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Notation: Soit p un nombre premier. On note Fp le corps fini à p éléments et écrira simplement a pour ā, pour un
élément ā de Fp.
On fixe un corps K.
On écrira Mn(K) pour Mn×n(K).
le symbole δrs, le Kronecker delta, désigne le nombre naturel 0 si r ̸= s et le nombre naturel 1 si r = s.
Dans cette série et toutes les suivantes, on utilisera les deux notations A ⊂ B et A ⊆ B pour indiquer qu’une partie
A est un sous-ensemble d’une partie B, c’est-à-dire que tout élément de la partie A appartient à la partie B.

A cette série, vous pouvez rendre pour correction l’exercice 6. Il faut le donner à un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 26 novembre.

Les exercices notés avec (†) sont plus difficiles, mais un bon entrainement pour utiliser la théorie du cours.

Exercice 1. Échelonner les matrices suivantes pour obtenir une matrice ligne équivalente et sous une forme échelonnée
réduite, et noter les opérations élémentaires effectuées à chaque étape de calcul:

1) A =


0 1 −2 2
2 −1 4 −3
4 −1 6 −4
−2 2 −6 5

 ∈M4×4(R),

2) B =


2 2 0 1 3
3 1 2 −1 1
1 0 1 −6 2
2 3 0 1 −2

 ∈M4×5(R),

3) C =


1 1 0 −3 4 1
−3 2 0 −3 2 −3
4 3 −2 2 0 5
2 −1 −1 4 −1 0

 ∈M4×6(R).

Solution 1. On présente à chaque fois une suite d’opérations élémentaires possible pour arriver à la matrice échelonnée
réduite, mais cette suite d’opérations n’est pas unique. Cependant, la matrice échelonnée réduite est unique.

On effectue souvent des échanges de lignes pour simplifier, lorsque c’est possible : cela nous permet d’avoir un 1
comme pivot sans faire apparâıtre trop de fractions.

Pour la matrice A, on effectue les opérations suivantes :
0 1 −2 2
2 −1 4 −3
4 −1 6 −4
−2 2 −6 5

 T12−→


2 −1 4 −3
0 1 −2 2
4 −1 6 −4
−2 2 −6 5

 L31(−2)−→


2 −1 4 −3
0 1 −2 2
0 1 −2 2
−2 2 −6 5


L41(1)−→


2 −1 4 −3
0 1 −2 2
0 1 −2 2
0 1 −2 2

 L32(−1),−→
L42(−1)


2 −1 4 −3
0 1 −2 2
0 0 0 0
0 0 0 0

 L12(1)−→


2 0 2 −1
0 1 −2 2
0 0 0 0
0 0 0 0


D1(

1
2 )−→


1 0 1 − 1

2
0 1 −2 2
0 0 0 0
0 0 0 0

 .

Pour la matrice B, on obtient :




2 2 0 1 3
3 1 2 −1 1
1 0 1 −6 2
2 3 0 1 −2

 T13−→


1 0 1 −6 2
3 1 2 −1 1
2 2 0 1 3
2 3 0 1 −2

 L21(−3),−→
L31(−2),

L41(−2)


1 0 1 −6 2
0 1 −1 17 −5
0 2 −2 13 −1
0 3 −2 13 −6


L32(−2),−→
L42(−3)


1 0 1 −6 2
0 1 −1 17 −5
0 0 0 −21 9
0 0 1 −38 9

 T34−→


1 0 1 −6 2
0 1 −1 17 −5
0 0 1 −38 9
0 0 0 −21 9


D4(− 1

21 )−→


1 0 1 −6 2
0 1 −1 17 −5
0 0 1 −38 9
0 0 0 1 − 3

7

 L34(38)−→


1 0 1 −6 2
0 1 −1 17 −5
0 0 1 0 − 51

7
0 0 0 1 − 3

7


L23(1)−→


1 0 1 −6 2
0 1 0 17 − 86

7
0 0 1 0 − 51

7
0 0 0 1 − 3

7

 L24(−17)−→


1 0 1 −6 2
0 1 0 0 −5
0 0 1 0 − 51

7
0 0 0 1 − 3

7


L13(−1)−→


1 0 0 −6 65

7
0 1 0 0 −5
0 0 1 0 − 51

7
0 0 0 1 − 3

7

 L14(6)−→


1 0 0 0 47

7
0 1 0 0 −5
0 0 1 0 − 51

7
0 0 0 1 − 3

7

 .

