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Notation: Soit p un nombre premier. On note Fp le corps fini à p éléments et écrira simplement a pour ā, pour un
élément ā de Fp.
On fixe un corps K.
On écrira Mn(K) pour Mn×n(K).
Dans cette série et toutes les suivantes, on utilisera les deux notations A ⊂ B et A ⊆ B pour indiquer qu’une partie
A est un sous-ensemble d’une partie B, c’est-à-dire que tout élément de la partie A appartient à la partie B.

Les exercices notés (⋆) sont “en plus” car ils ressemblent à d’autres exercices. Vous pouvez éventuellement les garder
pour la période des révisions

L’exercice noté avec (†) est un peu plus difficile.

Exercice 1. Dans chacun des cas suivants, calculer le polynôme caractéristique de α : V → V . Calculer la multiplicité
algébrique et la multiplicité géométrique de chaque valeur propre de α.

a) V = R2, α(x, y) = (2x+ y, −y).

b) V = R2, α(x, y) = (x+ y, −x+ y).

c) V = C2, α(x, y) = (x+ y, −x+ y).

d) V =M2(R), α

(
a b
c d

)
=

(
c −2d
−a −b

)
.

Solution 1. a) La matrice de α par rapport à la base canonique E de V = R2 est A = (α)EE =

(
2 1
0 −1

)
. Le

polynôme caractéristique de α est

det(A− t · I2) =
∣∣∣∣ 2− t 1

0 −1− t

∣∣∣∣ = (t− 2)(t+ 1).

Donc les valeurs propres de α sont −1 et 2. La multiplicité algébrique de −1 vaut 1 et celle de 2 est aussi 1.

L’espace propre E−1 est le noyau de α − (−1) · id. On résout le système homogène associé à la matrice de

coefficients

(
3 1
0 0

)
. Donc E−1 = {(x,−3x) | x ∈ R} et f1 = (1,−3) forme une base de E−1. On obtient aussi

que la multiplicité géométrique de −1, qui est la dimension de E−1, vaut 1.

L’espace propre E2 est le noyau de A − 2 · I2 =

(
0 1
0 −3

)
. Donc E2 = {(x, 0) | x ∈ R} et f2 = (1, 0) forme

une base de E2. On obtient aussi que la multiplicité géométrique de 2, qui est la dimension de E2, vaut 1.

b) La matrice de α par rapport à la base canonique E de V = R2 est A = (α)EE =

(
1 1
−1 1

)
. Le polynôme

caractéristique de α est det(A− t · I2) =
∣∣∣∣ 1− t 1

−1 1− t

∣∣∣∣ = t2 − 2t+ 2. Ce polynôme n’a pas de racine dans R,

donc il n’existe pas de valeur propre pour α.

c) La matrice de α par rapport à la base canonique E de V = C2 est A = (α)EE =

(
1 1
−1 1

)
. Le polynôme

caractéristique de α est det(A− t · I2) =
∣∣∣∣ 1− t 1

−1 1− t

∣∣∣∣ = t2 − 2t+2. Donc les valeurs propres de α sont 1± i.

La multiplicité algébrique de 1 + i vaut 1 et celle de 1− i est aussi 1.

L’espace propre E1+i est le noyau de α − (1 + i) · id. On résout le système homogène associé à la matrice de

coefficients

(
−i 1
−1 −i

)
. Donc E1+i = {(−iy, y) | y ∈ C} et f1 = (−i, 1) forme une base de E1+i. On obtient

aussi que la multiplicité géométrique de 1 + i, qui est la dimension de E1+i, vaut 1.



L’espace propre E1−i est le noyau de α − (1 − i) · id; on résout le système homogène associé à la matrice de

coefficients

(
i 1
−1 i

)
. Donc E1−i = {(iy, y) | y ∈ C} et f2 = (i, 1) forme une base de E1−i. On obtient aussi

que la multiplicité géométrique de 1− i, qui est la dimension de E1−i, vaut 1.

d) Soit E = (E11, E12, E21, E22) la base canonique de V = M2(R). Alors la matrice de α par rapport à la base E

est A = (α)EE =


0 0 1 0
0 0 0 −2
−1 0 0 0
0 −1 0 0

. Le polynôme caractéristique de α est

det(A− t · I2) =

∣∣∣∣∣∣∣∣
−t 0 1 0
0 −t 0 −2
−1 0 −t 0
0 −1 0 −t

∣∣∣∣∣∣∣∣ = (t−
√
2)(t+

√
2)(t2 + 1).

