Algeébre linéaire avancée I, Section de Physique automne 2024 Prof. Donna Testerman

Corrigé 13
10 décembre

Notation: Soit p un nombre premier. On note F,, le corps fini & p éléments et écrira simplement a pour @, pour un
élément a de IFp,.

On fixe un corps K.

On écrira M, (K) pour M, x,(K).

Dans cette série et toutes les suivantes, on utilisera les deux notations A C B et A C B pour indiquer qu'une partie
A est un sous-ensemble d’une partie B, c’est-a-dire que tout élément de la partie A appartient & la partie B.

Les exercices notés (x) sont “en plus” car ils ressemblent & d’autres exercices. Vous pouvez éventuellement les garder
pour la période des révisions

L’exercice noté avec (t) est un peu plus difficile.

Exercice 1. Dans chacun des cas suivants, calculer le polynome caractéristique de o : V- — V. Calculer la multiplicité
algébrique et la multiplicité géométrique de chaque valeur propre de a.

a) V=R afz,y)=Q2c+y, —y).
b)) V=R azy)=(r+y, —z+y).
C) V:(CQ; Oé(.’I,‘,y) = (.’I,‘—|—y, —x—f—y)

a b c —2d
d) V= MyR), a(c d)_(—a b >
Solution 1.  a) La matrice de a par rapport & la base canonique E de V = R? est A = (a)% = ( 21 ) Le

polynoéme caractéristique de a est

2—-1 1

det(A—t-Ig):‘ 0 1t

‘:(t—2)(t+1).

Donc les valeurs propres de o sont —1 et 2. La multiplicité algébrique de —1 vaut 1 et celle de 2 est aussi 1.

L’espace propre E_; est le noyau de o — (—1) - id. On résout le systéme homogene associé & la matrice de

coefficients 31 . Donc E_1 = {(z,—3x) | z € R} et f; = (1, —3) forme une base de E_;. On obtient aussi

0 0
que la multiplicité géométrique de —1, qui est la dimension de E_1, vaut 1.
L’espace propre Es est le noyau de A —2- I, = 8 713 . Donc Ey = {(x,0) | * € R} et fo = (1,0) forme

une base de E3. On obtient aussi que la multiplicité géométrique de 2, qui est la dimension de Es, vaut 1.

b) La matrice de o par rapport a la base canonique E de V = R? est A = (a)& = ( 11 > Le polynéme

-1 1
. 1—t 1 9 R , .
caractéristique de « est det(A — ¢ - Iy) = 1 147 t* — 2t + 2. Ce polyndme n’a pas de racine dans R,
donc il n’existe pas de valeur propre pour a.
. s . 1 1 .
c¢) La matrice de a par rapport & la base canonique E de V = C2 est A = (o) = ( 1 ) Le polynome
caractéristique de « est det(A —t- ) = 1__1t 1 i o= t2 — 2t + 2. Donc les valeurs propres de « sont 1+ .

La multiplicité algébrique de 1 + 4 vaut 1 et celle de 1 — ¢ est aussi 1.

L’espace propre Eji; est le noyau de o — (1 +¢) -id. On résout le systéme homogene associé a la matrice de
. —i 1 . . .
coefficients _i i) Donc E14; = {(—iy,y) | y € C} et f1 = (—4,1) forme une base de E11;. On obtient

aussi que la multiplicité géométrique de 1 + ¢, qui est la dimension de E;;, vaut 1.



L’espace propre F;_; est le noyau de a — (1 — 7) - id; on résout le systéme homogene associé a la matrice de

7 1

coefficients ; ) Donc E1_; = {(iy,y) | y € C} et fo = (i,1) forme une base de F;_;. On obtient aussi

-1
que la multiplicité géométrique de 1 — ¢, qui est la dimension de F;_;, vaut 1.

Soit E = (E11, E12, Fa1, E92) la base canonique de V' = M3(R). Alors la matrice de « par rapport a la base E

0o 0 1 0
E 0o 0 0 -2 . s
est A= (o)p = 1 0 0 0 . Le polynome caractéristique de a est
0o -1 0 O
-t 0 1 0
o -t 0 =2 9
det(A—t-L)=| ° =, |= (t—V2)(t+V2)(t2 +1).

