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A cette série, vous pouvez rendre pour correction l’exercice 3. Il faut le donner à un des assistants de votre salle
d’exercices au plus tard lors de la séance d’exercices du 24 septembre.

Dans cette série et toutes les suivantes, on utilisera les deux notations A ⊂ B et A ⊆ B pour indiquer qu’une partie
A est un sous-ensemble d’une partie B, c’est-à-dire que tout élément de la partie A appartient à la partie B.

Exercice 1. Les ensembles suivants sont-ils stables pour la loi de composition indiquée? Justifier votre réponse.

a) A = {n ∈ Z | ∃k ∈ Z tel que n = 3k} pour la multiplication usuelle.

b) B = {n ∈ Z | ∃k ∈ Z tel que n = 3k + 1} pour la multiplication usuelle.

c) C = {n ∈ Z | ∃k ∈ Z tel que n = 3k + 2} pour la multiplication usuelle.

d) D = {(x, y) ∈ R2 | 2x = 3y} pour la loi de composition (x, y) + (a, b) = (x+ a, y + b) sur R2.

Solution 1. a) Oui. Soient n,m ∈ A. Alors il existe k, l ∈ Z tels que n = 3k, m = 3l. On a donc n ·m = 3k · 3l =
3(3kl), qui appartient à A.

b) Oui. Soient n,m ∈ B. Alors il existe k, l ∈ Z tels que n = 3k+1, m = 3l+1. On a donc n·m = (3k+1)·(3l+1) =
9kl + 3k + 3l + 1 = 3(3kl + k + l) + 1, qui appartient à B.

c) Non. Soient n,m ∈ C. Alors il existe k, l ∈ Z tels que n = 3k+2, m = 3l+2. On a donc n·m = (3k+2)·(3l+2) =
9kl + 6k + 6l + 4 = 3(3kl + 2k + 2l + 1) + 1, qui n’appartient pas à C.

d) Oui. Soient (x, y), (a, b) ∈ D. Alors 2x = 3y et 2a = 3b. On a donc 2(x+a) = 3(y+ b) et donc (x+a, y+ b) ∈ D.

Exercice 2. Soit Aff(R) = {θa,b | a, b ∈ R, a ̸= 0}, le groupe d’applications affines de R vu en cours. (On rappelle
que pour x ∈ R, θa,b(x) = ax+ b et la loi de composition est la composition d’applications.) Compléter la vérification
que Aff(R) est un groupe. Montrer que Aff(R) est non abélien.

Solution 2. On vérifie que pour a, r ∈ R\{0} et b, s ∈ R, θa,b◦θr,s = θar,as+b et comme ar ∈ R\{0}, θar,as+b ∈ Aff(R).
La loi de composition étant la composition d’applications, elle est associative.

Comme θ1,0(x) = x pour tout x ∈ R, cette application est l’application identité sur R, et satisfait à θ1,0◦f = f = f ◦
θ1,0 pour toute application f : R → R. Donc Aff(R) possède un élément neutre. Enfin, pour que θa,b ◦θr,s(x) = x pour
tout x ∈ R, il suffit et il faut que ar = 1 et as+b = 0. On pose r = 1

a et s = − b
a et on trouve θa,b◦θr,s = θ1,0 = θr,s◦θa,b.

Par conséquent θr,s = θ−1
a,b est un élément de Aff(R) et tout élément de Aff(R) possède un inverse, ce qui termine la

démonstration que Aff(R) est un groupe.
Pour le dernier énoncé, on peut noter que θ2,3 ◦ θ2,−3 = θ4,−3 et θ2,−3 ◦ θ2,3 = θ4,3, ce qui montre que Aff(R) est

non abélien.

Exercice 3. Soit (G, ∗) un groupe. Fixons a ∈ G et définissons l’application Ta : G → G (une translation) par
Ta(g) = a ∗ g, pour tout g ∈ G. Montrer que Ta est une application bijective, c’est-à-dire surjective et injective.

Solution 3. On montre d’abord que Ta est injective; supposons Ta(x) = Ta(y) pour x, y ∈ G. On a alors a ∗x = a ∗ y
et en multipliant à gauche par a−1, l’inverse de a, on obtient

a−1 ∗ (a ∗ x) = a−1 ∗ (a ∗ y) =⇒ (a−1 ∗ a) ∗ x = (a−1 ∗ a) ∗ y

=⇒ e ∗ x = e ∗ y =⇒ x = y.