Comme t2 + 1 n’a pas de racine dans R, les valeurs propres de α sont ±
√
2. La multiplicité algébrique de

√
2

vaut 1 et celle de −
√
2 est aussi 1.

L’espace propre E√
2 est le noyau de α−

√
2 · id. On résout le système homogène associé à la matrice de coeffi-

cients


−
√
2 0 1 0

0 −
√
2 0 −2

−1 0 −
√
2 0

0 −1 0 −
√
2

. Donc E√
2 = Vect ((0,−

√
2, 0, 1)). On obtient aussi que la multiplicité

géométrique de
√
2, qui est la dimension de E√

2, vaut 1.

L’espace propre E−
√
2 est le noyau de α − (−

√
2) · id. Comme avant on considère le système homogène associé

à la matrice


√
2 0 1 0

0
√
2 0 −2

−1 0
√
2 0

0 −1 0
√
2

. Donc E−
√
2 = Vect ((0,

√
2, 0, 1)). On obtient aussi que la multiplicité

géométrique de −
√
2, qui est la dimension de E−

√
2, vaut 1.

Remarque: Noter que pour les parties (a) et (c), on aurait pu déterminer les multiplicités géométriques de
chacune des valeurs propres, sans faire de calculs. On sait que la somme des multiplicités géométriques est au plus
la dimension de l’espace et que chaque multiplicité géométrique est au moins 1. Du coup on déduit que chaque
multiplicité géométrique (dans les deux cas (a) et (c)) est égale à 1.

Exercice 2. On considère l’application de transposition α :M2(R) −→M2(R) définie par α(A) = At ∀A ∈M2(R).

a) Déterminer la matrice de α par rapport à la base canonique de M2(R) et calculer ses valeurs propres.

b) Déterminer les espaces propres correspondant à chaque valeur propre et trouver une base de chaque espace propre.

Solution 2. a) Comme α(Eij) = Eji, pour 1 ≤ i, j ≤ 2, la matrice de α dans la base C = (E11, E21, E12, E22) est

A =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

Pour trouver le polynôme caractéristique de α, on développe le déterminant par rapport à la première ligne et
aussi par rapport à la dernière ligne, et on trouve

cα(t) = det(A− t·I4) =

∣∣∣∣∣∣∣∣
1− t 0 0 0
0 −t 1 0
0 1 −t 0
0 0 0 1− t

∣∣∣∣∣∣∣∣ = (t− 1)3(t+ 1) .

Ce polynôme admet les racines 1 et −1, qui sont les valeurs propres de α.



b) L’espace propre correspondant à la valeur propre 1 est l’espace des matrices dites “symétriques”, car α(A) = 1 ·A
si et seulement si At = A. C’est aussi le noyau de α − id , qui s’obtient en résolvant le système (A− I4)X = 0,
c’est-à-dire 

0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0




x
y
z
t

 =


0
0
0
0

 donc


0 = 0

−y + z = 0
y − z = 0

0 = 0

Les inconnues x, z, t sont libres et y est l’unique inconnue principale. Une base de l’espace des solutions est alors
1
0
0
0




0
1
1
0




0
0
0
1


Donc une base du noyau de α − id est formée du 1er vecteur de la base, du 4ème, et de la somme des 2ème et
3ème. Ainsi l’espace propre correspondant à la valeur propre 1 est Vect (E11, E22, E12 + E21), de dimension 3.

L’espace propre correspondant à la valeur propre−1 est l’espace des matrices antisymétriques, car α(A) = (−1)·A
si et seulement si At = −A. C’est aussi le noyau de α+ id , qui s’obtient en résolvant le système (A+ I4)X = 0,
c’est-à-dire 

2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2




x
y
z
t

 =


0
0
0
0

 donc


2x = 0

y + z = 0
y + z = 0

2t = 0

La seule inconnue libre est z et donc une base du noyau de α+ id est formée d’un seul vecteur, la différence des
2ème et 3ème vecteurs de la base C. En d’autres termes, l’espace propre correspondant à la valeur propre −1
est Vect (E12 − E21), de dimension 1.

Exercice 3. Soit

A =

−2 6
5 2

0 −1 1
−5 5 3

 ∈M3×3(R)

a) Trouver les valeurs propres de A.

b) Trouver des bases des sous-espaces propres de A.

c) Peut-on déduire de a) si A est inversible ou non?

d) Donner les valeurs propres de A2.

e) Donner des bases des sous-espaces propres de A2.

