Algeébre linéaire avancée I, Section de Physique automne 2024 Prof. Donna Testerman

Corrigé 10
19 novembre

Notation: Soit p un nombre premier. On note F, le corps fini & p éléments et écrira simplement a pour @, pour un
élément a de IF,,.

On fixe un corps K.

On écrira M, (K) pour M, . (K).

le symbole 5, le Kronecker delta, désigne le nombre naturel 0 si r # s et le nombre naturel 1 si r = s.

Dans cette série et toutes les suivantes, on utilisera les deux notations A C B et A C B pour indiquer qu’une partie
A est un sous-ensemble d’une partie B, c’est-a-dire que tout élément de la partie A appartient a la partie B.

A cette série, vous pouvez rendre pour correction I'exercice 6. Il faut le donner & un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 26 novembre.

Les exercices notés avec () sont plus difficiles, mais un bon entrainement pour utiliser la théorie du cours.

Exercice 1. Echelonner les matrices suivantes pour obtenir une matrice ligne équivalente et sous une forme échelonnée
réduite, et noter les opérations €lémentaires effectuées a chaque étape de calcul:

o 1 -2 2

2 -1 4 -3
1) A= 4 1 6 -4 € Myxa(R),

2 2 -6 5

2 2 0 1 3

31 2 -1 1
JB=1101 6 2 |Mo®

2 30 1 -2

1 1 0 -3 4 1

-3 2 0 -3 2 -3
V=14 3 2 2 o 5 |EMixs(R):

2 -1 -1 4 -1 0

Solution 1. On présente a chaque fois une suite d’opérations élémentaires possible pour arriver a la matrice échelonnée
réduite, mais cette suite d’opérations n’est pas unique. Cependant, la matrice échelonnée réduite est unique.

On effectue souvent des échanges de lignes pour simplifier, lorsque c’est possible : cela nous permet d’avoir un 1
comme pivot sans faire apparaitre trop de fractions.

Pour la matrice A, on effectue les opérations suivantes :

0 1 -2 2 2 -1 4 -3 2 -1 4 -3
2 -1 4 =3|m0 1 =2 2 a0 1 —2 2
L1 6 4] 4 1 6 -4 T lo 1 -2 2
2 2 -6 5 2 2 —6 5 2 2 -6 5
9 -1 4 9 -1 4 -3 20 2 -1
La@ |01 =2 2 Lo [0 1 =2 2 | e [001 —2 2
01 -2 2| ocn|0 0 0 o0 00 0 0
0 1 -2 2 00 0 0 00 0 0

1o 1 -1

i lo 1 —2 2

— 00 0 0

00 0 0

Pour la matrice B, on obtient :
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Exercice 2. Dans chaque cas, trouver une base échelonnée réduite du sous-espace vectoriel W de K™.
a) K=R,n=5 et W = Vect ((1,-3,2,0,1), (1,1,6,4,1), (4,—6,14,3,4)).
b)) K=C,n=4 et W = Vect ((1,2’,—2’,4), (—1,2,0,1 —14), (3,2+ 31,2 — 44,4 — 2i)).
¢) K=Fs,n=3et W =Vect ((1,1,1), (0,2,4), (3,0,2), (0,1,4), (4,1,2)).

Solution 2. Pour obtenir une base échelonnée réduite du sous-espace vectoriel W, on met les coefficients de chaque
vecteur de la famille génératrice dans une ligne d’une matrice et on fait une suite d’opérations élémentaires sur les
lignes de cette matrice pour obtenir une matrice échelonnée réduite. Les lignes non nulles de cette matrice échelonnée
réduite forment une base échelonnée réduite du sous-espace vectoriel W.

a)

1 -3 2 0 1 1 -3 2 0 1 9 -3 2 0 1
101 6 4 1 | POy oy g g g | PGP 1 110
4 -6 14 3 4 0 6 6 3 0 2 210
105 3 1 1050 1
Pr@®), Lol (g g g g | BB Ba(D DGy g
000 -1 0 00010
Donc les vecteurs (1,0,5,0,1),(0,1,1,0,0) et (0,0,0,1,0) forment une base échelonnée réduite de W.
b)
1 i —i 4 , 1 i —i 4
—i 2 01— |POEC o 1 1 g | PO
3 2+3i 2—4i 4-—2i 0 2 2—i —8—2i
1 0 -2 7—i pay (L0 72 T Ny (100 27415
01 1 1+3i 2700 01 1+3 13150, 52 0 1 0 —7+13i
0 0 —i —10—28i 0 0

