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Corrigé 12
3 décembre

Notation: Soit p un nombre premier. On note Fp le corps fini à p éléments et écrira simplement a pour ā, pour un
élément ā de Fp.
On fixe un corps K.
On écrira Mn(K) pour Mn×n(K).
Dans cette série et toutes les suivantes, on utilisera les deux notations A ⊂ B et A ⊆ B pour indiquer qu’une partie
A est un sous-ensemble d’une partie B, c’est-à-dire que tout élément de la partie A appartient à la partie B.

L’exercice noté avec (†) est un peu plus difficile.

Exercice 1. Soit a un nombre complexe fixé. On considère les matrices complexes suivantes:

A =


0 5 + 2i −3i 2 + 7i a
0 1 −i 1 0
i 7 + i 6i 3i −4 + i
0 i 0 a 0
0 0 a 2 0

 , B =


0 0 0 5 0 0
2 1 −11 13 0 −3
0 7 0 3 0 0
3 0 8 5 0 4
2 7 4 77 0 2
5 1 6 12 3 1

 .

a) Calculer le déterminant de A en développant par rapport à une ligne ou à une colonne.

b) Refaire a) en utilisant des opérations élémentaires.

c) La matrice A est-elle inversible?

d) Calculer le déterminant de B et celui de B2.

e) Soit p un nombre premier. Si on considère B comme une matrice à coefficients dans le corps fini Fp à p éléments,
pour quels nombres premiers p la matrice B est-elle de rang 6?

Solution 1. a) On constate qu’il n’existe qu’un seul coefficent non nul dans la première colonne de A, donc on
utilise le développement par rapport à la première colonne pour calculer le déterminant de A. Alors

det(A) = A31 · (−1)3+1 · det(A(3|1)) = i · (−1)3+1 · det(A(3|1)) = i · det(A(3|1)).

Notons C := A(3|1) =


5 + 2i −3i 2 + 7i a

1 −i 1 0
i 0 a 0
0 a 2 0

 et constatons qu’il n’existe qu’un seul coefficient non nul

dans la quatrième colonne de C. On utilise le développement par rapport à la quatrième colonne pour calculer
le déterminant de C et on obtient

det(C) = C14 · (−1)1+4 · det(C(1|4)) = −a · det(C(1|4)).

Posons D := C(1|4) =

 1 −i 1
i 0 a
0 a 2

. La règle de Sarrus donne alors

det(D) = 0 + ai+ 0− 0− 2− a2 = −a2 + ia− 2.

Donc det(A) = i det(C) = −i · a det(D) = −i · a(−a2 + ia− 2) = ia(a2 − ia+ 2).

b) On va effectuer des opérations élémentaires sur les lignes de A de manière à obtenir une matrice triangulaire
supérieure. Rappelons que les opérations élémentaires ont les effets suivants sur le déterminant.

Type I : Si on échange deux lignes, le déterminant change de signe.

Type II : Si on multiplie une ligne par un scalaire λ ̸= 0, le déterminant est multiplié par λ, mais on peut éviter
le type II pour le calcul des déterminants.



Type III : Si on ajoute à une ligne un multiple scalaire d’une autre, le déterminant ne change pas.
0 5 + 2i −3i 2 + 7i a
0 1 −i 1 0
i 7 + i 6i 3i −4 + i
0 i 0 a 0
0 0 a 2 0

 T13⇝


i 7 + i 6i 3i −4 + i
0 1 −i 1 0
0 5 + 2i −3i 2 + 7i a
0 i 0 a 0
0 0 a 2 0



L32(−5−2i), L42(−i)
⇝


i 7 + i 6i 3i −4 + i
0 1 −i 1 0
0 0 −2 + 2i −3 + 5i a
0 0 −1 a− i 0
0 0 a 2 0



T34⇝


i 7 + i 6i 3i −4 + i
0 1 −i 1 0
0 0 −1 a− i 0
0 0 −2 + 2i −3 + 5i a
0 0 a 2 0



L43(2i−2), L53(a)
⇝


i 7 + i 6i 3i −4 + i
0 1 −i 1 0
0 0 −1 a− i 0
0 0 0 7i− 1 + 2a(i− 1) a
0 0 0 a2 − ia+ 2 0



T45⇝


i 7 + i 6i 3i −4 + i
0 1 −i 1 0
0 0 −1 a− i 0
0 0 0 a2 − ia+ 2 0
0 0 0 7i− 1 + 2a(i− 1) a

 .