Donc Ta est injective.
Maintenant montrons que Ta est surjective. Soit g ∈ G. On note que a−1 ∗ g ∈ G et Ta(a

−1 ∗ g) = a ∗ (a−1 ∗ g) =
(a ∗ a−1) ∗ g = e ∗ g = g. Donc Ta est surjective.



Exercice 4. Montrer que si n > 2, alors le groupe symétrique Sn n’est pas abélien.

Solution 4. On considère (par exemple) les deux permutations σ, τ ∈ Sn:

σ =

(
1 2 3 · · · n
2 1 3 · · · n

)
and τ =

(
1 2 3 · · · n
1 3 2 · · · n

)
.

On vérifie que στ =

(
1 2 3 · · · n
2 3 1 · · · n

)
et τσ =

(
1 2 3 · · · n
3 1 2 · · · n

)
.

Exercice 5. Soit Z/6Z l’ensemble des entiers modulo 6. Pour a ∈ Z on notera par ā ∈ Z/6Z la classe d’équivalence
de a modulo 6. On définit une loi de composition ∗ sur Z/6Z par ā ∗ b̄ = ab, pour tout a, b ∈ Z. (Ici ab est le produit
usuel de a et b dans Z.) On admet que la loi de composition ∗ est bien définie et associative.

(a) Déterminer si (Z/6Z, ∗) est un groupe.

(b) Trouver toutes les solutions de l’équation x ∗ x+ x = 0̄ pour x ∈ Z/6Z.

Solution 5. (a) Il existe un élément neutre pour ∗, notamment 1̄. Mais les éléments 0̄, 2̄, 3̄, 4̄ ne possèdent pas
d’élément inverse par rapport à la loi ∗. Donc ∗ ne munit pas l’ensemble Z/6Z d’une structure de groupe.

(b) On teste les 6 éléments 0̄, 1̄, 2̄, . . . , 5̄ de Z/6Z et on trouve que 0̄, 2̄, 3̄, 5̄ satisfont à l’égalité et que 1̄ et 4̄ ne la
satisfont pas.

Exercice 6 (Cet exercice complète quelques preuves du cours.). Soient (G, ∗) un groupe et a, a1, . . . , at ∈ G, avec
inverses respectifs a−1, a−1

1 , . . . , a−1
t .

(a) Montrer que l’inverse de a est unique.

(b) Montrer que l’inverse de a1 ∗ · · · ∗ at est égal à (a−1
t ∗ · · · ∗ a−1

1 ).

(c) Montrer que l’inverse de a−1 est égal à a.

Solution 6. (a) Supposons que a possède deux inverses: a∗ et a′. Nous avons montré en cours que les inverses sont
les inverses à gauche et à droite, ce qui permet de simplifier à gauche et à droite. Ainsi on a

a∗ ∗ a = a′ ∗ a =⇒ a∗ = a′.

(b) On a (a1 ∗ · · · ∗at) ∗ (a−1
t ∗ · · · ∗a−1

1 ) = a1 ∗ · · · ∗ (at ∗a−1
t ) ∗ · · · ∗a1 = a1 ∗ · · · ∗ (at−1 ∗a−1

t−1) ∗ · · · ∗a1, et on continue

ainsi pour obtenir l’élément neutre de G. C’est aussi vrai pour (a−1
t ∗ · · · ∗ a−1

1 ) ∗ (a1 ∗ · · · ∗ at).

(c) On a a−1 ∗ a = e = a−1 ∗ (a−1)−1; la première égalité provient du fait que a−1 est l’inverse à gauche de a
et la deuxième du fait que (a−1)−1 est l’inverse à droite de a−1. La simplification à gauche montre alors que
a = (a−1)−1.

Exercice 7 (Facultatif). Soient (G1, ∗) et (G2, ◦) des groupes. On munit le produit cartésien G1 × G2 d’une loi de
composition · comme suit

· : (G1 ×G2)× (G1 ×G2) → G1 ×G2, (a, b) · (c, d) = (a ∗ c, b ◦ d), pour a, c ∈ G1, b, d ∈ G2.

Montrer que (G1 ×G2, ·) est un groupe.