Solution 3. De nouveau dans cet exercice, on identifie R3 avec l’ensemble des vecteurs colonnes dans M3×1(R).

a) On calcule cA(t).

A− tI3 =

 −2− t 6/5 2
0 −1− t 1
−5 5 3− t

 .

Alors, det(A− tI3) = −t(t2−2). Si on veut det(A− tI3) = 0, on obtient les solutions λ1 = 0, λ2 =
√
2 et λ3 = −

√
2

(qui sont les valeurs propres de A).

b) (1) On cherche v1 ∈ R3 non nul tel que Av1 = 0v1 = 0. Via le procédé d’échelonnage, on obtient −2 6
5 2

0 −1 1
−5 5 3

 L1→L1·(− 1
2 )˜

 1 − 3
5 −1

0 −1 1
−5 5 3


˜L3→L3+5·L1

 1 − 3
5 −1

0 −1 1
0 2 −2


L2→L2·(−1)˜

 1 − 3
5 −1

0 1 −1
0 2 −2

 L3→L3+(−2)·L2˜
 1 − 3

5 −1
0 1 −1
0 0 0

 .

Ce qui veut dire que l’ensemble des solutions du système Av1 = 0 est {( 85c, c, c)
t | c ∈ R} Ainsi, l’espace propre

correspondant à la valeur propre 0 est Vect ( 85 , 1, 1)
t).



(2) On cherche v2 ∈ R3 tel que Av2 =
√
2v2. Via le procédé d’échelonnage, et en posant x =

√
2, on obtient −2− x 6

5 2
0 −1− x 1
−5 5 3− x

 L1↔L3˜
 −5 5 3− x

0 −1− x 1
−2− x 6

5 2


L1→(−1)·L1

˜L3→5·L3

 5 −5 −3 + x
0 −1− x 1

−10− 5x 6 10

 L3→L3+(2+x)L1˜ 5 −5 −3 + x
0 −1− x 1
0 −4− 5x 4− x+ x2

 =

 5 −5 −3 + x
0 −1− x 1
0 −4− 5x 6− x

 L3→L3+(−5)·L2˜ 5 −5 −3 + x
0 −1− x 1
0 1 1− x

 L2↔L3˜
 5 −5 −3 + x

0 1 1− x
0 −1− x 1


L3→L3+(1+x)·L2˜

 5 −5 −3 + x
0 1 1− x
0 0 2− x2

 =

 5 −5 −3 + x
0 1 1− x
0 0 0

 .

Donc v2 = ( 15 (−2 + 4
√
2)c, (

√
2 − 1)c, c)t où c ∈ R est quelconque. Donc l’espace propre associé à la valeur

propre λ2 =
√
2 est

Vect ((−2 + 4
√
2), 5

√
2− 5, 5)t).

(3) On cherche v3 ∈ R3 tel que Av3 = −
√
2v3. On peut utiliser le même échelonnage que ci-dessus mais avec

x = −
√
2 (ce qui marche bien puisqu’on a toujours x2 = 2). On obtient alors v3 = (−1

5 (2+4
√
2)c, (−1−

√
2)c, c)t

où c ∈ R est quelconque. Donc l’espace propre associé à la valeur propre λ3 = −
√
2 est

Vect ((−2(1 + 2
√
2), (−5)(

√
2 + 1), 5)t).

c) Puisque 0 est valeur propre de A, on sait qu’il existe un vecteur u ∈ R3 non nul, tel que A · u = 0u = 0. Par un
des critères d’inversibilité d’une matrice, on a que A n’est pas inversible.

d) On note que si Av = λv alors A2v = A(Av) = A(λv) = λ(Av) = λ(λv) = λ2v. Donc si λ est une valeur propre de
A alors λ2 est une valeur propre de A2. Dans le cas précis où A est la matrice donnée, on a donc que 0 et 2 sont
des valeurs propres de A2.

e) � On cherche u1 ∈ R3 non nul tel que A2u1 = 0. Il suffit de remarquer que si v1 est un vecteur propre pour A
pour la valeur propre 0 (c.-à-d. v1 ∈ Vect ( 85 , 1, 1)

t)), on a Av1 = 0, donc A2v1 = A(Av1) = A0 = 0. Donc
l’espace propre associé à µ1 contient ( 85 , 1, 1)

t.