Si a2 − ia+ 2 = 0, il existe une ligne nulle dans la dernière matrice, donc det(A) = 0.

Si a2 − ia+ 2 ̸= 0, alors l’opération L54(
−(7i−1+2a(i−1))

a2−ia+2 ) rend la matrice de la forme suivante

E :=


i 7 + i 6i 3i −4 + i
0 1 −i 1 0
0 0 −1 a− i 0
0 0 0 a2 − ia+ 2 0
0 0 0 0 a


qui devient une matrice triangulaire supérieure. On obtient donc

det(E) = i · 1 · (−1) · (a2 − ia+ 2) · a = −i(a2 − ia+ 2)a,

puisque le déterminant d’une matrice triangulaire supérieure est le produit des coefficients de sa diagonale, et
donc si a2 − ia+ 2 ̸= 0,

det(A) = (−1) · (−1) · (−1) · det(E) = −det(E) = i(a2 − ia+ 2)a,

où dans le terme à droite de la première égalité, le premier facteur −1 (respectivement le deuxième, le troisième)
provient de l’opération T13 (respectivement, T34, T45).

Dans tous les cas, on obtient det(A) = i(a2 − ia+ 2)a.

c) La matrice A est inversible si et seulement si son déterminant est non nul, d’après le deuxième théorème
d’inversibilité. Or, d’après le point a),

det(A) = i(a2 − ia+ 2)a = i(a− 2i)(a+ i)a,

donc on obtient que A est inversible si et seulement si a ̸= 2i,−i, 0.



d) On procède comme dans le point a). Alors

det(B) = B14 · (−1)1+4 · det(B(1|4)) = 5 · (−1)1+4 · det(B(1|4)) = (−5) · det(B(1|4)).

Notons que F := B(1|4) =


2 1 −11 0 −3
0 7 0 0 0
3 0 8 0 4
2 7 4 0 2
5 1 6 3 1

 et constatons qu’il n’existe qu’un seul coefficient non nul

dans la quatrième colonne de F . On utilise le développement par rapport à la quatrière colonne pour calculer le
déterminant de F et on obtient

det(F ) = F54 · (−1)5+4 · det(F (5|4)) = (−3) · det(F (5|4)).

Or, G := F (5|4) =


2 1 −11 −3
0 7 0 0
3 0 8 4
2 7 4 2

. De même, on obtient

det(G) = G22 · (−1)2+2 · det(G(2|2)) = 7 · det(G(2|2)).

Comme G(2|2) =

 2 −11 −3
3 8 4
2 4 2

 et la règle de Sarrus donne det(G(2|2)) = −10, on obtient det(B) =

(−5) · (−3) · 7 · (−10) = −1050.

Le déterminant de B2 est det(B2) = (det(B))2 = (−1050)2 = 1102500.

e) La matrice B est de rang 6 si et seulement si elle est inversible si et seulement si son déterminant est non nul. Le
point d) donne det(B) = −1050 = −2× 3× 52 × 7, et donc ce déterminant est non nul dans Fp si et seulement
si p ̸= 2, 3, 5, 7.

Exercice 2 (Résultat a retenir car très utile dans les calculs de déterminants, en particulier pour calculer un polynôme
caractéristique). Soient A ∈ Mn(K), B ∈ Mn×m(K), C ∈ Mm×n(K) et D ∈ Mm(K). Montrer que

det

(
A B
0 D

)
= det(A) · det(D) = det

(
A 0
C D

)
.

Solution 2. Pour la première égalité, on va effectuer des opérations élémentaires de type I and III pour rendre la
matrice triangulaire supérieure. D’abord on fait des opérations élémentaires de type I et III sur les n premières lignes
pour que A devienne une matrice triangulaire supérieure et notons que ces opérations ne changent pas D. Supposons

que la matrice devienne

(
A′ B′

0 D

)
avec A′ triangulaire supérieure. Ensuite on fait des opérations élémentaires sur les

m dernières lignes de cette dernière matrice pour que D devienne une matrice triangulaire supérieure et on obtient une

matrice de la forme

(
A′ B′

0 D′

)
avec A′ et D′ triangulaires supérieures (Constatons que ces opérations ne changent

pas B′). Cette dernière matrice est donc triangulaire supérieure. Comme le déterminant d’une matrice triangulaire

supérieure est le produit des coefficients de la diagonale, on obtient que det

(
A′ B′

0 D′

)
= det(A′) · det(D′).