1
1 8—10¢ 0 0 1 8-—10¢
Donc les vecteurs (1,0,0,27+15¢), (0,1,0, —7+13¢) et (0,0, 1,8—107) forment une base échelonnée réduite de W.

c)

11 1 1 1 1 1 1 1
0 2 4 Lar(3), Dox() 0 2 Dac3) 0 1 2
3.0 2 | T 0 -3 -1 | %70 =3 -1
0 1 4 0 1 4 0 1 4
4 1 2 0 -3 -2 0 -3 -2
11 1 1 0 —1
01 2 01 2
Lg,2(3)7 L42«/(~.>_1)' L52(3) 0 0 0 Ts5, le(«:)l)’ D3(4) 0 0 1
0 0 2 00 2
0 0 4 00 0

1 00

L13(1), L23(;2), Ly3(—2)) 8 (1) (1) 7
0 0 0
0 0 0

ol on a utilisé des égalités comme 2-3 = 1 € F5 etc. Donc les vecteurs ey, ez, e3 de la base canonique de K3
forment une base échelonnée réduite de W, par conséquent, W = K3.

Exercice 3. Trouver une base du sous-espace vectoriel

~ 11 0) (2 2 14d\ (-1 —1 i\ (i-5 i-5 —2—i
W_VeCt((o 1 41)’(1 4+ 4)’(1 i 3)’(1 -8 8 >)CM2X3(C)'

Ensuite compléter cette base en une base de l’espace May3(C).



Solution 3. On écrit les matrices par rapport & la base ordonnée (E11, E12, E13, E21, E22, Eag) de May3(C), et on
place les coordonnées dans les lignes d’une matrice 4 x 6, une ligne par matrice:

1 1 0 0 1 4q
2 2 141 1 447 —4
-1 -1 1 1 1 3

1—5 1—5H —-2—3 -1 =8 8

Ensuite on cherche la forme échelonnée réduite de cette matrice comme dans les deux exercices précédents, et on
trouve

110 0 10
001 010
000110
0 0 0 001

o 1 10 0 0 1 0 0 0 0 0 0 .
On déduit que une base de W est ((0 1 O) , (0 1 0) , (1 1 0) , (0 0 1)) et pour la compléter en

une base de Myy3(C), on rajoute les échelons “manquants” & la matrice échelonnée réduite, soit les deux matri-
cos 0 10 ot 0 0O
0 0O 0 1 0)°

Exercice 4. Soit o : C* — C? application C-linéaire définie par

a(z,y,z,t) = (x+ (2+1)z, 3z +iy+ (T+4i)z+ (=14+0)t, y+ (1 —i)z+ (a+0)t)
avec a € R un nombre réel fizé.
a) Trouver une base échelonnée réduite de Im (o).
b) Quel est le rang de a?

¢) Quelle est la dimension de Ker (a) ¢

Solution 4.  a) Par définition, la matrice de o par rapport aux bases canoniques de C* et de C? est la matrice
1 0 2+ 0
A= 3 ¢ 7T+4 —1+1 . Rappelons que les colonnes de A sont les composantes des images des vecteurs

01 1—34 a+1
de base, qui engendrent Im («). Pour trouver une base échelonnée réduite de Im («), on transpose A, ce qui fait
apparaitre ces générateurs de Im («) en lignes. On fait alors une suite d’opérations élémentaires sur les lignes de
la transposée de A. Les lignes non nulles de la matrice échelonnée réduite obtenue forment une base échelonnée
réduite de Im («).

1 3 0 1 3 0
At . 0 7 1 L31(—2—£Z; Dy (—1) 0 1 —1
241 T+4i 1—1 0 1+¢ 1—3
0 147 a+1 0 —1+7 a4+
1 3 0 1 3 0
L32(*1*Q;L42(1*i) 0 1 — T34 01 —2
0 0 0 0 0 a—1
0 0 a—-1 0 0 0

Si a # 1, on peut multiplier la 3éme ligne par (a—1)~! et on obtient que les vecteurs vy = (1,3,0), v2 = (0,1, —i)
et v3 = (0,0,1) forment une base échelonnée de Im (). Par conséquent, Im («) est de dimension 3 et donc une
base échelonnée réduite est ((1,0,0), (0,1,0),(0,0,1)).

