = mgeom(−1) = malg(−1) = 2,

donc α est diagonalisable. La matrice de passage de la base canonique F à la base F ′′ = {E11 + E12, E21 +
E22, E11 − E12, E21 − E22} est

idFF ′′ =


1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1

 ,



et on vérifie que (id)F
′′

F (α)F(id)
F
F′′ =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

.

Exercice 3. Pour quelles valeurs de a et b la matrice M =

(
a+b b
−b a−b

)
est-elle diagonalisable ?

Solution 3. Le polynôme caractéristique vaut

cM (t) = det

(
a+ b− t b

−b a− b− t

)
= (t− a)2.

Donc la seule valeur propre est a. Les vecteurs propres correspondants sont les solutions non nulles du système
(M − a · I2)X = 0, ce qui donne (

b b
−b −b

)(
x
y

)
=

(
0
0

)
,

autrement dit b(x+ y) = 0.

Si b ̸= 0, on trouve y = −x et donc l’espace propre est Vect
( (

1
−1

) )
, de dimension 1. Comme ce sont les

seuls vecteurs propres de M , on voit que l’espace entier, qui est de dimension 2, ne peut pas avoir une base formée de
vecteurs propres. Donc M n’est pas diagonalisable.

Si b = 0, alors le système ci-dessus se réduit à 0 = 0. Par conséquent, tous les vecteurs

(
x
y

)
sont des solutions,

donc des vecteurs propres (pour la valeur propre a). Dans ce cas, il existe une base formée de vecteurs propres (on

peut prendre par exemple

(
1
0

)
et

(
0
1

)
). Donc M est diagonalisable. En fait, cela saute aux yeux car, si b = 0,

la matrice M est déjà diagonale.
En résumé, M est diagonalisable si et seulement si b = 0 (indépendamment de la valeur de a).

Exercice 4. (a) Soit α : V → V une transformation linéaire d’un K-espace vectoriel V . On suppose que V est de
dimension 5, que α possède exactement 4 valeurs propres distinctes, et que Im (α) est de dimension 3. Montrer
que α est diagonalisable.

(b) Soit A =


2 0 C
0 2
0 0
0 0 D
0 0

 ∈ M5(C), où C ∈ M2×3(C) et D ∈ M3(C). Supposons que cA(t) = (t − 2)2t2(t + 1) et

que rang(D) = 2. Montrer que A n’est pas diagonalisable.

Solution 4. (a) Commençons par constater que le polynôme caractéristique cα(t) est de degré 5 avec 4 racines
distinctes, donc il est scindé, l’une des 4 racines est de multiplicité algébrique 2, et les 3 autres sont de multiplicité
algébrique 1.

Par le théorème du rang, Ker (α) est de dimension 5− 3 = 2. Donc λ1 = 0 est une valeur propre de α, avec espace
propre correspondant Ker (α), et donc mgeom(0) = dim(Ker (α)) = 2. Il s’ensuit que malg(0) ≥ 2. Comme toutes
les valeurs propres sont de multiplicité algébrique 1, sauf une qui est de multiplicité 2, on doit avoir malg(0) = 2.
En particulier mgeom(0) = malg(0).

Par ailleurs α possède 3 autres valeurs propres λ2, λ3, λ4, avec des multiplicités algébriques 1, donc des multiplicités
géométriques aussi égales à 1 (car 1 ≤ mgeom(λi) ≤ malg(λi)). On voit que chaque multiplicité géométrique est
égale à la multiplicité algébrique correspondante. Par conséquent, α est diagonalisable.

(b) On note que (1, 0, 0, 0, 0)t et (0, 1, 0, 0, 0)t sont des vecteurs propres linéairement indépendants pour la valeur
propre 2 et donc mgeom(2) = malg(2). Pour la valeur propre 0: comme rang(D) = 2, on déduit que rang(A) = 4
et donc dim(ker(A)) = 1 et mgeom(0) = 1 < 2 = malg(0). Donc A n’est pas diagonalisable.



Exercice 5. On considère la matrice A =


2 0 0 0
0 2 0 0
0 0 −1 2
0 0 −4 5

 ∈M4(Q).

a) Montrer que A est trigonalisable.

b) Trigonaliser A en explicitant la formule de changement de base.