� On cherche u2 ∈ R3 non nul tel que A2u2 = 2u2. On remarque que si v2 est un vecteur propre pour A
pour la valeur propre λ2 =

√
2 (c.-à-d. v2 ∈ Vect (−2 + 4

√
2), 5

√
2 − 5, 5)t)), on a Av2 =

√
2v2, donc

A2v2 = A(Av2) =
√
2Av2 =

√
2
√
2v2 = 2v2. De même, si v3 est un vecteur propre pour A pour la

valeur propre λ3 = −
√
2 (c.-à-d. v3 ∈ Vect ((−2(1 + 2

√
2), (−5)(

√
2 + 1), 5)t)), on a Av3 = −

√
2v3, donc

A2v3 = A(Av3) = −
√
2Av3 = (−

√
2)(−

√
2)v3 = 2v3. Donc l’espace propre associé à µ1 contient

Vect ((−2 + 4
√
2), 5

√
2− 5, 5)t, (−2(1 + 2

√
2), (−5)(

√
2 + 1), 5)t).

� On note que ces trois vecteurs sont linéairement indépendants et comme le polynôme caractéristique de A2 est
de degré 3, et la multiplicité d’une valeur propre dans ce polynôme caractéristique (c’est-à-dire la multiplicité
algébrique) est au moins la dimension de l’espace propre pour la valeur propre, il n’existe aucune autre valeur
propre pour A2, ni vecteur propre linéairement indépendant des trois déjà trouvés.

Exercice 4. Soit α : R3 −→ R3 l’application linéaire dont la matrice par rapport à la base canonique {e1, e2, e3} de
R3 est

M =
1

14

 13 2 −3
2 10 6

−3 6 5

 .

Calculer le polynôme caractéristique de α et déterminer les valeurs propres de α et les espaces propres correspondants.



Solution 4. Pour faciliter l’écriture, posons u = 14t, de sorte que le polynôme caractéristique de α est

cα(t) = det(M−tI3) = det(M− 1

14
uI3) = (

1

14
)3 det(14M−uI3) = (

1

14
)3 det

 13− u 2 −3
2 10− u 6

−3 6 5− u

 = −(
1

14
)3u(u−14)2.

Les valeurs propres de α sont donc 0 et
14

14
= 1.

Etudions maintenant les espaces propres, à commencer par E0 = Ker (α). Un vecteur v = xe1+ye2+ze3 appartient
à Ker (α) si et seulement si  13x+ 2y − 3z = 0

2x+ 10y + 6z = 0
−3x+ 6y + 5z = 0

Eliminant y entre la première et la deuxième équation, puis entre la première et la troisième, on trouve la même relation:
z = 3x. Remplaçant dans n’importe quelle équation on trouve y = −2x. On a donc Ker (α) = Vect (e1 − 2e2 + 3e3).
Interprétation géométrique: Ker (α) est une droite passant par l’origine et perpendiculaire au plan d’équation x −
2y + 3z = 0.

Passons maintenant à E1. Un vecteur v = xe1 + ye2 + ze3 appartient à E1 si et seulement si 13x+ 2y − 3z = 14x
2x+ 10y + 6z = 14y
−3x+ 6y + 5z = 14z

ou encore  −x+ 2y − 3z = 0
2x− 4y + 6z = 0

−3x+ 6y − 9z = 0

Ces trois équations sont les mêmes: x− 2y + 3z = 0. L’espace propre E1 est le plan d’équation x− 2y + 3z = 0, ou
encore Vect (3e1 − e3, 2e1 + e2). L’application α est en fait la projection orthogonale sur ce plan.

Exercice 5. a) Soit P une matrice inversible de taille 2 × 2 et D une matrice diagonale. On pose A = PDP−1.
Montrer que A2 = PD2P−1, puis déduire une formule qui permet de calculer A10.

b) On considère les matrices

A =

(
5 −6
3 −4

)
, P =

(
2 1
1 1

)
et D =

(
2 0
0 −1

)
.

Vérifier que A = PDP−1, puis calculer A10 en utilisant le point a).

Solution 5. a) Soit P une matrice inversible de taille 2× 2 et D une matrice diagonale. On pose A = PDP−1. On
calcule A2 en utilisant simplement le fait que P−1P = I2:

A2 = PDP−1PDP−1 = PD2P−1.

Comme D est diagonale alors son carré est aussi une matrice diagonale. Les coefficients sur la diagonale sont les carrés
des coefficients de la diagonale de D.