Enfin, on fait de même pour la matrice C, et on a la suite d’opérations suivantes :
1 1 0 −3 4 1
−3 2 0 −3 2 −3
4 3 −2 2 0 5
2 −1 −1 4 −1 0

 L21(3),−→
L31(−4),

L41(−2)


1 1 0 −3 4 1
0 5 0 −12 14 0
0 −1 −2 14 −16 1
0 −3 −1 10 −9 −2


T23−→


1 1 0 −3 4 1
0 −1 −2 14 −16 1
0 5 0 −12 14 0
0 −3 −1 10 −9 −2

 D2(−1)−→


1 1 0 −3 4 1
0 1 2 −14 16 −1
0 5 0 −12 14 0
0 −3 −1 10 −9 −2


L32(−5),−→
L42(3)


1 1 0 −3 4 1
0 1 2 −14 16 −1
0 0 −10 58 −66 5
0 0 5 −32 39 −5

 T34−→


1 1 0 −3 4 1
0 1 2 −14 16 −1
0 0 5 −32 39 −5
0 0 −10 58 −66 5


L43(2)−→


1 1 0 −3 4 1
0 1 2 −14 16 −1
0 0 5 −32 39 −5
0 0 0 −6 12 −5

 D4(− 1
6 )−→


1 1 0 −3 4 1
0 1 2 −14 16 −1
0 0 5 −32 39 −5
0 0 0 1 −2 5

6


L34(32)−→


1 1 0 −3 4 1
0 1 2 −14 16 −1
0 0 5 0 −25 65

3
0 0 0 1 −2 5

6

 D3(
1
5 )−→


1 1 0 −3 4 1
0 1 2 −14 16 −1
0 0 1 0 −5 13

3
0 0 0 1 −2 5

6


L24(14)−→


1 1 0 −3 4 1
0 1 2 0 −12 32

3
0 0 1 0 −5 13

3
0 0 0 1 −2 5

6

 L23(−2)−→


1 1 0 −3 4 1
0 1 0 0 −2 2
0 0 1 0 −5 13

3
0 0 0 1 −2 5

6


L14(3)−→


1 1 0 0 −2 7

2
0 1 0 0 −2 2
0 0 1 0 −5 13

3
0 0 0 1 −2 5

6

 L12(−1)−→


1 0 0 0 0 3

2
0 1 0 0 −2 2
0 0 1 0 −5 13

3
0 0 0 1 −2 5

6

 .



Exercice 2. Dans chaque cas, trouver une base échelonnée réduite du sous-espace vectoriel W de Kn.

a) K = R, n = 5 et W = Vect
(
(1,−3, 2, 0, 1), (1, 1, 6, 4, 1), (4,−6, 14, 3, 4)

)
.

b) K = C, n = 4 et W = Vect
(
(1, i,−i, 4), (−i, 2, 0, 1− i), (3, 2 + 3i, 2− 4i, 4− 2i)

)
.

c) K = F5, n = 3 et W = Vect
(
(1, 1, 1), (0, 2, 4), (3, 0, 2), (0, 1, 4), (4, 1, 2)

)
.

Solution 2. Pour obtenir une base échelonnée réduite du sous-espace vectoriel W , on met les coefficients de chaque
vecteur de la famille génératrice dans une ligne d’une matrice et on fait une suite d’opérations élémentaires sur les
lignes de cette matrice pour obtenir une matrice échelonnée réduite. Les lignes non nulles de cette matrice échelonnée
réduite forment une base échelonnée réduite du sous-espace vectoriel W .

a)  1 −3 2 0 1
1 1 6 4 1
4 −6 14 3 4

 L21(−1), L31(−4)
⇝

 1 −3 2 0 1
0 4 4 4 0
0 6 6 3 0

 D2(
1
4 ), D3(

1
3 )⇝

 1 −3 2 0 1
0 1 1 1 0
0 2 2 1 0


L12(3), L32(−2)

⇝

 1 0 5 3 1
0 1 1 1 0
0 0 0 −1 0

 L13(3), L23(1), D3(−1)
⇝

 1 0 5 0 1
0 1 1 0 0
0 0 0 1 0

 .