Supposons qu’on a utilisé r fois des opérations de type I pour passer de A à A′ et s fois des opérations de type I
pour passer de D à D′. Alors det(A) = (−1)r det(A′) et det(D) = (−1)s det(D′). En plus on a aussi

det

(
A B
0 D

)
= (−1)r det

(
A′ B′

0 D

)
= (−1)r+s det

(
A′ B′

0 D′

)
.

Cela implique que

det

(
A B
0 D

)
= (−1)r+s det

(
A′ B′

0 D′

)
= (−1)r+s det(A′) · det(D′) = det(A) · det(D).

Pour montrer la deuxième égalité de l’exercice, on utilise le fait que le déterminant de la transposée d’une matrice

est égal à celui de la matrice originale. Comme

(
A 0
C D

)t

=

(
At Ct

0 Dt

)
, on obtient

det

(
A 0
C D

)
= det

((
A 0
C D

)t
)

= det

(
At Ct

0 Dt

)
= det(At) · det(Dt) = det(A) · det(D).



Exercice 3. Sachant que

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = 10 , calculer

∣∣∣∣∣∣
4a 4b 4c
g h i

3d+ g 3e+ h 3f + i

∣∣∣∣∣∣ .
Solution 3. ∣∣∣∣∣∣

4a 4b 4c
g h i

3d+ g 3e+ h 3f + i

∣∣∣∣∣∣ = 4 ·

∣∣∣∣∣∣
a b c
g h i

3d+ g 3e+ h 3f + i

∣∣∣∣∣∣ = 4 ·

∣∣∣∣∣∣
a b c
g h i
3d 3e 3f

∣∣∣∣∣∣
= 12 ·

∣∣∣∣∣∣
a b c
g h i
d e f

∣∣∣∣∣∣ = −12 ·

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ = −12 · 10 = −120

Exercice 4. Montrer qu’il n’existe pas de matrice A ∈ M3(R) telle que A2012 + I3 = 0.

Solution 4.
A2012 + I3 = 0 ⇐⇒ A2012 = −I3 =⇒ det(A2012) = det(A)2012 = det(−I3) = −1,

ce qui est impossible, car det(A) ∈ R et donc det(A)2012 ≥ 0.

Exercice 5. Dans chacun des cas suivants, trouver toutes les valeurs propres de la transformations linéaire α : V → V ,
et tous les vecteurs propres associés.

a) V = R2, α(x, y) = (2x+ y, −y).

b) V = R2, α(x, y) = (x+ y, −x+ y).

c) V = C2, α(x, y) = (x+ y, −x+ y).

d) V = M2(R), α

(
a b
c d

)
=

(
c −2d
−a −b

)
.

e) V = F(C, C), α(f)(x) = −xf(x) pour tout x ∈ C.

f) V = C([a, b],R) l’espace des fonctions continues à valeurs réelles définies sur l’intervalle fermé [a, b], α : V →
V , α(f)(x) = −xf(x) pour tout x ∈ [a, b].

Solution 5. a) Soient (x, y) ∈ R2 et λ ∈ R. Si λ est une valeur propre de α et (x, y) un vecteur propre associé à
λ, alors λ · (x, y) = α(x, y) = (2x+ y,−y). Cela est équivalent au système linéaire d’équations suivant:{

2x+ y = λx (1)
−y = λy (2)

.

D’après (2), on a (λ+ 1)y = 0 et donc λ = −1 ou y = 0.

Si λ = −1, alors (2) est toujours valable (et y peut être donc arbitraire). L’équation (1) devient y = −3x. Donc
lorsque λ = −1, les solutions du système sont les vecteurs (x,−3x) avec x ∈ R. On obtient que −1 est une valeur
propre de α et que les vecteurs propres associés à la valeur propre −1 sont les vecteurs (x,−3x) avec x ∈ R et
x ̸= 0.