De manière générale, la puissance d’une matrice diagonalisable A est égale à An = PDnP−1 pour tout n = 1, 2, 3, ....
Ceci est facile à montrer par un raisonnement par récurrence:

1. Par hypothèse, la propriété est satisfaite pour n = 1.

2. La ligne suivante montre que si la propriété est vraie pour n elle est vraie pour n+ 1:

An+1 = An ·A = PDnP−1 · PDP−1 = PDnDP−1 = PDn+1P−1.

3. On conclut par récurrence.

b) On calcule d’abord l’inverse de P :

P−1 =

(
1 −1
−1 2

)



et on vérifie que A = PDP−1. Par a), on a A10 = PD10P−1, où

D10 =

(
1024 0
0 1

)
car D est diagonale et donc D10 aussi, et les coefficients de la diagonale de D10 sont les coefficients de la diagonale de
D à la puissance 10. On calcule:

A10 = PD10P−1 =

(
2 1
1 1

)(
1024 0
0 1

)(
1 −1
−1 2

)
=

(
2048 1
1024 1

)(
1 −1
−1 2

)
=

(
2047 −2046
1023 −1022

)
.

Exercice 6. Soit S2(R) l’espace vectoriel des matrices symétriques de taille 2 × 2, dont une base est donnée par
B = {S1, S2, S3} où

S1 =

(
1 0
0 0

)
S2 =

(
0 1
1 0

)
S3 =

(
0 0
0 1

)
.

Soit T : S2(R) → S2(R) la transformation linéaire définie par

T

(
a b
b d

)
=

(
2a− d −b
−b −a+ 2d

)
.

a) Calculer les 3 valeurs propres (distinctes) {λ1, λ2, λ3} de T .

b) Pour i ∈ {1, 2, 3}, trouver un vecteur propre Mi ∈ S2(R) associé à λi. Montrer que B′ = {M1,M2,M3} est une
base de S2(R).

c) Ecrire la matrice (T )B
′

B′ de T par rapport à la base B′.

d) Calculer T 10(A), où A =

(
1 2
2 3

)
.

Solution 6. On calcule les images des différents vecteurs de base:

T (S1) =

(
2 0
0 −1

)
, T (S2) =

(
0 −1
−1 0

)
, T (S3) =

(
−1 0
0 2

)
.

Ainsi, la matrice de l’application T par rapport à la base B est:

(T )BB =

 2 0 −1
0 −1 0
−1 0 2

 .

a) On calcule:

det
(
(T )BB − t · I3

)
= (2− t)2 · (−1− t) + (1 + t) = (t+ 1)(−(2− t)2 + 1) = (t+ 1)(−t2 + 4t− 3)

= −(t− 1) · (t+ 1) · (t− 3).

Ainsi, on a λ1 = 1, λ2 = −1 et λ3 = 3.

b) Dans ce point, A désigne la matrice

(
a b
b d

)
. On cherche les différents espaces propres. Pour λ = 1, on trouve un

vecteur propre M1 =

(
1 0
0 1

)
. De même, pour λ = −1, on trouve un vecteur propre M2 =

(
0 1
1 0

)
(on aurait

pu le deviner, puisque T (S2) = −S2). Finalement, pour la dernière valeur propre, on trouve M3 =

(
1 0
0 −1

)
.

On sait que trois vecteurs propres associés à des valeurs propres distinctes sont linéairement indépendants (vous
pouvez aussi le vérifier à la main). Comme l’espace des matrices symétriques de taille 2 est de dimension 3, il s’agit
d’une base.

c) Comme (M1,M2,M3) est une base de vecteurs propres, associés aux valeurs propres 1,−1 et 3 respectivement, on

a (T )B
′

B′ =

1 0 0
0 −1 0
0 0 3

.



d) On remarque que l’on peut écrire (
1 2
2 3

)
= 2 ·M1 + 2 ·M2 + (−1) ·M3,

c’est-à-dire que les composantes de

(
1 2
2 3

)
dans la base B′ sont (2, 2,−1). Puisque

(T 10(A))B′ = (T 10)B
′

B′ · [A]B′ = ((T )B
′

B′)10 · [A]B′ ,

les composantes de T 10(A) dans la base B′ sont: 1 0 0
0 −1 0
0 0 3

10

·

 2
2
−1

 =

 110 0 0
0 (−1)10 0
0 0 310

 ·

 2
2
−1

 =

 2
2

−310

 .