Comme t? 4+ 1 n’a pas de racine dans R, les valeurs propres de o sont ++/2. La multiplicité algébrique de v/2
vaut 1 et celle de —v/2 est aussi 1.

L’espace propre E s est le noyau de o — V2 -id. On résout le systeme homogene associé & la matrice de coeffi-

-2 0 1 0
_01 735 _(\)/5 702 . Donc E 5 = Vect ((0, —1/2,0,1)). On obtient aussi que la multiplicité
0 -1 0 -2

géométrique de v/2, qui est la dimension de E 3> vaut 1.

cients

L’espace propre E_ 5 est le noyau de oo — (—v/2) -id. Comme avant on considére le systéme homogene associé

V2.0 1 0
_01 \(/)i \% _02 . Donc E_ 5 = Vect ((0, v/2,0,1)). On obtient aussi que la multiplicité
0 -1 0 V2

géométrique de —+/2, qui est la dimension de E_ V3 vaut 1.

a la matrice

Remarque: Noter que pour les parties (a) et (c), on aurait pu déterminer les multiplicités géométriques de

chacune des valeurs propres, sans faire de calculs. On sait que la somme des multiplicités géométriques est au plus
la dimension de l’espace et que chaque multiplicité géométrique est au moins 1. Du coup on déduit que chaque
multiplicité géométrique (dans les deux cas (a) et (c)) est égale & 1.

Exercice 2. On considére l’application de transposition « : May(R) — M(R) définie par a(A) = A* VA € Ma(R).

a) Déterminer la matrice de o par rapport a la base canonique de Ma(R) et calculer ses valeurs propres.

b) Déterminer les espaces propres correspondant a chaque valeur propre et trouver une base de chaque espace propre.

Solution 2. a) Comme «(E;;) = Ej;, pour 1 <4, j <2, la matrice de @ dans la base C' = (E11, Ea1, E12, Ea2) est

o O O
O = O O
o o = O
= O O O

Pour trouver le polynéme caractéristique de «, on développe le déterminant par rapport a la premiere ligne et
aussi par rapport a la derniere ligne, et on trouve

1-t 0 0 0
0 —t 1 0
cat) =det(A—tLy) = | Lt o =(t—-13(t+1).
0 0 0 1—t

Ce polyndme admet les racines 1 et —1, qui sont les valeurs propres de a.



b) L’espace propre correspondant & la valeur propre 1 est ’espace des matrices dites “symétriques”, car a(4) = 1-A
si et seulement si A® = A. C’est aussi le noyau de a — id, qui s’obtient en résolvant le systeme (A — I,) X = 0,
c’est-a-dire

0 0 0 0 x 0 0=0

0 -1 1 0 y | | O —y+2=0

0 1 -1 0 |7 o donc y—2=0

0 0 0 0 t 0 0=0

Les inconnues z, z, t sont libres et y est 'unique inconnue principale. Une base de ’espace des solutions est alors

1 0 0
0 1 0
0 1 0
0 0 1

Donc une base du noyau de o — id est formée du ler vecteur de la base, du 4éme, et de la somme des 2eme et
3eme. Ainsi l'espace propre correspondant & la valeur propre 1 est Vect (E11, Faa, F12 + Fa21), de dimension 3.

L’espace propre correspondant a la valeur propre —1 est I’espace des matrices antisymétriques, car a(4) = (—1)-4
si et seulement si A* = —A. C’est aussi le noyau de «a + id , qui s’obtient en résolvant le systéme (A + I4)X = 0,
c’est-a-dire

200 0 x 0 2 =0
01 10 y | | O y+z2z=0
0110 N done y+z=0
000 2 t 0 % =0

La seule inconnue libre est z et donc une base du noyau de a+id est formée d’un seul vecteur, la différence des
2eme et 3eme vecteurs de la base C. En d’autres termes, ’espace propre correspondant a la valeur propre —1
est Vect (E19 — Eo1), de dimension 1.