Donc les vecteurs (1, 0, 5, 0, 1), (0, 1, 1, 0, 0) et (0, 0, 0, 1, 0) forment une base échelonnée réduite de W .

b)  1 i −i 4
−i 2 0 1− i
3 2 + 3i 2− 4i 4− 2i

 L21(i), L31(−3)
⇝

 1 i −i 4
0 1 1 1 + 3i
0 2 2− i −8− 2i

 L32(−2), L12(−i)
⇝

 1 0 −2i 7− i
0 1 1 1 + 3i
0 0 −i −10− 8i

 D3(i)
⇝

 1 0 −2i 7− i
0 1 1 1 + 3i
0 0 1 8− 10i

 L13(2i), L23(−1)
⇝

 1 0 0 27 + 15i
0 1 0 −7 + 13i
0 0 1 8− 10i

 .

Donc les vecteurs (1, 0, 0, 27+15i), (0, 1, 0,−7+13i) et (0, 0, 1, 8−10i) forment une base échelonnée réduite deW .

c) 
1 1 1
0 2 4
3 0 2
0 1 4
4 1 2

 L31(−3), L51(−4)
⇝


1 1 1
0 2 4
0 −3 −1
0 1 4
0 −3 −2

 D2(3)
⇝


1 1 1
0 1 2
0 −3 −1
0 1 4
0 −3 −2



L32(3), L42(−1). L52(3)
⇝


1 1 1
0 1 2
0 0 0
0 0 2
0 0 4

 T35, L12(−1), D3(4)
⇝


1 0 −1
0 1 2
0 0 1
0 0 2
0 0 0



L13(1), L23(−2), L43(−2))
⇝


1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

 ,

où on a utilisé des égalités comme 2 · 3 = 1 ∈ F5 etc. Donc les vecteurs e1, e2, e3 de la base canonique de K3

forment une base échelonnée réduite de W , par conséquent, W = K3.

Exercice 3. Trouver une base du sous-espace vectoriel

W = Vect (

(
1 1 0
0 1 4i

)
,

(
2 2 1 + i
1 4 + i −4

)
,

(
−1 −1 i
1 i 3

)
,

(
i− 5 i− 5 −2− i
−1 −8 8

)
) ⊂M2×3(C).

Ensuite compléter cette base en une base de l’espace M2×3(C).



Solution 3. On écrit les matrices par rapport à la base ordonnée (E11, E12, E13, E21, E22, E23) de M2×3(C), et on
place les coordonnées dans les lignes d’une matrice 4× 6, une ligne par matrice:

1 1 0 0 1 4i
2 2 1 + i 1 4 + i −4
−1 −1 i 1 i 3
i− 5 i− 5 −2− i −1 −8 8

 .

Ensuite on cherche la forme échelonnée réduite de cette matrice comme dans les deux exercices précédents, et on
trouve 

1 1 0 0 1 0
0 0 1 0 1 0
0 0 0 1 1 0
0 0 0 0 0 1

 .

On déduit que une base de W est

((
1 1 0
0 1 0

)
,

(
0 0 1
0 1 0

)
,

(
0 0 0
1 1 0

)
,

(
0 0 0
0 0 1

))
et pour la compléter en

une base de M2×3(C), on rajoute les échelons “manquants” à la matrice échelonnée réduite, soit les deux matri-

ces

(
0 1 0
0 0 0

)
et

(
0 0 0
0 1 0

)
.