Si a = 1, il ne reste que 2 lignes non nulles et on obtient que les vecteurs v; = (1,0, 37) et vy = (0,1, —i) forment
une base échelonnée réduite de Im («). Par conséquent, Im (o) est de dimension 2 si a = 1.

b) Le rang de « est la dimension de Im (), donc 3sia # 1, et 2si a = 1.

c¢) Par le théoreme du rang, dim Ker (a) = dim(C*) — dim Im («). Sia # 1, on trouve 4 —3 = 1. Sia = 1, on trouve
4—-2=2.



a—b+c a+b+d

Exercice 5. Soit ¢ : C* — Myyo(C) Uapplication linéaire définie par ¢(a,b,c,d) = < % —ib  ib+etd

une base de Im ().

) . Trouver

Solution 5. Oun sait que Im (¢) est engendré par {¢(e1), d(e2), d(es), p(es)}, ou (e1,ea,e3,€4) est la base canonique
de C*.

On trouve ¢(e;) = G (1)) bles) = (j 1) (es) = ((1) ‘1)) ot d(es) = (8 D

On écrit ces 4 matrices comme des vecteurs lignes par rapport a la base (E11, E12, Ea1, E22) de M3(C), dans les
lignes d’une matrice A :

1 1 2 0
-1 1 — 3
A= 1 0 0 1
0 1 0 1

1 0 0 1
010 1
k= 0 01 -1
0 0 0 O

Ensuite, on pose les matrices correspondant aux lignes de R pour trouver une base de Im (¢), notamment :

((6 1)@ ) G 5)

Noter que pour trouver une base, une forme seulement échelonnée de la matrice suffirait.

Exercice 6 (Cet exercice compléte la preuve du 5.3.11 des notes du cours.). Soit V et W deux K -espaces vectoriels
de dimension finie et ¢ € L(V,W). Soit By, Bw des bases ordonnées de V et W, respectivement. Montrer que ¢ est

bijective si et seulement si (¢)’§§V est une matrice inversible.

Solution 6. Supposons d’abord que ¢ est bijective. Par un corollaire du théoreme du rang, on a que dim V' = dim W
notons cette dimension par n. Donc (¢>)§;V € M, (K). De plus, il existe une application inverse ¢ : W — V, c’est-a-dire
une application linéaire ¢ : W — V telle que ¢p oy =idw et vo ¢ =idy.

Donc I, = (id W)gx =(¢o w)gx = ((b)g;‘/ (¢)g“}’v et pareil dans autre sens, ce qui montre que (@53/ est inversible

(avec inverse (1)) g‘v/v ).

w

Maintenant, on suppose que (qﬁ)gv est inversible; en particulier, c’est une matrice carrée et donc dimV = dim W.

On pose B = ((qﬁ)gy)_l. Soit © : L(W,V) — M, (K) Papplication linéaire bijective associée aux choix de bases

By, By; ¢’est-a-dire que ©(«) = (a)g‘v/v, pour a € L(W, V). Par la surjectivité de ©, il existe une application linéaire
. _ ) NI By _

Y : W — V avec ©(¢y) = B, cest-a-dire que (¢)p;, = B.

On a donc ()3 (9)5Y = I, et (¢)jW ()3 = I,. Par conséquent (¢ o9)5V = I, et (¥ o @)}V = I, Par

la correspondance bijective entre L(V,V) et M, (K) et entre L(W, W) et M,(K), on déduit que ¢ o+ = idy et
1o ¢ =1idy ce qui montre que ¢ est bijective.

Exercice 7 (Cet exercice complete la preuve des propriétés des matrices élémentaires). Soit A € M,,»,(K). On
Ay
As

note A; la i-éme ligne de A et donc on écrit A =

An



(a) Démontrer que

Ay

Az

_ Arfl

pour 1 <r <n, et A€ K, onaD,.(N)A= \A

-

Ar-{—l

Ay,
Ar
As

(b) Démontrer que pour 1 < r;s < m, r <s, on a T,sA = © |, c’est-a-dire que T, A est la matrice obtenue a

Ay
Ap,

partir de la matrice A en echangeant les lignes A, et As.