Exercice 3. Soit

-2 & 2
A= 0 -1 1| € Ms3(R)
-5 5 3

a) Trouver les valeurs propres de A.

b) Trouver des bases des sous-espaces propres de A.

¢) Peut-on déduire de a) si A est inversible ou non?

d) Donner les valeurs propres de A?.

e) Donner des bases des sous-espaces propres de A2

Solution 3. De nouveau dans cet exercice, on identifie R? avec ’'ensemble des vecteurs colonnes dans M3y (R).

a) On calcule ca(?).
-2—t 6/5 2
A—tly = 0 -1-t 1
-5 5 3—t

Alors, det(A —tI3) = —t(t?> —2). Si on veut det(A —tI3) = 0, on obtient les solutions A\; = 0, Ao = v/2 et \3 = —/2
(qui sont les valeurs propres de A).

b) (1) On cherche v; € R? non nul tel que Avy; = 0vy = 0. Via le procédé d’échelonnage, on obtient

-2 % 2 1 -2 -1 1 -3 -1
5 L1-L1-(—3 5 5
0o -1 1 ¢ 0 -1 -1 1
5 5 3 5 3 L3—L3+5-L1 0 2 -2
_3 _ _3 _
L2—L2-(—1) (1) 15 _1 L3—L34+(—2)-L2 (1) 15 _1
0o 2 =2 0 O 0

Ce qui veut dire que ensemble des solutions du systeme Avy = 0 est {(Z¢, ¢, c)" | ¢ € R} Ainsi, espace propre

correspondant & la valeur propre 0 est Vect (2,1,1)").



(2) On cherche v € R? tel que Avy = v/2vy. Via le procédé d’échelonnage, et en posant = v/2, on obtient

—2-z ¢ 2 s -5 5 33—z
0 “1-z 1 0 0 —1-z 1
-5 5 3—x —2—x g 2
L1—(—1)-L1 5 —5 —3+z L3—L3+(2+z)L1
PAN 0 11—z 1 ks
L3=5L3 ~10-5z 6 10
5 -5 -3+ 5 -5 -3+
0 —l1—=z 1 o —1-2 1 L3-L3+(~5)L2
0 —4—5z 4—x+ 22 0 —4—-5z 6-—=z
5 -5 -3+ LooLs 5 -5 -3+
0 —1-2 1 i 0 1 -z
0 1 1—x 0 —1—=x 1
5 -5 —-3+=x 5 =5 —-3+=x
bimlstOral2 g 1 92 J=(o0 1 1-=2
0 0 2—2a2 0 0 0

Donc vo = (£(=2 4 4v2)c, (V2 — 1)c,¢)' o ¢ € R est quelconque. Donc I'espace propre associé & la valeur
propre Ay = V2 est

Vect ((—2 + 4v/2),5v2 — 5,5)").

(3) On cherche vz € R3 tel que Avs = —v/2v3. On peut utiliser le méme échelonnage que ci-dessus mais avec
& = —V/2 (ce qui marche bien puisqu’on a toujours 2% = 2). On obtient alors vy = (%L (24+4v2)c, (—1—v/2)c, ¢)’!
ot ¢ € R est quelconque. Donc l'espace propre associé a la valeur propre A3 = —v/2 est

Vect ((—2(1 +2v/2), (—=5)(V2 + 1),5)").

c¢) Puisque 0 est valeur propre de A, on sait qu’il existe un vecteur u € R3 non nul, tel que A -u = Ou = 0. Par un
des criteres d’inversibilité d’une matrice, on a que A n’est pas inversible.

d) On note que si Av = \v alors A%v = A(Av) = A(\v) = A(Av) = A(Av) = A\?v. Donc si A est une valeur propre de
A alors A? est une valeur propre de A2. Dans le cas précis oil A est la matrice donnée, on a donc que 0 et 2 sont
des valeurs propres de A2.