Exercice 4. Soit α : C4 → C3 l’application C-linéaire définie par

α(x, y, z, t) = (x+ (2 + i)z, 3x+ iy + (7 + 4i)z + (−1 + i)t, y + (1− i)z + (a+ i)t)

avec a ∈ R un nombre réel fixé.

a) Trouver une base échelonnée réduite de Im (α).

b) Quel est le rang de α?

c) Quelle est la dimension de Ker (α)?

Solution 4. a) Par définition, la matrice de α par rapport aux bases canoniques de C4 et de C3 est la matrice

A =

 1 0 2 + i 0
3 i 7 + 4i −1 + i
0 1 1− i a+ i

 . Rappelons que les colonnes de A sont les composantes des images des vecteurs

de base, qui engendrent Im (α). Pour trouver une base échelonnée réduite de Im (α), on transpose A, ce qui fait
apparâıtre ces générateurs de Im (α) en lignes. On fait alors une suite d’opérations élémentaires sur les lignes de
la transposée de A. Les lignes non nulles de la matrice échelonnée réduite obtenue forment une base échelonnée
réduite de Im (α).

At =


1 3 0
0 i 1

2 + i 7 + 4i 1− i
0 −1 + i a+ i

 L31(−2−i), D2(−i)
⇝


1 3 0
0 1 −i
0 1 + i 1− i
0 −1 + i a+ i



L32(−1−i), L42(1−i)
⇝


1 3 0
0 1 −i
0 0 0
0 0 a−1

 T34⇝


1 3 0
0 1 −i
0 0 a−1
0 0 0


Si a ̸= 1, on peut multiplier la 3ème ligne par (a−1)−1 et on obtient que les vecteurs v1 = (1, 3, 0), v2 = (0, 1,−i)
et v3 = (0, 0, 1) forment une base échelonnée de Im (α). Par conséquent, Im (α) est de dimension 3 et donc une
base échelonnée réduite est ((1, 0, 0), (0, 1, 0), (0, 0, 1)).

Si a = 1, il ne reste que 2 lignes non nulles et on obtient que les vecteurs v1 = (1, 0, 3i) et v2 = (0, 1,−i) forment
une base échelonnée réduite de Im (α). Par conséquent, Im (α) est de dimension 2 si a = 1.

b) Le rang de α est la dimension de Im (α), donc 3 si a ̸= 1, et 2 si a = 1.

c) Par le théorème du rang, dimKer (α) = dim(C4)−dim Im (α). Si a ̸= 1, on trouve 4−3 = 1. Si a = 1, on trouve
4− 2 = 2.



Exercice 5. Soit ϕ : C4 →M2×2(C) l’application linéaire définie par ϕ(a, b, c, d) =

(
a− b+ c a+ b+ d
2a− ib ib+ c+ d

)
. Trouver

une base de Im (ϕ).

Solution 5. On sait que Im (ϕ) est engendré par {ϕ(e1), ϕ(e2), ϕ(e3), ϕ(e4)}, où (e1, e2, e3, e4) est la base canonique
de C4.

On trouve ϕ(e1) =

(
1 1
2 0

)
, ϕ(e2) =

(
−1 1
−i i

)
, ϕ(e3) =

(
1 0
0 1

)
, et ϕ(e4) =

(
0 1
0 1

)
.

On écrit ces 4 matrices comme des vecteurs lignes par rapport à la base (E11, E12, E21, E22) de M2(C), dans les
lignes d’une matrice A :

A =


1 1 2 0
−1 1 −i i
1 0 0 1
0 1 0 1

 .

On échelonne la matrice et on trouve que sa forme échelonnée réduite est

R =


1 0 0 1
0 1 0 1
0 0 1 −1
0 0 0 0

 .

Ensuite, on pose les matrices correspondant aux lignes de R pour trouver une base de Im (ϕ), notamment :((
1 0
0 1

)
,

(
0 1
0 1

)
,

(
0 0
1 −1

))
.

Noter que pour trouver une base, une forme seulement échelonnée de la matrice suffirait.

Exercice 6 (Cet exercice complète la preuve du 5.3.11 des notes du cours.). Soit V et W deux K-espaces vectoriels
de dimension finie et ϕ ∈ L(V,W ). Soit BV , BW des bases ordonnées de V et W , respectivement. Montrer que ϕ est
bijective si et seulement si (ϕ)BW

BV
est une matrice inversible.