Solution 7. (a) On a D,(\) = Y0 E¢s + (A — 1)E,, dott (D,(NA)i; = (X EssA)ij + (A = 1)EA);j =
Yo > (Bes)inArj + (N = 1) > (Err)ikAgj. Comme (Eq,);, # 0 seulement si k = s, la premieére double
somme devient Y o_, (Ess)isAsj. De méme, comme (E,;);;, # 0 seulement si k = r, la deuxiéme somme est égale
a (/\ - 1)(51‘7«147,]‘. On a

A sii#r
(Dr(MA)ij =9 4 ! _ L
it A=1A; =XA,; sii=r
Losi{i, g} ={rs}
(b) On considere la composante (k, ) de la matrice T;,sA. On rappelle du cours que (T;5);j =<1 sii=j¢& {r,s}.
0 sinon
On a
Ape sik=m¢ {r s}
Ay sik=retm=s

Ay sim=retk=s

(TrsA)ké = Z (Trs)kmAmé =

m=1
0 sinon.

On déduit que la k-éme ligne de la matrice T,;A est la ligne Ay, si k & {r, s}, la r-éme ligne de la matrice T,;A
est la ligne Ay, et la s-eme ligne de la matrice T;.;A4 est A,. L’énoncé est ainsi vérifié.

Exercice 8. { Unicité des systémes échelonnés réduits. Dans K™, on considére deux systemes de vecteurs
“échelonnés réduits” (vi,va,...,vp) et (Wi, we,...,wy,), c’est-a-dire, si A est la matrice p x n dont la i-éme ligne est
v;, alors A est échelonnée réduite. Pareil pour le deuziéme ensemble de vecteurs (wn,...,wp) (avec matrice associée
B). Soient ji,...,j, les échelons de A (si bien que vyy1 = ... =v, =0 sir < p) et soient k1,...,ks les échelons de
B (si bien que w1 = ... =w, =0si s <p).

On suppose que Vect (v1,...,v,.) = Vect (wy,...,ws) et on veut démontrer que les deux systémes sont égauz.

a) Montrer que r = s.
b) Montrer que v, = w, et que j, =k, et en déduire que v; = w; et que j; = k; pour tout 1 < i <r.

Solution 8. a) Les vecteurs non nuls d’un systéme de vecteurs échelonné réduit sont linéairement indépendants,
donc
dim(Vect (v1, v, ...,v,)) =7 et dim(Vect (wy, wa, ..., ws)) = s.

Mais comme par hypothese on a Vect (v1,...,v,) = Vect (w1, ..., ws), il s’ensuit que r = s.



b) Pour 1 < k < r, on pose V}, = Vect (v1,...,vg) et Wi = Vect (w1, ..., wg). Quitte & échanger les deux systémes,
on peut supposer que j, < k.. Alors la premiere composante non nulle de w, est a la k.-éme place et elle
vaut 1. Mais comme w, € V, (car V, = Wy par hypotheése et le fait que r = s), w, = Z:Zl A;v; est une

combinaison linéaire de vy, ...,v,.. Comme les premiéres composantes de w, sont nulles jusqu’a la k.-eme place,
on obtient Ay = ... = A\._1 = 0 et on doit avoir de plus j, = k. et A\, = 1 (car w, # 0 et les systémes
de vecteurs sont échelonnés réduits). Il s’ensuit que w, = v,. En notant S, = Vect (v,), nous obtenons

Vi=Ve1® S, =W,_1 @S5, = W,. On montre maintenant que V;._1 = W,_;. (Attention, & ce stade nous
ne pouvons pas immédiatement déduire que V,._; = Wr,l.l) Soit i < r;onawv; € V=W,._1+ 85, et donc
v; = Z;;i Bjw; + apvy, pour B, € K. Mais o, = 0 car (v, v2,...,0,) est un systéme échelonnée réduite.
Donc v; € W,._1. Un argument similaire montre que w; € V;._1 pour tout ¢ < r. Donc on a V,_1 = W,_;. On
répete ce méme processus sur V,._1 et W,._q, puis sur V,._o et W,._5 et ainsi de suite pour obtenir v; = w; et
ji = k; pour tout 1 <i¢ <.

