Algeébre linéaire avancée I, Section de Physique automne 2024 Prof. Donna Testerman

Corrigé 12
3 décembre

Notation: Soit p un nombre premier. On note F,, le corps fini & p éléments et écrira simplement a pour @, pour un
élément a de IFp,.

On fixe un corps K.

On écrira M, (K) pour M, x,(K).

Dans cette série et toutes les suivantes, on utilisera les deux notations A C B et A C B pour indiquer qu'une partie
A est un sous-ensemble d’une partie B, c’est-a-dire que tout élément de la partie A appartient & la partie B.

L’exercice noté avec () est un peu plus difficile.

Exercice 1. Soit a un nombre complexe firté. On considere les matrices complexes suivantes:

, ‘ , 00 0 5 0 0
0 5+2¢ —3-2 2470 a 2 1 —-11 13 0 -3
0 1 —i 1 0 07 0 3 0 0

A= i 7+i 6 3i —4+4+i |, B=
P i ! . 30 8 5 0 4
o 0 : 0 2 7 4 7T 0 2
51 6 12 3 1

a) Calculer le déterminant de A en développant par rapport a une ligne ou a une colonne.
b) Refaire a) en utilisant des opérations élémentaires.

¢) La matrice A est-elle inversible?

d) Calculer le déterminant de B et celui de B2.

e) Soit p un nombre premier. Si on considére B comme une matrice & coefficients dans le corps fini Fp, a p éléments,
pour quels nombres premiers p la matrice B est-elle de rang 67

Solution 1. a) On constate qu’il n’existe qu'un seul coefficent non nul dans la premiere colonne de A, donc on
utilise le développement par rapport a la premiere colonne pour calculer le déterminant de A. Alors

det(A) = Asy - (—1°F - det(A(3[1)) = i - (—1)**+1 - det(A(3]1)) = i - det(A(3]1)).

5+2i —3i 247 a
1 —i 1 0
] 0 a 0
0 a 2 0
dans la quatrieme colonne de C'. On utilise le développement par rapport a la quatrieme colonne pour calculer
le déterminant de C' et on obtient

Notons C := A(3|1) = et constatons qu’il n’existe qu'un seul coefficient non nul

det(C) = Chy - (—1)1+4 - det(C(1[4)) = —a - det(C(1]4)).

1 - 1
Posons D:=C(1]4)=| 4 0 a |. Larégle de Sarrus donne alors
0 a 2

det(D) =0+ai+0—0—2—a*>=—a®+ia — 2.
Donc det(A) = idet(C) = —i - adet(D) = —i - a(—a® +ia — 2) = ia(a® —ia + 2).
b) On va effectuer des opérations élémentaires sur les lignes de A de manieére & obtenir une matrice triangulaire
supérieure. Rappelons que les opérations élémentaires ont les effets suivants sur le déterminant.
Type I : Si on échange deux lignes, le déterminant change de signe.

Type II : Si on multiplie une ligne par un scalaire A # 0, le déterminant est multiplié par A, mais on peut éviter
le type II pour le calcul des déterminants.



Type III : Si on ajoute & une ligne un multiple scalaire d’une autre, le déterminant ne change pas.

0 542t —3t 247 a i T4+ () 3 —4 474
0 1 —1 1 0 0 1 —1 1 0
i T+i o 6i 0 3 —4+i || 0 542 -3 247 a
0 7 0 a 0 0 ) 0 a 0
0 0 a 2 0 0 0 a 2 0
i T+ 67 31 —4 474
Lsa(—5-2i), Lya(—1) 01 ! 1 0
pes 0 0 —2+2i —3+5i a
0 0 -1 a—1 0
0 0 a 2 0
T T4 61 31 -4+
. 0 1 —1 1. 0
S 0 0 -1 a—1 0
0 0 —2427 —-3+5 a
0 0 a 2 0
i T+i 6 3i 44
Li@i-2), Losa) | 0 L T 0
~S 0 0 -1 a—1 0
0 0 0 T7i—1+4+2a(i—1) a
0 0 0 a? —ia+2 0
i T+i 6 3i —4+4i
- 0 1 —1 1 0
A 0 0 -1 a—1 0
0 0 0 a? —ia+2 0
0 0 0 T7i—1+2(i—1) a

Si a? —ia+ 2 =0, il existe une ligne nulle dans la derniére matrice, donc det(A4) = 0.