e) e On cherche u; € R? non nul tel que A%u; = 0. II suffit de remarquer que si v; est un vecteur propre pour A
pour la valeur propre 0 (c.-a-d. vi € Vect (£,1,1))), on a Avy = 0, donc A?vy = A(Avy) = A0 = 0. Donc
I’espace propre associé & iy contient (%, 1,1)%

e On cherche uy € R? non nul tel que A?uy; = 2u;. On remarque que si vy est un vecteur propre pour A
pour la valeur propre s = /2 (c-a-d. vy € Vect (=2 + 4v/2),5v/2 — 5,5)!)), on a Avy = v/2v,, donc
A%vy = A(Avy) = V2Avy = V/2v/2vy = 2vy. De méme, si v est un vecteur propre pour A pour la
valeur propre A3 = —v/2 (c.-a-d. v3 € Vect ((=2(1 + 2v/2), (=5)(v/2 + 1),5)!)), on a Avs = —/2v3, donc
A%vy = A(Avz) = —/24vs = (—v/2)(—V/2)v3 = 2v3. Donc I'espace propre associé & p; contient

Vect (=2 4 4v/2),5v2 — 5,5)¢, (—2(1 + 2v/2), (=5) (V2 + 1), 5)}).

e On note que ces trois vecteurs sont linéairement indépendants et comme le polynéme caractéristique de A2 est
de degré 3, et la multiplicité d’une valeur propre dans ce polyndéme caractéristique (c¢’est-a-dire la multiplicité
algébrique) est au moins la dimension de ’espace propre pour la valeur propre, il n’existe aucune autre valeur
propre pour A2, ni vecteur propre linéairement indépendant des trois déjd trouvés.

Exercice 4. Soit a : R3 — R3 "application linéaire dont la matrice par rapport a la base canonique {e1, ez, ez} de
R3 est

1 13 2 -3
M = 7 2 10 6
-3 6 5

Calculer le polynome caractéristique de v et déterminer les valeurs propres de « et les espaces propres correspondants.



Solution 4. Pour faciliter ’écriture, posons u = 14¢, de sorte que le polynéme caractéristique de « est

13 —u 2 -3

Ca(t) = det(M—tls) = det(M—iufg) = (1—14)3 det(14M —uls) = (i)3 det 2 10 —u 6 = —(i)3u(u—14)2.

14 14

-3 6 5—u

14
Les valeurs propres de o sont donc 0 et = 1.

Etudions maintenant les espaces propres, a commencer par Ey = Ker (a). Un vecteur v = zej+yes+zes appartient
a Ker () si et seulement si
13z +2y—32 =0
20+ 10y +62z =0
—3r+6y+5z =0

Eliminant y entre la premiere et la deuxieme équation, puis entre la premieére et la troisieme, on trouve la méme relation:

z = 3z. Remplagant dans n’importe quelle équation on trouve y = —2z. On a donc Ker () = Vect (e; — 2e5 + 3e3).
Interprétation géométrique: Ker («) est une droite passant par l'origine et perpendiculaire au plan d’équation = —
2y4+32=0.

Passons maintenant a F;. Un vecteur v = xej + yes + zes appartient a F; si et seulement si

18z +2y—3z =1ldx
20 +10y + 62 = 14y
—3x+6y+5z =14z

ou encore
—rx+2y—3z =0
20 —4y+6z =0
—3x+6y—92z =0

Ces trois équations sont les mémes: x — 2y + 3z = 0. L’espace propre E; est le plan d’équation = — 2y + 3z = 0, ou
encore Vect (3e; — e3, 2e1 + e5). L’application « est en fait la projection orthogonale sur ce plan.

Exercice 5. a) Soit P une matrice inversible de taille 2 x 2 et D une matrice diagonale. On pose A = PDP~L.
Montrer que A?> = PD?P~!, puis déduire une formule qui permet de calculer A'°.