Solution 6. Supposons d’abord que ϕ est bijective. Par un corollaire du théorème du rang, on a que dimV = dimW ;
notons cette dimension par n. Donc (ϕ)BW

BV
∈Mn(K). De plus, il existe une application inverse ψ :W → V , c’est-à-dire

une application linéaire ψ :W → V telle que ϕ ◦ ψ = idW et ψ ◦ ϕ = id V .

Donc In = (idW )BW

BW
= (ϕ ◦ ψ)BW

BW
= (ϕ)BW

BV
(ψ)BV

BW
et pareil dans l’autre sens, ce qui montre que (ϕ)BW

BV
est inversible

(avec inverse (ψ)BV

BW
).

Maintenant, on suppose que (ϕ)BW

BV
est inversible; en particulier, c’est une matrice carrée et donc dimV = dimW .

On pose B = ((ϕ)BW

BV
)−1. Soit Θ : L(W,V ) → Mn(K) l’application linéaire bijective associée aux choix de bases

BW , BV ; c’est-à-dire que Θ(α) = (α)BV

BW
, pour α ∈ L(W,V ). Par la surjectivité de Θ, il existe une application linéaire

ψ :W → V avec Θ(ψ) = B, c’est-à-dire que (ψ)BV

BW
= B.

On a donc (ψ)BV

BW
(ϕ)BW

BV
= In et (ϕ)BW

BV
(ψ)BV

BW
= In. Par conséquent (ϕ ◦ ψ)BW

BW
= In et (ψ ◦ ϕ)BV

BV
= In Par

la correspondance bijective entre L(V, V ) et Mn(K) et entre L(W,W ) et Mn(K), on déduit que ϕ ◦ ψ = idW et
ψ ◦ ϕ = id V ce qui montre que ϕ est bijective.

Exercice 7 (Cet exercice complète la preuve des propriétés des matrices élémentaires). Soit A ∈ Mn×p(K). On

note Ai la i-ème ligne de A et donc on écrit A =


A1

A2

...
An

.



(a) Démontrer que

pour 1 ≤ r ≤ n, et λ ∈ K, on a Dr(λ)A =



A1

A2

...
Ar−1

λAr

Ar+1

...
An


.

(b) Démontrer que pour 1 ≤ r, s ≤ n, r < s, on a TrsA =



A1

...
As

...
Ar

...
An


, c’est-à-dire que TrsA est la matrice obtenue à

partir de la matrice A en echangeant les lignes Ar et As.

Solution 7. (a) On a Dr(λ) =
∑n

s=1Ess + (λ − 1)Err, d’où (Dr(λ)A)ij = (
∑n

s=1EssA)ij + ((λ − 1)ErrA)ij =∑n
s=1

∑n
k=1(Ess)ikAkj + (λ − 1)

∑n
k=1(Err)ikAkj . Comme (Ess)ik ̸= 0 seulement si k = s, la première double

somme devient
∑n

s=1(Ess)isAsj . De même, comme (Err)ik ̸= 0 seulement si k = r, la deuxième somme est égale
à (λ− 1)δirArj . On a

(Dr(λ)A)ij =

{
Aij si i ̸= r

Arj + (λ− 1)Arj = λArj si i = r
.

(b) On considère la composante (k, ℓ) de la matrice TrsA. On rappelle du cours que (Trs)ij =


1 si {i, j} = {r, s}
1 si i = j ̸∈ {r, s}
0 sinon

.

On a

(TrsA)kℓ =

n∑
m=1

(Trs)kmAmℓ =


Akℓ si k = m ̸∈ {r, s}
Asℓ si k = r et m = s

Arℓ si m = r et k = s

0 sinon.

On déduit que la k-ème ligne de la matrice TrsA est la ligne Ak, si k ̸∈ {r, s}, la r-ème ligne de la matrice TrsA
est la ligne As, et la s-ème ligne de la matrice TrsA est Ar. L’énoncé est ainsi vérifié.