—(7i—1+2a(i—1))

Si a? —ia+ 2 # 0, alors Popération Lsy( ) rend la matrice de la forme suivante

a?—ia+2
i T+1 61 3 —44+1
0 1 —1 1 0
E = 0 0 -1 a—1 0
0 0 0 a®—ia+2 0
0 0 0 0 a

qui devient une matrice triangulaire supérieure. On obtient donc
det(E)=i-1-(=1)-(a* —ia+2)-a=—i(a® —ia + 2)a,

puisque le déterminant d’une matrice triangulaire supérieure est le produit des coefficients de sa diagonale, et
donc si a? —ia + 2 # 0,

det(A) = (=1) - (=1) - (=1) - det(E) = — det(E) = i(a® — ia + 2)a,

ou dans le terme & droite de la premiere égalité, le premier facteur —1 (respectivement le deuxieéme, le troisiéme)
provient de 'opération T3 (respectivement, T34, Ty5).

Dans tous les cas, on obtient det(A) = i(a? — ia + 2)a.

La matrice A est inversible si et seulement si son déterminant est non nul, d’apreés le deuxieéme théoreme
d’inversibilité. Or, d’apres le point a),

det(A) = i(a® —ia +2)a = i(a — 2i)(a +1)a,

donc on obtient que A est inversible si et seulement si a # 2i, —i, 0.



d) On procede comme dans le point a). Alors

det(B) = By - (1) - det(B(1]4)) =5 - (=1)' ™ - det(B(1]4)) = (=5) - det(B(1]4)).
2 1 —-11 0 -3
07 0 0 O
Notons que F := B(1]4) = 3 0 8 0 4 et constatons qu’il n’existe qu’un seul coefficient non nul
2 7 4 0 2
51 6 3 1

dans la quatriéme colonne de F'. On utilise le développement par rapport a la quatriére colonne pour calculer le
déterminant de F' et on obtient

det(F) = Fyy - (1) . det(F(5/4)) = (—3) - det(F(5/4)).

2 1 —-11 =3
07 O 0 . .
Or, G:=F(5|4) = 30 8 + | De méme, on obtient
2 7 4 2
det(G) = Gag - (—1)*72 - det(G(2]2)) = 7 - det(G(22)).
2 —-11 -3
Comme G(22) = | 3 8 4 et la regle de Sarrus donne det(G(2]|2)) = —10, on obtient det(B) =
2 4 2
(=5) - (=3) -7~ (~10) = —1050.

Le déterminant de B2 est det(B2) = (det(B))? = (—1050)2 = 1102500.

e) La matrice B est de rang 6 si et seulement si elle est inversible si et seulement si son déterminant est non nul. Le
point d) donne det(B) = —1050 = —2 x 3 x 5% x 7, et donc ce déterminant est non nul dans F, si et seulement
sip£2,3,5,7.

Exercice 2 (Résultat a retenir car tres utile dans les calculs de déterminants, en particulier pour calculer un polynéme
caractéristique). Soient A € M, (K),B € Mpxm(K),C € Mp,xn(K) et D € M, (K). Montrer que

det(gl g):det(A)-det(D):det<é g)

Solution 2. Pour la premiere égalité, on va effectuer des opérations élémentaires de type I and III pour rendre la
matrice triangulaire supérieure. D’abord on fait des opérations élémentaires de type I et III sur les n premieres lignes
pour que A devienne une matrice triangulaire supérieure et notons que ces opérations ne changent pas D. Supposons
A B
0 D

m dernieres lignes de cette derniere matrice pour que D devienne une matrice triangulaire supérieure et on obtient une
li !

que la matrice devienne > avec A’ triangulaire supérieure. Ensuite on fait des opérations élémentaires sur les

matrice de la forme 0o D

pas B’). Cette derniére matrice est donc triangulaire supérieure. Comme le déterminant d’une matrice triangulaire

AT B > — det(A") - det(D).

> avec A’ et D’ triangulaires supérieures (Constatons que ces opérations ne changent

supérieure est le produit des coefficients de la diagonale, on obtient que det 0 D

Supposons qu’on a utilisé r fois des opérations de type I pour passer de A & A’ et s fois des opérations de type I
pour passer de D a D’. Alors det(A) = (—1)"det(A’) et det(D) = (—1)° det(D’). En plus on a aussi

A B\ . A" B\ s A B
det<O D)(l) det( 0 D>(1) det< 0 D’>'

der (g )= Curde () = (17 den () -det(D) = det(4) - der(D).