Finalement, on a

T 10(A) = 2 ·M1 + 2 ·M2 + (−310)M3 =

(
2− 310 2

2 2 + 310

)
.

Exercice 7. Soit ϕ ∈ L(V, V ). Soient U,W ⊆ V des sous-espaces ϕ-invariants. Montrer que W ∩ U et W + U sont
aussi ϕ-invariants.

Solution 7. Soit x ∈ U ∩W ; comme U est ϕ-invariant, ϕ(x) ∈ U , de même, comme W est ϕ-invariant, ϕ(x) ∈ W .
On déduit que ϕ(x) ∈ U ∩W , ce qui montre que U ∩W est ϕ-invariant. Maintenant soit x ∈ W + U . Donc il existe
w ∈ W et u ∈ U tels que x = w + u. On utilise que chacun des sous-espaces U et W est ϕ-invariant pour voir que
ϕ(w) ∈ W et ϕ(u) ∈ U . On a alors ϕ(x) = ϕ(w + u) = ϕ(w) + ϕ(u) ∈ W + U , ce qui montre que W + U est aussi
ϕ-invariant.

Exercice 8 (Cet exercice complète une preuve du cours). Soit V un K-espace vectoriel de dimension n, avec une
base fixée B, et soit P ∈ GLn(K). Montrer qu’il existe une base E de V telle que P = (id)BE . Ensuite expliciter la

base E dans le cas concret de V = C2, B = ((−1, 1), (1, 1)) et P =

(
1 i
3 2i

)
.

Solution 8. Soit B = (v1, . . . , vn). Pour 1 ≤ i ≤ n, on définit fi ∈ V par fi =
∑n

k=1 Pkivk. On vérifie d’abord
que E = (f1, . . . , fn) est une base de V . Pour ce faire, on rappelle que nous avons une application linéaire bijective
ϕ : V → Kn donnée par ϕ(

∑
αivi) = (α1, . . . , αn). Par les résultats du cours et des exercices, {f1, . . . , fn} est un

ensemble libre si et seulement si {ϕ(f1), . . . , ϕ(fn)} est libre. Comme les coordonnées du vecteur fi apparaissent dans
la i-ème colonne de P , la dimension du sous-espace engendré par les vecteurs ϕ(f1), . . . , ϕ(fn) est le rang colonne de
la matrice P , qui est aussi le rang tout simplement, qui est maximal et égal à n, par le critère d’inversibilité d’une
matrice. Donc les vecteurs ϕ(f1), . . . , ϕ(fn) forment un système de générateurs dans un espace de dimension n et par
un résultat du cours sont linéairement indépendants.

Ensuite, on note que par construction, la matrice de changement de base (id )BE est égale à la matrice P .

Dans le cas concret : Posons v1 = (−1, 1) et v2 = (1, 1). On pose f1 = v1 + 3v2 = (2, 4) et f2 = iv1 + 2iv2 = (i, 3i),
deux vecteurs linéairement indépendants dans C2 et qui forment donc une base E = (f1, f2) de C2. De plus, on vérifie
que P = (id )BE .

Exercice 9 (Facultatif). Soit α ∈ L(V ) une transformation linéaire d’un espace vectoriel V de dimension finie.
Montrer que pour tout n ≥ 1, Ker (αn) et Im (αn) sont invariants par α.

Solution 9. Soit v ∈ Ker (αn). On a donc αn(v) = 0. Il faut montrer que α(v) ∈ Ker (αn), en d’autres termes,
αn(α(v)) = 0. En effet, αn(α(v)) = α(αn(v)) = α(0) = 0.

Soit v ∈ Im(αn). Alors il existe u ∈ V tel que αn(u) = v. Il faut montrer que α(v) ∈ Im(αn). En effet,
α(v) = α(αn(u)) = αn(α(u)) ∈ Im(αn).



Noter que ce résultat découle aussi du résultat plus général : si β ◦ α = α ◦ β pour β ∈ L(V, V ), alors Ker (α) et
Im (α) sont β-invariants, puisque α ◦ αn = αn ◦ α.

Exercice 10. (†) Soit φ : V → V et ψ : V → V des endomorphismes d’un K-espace vectoriel V tels que φ possède
une valeur propre non nulle et ψ ◦ φ = φ.

(i) Montrer que 1 est une valeur propre de ψ.