Exercice 9 (Résultat a retenir). Soit A € My wm(K). Soit C; lai-éme colonne de A et posons W = Vect (C1,...,Cp,) C
K", Soit j1 < jo < --- < jr les échelons dans la forme échelonnée réduite de A. Montrer que les colonnes
C;,,C; Cj, forment une base de W.

J1r g2y
(Notez que ce résultat peut étre utilisé pour trouver une base de l'image d’une application linéaire aprés avoir
échelonné la matrice de Uapplication.)

Solution 9. Soit ¢ : K™ — K™ une application linéaire dont la matrice par rapport aux bases canoniques est la
matrice A. Soit P € M, (K) une matrice inversible telle que PA soit échelonnée réduite. (P est le produit des matrices
élémentaires utilisées dans I’échelonnage de A.) Soit ¢ : K™ — K™ D'application linéaire bijective dont la matrice est
P.

Comme PA est échelonnée réduite avec échelons j; < jo < -+ < j,, les colonnes correspondantes de PA sont
linéairement indépendantes; c’est-a-dire, (1) 0 ¢)(ej,), (Yo P)(ej,), ..., (¥ o d)(ej,) sont linéairement indépendants. De
plus, comme 1) est bijective, ¢(ej, ), d(ej,), ..., P(e;,) sont aussi linéairement indépendants. Mais ce sont précisément
les colonnes Cj,,Cj,,...,Cj . Enfin on a que rang(A) = dim W =r, et donc Cj,,...,Cj, forment une base de W.

Exercice 10 (Facultatif). Soit K un corps. Dans la série 9, exercice 8, on vous a demandé de démontrer qu’une
matrice A € M, (K) est scalaire si et seulement si A commute avec toutes les matrices de M, (K).

Ici on propose une solution “non matricielle”, avec indications, de limplication “si A commute avec toutes les
matrices alors A est une matrice scalaire”.

Soit V.= K", avec base canonique C = (e1,...,e,). Soit maintenant ¢ € L(V,V) telle que ($)& = A; une telle
application ¢ existe par la bijectivité de application © : L(V,V) — M, (K). Comme AB = BA pour tout B € M,,(K),
on a que ¢ o = 1p o ¢ pour tout Y € L(V,V) (de nouveau par la bijectivité de © et le fait que © est un morphisme
d’anneauz).

(a) Montrer que pour ¢, comme ci-dessus, ¢(ker)) C ker .

(b) Posons ¢; € LV, V) Uapplication linéaire telle que ¥;(e;) = (1 — d;5)e;. Montrer que ker();) = Vect (e;).

(¢) Déduire a partir de (a) et (b) qu’il existe o; € K tel que ¢(e;) = ae; pour 1 < i < n et par conséquent A est une
matrice diagonale. (Donc il reste 4 montrer que oy = a; pour tout i,j.)

(d) Soient1 <i# j<mn etsoit;; € LIV,V) Uapplication linéaire telle que 0;;(er) = dine; + 0jxei, donc 0;;(e;) = e;,
0i;(ej) =e; et O;(er) =0 st k & {i,j}. Montrer que ¢ o 6;; = 6;; o ¢ implique que a; = ;.

Solution 10. (a) Soit v € ker#). On a ¥ (¢(v)) = ¢(¥(v)) = #(0) = 0. Donc ¢(v) € ker ).

(b) D’abord on note que v;(e;) = 0. Soit v = > ;- aje; € kervp;. Alors 0 = ¥;(v) = >0, ahi(er) = g ar(l —
di)er = Z;l:l’l# are;. Donc v € ker4); si et seulement si a; = 0 pour tout ! # i, d’ou ker(w;) = Vect (e;).

(c) Par (a) et (b) on déduit que ¢(e;) € Vect (e;) pour tout ¢ et par conséquent il existe o; € K tels que ¢(e;) = aue;
pour tout 1 <7 < n et A est une matrice diagonale.

(d) Maintenant on utilise le fait que ¢ o 0;; = 6;; o ¢ pour montrer que a; = «; pour tout i, j.
On a ¢(0;5(e;)) = dlej) = aje; et 0;5(d(e;)) = 055(cvies) = cye;. On déduit que a; = ;. (Nous avons utilisé
plusieurs fois que (e, ..., e,) est une base.)

IPensez & R? = Vect ((1,0)) @ Vect ((0,1)) = Vect ((1,0)) & Vect ((1,1)).