5 —6 2 1 2 0
a=(3 )r=(1 1) ao=(5 1)

Vérifier que A = PDP~!, puis calculer A*® en utilisant le point a).

b) On considére les matrices

Solution 5. a) Soit P une matrice inversible de taille 2 x 2 et D une matrice diagonale. On pose A = PDP~1. On
calcule A? en utilisant simplement le fait que P~1P = I:

A2 =pPDP'PDP ' =PD?P L.

Comme D est diagonale alors son carré est aussi une matrice diagonale. Les coefficients sur la diagonale sont les carrés
des coefficients de la diagonale de D.

De maniére générale, la puissance d’une matrice diagonalisable A est égale & A” = PD"P~! pour toutn =1,2,3, ....
Ceci est facile a montrer par un raisonnement par récurrence:

1. Par hypothese, la propriété est satisfaite pour n = 1.
2. La ligne suivante montre que si la propriété est vraie pour n elle est vraie pour n + 1:

A"t = A". A= pD"P~'. PDP~! = PD"DP~!' = PD""' P~
3. On conclut par récurrence.

b) On calcule d’abord l'inverse de P:



et on vérifie que A = PDP~!. Par a), on a A1 = PD1P~1 ou

w0 (1024 0
o= (15

car D est diagonale et donc D' aussi, et les coefficients de la diagonale de D' sont les coefficients de la diagonale de
D & la puissance 10. On calcule:

0 oot (2 1\ (1024 0\ /1 -1\ (2048 1\ (/1 -1\ (2047 —2046
APDP(11 0 1)\-1 2 )7 \1w24a 1)\-1 2 )7 (1023 -1022)"

Exercice 6. Soit So(R) l'espace vectoriel des matrices symétriques de taille 2 x 2, dont une base est donnée par

BZ {51,52,53} Oﬂ
1 0 0 1 0 0
s=(os) ==(0) =-(1)

Soit T : S2(R) — S2(R) la transformation linéaire définie par

T a b\ [(2a—-d -b
b d) —b —a+2d)°

a) Calculer les 3 valeurs propres (distinctes) {A1, A2, A3} de T

b) Pour i € {1,2,3}, trouver un vecteur propre M; € S3(R) associé a A;. Montrer que B = {My, Ma, M3} est une
base de Sa(R).

¢) Ecrire la matrice (T8, de T par rapport  la base B'.

d) Calculer TY(A), ou A = (; ;)

Solution 6. On calcule les images des différents vecteurs de base:

T(Sl):<(2) 01), T(Sg):(ol 01), T(S3):(01 g)

Ainsi, la matrice de 'application T" par rapport a la base B est:

a) On calcule:
det (T)E —t- L) =@2-t)2 (-1—t)+(L+t) =+ 1)(=(2— )2 +1) = (t + 1)(—t* + 4t — 3)
=—(t—-1)-(t+1)-(t—3).
Ainsi,ona A1 =1, Ay = —1 et A3 = 3.

b

b) Dans ce point, A désigne la matrice < Z d > . On cherche les différents espaces propres. Pour A = 1, on trouve un

1 R 1 .
vecteur propre M; = ( 0 (1) ) De méme, pour A = —1, on trouve un vecteur propre My = ( (1) 0 ) (on aurait
. . . N 1
pu le deviner, puisque T'(S2) = —S5). Finalement, pour la derniére valeur propre, on trouve Mz = ( 0 —01

On sait que trois vecteurs propres associés & des valeurs propres distinctes sont linéairement indépendants (vous
pouvez aussi le vérifier a la main). Comme ’espace des matrices symétriques de taille 2 est de dimension 3, il s’agit
d’une base.

¢) Comme (M7, Ma, Ms3) est une base de vecteurs propres, associés aux valeurs propres 1, —1 et 3 respectivement, on

)
0
a(Mg =10 -1 0
3



d) On remarque que l'on peut écrire

1 2
(2 3>=2'M1+2-M2+(—1>-M3,

w N

< g 1 .
c’est-a-dire que les composantes de ( 9 ) dans la base B’ sont (2,2, —1). Puisque

(T'°(A))s = (T8 - [Alp = (T)E)'° - [A]s,

les composantes de T'°(A) dans la base B’ sont:

1 0 o\"™ 2 10 9 0 2 2
0 -1 0 1 2 = 0 =D 0o |-| 2 |= 2
0 0 3 -1 0 0 3o 1 _310

Finalement, on a

10 10 2 — 310 2
TP(A)=2-M;+2- My + (—=37)M;3 =

2 24 310

Exercice 7. Soit ¢ € L(V,V). Soient UW CV des sous-espaces ¢-invariants. Montrer que W NU et W + U sont
aussi ¢-invariants.