(ii) Montrer que si V est de dimension finie alors la multiplicité algébrique de la valeur propre 1 pour l’endomorphisme
ψ est au moins dim(Imφ).

Solution 10. (i) Soit λ ∈ K \ {0} la valeur propre non nulle de φ et soit v ∈ V un vecteur propre associé à cette
valeur propre. On a φ(v) = λv et par conséquent v = λ−1φ(v). Maintenant,

ψ(v) = ψ(λ−1φ(v)) = λ−1ψ(φ(v)) = λ−1φ(v) = v,

où on a utilisé le fait que ψ ◦φ = φ dans l’avant dernière égalité. Donc v est un vecteur propre pour ψ de valeur
propre 1.

(ii) Soit w ∈ Im (φ), d’où il existe x ∈ V avec w = φ(x). On a ψ(w) = ψ(φ(x)) = φ(x) = w et donc w ∈ E1,
l’espace propre pour la valeur propre 1 de la transformation linéaire ψ. Ceci montre que Imφ ⊂ E1 et donc
dimE1 = mgeom(1) ≥ dim Imφ. Mais par un résultat du cours on sait aussi que la multiplicité algébrique de la
valeur propre 1 est plus grande ou égale à mgeom(1), ce qui conclut la preuve de l’assertion.

Exercice 11 (Cet exercice complète une preuve du cours). Soit V un K-espace vectoriel de dimension finie et soit
ϕ ∈ L(V, V ). Montrer que si ϕ est triagonalisable, alors il existe des bases B et E de V telle que (ϕ)BB soit triangulaire
supérieure et (ϕ)EE soit triangulaire inférieure.

Solution 11. Le premier énoncé a été démontré en cours. Soit B la base donné par rapport à laquelle la matrice de
ϕ est triangulaire supérieure, disons B = (v1, . . . , vn). Posons E = (vn, . . . , v1) et A = (ϕ)BB . On a aij = 0 pour tout
i > j. Donc ϕ(vi) ∈ Vect (v1, . . . , vi), pour tout 1 ≤ i ≤ n. Ceci montre que la matrice (ϕ)EE est triangulaire inférieure.

Exercice 12. (⋆) Soit A =

0 0 −4

0 −
√
2 0

1 0 0

. Trouver toutes les valeurs propres de A et les espaces propres associés.

Solution 12. On calcule le polynôme caractéristique de A:

det(A− tI) = det
(−t 0 −4

0 −
√
2− t 0

1 0 −t

)
= (−

√
2− t) det

(
−t −4
1 −t

)
= (−

√
2− t)(t2 + 4)

Ensuite, les valeurs propres de A sont les racines de ce polynôme, qui sont −
√
2, 2i,−2i.

Pour les espaces propres associés on résout les trois systèmes homogènes : (A+
√
2I3)X = 0, (A− 2iI3)X = 0 et

(A + 2iI3)X = 0 et on trouve respectivement les espaces propres : E−
√
2 = Vect ((0, 1, 0)), E2i = Vect ((2i, 0, 1)) et

E−2i = Vect ((−2i, 0, 1)).

Exercice 13. (⋆) Soit a ∈ R fixé. On considère la transformation linéaire α de M2(R) définie par

α

(
x y
z t

)
=

(
(1− a)x+ ay x

2z + t t

)
.

a) Calculer le polynôme caractéristique de α et trouver ses valeurs propres.

b) Trouver les espaces propres correspondants.



Solution 13. a) Soit E = (E11, E12, E21, E22) la base canonique de M2(R). Comme

α(E11) =

(
1− a 1
0 0

)
= (1− a)E11 + E12,

α(E12) =

(
a 0
0 0

)
= aE11,

α(E21) =

(
0 0
2 0

)
= 2E21,

α(E22) =

(
0 0
1 1

)
= E21 + E22,

la matrice de α par rapport à la base E est A = (α)EE =


1− a a 0 0
1 0 0 0
0 0 2 1
0 0 0 1

.

Le polynôme caractéristique de α est

cA(t) = det(A− t · I4) =

∣∣∣∣∣∣∣∣
1− a− t a 0 0

1 −t 0 0
0 0 2− t 1
0 0 0 1− t

∣∣∣∣∣∣∣∣
= (1− t)(2− t)(t2 + (a− 1)t− a)

= (t− 2)(t− 1)2(t+ a).

On en déduit que les valeurs propres de α sont 2, 1,−a, lorsque a ̸= −1,−2; les valeurs propres de α sont 2, 1,
lorsque a = −1 ou a = −2.