Si λ ̸= −1, alors y = 0, et (1) devient (λ − 2)x = 0. On sait que x ̸= 0, car sinon, (x, y) = (0, 0) ne serait pas
un vecteur propre. Cela implique que λ = 2 est une valeur propre de α et que les vecteurs propres associés à la
valeur propre 2 sont de la forme (x, 0) avec x ∈ R et x ̸= 0.

En résumé, les valeurs propres de α sont −1 et 2, et les vecteurs propres correspondant à −1 sont les vecteurs
(x,−3x), x ∈ R− {0} et les vecteurs propres correspondant à 2 sont les vecteurs (x, 0), x ∈ R− {0}.



b) Soient (x, y) ∈ R2 et λ ∈ R. Si λ est une valeur propre de α et (x, y) un vecteur propre associé à λ, alors
λ · (x, y) = α(x, y) = (x+ y,−x+ y). Cela est équivalent au système linéaire d’équations suivant:{

x+ y = λx (1)
−x+ y = λy (2)

.

D’après (2), on a x = (−λ+ 1)y (3) et si on remplace x par (−λ+ 1)y dans (1), on obtient

(λ2 − 2λ+ 2)y = 0 (4).

Comme λ ∈ R, λ2 − 2λ + 2 = (λ − 1)2 + 1 > 0 et (4) implique que y = 0. Cependant, (3) donne x = 0. On
n’obtient que la solution nulle pour le système d’équations linéaires et cela contredit l’hypothèse que (x, y) est
un vecteur propre de α. Donc il n’existe pas de valeur propre pour α.

c) Soient (x, y) ∈ C2 et λ ∈ C. Si λ est une valeur propre de α et (x, y) un vecteur propre associé à λ, alors
λ · (x, y) = α(x, y) = (x+ y,−x+ y). Cela est équivalent au système linéaire d’équations suivant:{

x+ y = λx (1)
−x+ y = λy (2)

.

D’après (2), on a x = (−λ+ 1)y (3), et si on remplace x par (−λ+ 1)y dans (1), on obtient

(λ2 − 2λ+ 2)y = 0 (4).

Cela implique λ2 − 2λ+ 2 = 0 ou y = 0.

Si λ2−2λ+2 = 0, c’est-à-dire que λ = 1± i, alors (4) est toujours valable (y peut être arbitraire), et (3) devient
x = ∓iy. Donc lorsque λ = 1 ± i, les solutions du système sont les vecteurs (±iy, y) avec y ∈ R. On en déduit
que 1∓i sont des valeurs propres de α et que les vecteurs propres associés à la valeur propre 1+i (respectivement
1− i) sont de la forme (−iy, y) (respectivement (iy, y)) avec y ∈ R− {0}.
Si λ2−2λ+2 ̸= 0, alors y = 0 et (3) donne x = 0. Mais on a supposé que (x, y) ̸= (0, 0), ceci est une contradiction
et donc λ2 − 2λ+ 2 = 0.

En résumé, les valeurs propres de α sont 1± i, et les vecteurs propres associés à la valeur propre 1 + i (respec-
tivement 1− i) sont de la forme (−iy, y) (respectivement (iy, y)) avec y ∈ R− {0}.
Remarque: En comparant les points b) et c), on observe que l’existence de valeurs propres dépend du corps de
base.

d) Soient A =

(
a b
c d

)
∈ M2(R) et λ ∈ R. Si λ est une valeur propre de α et A un vecteur propre associé à λ,

alors λ ·
(

a b
c d

)
= α(A) =

(
c −2d
−a −b

)
. Cela est équivalent au système linéaire d’équations suivant:


c = λa (1)

−2d = λb (2)
−a = λc (3)
−b = λd (4)

.

D’après (1) et (3), c = λa = −λ2c et donc (λ2 + 1)c = 0. Comme λ ∈ R, λ2 + 1 ̸= 0 et donc c = 0 et on obtient
aussi a = 0 par (3).

D’après (2) et (4), −2d = λb = −λ2d et donc (λ2 − 2)d = 0. Si d = 0, alors (4) donne b = 0 et donc

A =

(
a b
c d

)
= 0 et cela contredit notre hypothèse. Donc d ̸= 0 et λ2 − 2 = 0, on en déduit que λ = ±

√
2, et

(4) donne b = ∓
√
2d. Lorsque λ = ±

√
2, les solutions du système sont les matrices

(
0 ∓

√
2d

0 d

)
, d ∈ R.