Solution 7. Soit € UNW; comme U est ¢-invariant, ¢(x) € U, de méme, comme W est ¢-invariant, ¢(z) € W.
On déduit que ¢(x) € UNW, ce qui montre que U N W est ¢-invariant. Maintenant soit 2 € W + U. Donc il existe
w € W et u e U tels que x = w + u. On utilise que chacun des sous-espaces U et W est ¢-invariant pour voir que
p(w) € W et ¢(u) € U. On a alors ¢(z) = ¢p(w +u) = ¢p(w) + ¢p(u) € W + U, ce qui montre que W + U est aussi
¢-invariant.

Exercice 8 (Cet exercice complete une preuve du cours). Soit V un K-espace vectoriel de dimension n, avec une
base fizée B, et soit P € GL,(K). Montrer qu’il eziste une base E de V telle que P = (id)B. Ensuite expliciter la

base E dans le cas concret de V = C?, B = ((—=1,1),(1,1)) et P = (; 211>

Solution 8. Soit B = (vi,...,v,). Pour 1 < i < n, on définit f; € V par f; = Y ,_; Privx. On vérifie d’abord
que E = (f1,..., fn) est une base de V. Pour ce faire, on rappelle que nous avons une application linéaire bijective
¢V — K™ donnée par ¢(> a;v;) = (ai1,...,a,). Par les résultats du cours et des exercices, {f1,..., fn} est un
ensemble libre si et seulement si {¢(f1),...,¢(fn)} est libre. Comme les coordonnées du vecteur f; apparaissent dans
la i-éme colonne de P, la dimension du sous-espace engendré par les vecteurs ¢(f1),...,d(fy) est le rang colonne de
la matrice P, qui est aussi le rang tout simplement, qui est maximal et égal a n, par le critere d’inversibilité d’une
matrice. Donc les vecteurs ¢(f1),...,¢(f,) forment un systéme de générateurs dans un espace de dimension n et par
un résultat du cours sont linéairement indépendants.
Ensuite, on note que par construction, la matrice de changement de base (id )g est égale a la matrice P.

Dans le cas concret : Posons v; = (—1,1) et va = (1,1). On pose f1 = vy +3v2 = (2,4) et fo = ivy + 2ivg = (i, 3i),
deux vecteurs linéairement indépendants dans C? et qui forment donc une base E = (fi, f2) de C2. De plus, on vérifie
que P = (id)E.

Exercice 9 (Facultatif). Soit « € L(V) une transformation linéaire d’un espace vectoriel V' de dimension finie.
Montrer que pour tout n > 1, Ker (a™) et Im (a™) sont invariants par c.

Solution 9. Soit v € Ker (a™). On a donc o"(v) = 0. Il faut montrer que a(v) € Ker (a™), en d’autres termes,
a™(a(v)) =0. En effet, o™ (a(v)) = a(a™(v)) = a(0) = 0.

Soit v € Im(a™). Alors il existe u € V tel que a”(u) = v. Il faut montrer que a(v) € Im(a™). En effet,
a(v) = a(a™(w) = a™(a(u)) € Im(a™).



Noter que ce résultat découle aussi du résultat plus général : si foa = ao 8 pour § € L(V,V), alors Ker («) et
Im («) sont S-invariants, puisque oo a™ = a™ o .

Exercice 10. (1) Soit o : V =V et ¢ : V = V des endomorphismes d’un K -espace vectoriel V tels que ¢ posséde
une valeur propre non nulle et 1) o p = .

