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Notation: Soit p un nombre premier. On note Fp le corps fini à p éléments et écrira simplement a pour ā, pour un
élément ā de Fp.
On fixe un corps K.
On écrira Mn(K) pour Mn×n(K).
Dans cette série et toutes les suivantes, on utilisera les deux notations A ⊂ B et A ⊆ B pour indiquer qu’une partie
A est un sous-ensemble d’une partie B, c’est-à-dire que tout élément de la partie A appartient à la partie B.

L’exercice noté avec (†) est un peu plus difficile.

Exercice 1. a) Résoudre dans R le système suivant. Déterminer les inconnues libres et les inconnues principales.
Trouver une base échelonnée réduite de l’espace des solutions.

−x− 2y + 4z + 5t = 0
3x+ 2y + 5z − t = 0

8y − 24z − 18t = 0
2x + 9z + 4t = 0.

b) Même question qu’au point a), mais en travaillant sur F5.

Solution 1. a) Ramenons la matrice du système à une forme échelonnée:
−1 −2 4 5
3 2 5 −1
0 8 −24 −18
2 0 9 4

⇝


1 2 −4 −5
3 2 5 −1
0 8 −24 −18
2 0 9 4

⇝


1 2 −4 −5
0 −4 17 14
0 8 −24 −18
0 −4 17 14



⇝


1 2 −4 −5
0 −4 17 14
0 0 10 10
0 0 0 0

⇝


1 2 −4 −5
0 1 −17

4
−14
4

0 0 1 1
0 0 0 0


Les inconnues principales sont x, y et z, et l’inconnue libre t. L’espace des solutions est de dimension 1,

engendré par (
5

2
,−3

4
,−1, 1). Une base échelonnée réduite de l’espace des solutions est ((1,− 3

10 ,−
2
5 ,

2
5 )) (car on

veut obtenir un 1 comme première composante).

b) Sur F5, la forme échelonnée réduite de la matrice du système est

⇝


1 2 −4 0
0 −4 2 4
0 0 0 0
0 0 0 0

⇝


1 2 −4 0
0 1 2 −1
0 0 0 0
0 0 0 0

⇝


1 0 −3 2
0 1 2 −1
0 0 0 0
0 0 0 0


Noter qu’à la première étape de l’échelonnage, nous avons utilisé que −4 = 1 et 4 = −1 dans le corps F5, pour
simplifier par la suite des calculs.

Les inconnues libres sont z et t et les inconnues principales sont x et y. La solution générale est

{(3z − 2t, 3z + t, z, t) | z, t ∈ F5}.

Une base de ce sous-espace vectoriel est {(3, 3, 1, 0), (−2, 1, 0, 1)}.
Une base échelonnée réduite est ((1, 0, 4, 3), (0, 1, 3, 2)).



Exercice 2. Soit a ∈ R un nombre réel fixé. Résoudre le système linéaire suivant. Déterminer les inconnues libres
et les inconnues principales.  3x− y + 4z + t = 1

6x+ y − z + 2t = 5
y + az + 3t = 2.

Solution 2. Ramenons la matrice du système à une forme échelonnée : 3 −1 4 1 1
6 1 −1 2 5
0 1 a 3 2

⇝
 3 −1 4 1 1

0 3 −9 0 3
0 1 a 3 2

⇝
 1 −1

3
4
3

1
3

1
3

0 1 −3 0 1
0 1 a 3 2



⇝

 1 −1
3

4
3

1
3

1
3

0 1 −3 0 1
0 0 a+ 3 3 1

 .

Si a ̸= −3, une forme échelonnée de la matrice des coefficients est

 1 −1
3

4
3

1
3

1
3

0 1 −3 0 1
0 0 1 3

a+3
1

a+3

. Les inconnues

principales sont x, y et z et l’inconnue libre t.
La solution générale du système est alors:
t arbitraire, t ∈ R.
z = 1

a+3 − 3t
a+3

y = 3z + 1 = a+6
a+3 − 9t

a+3

x = 1
3y −

4
3z −

1
3 t+

1
3 = 2a+5

3(a+3) −
at

3(a+3) .

Si a = −3, une forme échelonnée est

 1 −1
3

4
3

1
3

1
3

0 1 −3 0 1
0 0 0 1 1

3

. Les inconnues principales sont x, y et t et

l’inconnue libre z. La solution générale est alors(5
9
, 1 , 0 ,

1

3

)
+ z

(
− 1

3
, 3 , 1 , 0

)
, z ∈ R.

Exercice 3. Soit la matrice inversible

A =


1 −1 1 1
2 2 0 0
0 3 1 3
1
2 − 1

2 − 3
2 −3

 ∈ M4×4(R).