Le déterminant ci-dessus est calculé comme suit: On utilise le résultat de l’exercice 2, Série 12, et on trouve
directement :∣∣∣∣∣∣∣∣

1− a− t a 0 0
1 −t 0 0
0 0 2− t 1
0 0 0 1− t

∣∣∣∣∣∣∣∣ = (1− a− t)(−t)(1− a)(2− t)(1− t) = (1− t)(2− t)(t2 + (a− 1)t− a).

b) On calcule d’abord l’espace propre E2 qui est le noyau de A− 2 · I4 =


−1− a a 0 0

1 −2 0 0
0 0 0 1
0 0 0 −1

. C’est-à-dire

que l’on doit résoudre le système homogène suivant:
−1− a a 0 0

1 −2 0 0
0 0 0 1
0 0 0 −1




x
y
z
t

 = 0.

On va effectuer une suite d’opérations élementaires sur les lignes de A− 2 · I4.
−1− a a 0 0

1 −2 0 0
0 0 0 1
0 0 0 −1

 T12, L43(1)
⇝


1 −2 0 0

−1− a a 0 0
0 0 0 1
0 0 0 0

 L21(1+a)
⇝


1 −2 0 0
0 −2− a 0 0
0 0 0 1
0 0 0 0

 .

Si a = −2, alors la dernière matrice devient


1 −2 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , et donc y, z sont les variables libres. On obtient

que lorsque a = −2, E2 = {(2y, y, z, 0) | y, z ∈ R}. Il est aisé de voir que E2 = Vect (v1, v2) où v1 = (2, 1, 0, 0)
et v2 = e3 = (0, 0, 1, 0) (obtenus en prenant z = 1, y = 0, puis y = 0, z = 1).

Si a ̸= −2, alors on fait encore L12(
−2
a+2 ) et puis D2(

1
−a−2 ). Cela donne


1 0 0 0
0 1 0 0
0 0 0 1
0 0 0 0

 . Donc z est la seule

variable libre. Lorsque a ̸= −2, E2 = {(0, 0, z, 0) | z ∈ R} et le vecteur v2 = (0, 0, 1, 0) en forme une base.



Maintenant on regarde E1 qui est le noyau de A−I4 =


−a a 0 0
1 −1 0 0
0 0 1 1
0 0 0 0

. C’est-à-dire que l’on doit résoudre

le système homogène suivant: 
−a a 0 0
1 −1 0 0
0 0 1 1
0 0 0 0




x
y
z
t

 = 0.

On va effectuer une suite d’opérations élementaires sur les lignes de A− I4.
−a a 0 0
1 −1 0 0
0 0 1 1
0 0 0 0

 T12⇝


1 −1 0 0
−a a 0 0
0 0 1 1
0 0 0 0

 L21(a)
⇝


1 −1 0 0
0 0 0 0
0 0 1 1
0 0 0 0

 .

Donc y, t sont les variables libres et E1 = {(y, y,−t, t) | y, t ∈ R}. Il est aisé de voir que E1 = Vect (v3, v4) où
v3 = (1, 1, 0, 0) et v4 = (0, 0,−1, 1) (obtenus en prenant y = 1, t = 0, puis y = 0, t = 1).

Maintenant on regarde E−a qui est le noyau de A− (−a) · I4 =


1 a 0 0
1 a 0 0
0 0 2 + a 1
0 0 0 1 + a

. C’est-à-dire que l’on

doit résoudre le système homogène suivant:
1 a 0 0
1 a 0 0
0 0 2 + a 1
0 0 0 1 + a




x
y
z
t

 = 0.

Si a = −2, alors on revient au cas E2; si a = −1, on revient au cas E1. Donc on suppose que a ̸= −2,−1. On
va effectuer une suite d’opérations élementaires sur les lignes de A− (−a) · I4.

1 a 0 0
1 a 0 0
0 0 2 + a 1
0 0 0 1 + a

 L21(−1), D3(
1

2+a ), D4(
1

1+a )
⇝


1 a 0 0
0 0 0 0
0 0 1 1

2+a

0 0 0 1

 L34(
−1
2+a )
⇝


1 a 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 .

Donc y est la seule variable libre. Lorsque a ̸= −1,−2, E−a = {(−ay, y, 0, 0) | y ∈ R} et le vecteur v5 =
(−a, 1, 0, 0) en forme une base.