Solution 5. a) Le polynôme caractéristique est

cA(t) =

∣∣∣∣∣∣∣∣
2− t 0 0 0
0 2− t 0 0
0 0 −1− t 2
0 0 −4 5− t

∣∣∣∣∣∣∣∣ = (t− 2)2(t− 1)(t− 3)

qui est scindé. Donc A est trigonalisable.

b) En regardant les deux premières colonnes de A, on voit que les deux premiers vecteurs de base e1 et e2 sont
déjà des vecteurs propres, pour la valeur propre 2. On cherche maintenant des vecteurs propres pour la valeur

propre 1. Le système A− I4 = 0 a un espace de solutions de dimension 1, engendré par le vecteur f3 =


0
0
1
1

.

On prend donc f3 comme 3ème vecteur de base. Pour obtenir une matrice triangulaire supérieure, on n’a pas
besoin de se préoccuper du dernier vecteur de base. On prend donc un 4ème vecteur de base f4, par exemple
f4 = e4, afin d’obtenir une base B = (e1, e2, f3, e4). La matrice de changement de base et son inverse sont alors

S = (id)CB =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

 (id)BC = S−1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 −1 1

 ,

et la formule de changement de base nous donne

B = S−1AS =


2 0 0 0
0 2 0 0
0 0 1 2
0 0 0 3

 ,

qui est bien triangulaire supérieure.

Exercice 6. Soit A ∈M3(C) une matrice non inversible vérifiant Tr(A) = −2i et Tr(A2) = 0.

a) La matrice A est-elle trigonalisable?

b) Soient a1, a2, a3 les valeurs propres de A. Exprimer les valeurs propres de A2 en termes de a1, a2, a3.

c) Déterminer les valeurs propres de A.

d) La matrice A est-elle diagonalisable?

Solution 6. a) Comme tout polynôme dans C[t] est scindé, le polynôme caractéristique de A est scindé, et la
matrice A est trigonalisable. Donc il existe une matrice inversible P ∈M3(C) telle que P−1AP soit triangulaire
supérieure.

Une observation importante est la suivante: Pour une matrice triangulaire supérieure avec a1, a2, · · · , an sur la
diagonale, alors a1, a2, · · · , an sont les valeurs propres de cette matrice.

b) Comme A est trigonalisable, on peut trouver une matrice inversible P ∈M3(C) telle que B := P−1AP soit trian-
gulaire supérieure ayant a1, a2, a3 sur la diagonale. Alors P−1A2P = P−1APP−1AP = B2 et on voit facilement
que B2 est une matrice triangulaire supérieure ayant a21, a

2
2, a

2
3 sur la diagonale. Donc d’après l’observation de

a), a21, a
2
2, a

2
3 sont les valeurs propres de A2. (On rappelle que Tr(A) = Tr(B) et det(A) = det(B).)



c) Comme A n’est pas inversible, le déterminant de A vaut zéro et donc l’une des valeurs propres est nulle. Sans
perte de généralité, on peut supposer que a3 = 0.

Comme Tr(A) = −2i, on obtient a1 + a2 = −2i; comme Tr(A2) = 0, d’après b), on obtient Tr(A2) = a21 + a22 =

0. Il reste à résoudre le système d’équations

{
a1 + a2 = −2i
a21 + a22 = 0

. On obtient que

{
a1 = −1− i
a2 = 1− i

ou{
a1 = 1− i
a2 = −1− i

. Donc les valeurs propres de A sont ±1− i, 0.

d) Comme les trois valeurs propres de A sont distinctes, A est diagonalisable.

Exercice 7. Trouver la matrice des cofacteurs de A et de B (des matrices dans M3(K)) et vérifier dans chaque cas
que A((cof(A))t = det(A)I3 et (cof(B))tB = det(B)I3. Soit a ∈ K.

A =

a 1 1
0 2 −1
a −1 2

 et B =

1 3 5
0 1 2
1 0 1

 .

Solution 7. On calcule

detA(1|1) = 3, detA(1|2) = a, detA(1|3) = −2a, detA(2|1) = 3,

detA(2|2) = a, detA(2|3) = −2a, detA(3|1) = −3, detA(3|2) = −a, detA(3|3) = 2a.