Exercice 8. † Unicité des systèmes échelonnés réduits. Dans Kn, on considère deux systèmes de vecteurs
“échelonnés réduits” (v1, v2, . . . , vp) et (w1, w2, . . . , wp), c’est-à-dire, si A est la matrice p× n dont la i-ème ligne est
vi, alors A est échelonnée réduite. Pareil pour le deuxième ensemble de vecteurs (w1, . . . , wp) (avec matrice associée
B). Soient j1, . . . , jr les échelons de A (si bien que vr+1 = . . . = vp = 0 si r < p) et soient k1, . . . , ks les échelons de
B (si bien que ws+1 = . . . = wp = 0 si s < p).

On suppose que Vect (v1, . . . , vr) = Vect (w1, . . . , ws) et on veut démontrer que les deux systèmes sont égaux.

a) Montrer que r = s.

b) Montrer que vr = wr et que jr = kr et en déduire que vi = wi et que ji = ki pour tout 1 ≤ i ≤ r.

Solution 8. a) Les vecteurs non nuls d’un système de vecteurs échelonné réduit sont linéairement indépendants,
donc

dim(Vect (v1, v2, . . . , vr)) = r et dim(Vect (w1, w2, . . . , ws)) = s.

Mais comme par hypothèse on a Vect (v1, . . . , vr) = Vect (w1, . . . , ws), il s’ensuit que r = s.



b) Pour 1 ≤ k ≤ r, on pose Vk = Vect (v1, . . . , vk) et Wk = Vect (w1, . . . , wk). Quitte à échanger les deux systèmes,
on peut supposer que jr ≤ kr. Alors la première composante non nulle de wr est à la kr-ème place et elle
vaut 1. Mais comme wr ∈ Vr (car Vr = Ws par hypothèse et le fait que r = s), wr =

∑r
i=1 λivi est une

combinaison linéaire de v1, . . . , vr. Comme les premières composantes de wr sont nulles jusqu’à la kr-ème place,
on obtient λ1 = . . . = λr−1 = 0 et on doit avoir de plus jr = kr et λr = 1 (car wr ̸= 0 et les systèmes
de vecteurs sont échelonnés réduits). Il s’ensuit que wr = vr. En notant Sr = Vect (vr), nous obtenons
Vr = Vr−1 ⊕ Sr = Wr−1 ⊕ Sr = Wr. On montre maintenant que Vr−1 = Wr−1. (Attention, à ce stade nous
ne pouvons pas immédiatement déduire que Vr−1 = Wr−1.

1) Soit i < r; on a vi ∈ V = Wr−1 + Sr et donc

vi =
∑r−1

j=1 βjwj + αrvr, pour βj , αr ∈ K. Mais αr = 0 car (v1, v2, . . . , vr) est un système échelonnée réduite.
Donc vi ∈ Wr−1. Un argument similaire montre que wi ∈ Vr−1 pour tout i < r. Donc on a Vr−1 = Wr−1. On
répète ce même processus sur Vr−1 et Wr−1, puis sur Vr−2 et Wr−2 et ainsi de suite pour obtenir vi = wi et
ji = ki pour tout 1 ≤ i ≤ r.

Exercice 9 (Résultat à retenir). Soit A ∈Mn×m(K). Soit Ci la i-ème colonne de A et posonsW = Vect (C1, . . . , Cm) ⊂
Kn. Soit j1 < j2 < · · · < jr les échelons dans la forme échelonnée réduite de A. Montrer que les colonnes
Cj1 , Cj2 , . . . , Cjr forment une base de W .

(Notez que ce résultat peut être utilisé pour trouver une base de l’image d’une application linéaire après avoir
échelonné la matrice de l’application.)

Solution 9. Soit ϕ : Km → Kn une application linéaire dont la matrice par rapport aux bases canoniques est la
matrice A. Soit P ∈Mn(K) une matrice inversible telle que PA soit échelonnée réduite. (P est le produit des matrices
élémentaires utilisées dans l’échelonnage de A.) Soit ψ : Kn → Kn l’application linéaire bijective dont la matrice est
P .