On obtient par conséquent que les valeurs propres de α sont ±
√
2, et que les vecteurs propres associés à la valeur

propre
√
2 sont les matrices (

0 −
√
2d

0 d

)



avec d ∈ R− {0}, et ceux associés à −
√
2 sont les matrices(

0
√
2d

0 d

)
avec d ∈ R− {0}.
Remarque: Si le corps de base était C, il y aurait deux autres valeurs propres ±i. On vous encourage à faire
le point d) sur C.

e) Si λ ∈ C est une valeur propre de α et f ∈ F(C,C) un vecteur propre associé à λ, alors pour tout x ∈ C, on
a que −xf(x) = α(f)(x) = λf(x) et donc (x + λ)f(x) = 0 pour tout x ∈ C. Cela signifie que lorsque x ̸= −λ,
f(x) = 0 et f(−λ) peut être un scalaire non nul arbitraire. Donc tout nombre complexe λ est une valeur propre
de α et les vecteurs propres sont les fonctions de C vers lui-même qui ne s’annulent pas en −λ et qui valent zéro
partout ailleurs.

f) Comme dans e), si λ ∈ R est une valeur propre de α et f ∈ C([a, b],R) un vecteur propre associé à λ, alors
f(x) = 0 pour tout x ̸= −λ. Comme f est continue, f(−λ) s’annule aussi. Cela signifie que f est la fonction
identiquement nulle, ce qui est impossible pour un vecteur propre. Donc aucun nombre réel ne peut être une
valeur propre de α.

Remarque: Comparer les points e) et f). Quelle est la différence?

Exercice 6. Soit α : V → V une transformation linéaire d’un K-espace vectoriel V . Soit λ une valeur propre de α.
L’espace propre associé à λ est par définition Eλ = {v ∈ V | α(v) = λv}.

a) Montrer que Eλ est un sous-espace vectoriel de V .

b) Montrer que Eλ = {vecteurs propres correspondant à λ} ∪ {0}.

c) Montrer que Eλ est invariant par α, c’est-à-dire que pour tout w ∈ Eλ on a que α(w) ∈ Eλ.

d) Soit µ une valeur propre de α, différente de λ. Montrer que Eλ ∩ Eµ = {0}.

Solution 6. a) Comme α(0) = 0 = λ · 0, on a 0 ∈ Eλ et cet ensemble n’est pas vide. Soient v, w ∈ Eλ et µ ∈ K.
Alors

α(µv + w) = µα(v) + α(w) = µλv + λw = λ(µv + w),

où on a utilisé la linéarité de α dans la première égalité. Cela montre que µv + w ∈ Eλ et donc Eλ est un
sous-espace vectoriel de V .

b) Pour tout v ∈ Eλ, on a α(v) = λv. Pour que l’égalitée soit respectée, on a alors soit v = 0, soit v ̸= 0 (qui est par
définition un vecteur propre correspondant à la valeur propre λ). Donc Eλ ⊂ {vecteurs propres correspondant
à λ} ∪ {0}.
L’autre inclusion est évidente.

On a montré que Eλ = {vecteurs propres correspondant à λ} ∪ {0}.

c) Pour tout v ∈ Eλ, on a α(v) = λv. D’après le point a), Eλ est un sous-espace vectoriel de V et donc α(v) =
λv ∈ Eλ. On a montré que Eλ est invariant par α.

Une autre méthode consiste à utiliser la définition de Eλ. Pour que α(v) ∈ Eλ, il faut que α(α(v)) = λα(v). Or,
α(α(v)) = α(λv) = λα(v), où on a utilisé la linéarité de α dans la deuxième égalité.

d) Soit v ∈ Eλ ∩Eµ. Alors v ∈ Eλ et v ∈ Eµ. Donc λv = α(v) = µv et on obtient que (λ−µ)v = 0. Comme λ ̸= µ,
cela implique v = 0. Donc Eλ ∩ Eµ = {0}.

Exercice 7. Soit V un R-espace vectoriel avec base ordonnée B = (f1, f2, f3, f4) et soit α ∈ L(V, V ) telle que

(α)BB =


1 2 0 0
1 2 1 0
0 0 0 0
−1 −2 1 −5

 .



(a) Montrer que 2f1 − f2 est un vecteur propre de α et en déduire une valeur propre de α.

(b) Montrer que −5 est une valeur propre de α.