Ensuite on reporte ces valeurs dans la matrice des cofacteurs, en mettant aussi le signe approprié.

Par conséquent, cof(A) =

 3 −a −2a
−3 a 2a
−3 a 2a

 et on vérifie que A · (cof(A))t = 0. On vérifie que det(A) = 0 et donc

A · (cof(A))t = det(A) · I3.
Pour B, on calcule

detB(1|1) = 1, detB(1|2) = −2, detB(1|3) = −1, detB(2|1) = 3,

detB(2|2) = −4, detB(2|3) = −3, detB(3|1) = 1, detB(3|2) = 2, detB(3|3) = 1,

donc cof(B) =

 1 2 −1
−3 −4 3
1 −2 1

.

On vérifie que (cof(B))tB =

 1 −3 1
2 −4 −2
−1 3 1

1 3 5
0 1 2
1 0 1

 = 2 · I3 et det(B) = 2.

Exercice 8 (Faites référence à l’exercice 13 de la série 13.). Soit a ∈ R fixé. On considère la transformation linéaire
α de M2(R) définie par

α

(
x y
z t

)
=

(
(1− a)x+ ay x

2z + t t

)
.

Déterminer si α est diagonalisable. Le cas échéant, trouver une base formée de vecteurs propres et expliciter la
formule de changement de base.

Solution 8. Si a ̸= −1,−2, alors d’après les résultats dans la série précédente, dim(E2) = 1,dim(E1) = 2 et
dim(E−a) = 1. Comme dim(V ) = 4 = 1 + 2 + 1 = dim(E2) + dim(E1) + dim(E−a). Comme la somme des espaces
propres de valeurs propres différentes est une somme directe, on en déduit que V = E2 ⊕ E1 ⊕ E−a et donc α est
diagonalisable.

Si a = −1, dim(E2) = 1,dim(E1) = 2. Par conséquent, dim(V ) = 4 > 1 + 2 = dim(E2) + dim(E1) et donc α n’est
pas diagonalisable.

Si a = −2, alors dim(E2) = 2,dim(E1) = 2. Un argument similaire à celui utilisé dans le premier paragraphe
montre que α est diagonalisable.

En résumé, α est diagonalisable si et seulement si a ̸= −1.

Pour la formule de changement de base, on ne donne que les résultats et les calculs sont laissés au lecteur.



Supposons que a ̸= −1,−2. Alors d’après les résultats de la série précédente F = (v2, v3, v4, v5) est une base de

V = M2(R). La matrice de changement de base de E à F est S = (Id)EF =


0 1 0 −a
0 1 0 1
1 0 −1 0
0 0 1 0

. Son inverse est

S−1 = (Id)FE =


0 0 1 1
1

a+1
a

a+1 0 0

0 0 0 1
−1
a+1

1
a+1 0 0

 . La formule de changement de base donne

B = (α)FF = S−1AS

=


0 0 1 1
1

a+1
a

a+1 0 0

0 0 0 1
−1
a+1

1
a+1 0 0




1− a a 0 0
1 0 0 0
0 0 2 1
0 0 0 1




0 1 0 −a
0 1 0 1
1 0 −1 0
0 0 1 0


=


2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −a

 .

Supposons que a = −2. On a vu que G = (v1, v2, v3, v4) est une base de V = M2(R). La matrice de changement

de base de E à G est S = (Id)EG =


2 0 1 0
1 0 1 0
0 1 0 −1
0 0 0 1

. Son inverse est S−1 = (Id)GE =


1 −1 0 0
0 0 1 1
−1 2 0 0
0 0 0 1

 . La

formule de changement de base donne

B = (α)GG = S−1AS

=


1 −1 0 0
0 0 1 1
−1 2 0 0
0 0 0 1




3 −2 0 0
1 0 0 0
0 0 2 1
0 0 0 1




2 0 1 0
1 0 1 0
0 1 0 −1
0 0 0 1


=


2 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

 .

Exercice 9 (Facultatif). Soient K et F des corps avec K ⊂ F . On considère les espaces vectoriels Kn et Fn.
On rappelle que Fn possède une structure de F -espace vectoriel ainsi qu’une structure de K-espace vectoriel. Soit
(v1, . . . , vn) une base du K-espace vectoriel Kn. Alors vi ∈ Fn pour tout i. Montrer que (v1, . . . , vn) est une base du
F -espace vectoriel Fn.