Comme PA est échelonnée réduite avec échelons j1 < j2 < · · · < jr, les colonnes correspondantes de PA sont
linéairement indépendantes; c’est-à-dire, (ψ ◦ ϕ)(ej1), (ψ ◦ ϕ)(ej2), . . . , (ψ ◦ ϕ)(ejr ) sont linéairement indépendants. De
plus, comme ψ est bijective, ϕ(ej1), ϕ(ej2), . . . , ϕ(ejr ) sont aussi linéairement indépendants. Mais ce sont précisément
les colonnes Cj1 , Cj2 , . . . , Cjr . Enfin on a que rang(A) = dimW = r, et donc Cj1 , . . . , Cjr forment une base de W .

Exercice 10 (Facultatif). Soit K un corps. Dans la série 9, exercice 8, on vous a demandé de démontrer qu’une
matrice A ∈Mn(K) est scalaire si et seulement si A commute avec toutes les matrices de Mn(K).

Ici on propose une solution “non matricielle”, avec indications, de l’implication “si A commute avec toutes les
matrices alors A est une matrice scalaire”.

Soit V = Kn, avec base canonique C = (e1, . . . , en). Soit maintenant ϕ ∈ L(V, V ) telle que (ϕ)CC = A; une telle
application ϕ existe par la bijectivité de l’application Θ : L(V, V ) →Mn(K). Comme AB = BA pour tout B ∈Mn(K),
on a que ϕ ◦ ψ = ψ ◦ ϕ pour tout ψ ∈ L(V, V ) (de nouveau par la bijectivité de Θ et le fait que Θ est un morphisme
d’anneaux).

(a) Montrer que pour ϕ, ψ comme ci-dessus, ϕ(kerψ) ⊆ kerψ.

(b) Posons ψi ∈ L(V, V ) l’application linéaire telle que ψi(ej) = (1− δij)ej. Montrer que ker(ψi) = Vect (ei).

(c) Déduire à partir de (a) et (b) qu’il existe αi ∈ K tel que ϕ(ei) = αiei pour 1 ≤ i ≤ n et par conséquent A est une
matrice diagonale. (Donc il reste à montrer que αi = αj pour tout i, j.)

(d) Soient 1 ≤ i ̸= j ≤ n et soit θij ∈ L(V, V ) l’application linéaire telle que θij(ek) = δikej + δjkei, donc θij(ei) = ej,
θij(ej) = ei et θij(ek) = 0 si k ̸∈ {i, j}. Montrer que ϕ ◦ θij = θij ◦ ϕ implique que αi = αj.

Solution 10. (a) Soit v ∈ kerψ. On a ψ(ϕ(v)) = ϕ(ψ(v)) = ϕ(0) = 0. Donc ϕ(v) ∈ kerψ.

(b) D’abord on note que ψi(ei) = 0. Soit v =
∑n

l=1 alel ∈ kerψi. Alors 0 = ψi(v) =
∑n

l=1 alψi(el) =
∑n

l=1 al(1 −
δil)el =

∑n
l=1,l ̸=i alel. Donc v ∈ kerψi si et seulement si al = 0 pour tout l ̸= i, d’où ker(ψi) = Vect (ei).

(c) Par (a) et (b) on déduit que ϕ(ei) ∈ Vect (ei) pour tout i et par conséquent il existe αi ∈ K tels que ϕ(ei) = αiei
pour tout 1 ≤ i ≤ n et A est une matrice diagonale.

(d) Maintenant on utilise le fait que ϕ ◦ θij = θij ◦ ϕ pour montrer que αi = αj pour tout i, j.

On a ϕ(θij(ei)) = ϕ(ej) = αjej et θij(ϕ(ei)) = θij(αiei) = αiej . On déduit que αi = αj . (Nous avons utilisé
plusieurs fois que (e1, . . . , en) est une base.)

1Pensez à R2 = Vect ((1, 0))⊕Vect ((0, 1)) = Vect ((1, 0))⊕Vect ((1, 1)).