(c) Trouver E0 et E−5.

Solution 7. Posons A = (α)BB .

(a) On a que α(2f1 − f2)B = A ·


2
−1
0
0

 = 0. Cela implique que 0 est une valeur propre de α car f1 et f2 sont

linéairement indépendants et donc 2f1 − f2 ̸= 0V .

(b) On note que α(f4) = −5f4, d’après la dernière colonne de A. Donc f4 est un vecteur propre de valeur propre −5.

(c) On cherche tous v ∈ V tel que α(v) = 0V , donc tout


a
b
c
d

 ∈ M4×1(R) telle que A ·


a
b
c
d

 = 0. On échelonne la

matrice A et on obtient


1 2 0 0
0 0 1 0
0 0 0 1
0 0 0 0

. La deuxieme variable b est libre et les autres sont principales; on trouve

a = −2b, c = 0 et d = 0. Donc dimE0 = 1 et E0 = Vect (2f1−f2). Pour la valeur propre −5, on résout le système

A ·


a
b
c
d

 = −5 ·


a
b
c
d

, qui est équivalent au système (A+ 5I4) ·


a
b
c
d

 = 0. On échelonne la matrice (A+ 5I4) et

on obtient


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

; d est libre et a = 0 = b = c et on trouve E−5 = Vect (f4).

Exercice 8. On considère les permutations suivantes:

σ1 =

(
1 2 3 4 5 6 7 8 9
5 7 1 8 2 6 4 9 3

)(
1 2 3 4 5 6 7 8 9
1 4 6 5 2 9 3 8 7

)
,

σ2 = (1 3 5 6 8 9)(4 5 6 7 8)(3 2),

σ3 = (1 3)(2 4)(3 1)(5 6)(8 7)(2 8)(1 3)

σ4 =

(
1 2 3 4 5 6
5 3 1 4 2 6

)(
1 2 3 4 5 6
3 1 6 5 4 2

)
σ5 = (1 3 5 6)(3 7 2)(1 2)

σ6 = (1 3)(2 4)(3 1)(4 5)(5 6)(4 8)

σ7 ∈ S9 définie par σ7(i) = 10− i

σ8 =

(
1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4

)(
1 2 3 4 5 6 7 8
1 7 6 5 2 8 4 3

)(
1 2 3 4 5 6 7 8
4 3 2 6 1 5 8 7

)
,

σ9 = (1 2)(2 3)(3 4)(4 5)(5 6),

σ10 = (2 3 5 6)(7 2 4 3)(1 2)(2 3)

Déterminer la signature de chacune des permutations.

Solution 8. Dans la série 11, nous avons écrit chacune des permutations comme un produit de cycles disjoints :



σ1 = (1 5 7)(2 8 9 4)(3 6), σ2 = (1 3 2 5 8 4 6 7 9), σ3 = (2 7 8 4)(5 6)(1 3), σ4 = (2 5 4)(3 6), σ5 = (1 5 6)(2 3 7),
σ6 = (2 4 8 5 6), σ7 = (1 9)(2 8)(3 7)(4 6), σ8 = (1), σ9 = (1 2 3 4 5 6) et σ10 = (1 4 5 6 2 7 3).

Maintenant on rappelle du cours qu’un r-cycle (a1 a2 · · · ar) s’écrit comme un produit de r − 1 transpositions.
Donc un r-cycle est pair si r est impair et un r-cycle est impair si r est pair. Donc σ1 est paire, σ2 est paire, σ3 est
impaire, σ4 est impaire, σ5 est paire, σ6 est paire, σ7 est paire, σ8 est paire, σ9 est impaire et σ10 est paire.

Exercice 9 (Cet exercice complète une preuve du cours.). Soient A ∈ Mp×n(K) et B ∈ Mp×1(K) et soit encore

X =

x1

...
xn

 où x1, . . . , xn sont des inconnues. On suppose que AX = B possède une solution y = (y1, . . . , yn) ∈ Kn.

Montrer que l’ensemble des solutions du système est {y + x | x ∈ Kn est une solution du système AX = 0}.