Solution 9. Soit C = (e1, . . . , en) la base canonique de Kn, qui est aussi une base de Fn. On considère l’application
linéaire ϕ : Kn → Kn définit par ϕ(ei) = vi. Soit A = (ϕ)CC ∈Mn(K).

Comme ϕ envoie la base C sur une base de Kn, ϕ est bijective. Par le critère d’inversibilité on a que A est une
matrice inversible et donc det(A) ̸= 0.

Maintenant soit ψ : Fn → Fn l’application linéaire dont la matrice (ψ)CC = A. On déduit que ψ est bijective par
les mêmes critères et par conséquent (v1, . . . , vn) est une base de Fn aussi.

Exercice 10 (Facultatif). Soient K un corps, A ∈ Mn(K) et B,X ∈ Mn×1(K). On considère le système linéaire
AX = B.

On suppose que det(A) ̸= 0, auquel cas le système linéaire possède une solution unique. On donne ici une formule
pour l’unique solution en termes des déterminants de certaines matrices.

Soit S ∈Mn×1(K) l’unique solution du système et écrivons St = (s1 s2 . . . sn).

a) A l’aide de S, exprimer B comme combinaison linéaire des colonnes de A.



b) Pour 1 ≤ k ≤ n, désignons par Ck la matrice obtenue à partir de A en remplaçant la k-ème colonne de A par la
colonne B. Montrer la formule de Cramer

sk =
det(Ck)

det(A)
(k = 1, . . . , n).

Notons que cette formule est intéressante du point de vue théorique, mais est très peu utilisable pour les calculs.

Solution 10. a) Comme S est la solution du système, AS = B, donc ai1s1 + ai2s2 + . . . + ainsn = bi pour
chaque i = 1, . . . , n. En désignant par Aj la j-ème colonne de A, cela donne A1s1 + . . . + Ansn = B. Ainsi
B =

∑n
j=1 sjA

j .

b) Par définition, la matrice Ck vaut

Ck = (A1, · · · , Ak−1, B,Ak+1, · · ·An)

où Aj désigne la j-ème colonne de A. La k-ème colonne B peut s’écrire comme la combinaison linéaire obtenue
en (b), à savoir B =

∑n
j=1 sjA

j . On développe alors le déterminant par linéarité par rapport à la k-ème colonne
et on obtient

det(Ck) =

n∑
j=1

sj det(A1, · · · , Ak−1, Aj , Ak+1, · · · , An) .

On voit que, si j ̸= k, deux colonnes sont égales et le déterminant est donc nul. Il ne reste alors que le terme
pour j = k et on obtient

det(Ck) = sk det(A1, · · · , Ak−1, Ak, Ak+1, · · · , An) = sk det(A) .

On trouve alors sk en divisant par det(A), qui est différent de 0.

Exercice 11 (⋆). Soient a, b ∈ R fixés et n ≥ 2.
On considère la matrice A = (Aij)1≤i,j≤n ∈Mn(R) avec

Aij =

{
a si i = j,
b si i ̸= j.

a) Montrer que a− b est une valeur propre de A et trouver l’espace propre correspondant.

b) Montrer que le vecteur (1, 1, · · · , 1) est un vecteur propre. Pour quelle valeur propre?

c) Montrer que A est diagonalisable.

d) Trouver une base formée de vecteurs propres, et quand n = 3, expliciter la formule de changement de base.

Solution 11. a) Le scalaire a− b est une valeur propre de A si et seulement si la matrice A− (a− b) · In n’est pas
inversible si et seulement si det(A− (a− b) · In) = 0. Or, par défintion de A, on voit que A− (a− b) · In est la
matrice dont tous les coefficients sont b, donc est de déterminant nul. Par conséquent, a − b en est une valeur
propre.

L’espace propre associé à la valeur propre a− b est le noyau de A− (a− b) · In. On distingue deux cas.

Si b = 0, alors A− (a− b) · In est la matrice nulle, donc Ea−b = V = Rn, l’espace entier. La base canonique de
V = Rn en est une base.