Cela implique que

0 D

Pour montrer la deuxieme égalité de ’exercice, on utilise le fait que le déterminant de la transposée d’une matrice

R N A 0\ At Ot :
est égal a celui de la matrice originale. Comme ( C D ) = ( 0 D ), on obtient

det< a0 > — det (( a0 >t> det< f‘g gi ) — det(A") - det(D") = det(A) - det(D).



a b ¢ 4a 4b 4c
Exercice 3. Sachant que | d e f | =10, calculer g h 1
g h i 3d+g 3e+h 3f+i

Solution 3.

4q 4b 4c a b c a b ¢
g h i =4- g h i =4-\ g h i
3d+g 3e+h 3f+i 3d+g 3e+h 3f+i 3d 3e 3f
a b ¢ a b ¢
=12-|g h i|=-12-|d e f|=-12-10=-120
d e f g h i

Exercice 4. Montrer qu’il n’existe pas de matrice A € M3(R) telle que A?9*2 + I3 = 0.

Solution 4.
A%012 4L == A2 = [, — det(AQOlQ) = de‘c(A)2012 = det(—1I3) = —1,

ce qui est impossible, car det(A) € R et donc det(A)2012 > 0.

Exercice 5. Dans chacun des cas suivants, trouver toutes les valeurs propres de la transformations linéaire  : V. — V,
et tous les vecteurs propres associés.

a) V= RQ: (J?, = (2l’+y, _y)

a(z,y)
b) V=R% alx,y)=(@x+y, —z+7y).
a(z,y)

c) V=_=C2

d) V = My(R), a<‘; Z):<_Ca __de>.

e) V=F(C, C), a(f)(x)=—zf(x) pour tout z € C.

(.13, (J?—Fy, —x—|—y)

f) V.=C([a, b],R) lespace des fonctions continues & valeurs réelles définies sur Uintervalle fermé [a, b], a:V —
V, a(f)(x) = —xf(z) pour tout x € [a, b].
Solution 5. a) Soient (z,y) € R? et A € R. Si X est une valeur propre de « et (z,y) un vecteur propre associé a
A, alors A« (z,y) = a(z,y) = (2 + y, —y). Cela est équivalent au systéme linéaire d’équations suivant:
{ 204+y = Az (1)
-y = Ay (2)
D’apres (2), ona (A+ 1)y =0et donc A= —1ouy = 0.
Si A = —1, alors (2) est toujours valable (et y peut étre donc arbitraire). L’équation (1) devient y = —3z. Donc
lorsque A = —1, les solutions du systéme sont les vecteurs (x, —3z) avec € R. On obtient que —1 est une valeur

propre de a et que les vecteurs propres associés a la valeur propre —1 sont les vecteurs (z, —3xz) avec z € R et
x # 0.

Si A # —1, alors y = 0, et (1) devient (A — 2)z = 0. On sait que = # 0, car sinon, (x,y) = (0,0) ne serait pas
un vecteur propre. Cela implique que A = 2 est une valeur propre de « et que les vecteurs propres associés a la
valeur propre 2 sont de la forme (x,0) avec € R et « # 0.

En résumé, les valeurs propres de a sont —1 et 2, et les vecteurs propres correspondant a —1 sont les vecteurs
(x,—3z),xz € R — {0} et les vecteurs propres correspondant & 2 sont les vecteurs (x,0),z € R — {0}.



b)

Soient (z,y) € R? et A € R. Si A est une valeur propre de « et (z,y) un vecteur propre associé a A, alors
A(z,y) = a(z,y) = (x +y,—x + y). Cela est équivalent au systéme linéaire d’équations suivant:

T+y
—x+y

D’apres (2), on a © = (—A + 1)y (3) et si on remplace = par (—A + 1)y dans (1), on obtient

[
> >
& g
s
S—

(A2 =22 +2)y=0 (4).

Comme A € R, A2 =2\ +2 = (A—1)2+1 > 0 et (4) implique que y = 0. Cependant, (3) donne z = 0. On
n’obtient que la solution nulle pour le systéme d’équations linéaires et cela contredit ’hypothese que (z,y) est
un vecteur propre de a. Donc il n’existe pas de valeur propre pour a.

Soient (z,y) € C? et A € C. Si X est une valeur propre de « et (z,y) un vecteur propre associé a A, alors
A (z,y) = a(z,y) = (. +y,—x + y). Cela est équivalent au systéme linéaire d’équations suivant:

r+y
—x+y

D’apres (2), onaxz = (—A+ 1)y (3), et si on remplace = par (—A + 1)y dans (1), on obtient

[
> >
< g
© =
N—

(N2 =20 +2)y =0 (4).