Solution 9. Posons Y =

y1
...
yn

 tel que AY = B. Prenons (α1, . . . , αn) ∈ Kn une solution du système homogène

AX = 0. Posons Z =

α1

...
αn

, donc AZ = 0. Par conséquent A(Y + Z) = AY + AZ = B + 0 = B. En particulier

Y + Z est une solution du système. De plus, si Y ′ est une autre solution du système AX = B, alors AY ′ = B = AY ,
et donc A(Y ′ − Y ) = B − B = 0 et on peut écrire toute solution Y ′ tel que Y ′ = Y + (Y ′ − Y ), où Y ′ − Y est bien
une solution du système homogène.

Exercice 10 (Cet exercice complète une preuve du cours.). Soient V et W des K-espaces vectoriels et soit φ : V ×· · ·×
V → W une application m-multilinéaire. Montrer que pour tout 1 ≤ i ≤ m et pour tout v1, . . . , vi−1,vi+1, . . . , vm ∈ V
on a φ(v1, . . . , vi−1, 0V , vi+1, . . . , vm) = 0W .

Solution 10. Soit u ∈ V . On a

φ(v1, v2, . . . , vi−1, 0V , vi+1, . . . , vm) = φ(v1, v2, . . . , vi−1, u− u, vi+1, . . . , vm) =

φ(v1, v2, . . . , vi−1, u+ (−1) · u, vi+1, . . . , vm) = φ(v1, . . . , vi−1, u, vi+1, . . . , vm)− φ(v1, . . . , vi−1, u, vi+1, . . . , vm) = 0W ,

où l’avant-dernière égalité utilise la multilinéarité de φ.

Exercice 11 (Facultatif). Montrer que An = {σ ∈ Sn | σ est paire} est un sous-groupe de Sn. (Ce groupe s’appelle
le groupe alterné de degré n.)

Solution 11. La permutation identité est une permutation paire et donc An n’est pas vide. Ensuite, si σ, τ ∈ An

alors στ s’écrit aussi comme un produit d’un nombre paire de permutations et donc στ ∈ An. Si σ = τ1 · · · τm avec m
paire et τi une transposition pour tout i, alors τ−1 = τmτm−1 · · · τ1 est aussi une permutation paire. Donc τ−1 ∈ An,
ce qui complète la preuve.

Alternative: L’ensemble An est le noyau de l’application ϵ : Sn → ({1,−1}, ·). Nous avons vu en cours que cette
application est un morphisme de groupes et donc le noyau est un sous-groupe.

Exercice 12. (†) Soit V = C∞(]0, 1[,R) l’espace des fonctions réelles définies sur ]0, 1[ qui sont infiniment dérivables.
Considérons la transformation linéaire α : V → V envoyant f ∈ V sur α(f)(x) = xf ′(x) pour tout x ∈]0, 1[.

a) Montrer que tout nombre réel λ est valeur propre de α en trouvant un vecteur propre fλ correspondant.

b) Trouver ensuite tous les vecteurs propres de α.

Indication: Soit gλ un autre vecteur propre de α associé à la valeur propre λ. Considérer (gλ/fλ)
′.

Solution 12. a) Un calcul simple montre que la fonction fλ(x) = xλ vérifie l’équation

α(fλ)(x) = xf ′
λ(x) = x · λ · xλ−1 = λ · xλ = λfλ(x).

Donc λ est une valeur propre de α et fλ est un vecteur propre associé à λ.

Notons que si λ = 0, fλ est la fonction constante f(x) = 1 pour tout x.



b) Soit gλ ∈ V un vecteur propre associé à la valeur propre λ. Alors il satisfait l’équation

λgλ(x) = α(gλ)(x) = xg′λ(x), ∀ x ∈]0, 1[.

Comme x ∈]0, 1[, fλ(x) = xλ ne s’annule jamais. On considère la dérivée de la fonction gλ/fλ. Alors(
gλ(x)
fλ(x)

)′
=

g′
λ(x)fλ(x)−gλ(x)f

′
λ(x)

fλ(x)2
=

g′
λ(x)x

λ−gλ(x)λx
λ−1

x2λ

=
xg′

λ(x)x
λ−1−λgλ(x)x

λ−1

x2λ =
(xg′

λ(x)−λgλ(x))x
λ−1

x2λ

= 0.

Donc il existe une constante C ∈ R telle que gλ(x)
fλ(x)

= C et gλ(x) = Cxλ. On obtient que les vecteurs propres

associés à la valeur propre λ sont les fonctions Cxλ avec C ̸= 0.