Trouver A−1.

Solution 3. On échelonne la matrice 
1 −1 1 1 1 0 0 0
2 2 0 0 0 1 0 0
0 3 1 3 0 0 1 0
1
2 − 1

2 − 3
2 −3 0 0 0 1

 ,

pour arriver à sa forme échelonnée réduite:
1 0 0 0 3 −2 3 4
0 1 0 0 −3 5

2 −3 −4
0 0 1 0 −12 21

2 −14 −18
0 0 0 1 7 −6 8 10

 .

On peut alors vérifier que

A−1 =


3 −2 3 4
−3 5

2 −3 −4
−12 21

2 −14 −18
7 −6 8 10

 .



Exercice 4. Calculer l’inverse des matrices A et B, où a, b, c, d ∈ R.

A =


0 0 0 1
0 0 1 1
0 1 1 1
1 1 1 1

 B =


0 0 1 0
0 0 0 1
1 0 a b
0 1 c d.


Solution 4.

A−1 =


0 0 −1 1
0 −1 1 0
−1 1 0 0
1 0 0 0

 B−1 =


−a −b 1 0
−c −d 0 1
1 0 0 0
0 1 0 0

 .

Exercice 5. Soit V et W des K-espaces vectoriels et soit T ∈ L(V,W ).

1. Pour un sous-ensemble Y ⊂ W , posons T−1(Y ) = {v ∈ V | T (v) ∈ Y }, c’est l’ensemble des antécédants de
Y par l’application T . Montrer que si Y est un sous-espace vectoriel de W , alors T−1(Y ) est un sous-espace
vectoriel de V .

2. Soient U un K-espace vectoriel et α ∈ L(V,W ), β ∈ L(W,U). Montrer que Ker (β ◦ α) = α−1(Kerβ).

3. Pour α, β comme dans la partie précédente, montrer que si β ◦ α est bijective, alors α est injective et β est
surjective.

4. Montrer que si {v1, . . . , vt} est une famille de vecteurs linéairement indépendants et T est injective, alors
{T (v1), . . . , T (vt)} est aussi une famille de vecteurs linéairement indépendants.

Solution 5. 1. Comme Y est un sous-espace vectoriel, 0 ∈ Y et on sait que T (0) = 0. Donc 0 ∈ T−1(Y ).
Maintenant soient x, y ∈ T−1(Y ) et λ ∈ K. Alors par définition T (x), T (y) ∈ Y . Comme Y est un sous-espace
vectoriel de W , λT (x) + T (y) ∈ Y . Par linéarité de T , on a que T (λx + y) ∈ Y et λx + y ∈ T−1(Y ). Ces
raisonnements démontrent que T−1(Y ) est un sous-espace vectoriel de V .

2. On montre les deux inclusions séparément. D’abord on montre que Ker (β◦α) ⊆ α−1(Kerβ). Soit v ∈ Ker (β◦α).
Donc β(α(v)) = 0 et on a que α(v) ∈ Kerβ. Par définition, v ∈ α−1(Kerβ).

Maintenant on montre l’inclusion α−1(Kerβ) ⊆ Ker (β ◦α). Soit v ∈ α−1(Kerβ). Par définition, α(v) ∈ Ker (β)
et donc β(α(v)) = 0, d’où on a que v ∈ Ker (β ◦ α).

3. On a Ker (β ◦ α) = {0} et comme Ker (α) ⊆ Ker (β ◦ α) on a que α est injective. Aussi on a β(α(V )) = U et
donc β est surjective car Im (β ◦ α) ⊆ Im (β).

4. On suppose que α1T (v1)+ · · ·+αtT (vt) = 0 pour αi ∈ K. Par la linéarité de T on a que T (α1v1+ · · ·+αtvt) = 0
et donc α1v1 + · · ·+ αtvt ∈ KerT . Comme T est injective, son noyau se réduit au vecteur nul et on déduit que
α1v1 + · · ·+ αtvt = 0. Par l’indépendance linéaire des vi, on obtient que αi = 0 pour tout i et ceci montre que
les vecteurs T (v1), . . . , T (vt) sont linéairement indépendants.