Si b ̸= 0, on effectue les opérations élémentaires suivantes sur les lignes de A− (a− b) · In:

D1(
1

b
), L21(−b), L31(−b), · · · , Ln1(−b)

et on obtient une matrice échelonnée réduite:


1 1 · · · 1 1
0 0 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 0

. Donc x2, · · · , xn sont les variables

libres et l’espace propre Ea−b est de dimension n− 1. Plus précisément,

Ea−b = {(−x2 − x3 − · · · − xn, x2, x3, · · · , xn) | x2, x3, · · · , xn ∈ R}.

Une base de Ea−b est donnée par

((−1, 1, 0, 0, · · · , 0), (−1, 0, 1, 0, · · · , 0), · · · , (−1, 0, 0, · · · , 0, 1, 0), (−1, 0, 0, · · · , 0, 1)).



b) Notons v = (1, 1, · · · , 1) le vecteur qui vaut 1 partout. Soit E la base canonique de Rn. Alors w = (v)E =


1
1
...
1

 .

Un simple calcul donne Aw = (a+ (n− 1)b)w. Donc a+ (n− 1)b est une valeur propre de A et v est un vecteur
propre associé à cette valeur propre. Donc dim(Ea+(n−1)b) ≥ 1.

Constatons que si b ̸= 0, a+ (n− 1)b ̸= a− b et ces deux valeurs propres sont distinctes.

c) Si b = 0, la matrice A = aIn qui est une matrice diagonale, qui est bien sûr diagonalisable.

On peut aussi remarquer que l’on a trouvé une base formée de vecteurs propres lorsque b = 0, donc A est
diagonalisable.

Si b ̸= 0, alors d’après a), a−b est une valeur propre de A et Ea−b est de dimension n−1; d’après b), a+(n−1)b
est une autre valeur propre et l’espace propre correspondant est de dimension au moins 1. Comme la somme
d’espaces propres associés à des valeurs propres différentes est une somme directe, la somme directe de Ea−b

et de Ea+(n−1)b est de dimension ≥ (n − 1) + 1 = n. Donc V = Ea−b ⊕ Ea+(n−1)b. Par conséquent, A est
diagonalisable lorsque b ̸= 0. Constatons que cela montre aussi que dim(Ea+(n−1)b) = 1.

En résumé, dans les deux cas, A est diagonalisable.

d) Si b = 0, d’après c), la base canonique F := E est une base formée de vecteurs propres.

Si b ̸= 0, une base formée de vecteurs propres est donnée par l’union d’une base de Ea−b et d’une base de
Ea+(n−1)b, par exemple, on peut prendre

F := ((−1, 1, 0, · · · , 0, 0), (−1, 0, 1, · · · , 0, 0), · · · , (−1, 0, 0, · · · , 1, 0), (−1, 0, 0, · · · , 0, 1), (1, 1, 1, · · · , 1, 1)).

Supposons maintenant que n = 3. On note α la transformation linéaire de V = Rn définie par A par rapport à
la base canonique E.

Si b = 0, alors F = E. Donc la matrice de changement de base de E à F ainsi que celle de F à E sont la matrice
identité et la formule de changement de base donne

B = (α)FF = (Id)FE ·A · (Id)EF = In ·A · In = A.

Si b ̸= 0, alors F = ((−1, 1, 0), (−1, 0, 1), (1, 1, 1)). Donc S = (Id)EF =

 −1 −1 1
1 0 1
0 1 1

. et S−1 = (Id)FE = − 1
3

2
3 − 1

3
− 1

3 − 1
3

2
3

1
3

1
3

1
3

 . La formule de changement de base donne

B = (α)FF = S−1AS

=

 − 1
3

2
3 − 1

3
− 1

3 − 1
3

2
3

1
3

1
3

1
3

 a b b
b a b
b b a

 −1 −1 1
1 0 1
0 1 1


=

 a− b 0 0
0 a− b 0
0 0 a+ 2b

 .

Exercice 12. (⋆)
Soit V = C[t]≤3 et α : V −→ V définie par

α(P (t)) = P (t)− (t+ 1)P ′(t).

Déterminer les valeurs propres de α et les espaces propres correspondants en indiquant une base pour chacun. L’application
α est-elle diagonalisable?