Cela implique A2 =2\ +2 =0 ou y = 0.

Si A2 —2X\+2 =0, c’est-d-dire que A = 144, alors (4) est toujours valable (y peut étre arbitraire), et (3) devient
x = Fiy. Donc lorsque A = 1 £ i, les solutions du systéme sont les vecteurs (+iy,y) avec y € R. On en déduit
que 1Fi sont des valeurs propres de « et que les vecteurs propres associés a la valeur propre 1+ (respectivement
1 — ) sont de la forme (—iy,y) (respectivement (iy,y)) avec y € R — {0}.

Si A2—2X+2 # 0, alors y = 0 et (3) donne z = 0. Mais on a supposé que (x,y) # (0, 0), ceci est une contradiction
et donc A2 — 2\ +2 = 0.

En résumé, les valeurs propres de « sont 1 & i, et les vecteurs propres associés a la valeur propre 1+ i (respec-
tivement 1 — 7) sont de la forme (—iy,y) (respectivement (iy,y)) avec y € R — {0}.

Remarque: En comparant les points b) et ¢), on observe que l'existence de valeurs propres dépend du corps de
base.

Soient A = ( Z cbl € M>(R) et A € R. Si X est une valeur propre de « et A un vecteur propre associé a A,
a b c —2d L N . )z . .
alors A - e d)= a(A) = b ) Cela est équivalent au systeéme linéaire d’équations suivant:
¢c = Aa (1)
—2d = Ab (2)
—a = X (3)
b = M 4)

D’apres (1) et (3), ¢ = Aa = —\%c et donc (A% + 1)c = 0. Comme \ € R, A2 4+ 1 # 0 et donc ¢ = 0 et on obtient
aussi a = 0 par (3).
D’apres (2) et (4), —2d = Ab = —\2d et donc (A2 —2)d = 0. Si d = 0, alors (4) donne b = 0 et donc

A= CCL =0 et cela contredit notre hypothese. Donc d # 0 et A2 — 2 = 0, on en déduit que A = +/2, et

b
d
(4) donne b = Tv2d. Lorsque A = £+/2, les solutions du systéme sont les matrices ( 8 :Ffd ) ,deR.

On obtient par conséquent que les valeurs propres de a sont ++/2, et que les vecteurs propres associés a la valeur
propre V2 sont les matrices

0 —v2d

0 d



avec d € R — {0}, et ceux associés & —+/2 sont les matrices
0 V2d
0 d
avec d € R — {0}.

Remarque: Si le corps de base était C, il y aurait deux autres valeurs propres £i. On vous encourage a faire
le point d) sur C.

Si A € C est une valeur propre de « et f € F(C,C) un vecteur propre associé a A, alors pour tout € C, on
a que —xf(z) = a(f)(x) = Af(z) et donc (z + A)f(x) = 0 pour tout x € C. Cela signifie que lorsque © # —A,
f(xz) =0et f(—A) peut étre un scalaire non nul arbitraire. Donc tout nombre complexe A est une valeur propre
de « et les vecteurs propres sont les fonctions de C vers lui-méme qui ne s’annulent pas en —\ et qui valent zéro
partout ailleurs.

Comme dans e), si A € R est une valeur propre de « et f € C([a, b],R) un vecteur propre associé a A, alors
f(z) = 0 pour tout = # —X. Comme f est continue, f(—\) s’annule aussi. Cela signifie que f est la fonction
identiquement nulle, ce qui est impossible pour un vecteur propre. Donc aucun nombre réel ne peut étre une
valeur propre de a.

Remarque: Comparer les points e) et f). Quelle est la différence?

Exercice 6. Soit a : V — V une transformation linéaire d’un K -espace vectoriel V.. Soit A une valeur propre de c.
L’espace propre associé a A est par définition Ex = {v € V | a(v) = Av}.

a) Montrer que Ey est un sous-espace vectoriel de V.

b) Montrer que E) = {vecteurs propres correspondant ¢ A} U {0}.

¢) Montrer que Ey est invariant par «, c’est-a-dire que pour tout w € Ey on a que a(w) € E)y.

d) Soit (v une valeur propre de «, différente de A. Montrer que Ex N E,, = {0}.

Solution 6. a) Comme a(0) =0=X-0,0n a0 € E) et cet ensemble n’est pas vide. Soient v,w € Ey et u € K.