Exercice 6. On considère les permutations suivantes:

σ1 =

(
1 2 3 4 5 6 7 8 9
5 7 1 8 2 6 4 9 3

)(
1 2 3 4 5 6 7 8 9
1 4 6 5 2 9 3 8 7

)
,

σ2 = (1 3 5 6 8 9)(4 5 6 7 8)(3 2),

σ3 = (1 3)(2 4)(3 1)(5 6)(8 7)(2 8)(1 3)

σ4 =

(
1 2 3 4 5 6
5 3 1 4 2 6

)(
1 2 3 4 5 6
3 1 6 5 4 2

)
σ5 = (1 3 5 6)(3 7 2)(1 2)

σ6 = (1 3)(2 4)(3 1)(4 5)(5 6)(4 8)

σ7 ∈ S9 définie par σ7(i) = 10− i



σ8 =

(
1 2 3 4 5 6 7 8
5 6 7 8 1 2 3 4

)(
1 2 3 4 5 6 7 8
1 7 6 5 2 8 4 3

)(
1 2 3 4 5 6 7 8
4 3 2 6 1 5 8 7

)
,

σ9 = (1 2)(2 3)(3 4)(4 5)(5 6),

σ10 = (2 3 5 6)(7 2 4 3)(1 2)(2 3)

Ecrire chacune des permutations σi sous forme d’un produit de cycles disjoints.

Solution 6. Rappelons la méthode pour écrire une permutation en un produit de cycles disjoints. Soit σ une
permutation sur un ensemble de n nombres. Prenons le premier nombre, disons x1, et regardons x2 = σ(x1), x3 =
σ(x2), · · · . On continue jusqu’à ce que le cycle se referme, donc on considère le plus petit indice k tel que xk+1 = x1.
Alors (x1 x2 · · · xk) est un cycle qui apparâıt dans la décomposition en produit de cycles disjoints. On prend ensuite
un nombre qui n’apparâıt pas dans ce cycle, s’il y en a un, et on recommence le même processus.

On obtient ici que σ1 = (1 5 7)(2 8 9 4)(3 6), σ2 = (1 3 2 5 8 4 6 7 9) et σ3 = (2 7 8 4)(5 6)(1 3), σ4 = (2 5 4)(3 6),
σ5 = (1 5 6)(2 3 7), σ6 = (2 4 8 5 6), σ7 = (1 9)(2 8)(3 7)(4 6), σ8 = (1), σ9 = (1 2 3 4 5 6) et σ10 = (1 4 5 6 2 7 3).

Exercice 7. (a) Soit H = {σ ∈ Sn | σ(n) = n}. Montrer que H est un sous-groupe de Sn.

(b) Trouver la signature des permutations suivantes :

(1 2 4 5), (1 2)(3 4)(1 2 6), (1 2 3 · · · r),

où r ≥ 2.

Solution 7. Pour la partie (a), on a que (1), la permutation identité, appartient à H, donc H est non vide. Soient
σ, τ ∈ H; on a στ(n) = σ(τ(n)) = σ(n) = n. Donc στ ∈ H. (Ici on écrit στ pour la composition σ ◦ τ .) Aussi comme
σ(n) = n, σ−1(n) = n aussi et par conséquent σ−1 ∈ H. Ces arguments montrent que H est un sous-groupe de Sn.

Pour la partie (b), on peut vérifier que (1 2 4 5) = (1 5)(1 4)(1 2) et donc sa signature est égale à −1.
Pour la deuxième permutation, comme sgn est un homomorphisme de groupe, on a que sgn((1 2)(3 4)(1 2 6)) =
sgn((1 2))sgn((3 4))sgn((1 2 6)) = (−1)(−1)sgn((1 6)(1 2)) = 1. Enfin un r-cycle s’écrit comme un produit de r − 1
transpositions et on a que sgn((1 2 3 · · · r) est égal à 1, si r est impair et à −1 si r est pair.

Exercice 8. Soit V , W et U des K-espaces vectoriels de dimension finie non nuls. Soit α : V → W et β : W → U
des applications K-linéaires. On fixe des bases BV , BW et BU de V , W et U respectivement et on pose A = (α)BW

BV
et

B = (β)BU

BW
.

a) Démontrer que Im (β ◦ α) ⊆ Imβ.

b) Démontrer que rg(BA) ≤ rgB.

c) Démontrer que Kerα ⊆ Ker (β ◦ α).

d) Démontrer que rg(BA) ≤ rgA.

e) Trouver dans chaque cas un exemple où l’inclusion/l’inégalité est stricte.

f) Trouver dans chaque cas un exemple où l’inclusion/l’inégalité est une égalité.