Solution 12. Soit F = {1, t, t2, t3} la base canonique de C[t]≤3. On calcule
α(1) = 1
α(t) = t− (t+ 1) = −1
α(t2) = t2 − (t+ 1)2t = −t2 − 2t
α(t3) = t3 − (t+ 1)3t2 = −2t3 − 3t2

donc la matrice de α par rapport à la base F est

Mα =


1 −1 0 0
0 0 −2 0
0 0 −1 −3
0 0 0 −2

 .

On a cα(t) = det(Mα− tI4) = t(t−1)(t+1)(t+2). On note que ce polynôme est scindé. Les valeurs propres sont donc
0, 1, −1 et −2. Il y a 4 valeurs propres distinctes, dont les multiplicités géométriques et algébriques sont forcément
égales et par conséquent α est diagonalisable.

Pour étudier les espaces propres, écrivons P (t) = a+ bt+ ct2 + dt3, avec a, b, c, d ∈ C.
Calcul de E0 = Ker (α). On a P (t) ∈ Ker (α) ⇐⇒

1 −1 0 0
0 0 −2 0
0 0 −1 −3
0 0 0 −2




a
b
c
d

 =


0
0
0
0

 ⇐⇒


a− b = 0
−2c = 0
−c− 3d = 0
−2d = 0

ce qui donne c = d = 0 et a = b. Par conséquent Ker (α) = Vect (1 + t).
On procède de manière similaire pour les autres valeurs propres. Les coordonnées des vecteurs de E1 satisfont le

système: 
a− b = a
−2c = b
−c− 3d = c
−2d = d

d’où d = c = b = 0 et E1 = Vect (1).
Pour E−1 on obtient le système 

a− b = −a
−2c = −b
−c− 3d = −c
−2d = −d

avec les solutions d = 0, a = c ∈ C, b = 2a, donc E−1 = Vect (1 + 2t+ t2).
Finalement, pour E−2 on a 

a− b = −2a
−2c = −2b
−c− 3d = −2c
−2d = −2d

avec comme solutions a = d ∈ C, b = c = 3a, donc E−2 = Vect (1 + 3t+ 3t2 + t3) = Vect ((1 + t)3).
Notons par F ′ = {t+ 1, 1, 1 + 2t+ t2, 1 + 3t+ 3t2 + t3}. Nous avons

S = (idV )
F
F ′ =


1 1 1 1
1 0 2 3
0 0 1 3
0 0 0 1

 .

La matrice de α par rapport à la base F ′ est

S−1(α)FFS =M ′
α =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −2

 .



Exercice 13 (Cet exercice complète une preuve du cours). Soient W1, . . . ,Wr des sous-espaces vectoriels d’un K-
espace vectoriel V tels que W1 + · · ·+Wr =W1 ⊕ · · · ⊕Wr. Soit Bi une base de Wi, pour 1 ≤ i ≤ r. Montrer que la
réunion B = B1 ∪ · · · ∪Br est une base de W1 + · · ·+Wr.

Solution 13. Posons W =W1 + · · ·+Wr. Soit w ∈W , donc il existe wi ∈Wi tels que w =
∑r

i=1 wi. Pour chaque i,
wi ∈ Vect (Bi) et donc w ∈ Vect (B1 ∪ · · · ∪Br), ce qui montre que B est une partie génératrice de W .

Il reste à montrer que B est une partie libre. On fixe Bi = {fi1, . . . , fimi
}, pour chaque i. Soient αik ∈ K, 1 ≤ i ≤ r

et 1 ≤ k ≤ mi, tels que
∑r

i=1

∑mi

k=1 αikfik = 0V . Fixons j : On a

mj∑
k=1

αjkfjk = −
( r∑

i=1,i̸=j

( mi∑
k=1

αikfik

))
.

Ce vecteur appartient à Wj ∩ (W1 + · · ·+Wj−1 +Wj+1 + · · ·+Wr). Comme W est une somme directe des Wi, cette
intersection est le vecteur nul. Donc

∑mj

k=1 αjkfjk = 0V et par l’indépendance linéaire de Bj , on trouve que αjk = 0
pour tout 1 ≤ k ≤ mj . Le choix de j étant arbitraire, on a que αjk = 0 pour tout j et pour tout k, ce qui montre que
B est une partie libre de W et donc une base de W .