(i) Montrer que 1 est une valeur propre de 1.

(i) Montrer que siV est de dimension finie alors la multiplicité algébrique de la valeur propre 1 pour l’endomorphisme
¥ est au moins dim(Im ).

Solution 10. (i) Soit A € K \ {0} la valeur propre non nulle de ¢ et soit v € V' un vecteur propre associé a cette
valeur propre. On a p(v) = \v et par conséquent v = A~y (v). Maintenant,

b(v) = PN p(v)) = AT H(p(v) = A Hp(v) = v,

ou on a utilisé le fait que ¥ o ¢ = ¢ dans 'avant derniere égalité. Donc v est un vecteur propre pour ¥ de valeur
propre 1.

(ii) Soit w € Im (p), d’ou il existe x € V avec w = p(x). On a ¥P(w) = Y(p(x)) = ¢(x) = w et donc w € Ej,
I’espace propre pour la valeur propre 1 de la transformation linéaire ¢). Ceci montre que Imyp C F; et donc
dim E1 = Mgeom (1) > dimIm . Mais par un résultat du cours on sait aussi que la multiplicité algébrique de la
valeur propre 1 est plus grande ou égale & mgeom (1), ce qui conclut la preuve de I’assertion.

Exercice 11 (Cet exercice compléte une preuve du cours). Soit V un K-espace vectoriel de dimension finie et soit
¢ € L(V,V). Montrer que si ¢ est triagonalisable, alors il existe des bases B et E de V telle que ()8 soit triangulaire
supérieure et (¢)5 soit triangulaire inférieure.

Solution 11. Le premier énoncé a été démontré en cours. Soit B la base donné par rapport a laquelle la matrice de

¢ est triangulaire supérieure, disons B = (v1,...,v,). Posons E = (vy,...,v1) et A= (¢)5. On a a;; = 0 pour tout

i > j. Donc ¢(v;) € Vect (v1,...,v;), pour tout 1 < i < n. Ceci montre que la matrice (¢)% est triangulaire inférieure.
0o 0 -4

Exercice 12. (x) Soit A= |0 —v2 0 |. Trouver toutes les valeurs propres de A et les espaces propres associés.
1 0 0

Solution 12. On calcule le polynéme caractéristique de A:

—t 0 —4 o
det(A —tI) = det( 0 —v2—-t 0 ) = (—V2 —t)det ( ) _t> = (—V2-1)(t* +4)
1 0 —t

Ensuite, les valeurs propres de A sont les racines de ce polynome, qui sont —v/2, 24, —2i.

Pour les espaces propres associés on résout les trois systemes homogenes : (A + v/2I3)X = 0, (A — 2iI3)X =0 et
(A +2il3)X = 0 et on trouve respectivement les espaces propres : E_ 5 = Vect ((0,1,0)), Ey = Vect ((2i,0,1)) et
E_o; = Vect ((—2i,0,1)).

Exercice 13. (x) Soit a € R fizé. On considére la transformation linéaire o de Ma(R) définie par

()= (v )

a) Calculer le polynéme caractéristique de «v et trouver ses valeurs propres.

b) Trouver les espaces propres correspondants.



Solution 13. a) Soit £ = (E11, F12, E21, E92) la base canonique de M3(R). Comme

1-— 1
a(By) = 0 “ 0 > = (1—a)E + B,
0
Oz(Elg) = COL 0 = akFn,
0 0
a(Ba) = 2 0 = 2Fy,
0 0
a(Fy) = 11 = Fo + B,
1—a a 0 O
. R B 1 0 00
la matrice de v par rapport a la base E est A = (a)p = 0 02 1
0 0 01

Le polynéme caractéristique de « est

l—a—t a 0 0

1 -t 0 0

0 0 2—t 1
0 0 0 1—t
=(1-t)2-t)(t>+ (a— 1)t —a)
=(t—-2)(t—-1)>2(t+a).