Solution 8. a) Soit z ∈ Im (β ◦α). Donc il existe x ∈ V tel que z = β(α(x)). Comme α(x) ∈ W , on a y ∈ W tel que
z = β(y). Donc z ∈ Imβ. Comme z est arbitraire, on a Im (β ◦ α) ⊆ Imβ.

b) Noter d’abord queBA est la matrice de β◦α par rapport aux basesBV etBU . Ainsi, rg(BA) = rang colonne(BA) =
dim(Im (β ◦ α)) et rg(B) = rang colonne(B) = dim(Imβ). Comme Im (β ◦ α) ⊆ Imβ on a que dim(Im (β ◦ α)) ≤
dim(Imβ).

c) Soit x ∈ Ker (α). Donc α(x) = 0. Comme β est linéaire, β(0) = 0, et on a β(α(x)) = β(0) = 0. Par conséquent
x ∈ Ker (β ◦ α). Comme x ∈ Ker (α) est arbitraire, on a Ker (α) ⊆ Ker (β ◦ α).



d) Le rang de BA est la dimension de l’image de β◦α et le rang de A est la dimension de l’image de α. Par le théorème
du rang dimV = dimKer (β ◦ α) + dim Im (β ◦ α) et dimV = dimKerα + dim Imα. Par c), dimKer (β ◦ α) ≥
dimKerα. Donc dim(Im (β ◦ α)) = dimV − dim(Ker (β ◦ α)) ≤ dimV − dim(Kerα) = dim(Imα).

e) Prenons V = W = U ̸= {0}. Pour (a), prenons α l’application nulle, et β l’application identité. Dans ce cas,
Im (β ◦ α) = 0. Pour une inégalité stricte dans (b) on prend les matrices correspondantes. Pour une inclusion
stricte dans (c), on prend α l’application identité et β = 0. Dans ce cas, Ker (β ◦α) = V . Pour une inégalité stricte
dans (d), prenons B = 0 et A la matrice identité.

f) Si V = W = U et α et β sont bijectives, on a l’égalité des deux images dans (a). Pour (b), on prend les matrices
identités par exemple. Si α et β sont bijectives, alors les deux noyaux sont nuls, ce qui donne une égalité dans (c).
Pour une égalité dans (d), prenons A et B les matrices identités.

Exercice 9. Soit α : C4 → C3 l’application C-linéaire définie par

α(x, y, z, t) = (x− iy + (1 + i)t, 2x− y + iz, y + z + 2it).

a) Trouver une base échelonnée réduite de Im (α) et déterminer sa dimension.

b) Trouver une base de Ker (α) et déterminer sa dimension.

c) Trouver les solutions de α(x, y, z, t) = (−i,−2 + 3i, 3).

Solution 9. a) Il est aisé de voir que la matrice A =

 1 −i 0 1 + i
2 −1 i 0
0 1 1 2i

 est la matrice de cette application

linéaire par rapport aux bases canoniques de C4 et de C3. Rappelons que les colonnes de A sont les composantes
des images des vecteurs de base, qui engendrent Im (α). Pour trouver une base échelonnée réduite de Im (α),
on transpose A, ce qui fait apparâıtre ces générateurs de Im (α) en lignes. On fait alors une suite d’opérations
élémentaires sur les lignes de la transposée de A. Les lignes non nulles de la matrice échelonnée réduite obtenue
forment une base échelonnée réduite de Im (α).

At =


1 2 0
−i −1 1
0 i 1

1 + i 0 2i

 L21(i), L41(−1−i)
⇝


1 2 0
0 −1 + 2i 1
0 i 1
0 −2− 2i 2i



T23, D2(−i)
⇝


1 2 0
0 1 −i
0 −1 + 2i 1
0 −2− 2i 2i

 L12(−2), L32(1−2i), L42(2+2i)
⇝


1 0 2i
0 1 −i
0 0 −1− i
0 0 2


D3(

1
−1−i )
⇝


1 0 2i
0 1 −i
0 0 1
0 0 2

 L13(−2i), L23(i), L43(−2)
⇝


1 0 0
0 1 0
0 0 1
0 0 0

 .

Donc les vecteurs e1, e2, e3 de la base canonique de C3 forment une base échelonnée réduite de Im (α). Par
conséquent, Im (α) = C3 est de dimension 3 et α est surjective.

b) Un vecteur (x, y, z, t) ∈ Ker (α) si et seulement si x − iy + + (1 + i)t = 0
2x − y + iz = 0

y + z + 2it = 0

On doit donc résoudre ce système d’équations linéaires homogène. On pourrait écrire le système d’équations
sous la forme AX = 0 et effectuer des opérations élémentaires sur les lignes de A. Dans la suite, on exprimera
les opérations encore dans le système d’équations linéaires. x − iy + + (1 + i)t = 0