Alors
a(pv + w) = pa(v) + a(w) = pAv + Aw = A(pv + w),
ou on a utilisé la linéarité de a dans la premiere égalité. Cela montre que pv + w € E) et donc E) est un

sous-espace vectoriel de V.

Pour tout v € Ey, on a a(v) = Av. Pour que I'égalitée soit respectée, on a alors soit v = 0, soit v # 0 (qui est par
définition un vecteur propre correspondant & la valeur propre ). Donc E) C {vecteurs propres correspondant
a A} U {0}.

L’autre inclusion est évidente.

On a montré que E = {vecteurs propres correspondant a A} U {0}.

Pour tout v € Ej, on a a(v) = Av. D’apres le point a), Ey est un sous-espace vectoriel de V' et donc a(v) =
Av € Ey. On a montré que E) est invariant par a.

Une autre méthode consiste a utiliser la définition de Ey. Pour que a(v) € Ej, il faut que a(a(v)) = Aa(v). Or,

a(a(v)) = a(lv) = Aa(v), ot on a utilisé la linéarité de o dans la deuxieme égalité.

Soit v € ExNE,. Alors v € E) et v € E,,. Donc Av = a(v) = pv et on obtient que (A — p)v = 0. Comme A # p,
cela implique v = 0. Donc E\ N E, = {0}.

Exercice 7. Soit V' un R-espace vectoriel avec base ordonnée B = (f1, fa, f3, f1) et soit « € L(V, V) telle que

1 2 0 0
s |1 2 1 o0
(@) 0 0 0 0
-1 -2 1 =5



(a) Montrer que 2f; — fo est un vecteur propre de « et en déduire une valeur propre de a.
(b) Montrer que —5 est une valeur propre de «.
(c) Trouver Ey et E_s.

Solution 7. Posons A = (a)B.

2
(a) On a que a(2f; — fo)p = A - _01 = 0. Cela implique que 0 est une valeur propre de « car f; et fo sont
0
linéairement indépendants et donc 2f; — fo # Oy.
(b) On note que a(fy) = —5fy4, d’apres la derniere colonne de A. Donc f4 est un vecteur propre de valeur propre —5.
a a
(¢) On cherche tous v € V tel que a(v) = Oy, donc tout ZC) € Myyx1(R) telle que A - i = 0. On échelonne la
d d
1 2 00
. . 0 010 . . . -
matrice A et on obtient 000 1l La deuxieme variable b est libre et les autres sont principales; on trouve
00 0 0
a=—2b,c=0et d=0. Donc dim Ey = 1 et Ey = Vect (2f1 — f2). Pour la valeur propre —5, on résout le systeme
a a a
A- lc) =-5- IC) , qui est équivalent au systeme (A + 514) - IC) = 0. On échelonne la matrice (A + 514) et
d d d
1 0 00
. 01 00 .
on obtient 00 1 0l d est libre et a = 0 =b = ¢ et on trouve F_5 = Vect (f4).
0 00 O

Exercice 8. On considére les permutations suivantes:

01:<123456789)<123456789>7
5 71 8 2 6 4 9 3 1 46 5 29387
o2 = (135689)(45678)(32),
o3 = (13)249B1)(56)(@87)(28)(13)
1 23 456 1 2 3 45 6
"4:<531426><316542)
o5 = (1356)(372)(12)
os = (13)(24)(31)(45)(56)(48)
o7 € Sy définie par o7(i) =10 —1¢
o :(12345678)(12345678)(12345678)7
56 78 1 2 3 4 1 76 5 2 8 43 4 3 26 15 87
o9 = (12)(23)(34)(45)(56),
o0 = (2356)(7243)(12)(23)

Déterminer la signature de chacune des permutations.

Solution 8. Dans la série 11, nous avons écrit chacune des permutations comme un produit de cycles disjoints :



o1=(157)(2894)(36),00=(132584679),03=(2784)(56)(13),04,=(254)(36),05=(156)(237),
06=(24856),07=(19)(28)(37)(46),08=(1),00=(123456)eto1p=(1456273).

Maintenant on rappelle du cours qu'un r-cycle (a; ag --- a,) s’écrit comme un produit de r — 1 transpositions.
Donc un r-cycle est pair si r est impair et un r-cycle est impair si r est pair. Donc o1 est paire, o5 est paire, o3 est
impaire, o4 est impaire, o5 est paire, o est paire, o7 est paire, og est paire, og est impaire et o1 est paire.