On en déduit que les valeurs propres de a sont 2,1, —a, lorsque a # —1, —2; les valeurs propres de « sont 2,1,
lorsque a = —1 ou a = —2.

ca(t)=det(A—t- 1) =

Le déterminant ci-dessus est calculé comme suit: On utilise le résultat de ’exercice 2, Série 12, et on trouve
directement :

l—a—-t a 0 0
1 —t 0 0 2
0 0 92—+ 1 |7 I—a—-t)(-t)(1—-a)2-t)(1—-t)=(1—-t)2—-t)(t*+ (a — 1)t — a).
0 0 0 1—t
—1—a a 0 O
, , . 1 -2 0 0 s
On calcule d’abord 1’espace propre E5 qui est le noyau de A —2 - [, = 0 0 0 1 . C’est-a-dire
0 0 0 -1
que 'on doit résoudre le systeme homogene suivant:
—1—a a 0 O T
1 -2 0 0 U2
0 0 0 1 z |
0 0 0 -1 t
On va effectuer une suite d’opérations élementaires sur les lignes de A — 2 - I,.
—1—-a a 0 0 1 -2 0 0 1 -2 0 0
1 -2 0 0 T12,£4_)43(1) —1—a a 0 0 L21g+a) 0 —2—a 0 O
0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 -1 0 0 00 0 0 0 0
1 -2 0 0
. N . . 0 0 0 O . . .
Sia = —2, alors la derniere matrice devient 0o o0 o 1 | et donc y, z sont les variables libres. On obtient
0 0 0O

que lorsque a = =2, Ey = {(2y,y,2,0) | y,z € R}. Il est aisé de voir que E2 = Vect (v1,v2) ou v; = (2,1,0,0)
et vo = e3 = (0,0,1,0) (obtenus en prenant z =1,y =0, puis y = 0,z = 1).

1

—). Cela donne 8
0

= (

variable libre. Lorsque a # —2, E5 = {(0,0,2,0) | 2 € R} et le vecteur vq

Si a # —2, alors on fait encore L12(,35 2) et puis Dy(— . Donc z est la seule

O = OO

00
10
00
00
0,0,1,0) en forme une base.



—a a 0 O
. . 1 -1 0 0 Ny o
Maintenant on regarde E; qui est le noyau de A — 14 = ( 0 o 1 1 | C’est-a-dire que ’on doit résoudre
0O 0 00
le systeme homogene suivant:
—a a 0 O T
1 -1 00 U2 I
0 o0 11 z '
t

0 0 00

On va effectuer une suite d’opérations élementaires sur les lignes de A — Iy.

—a a 0 O 1 -1 00 1 -1 0 0
1 -1 0 0 | 1 —a a 0 O Lz (a) 0 0 0 O
0 0 11 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 00

Donc y,t sont les variables libres et F1 = {(y,y, —t,t) | y,t € R}. Il est aisé de voir que E; = Vect (vs,v4) ol
vy = (1,1,0,0) et vg = (0,0, —1,1) (obtenus en prenant y = 1,t =0, puis y = 0,¢t = 1).

1 a 0 0
. . 1 a 0 0 s s ,
Maintenant on regarde E_, qui est le noyau de A — (—a) - I, = 00 24a 1 . C’est-a-dire que 'on
0 0 0 1+a
doit résoudre le systeme homogene suivant:
1 a 0 0 T
1 a 0 0 U
0 0 2+4a 1 z |
0 0 0 1+a t
Si a = —2, alors on revient au cas Fs; si @ = —1, on revient au cas F;. Donc on suppose que a # —2,—1. On
va effectuer une suite d’opérations élementaires sur les lignes de A — (—a) - I4.
1 a 0 0 1 a 0 O 1 a 0 O
1 a 0 0 L21(=1), Ds(g35), Da(r) [ O O O O Laa(sz5) | 0 0 0 0
~ ~
00 2+a 1 00 1 5 0010
0 0 0 1+a 0 0 0 1 0 0 0 1

Donc y est la seule variable libre. Lorsque a # —1,—-2, E_, = {(—ay,y,0,0) | y € R} et le vecteur vs =
(—a,1,0,0) en forme une base.