2x − y + iz = 0
y + z + 2it = 0

L21(−2)
⇝

 x − iy + + (1 + i)t = 0
(−1 + 2i)y + iz + (−2− 2i)t = 0

y + z + 2it = 0



T23⇝

 x − iy + + (1 + i)t = 0
y + z + 2it = 0

(−1 + 2i)y + iz + (−2− 2i)t = 0

L32(1−2i), L12(i)
⇝

 x + + iz + (−1 + i)t = 0
y + z + 2it = 0

(1− i)z + 2t = 0

D3(
1

1−i )
⇝

 x + + iz + (−1 + i)t = 0
y + z + 2it = 0

z + (1 + i)t = 0

L23(−1), L13(−i)
⇝

 x = 0
y + + (−1 + i)t = 0

z + (1 + i)t = 0

Donc x, y, z sont les inconnues principales et t est la seule inconnue libre. Les solutions de ce système sont x = 0
y = (1− i)t
z = (−1− i)t

avec t libre.

Donc si on pose t = 1, alors on obtient le vecteur (0, 1 − i,−1 − i, 1) qui forme une base de Ker (α) et Ker (α)
est de dimension 1.

c) Comme α est surjective, on sait qu’il existe (x, y, z, t) tel que α(x, y, z, t) = (−i,−2 + 3i, 3) si et seulement si x − iy + + (1 + i)t = −i
2x − y + iz = −2 + 3i

y + z + 2it = 3

On doit donc résoudre ce système d’équations linéaires non homogènes. On pourrait écrire le système d’équations
sous la forme AX = B et effectuer des opérations élémentaires sur les lignes de A et à la fois de B. Dans la
suite, on exprimera les opérations encore dans le système d’équations linéaires. x − iy + + (1 + i)t = −i

2x − y + iz = −2 + 3i
y + z + 2it = 3

L21(−2)
⇝

 x − iy + + (1 + i)t = −i
(−1 + 2i)y + iz + (−2− 2i)t = −2 + 5i

y + z + 2it = 3

T23⇝

 x − iy + + (1 + i)t = −i
y + z + 2it = 3

(−1 + 2i)y + iz + (−2− 2i)t = −2 + 5i

L32(1−2i), L12(i)
⇝

 x + + iz + (1 + i)t = 2i
y + z + 2it = 3

(1− i)z + 2t = 1− i

D3(
1

1−i )
⇝

 x + + iz + (1 + i)t = 2i
y + z + 2it = 3

z + (1 + i)t = 1

L23(−1), L13(−i)
⇝

 x = i
y + + (−1 + i)t = 2

z + (1 + i)t = 1

Les solutions de ce système sont

 x = i
y = (1− i)t+ 2
z = (−1− i)t+ 1

avec t libre. Donc si on pose t = 0, alors on obtient

le vecteur (i, 2, 1, 0) qui est une solution particulière de ce système non homogène. Les solutions de ce système
sont donc Ker (α) + (i, 2, 1, 0) = {a(0, 1− i,−1− i, 1) + (i, 2, 1, 0) | a ∈ C}.

Exercice 10. (†) Soient A,B ∈ Mn(K) des matrices triangulaires inférieures. Montrer que AB est triangulaire
inférieure. Montrer aussi que si A est inversible alors A−1 est aussi triangulaire inférieure.



Solution 10. On a que Aij = 0 = Bij si i < j. On calcule (AB)rs =
∑n

k=1 ArkBks. On veut voir que (AB)rs = 0 si
r < s.

Comme Ark = 0 si r < k on a (AB)rs =
∑r

k=1 ArkBks. Si r < s, dans la somme on a les termes avec k ≤ r < s et
pour ces indices Bks = 0. Ceci montre que (AB)rs = 0 si r < s.

Soit A triangulaire inférieure, inversible. Comme A est inversible si et seulement si det(A) ̸= 0, les composantes Aii

sont non nulles. On sait de plus qu’il existe une suite d’opérations élémentaires sur les lignes de A qui la réduisent à la
matrice identité. Il existe des matrices élémentaires E1, . . . , Et correspondantes telles que E1 · · ·EtA = In. Comme A
est déjà sous forme triangulaire inférieure, les opérations nécessaires dans cette réduction sont seulement de la forme
Lrs(λ) où r > s, ou bien de la forme Dr(λ). (C’est-à-dire il suffit d’additionner les multiples des lignes “en haut” aux
lignes “en bas”, ou bien de multiplier les lignes par des scalaires non nuls, pour réduire A à la matrice identité.) Donc
chacune des matrices Ei est triangulaire inférieure et par la première partie du problème le produit E1 · · ·Et est aussi
triangulaire inférieure, et cette dernière matrice E1 · · ·Et est égale à A−1.
Remarque: Ces énoncés sont aussi valables en remplaçant “inférieure” par “supérieure”. On peut utiliser les propriétés
de la transposée pour le montrer.