Exercice 9 (Cet exercice complete une preuve du cours.). Sotent A € Myy,(K) et B € Mpx1(K) et soit encore
L1
X=1": ot T1,...,T, sont des inconnues. On suppose que AX = B posséde une solution y = (y1,...,yn) € K™.

'In
Montrer que l'ensemble des solutions du systéme est {y +x | x € K™ est une solution du systéme AX = 0}.

Y1
Solution 9. Posons Y = | : | tel que AY = B. Prenons (a1,...,a,) € K" une solution du systéeme homogene
Yn
251
AX =0. Posons Z = | : |, donc AZ = 0. Par conséquent A(Y + Z) = AY + AZ = B +0 = B. En particulier
70
Y + Z est une solution du systéme. De plus, si Y’ est une autre solution du systétme AX = B, alors AY' = B = AY,
et donc A(Y' —Y) = B— B =0 et on peut écrire toute solution Y’ tel que Y/ =Y + (Y' —Y), ou Y’ — Y est bien
une solution du systeme homogene.

Exercice 10 (Cet exercice compléte une preuve du cours.). Soient V et W des K -espaces vectoriels et soit p : V x-+-x
V = W wune application m-multilinéaire. Montrer que pour tout 1 < i < m et pour tout vi,...,0i—1,Vig1,--.,0m €V
on a (v1,...,0i-1,0v,0i11,...,0m) = Op.

Solution 10. Soit u € V. On a
80(0171)27 .o 7vi7170V7/Ui+1; ... 7vm) = SO(’U17/027 ey Ui—1,U — U, vi+17’ .- 7vm) =

@(017023 sy Vi1, U (71) CU Vg1 - ,’Um) = @(Ula s Vi1, U Ui 1,5 - - - 7Um) - @(Ula s U1, Uy Vg 1,5 - - - ,'Um) = OW?

ol 'avant-derniere égalité utilise la multilinéarité de .

Exercice 11 (Facultatif). Montrer que A,, = {o € S,, | o est paire} est un sous-groupe de S,. (Ce groupe s’appelle
le groupe alterné de degré n.)

Solution 11. La permutation identité est une permutation paire et donc A,, n’est pas vide. Ensuite, si 0,7 € A,
alors o7 s’écrit aussi comme un produit d’'un nombre paire de permutations et donc o7 € A,,. Sio =1 --- 7, avec m
paire et 7; une transposition pour tout 4, alors 771 = 7,,Tm_1 - - - 71 est aussi une permutation paire. Donc 771 € A4,,,
ce qui complete la preuve.

Alternative: L’ensemble A,, est le noyau de 'application € : S,, — ({1, —1},). Nous avons vu en cours que cette
application est un morphisme de groupes et donc le noyau est un sous-groupe.

Exercice 12. (T) Soit V = C*>(]0, 1[,R) l’espace des fonctions réelles définies sur]0,1[ qui sont infiniment dérivables.
Considérons la transformation linéaire o : V- — V envoyant f € V sur a(f)(z) = zf'(z) pour tout x €]0, 1].

a) Montrer que tout nombre réel A est valeur propre de v en trouvant un vecteur propre fx correspondant.

b) Trouver ensuite tous les vecteurs propres de a.

Indication: Soit gy un autre vecteur propre de v associé a la valeur propre . Considérer (gx/fx) -
Solution 12.  a) Un calcul simple montre que la fonction fy(z) = 2 vérifie 'équation
a(f)(@) =zfi(z) =z -X-2*"1 = X2t = A(x).

Donc A est une valeur propre de « et f) est un vecteur propre associé a .

Notons que si A = 0, f) est la fonction constante f(xz) = 1 pour tout .



b) Soit gx € V un vecteur propre associé & la valeur propre A. Alors il satisfait I’équation
Aga(z) = a(gr)(z) = zg\(z), V = €]0,1].

Comme z €]0,1], fa(z) = 2 ne s’annule jamais. On considere la dérivée de la fonction gy/fx. Alors

(!h(ﬂ)l _ S@h@-p@ @) _ gi@a g (@Arz* !
Ix(z) a(z)? z2X
_ mg&(z)ﬂﬂ)_lzi\gx(r)ﬁ_l _ (IQQ(I)*/\gAA(I))mA_l
_ 0' xr xr

Donc il existe une constante C' € R telle que ?igg = C et gx(r) = Cx*. On obtient que les vecteurs propres

associés a la valeur propre A sont les fonctions Cz* avec C' # 0.