Solution 7. La loi · est bien une loi de composition sur G1 × G2, car pour a, b ∈ G1, x, y ∈ G2, on a a ∗ b ∈ G1 et
x ◦ y ∈ G2. Pour a, b, c ∈ G1, x, y, z ∈ G2, (a, x) · ((b, y) · (c, z)) = (a, x) · (b ∗ c, y ◦ z) = (a ∗ (b ∗ c), x ◦ (y ◦ z)) =
((a ∗ b) ∗ c, (x ◦ y) ◦ z) = (a ∗ b, x ◦ y) · (c, z) = ((a, x) · (b, y)) · (c, z). La troisième égalité est vérifiée car ∗ et ◦ sont des
lois associatives. La loi · est donc associative.

Ensuite si ei est l’élément neutre de Gi pour i = 1, 2, on vérifie que pour tout xi ∈ Gi, i = 1, 2, on a (e1, e2) ·
(x1, x2) = (x1, x2) = (x1, x2) · (e1, e2) et (e1, e2) est un élément neutre dans G1 ×G2. Enfin, pour xi comme ci-dessus,
soit x−1

i l’inverse de xi dans Gi. Donc (x−1
1 , x−1

2 ) · (x1, x2) = (x−1
1 ∗ x1, x

−1
2 ◦ x2) = (e1, e2), ce qui montre l’existence

des inverses à gauche, et de façon similaire (x−1
1 , x−1

2 ) est l’inverse à droite de (x1, x2).



Exercice 8 (Cet exercice est fastidieux et facultatif, mais vous donnerait encore un exercice de vérification des axiomes
d’un groupe). Soit S1 le cercle unité dans R2, i.e. S1 = {(x, y) ∈ R2 | x2 + y2 = 1}. On définit la loi de composition
∗ sur R2 par

(a, b) ∗ (c, d) = (ac− bd, ad+ bc)

pour a, b, c, d ∈ R.

a) Montrer que ceci définit une loi de composition associative et commutative sur R2.

b) Montrer que S1 est stable pour ∗.

c) Trouver des expressions pour l’élément neutre, et pour l’inverse d’un élément quelconque (a, b) ∈ S1.

d) Montrer que (S1, ∗) est un groupe. Est-il commutatif?

Solution 8. a) Soient (a, b), (c, d), (d, e) ∈ R2. Alors

((a, b) ∗ (c, d)) ∗ (e, f) = (ac− bd, ad+ bc) ∗ (e, f)
= (ace− bde− adf − bcf, acf − bdf + ade+ bce)
= (ace− adf − bcf − bde, acf + ade+ bce− bdf)
= (a, b) ∗ (ce− df, cf + de)
= (a, b) ∗ ((c, d) ∗ (e, f)).

La loi de composition ∗ est donc associative.

Soient (a, b), (c, d) ∈ R2. Alors (a, b) ∗ (c, d) = (ac− bd, ad+ bc) = (c, d) ∗ (a, b). La loi de composition ∗ est donc
commutative.

b) Soient (a, b), (c, d) ∈ S1. Alors a2 + b2 = 1 = c2 + d2. On a

(ac− bd)2 + (ad+ bc)2 = (a2c2 − 2abcd+ b2d2) + (a2d2 + 2abcd+ b2c2)
= a2c2 + b2d2 + a2d2 + b2c2

= (a2 + b2)(c2 + d2)
= 1.

Donc (a, b) ∗ (c, d) = (ac− bd, ad+ bc) ∈ S1. Par conséquent, S1 est stable pour ∗.

c) L’élément (1, 0) ∈ S1 est l’élément neutre de S1. En effet, pour tout (a, b) ∈ S1,

(1, 0) ∗ (a, b) = (1·a− 0·b, 1·b+ 0·a) = (a, b) ,

et donc aussi (a, b) ∗ (1, 0) = (a, b) par commutativité de ∗.
Soient (a, b), (c, d) ∈ S1 tels que (a, b)∗(c, d) = (ac−bd, ad+bc) = (1, 0). On doit résoudre le système d’équations:

ac− bd = 1 (1)

ad+ bc = 0 (2)

On multiplie la première équation par b et la deuxième par a pour obtenir deux nouvelles égalités (mais un
système qui n’est pas nécessairement équivalent au système de départ):

abc− b2d = b (3)

a2d+ abc = 0 (4)

En faisant la différence des deux équations on trouve a2d + b2d = −b. Comme a2 + b2 = 1, on trouve d = −b
et ensuite on substitue pour trouver que a(−b) + bc = 0. On déduit que soit b = 0 soit a = c. Si b = 0, alors
a = ±1, d = 0 et c = a.

Ainsi, dans tous les cas, l’inverse de (a, b) est (a,−b).

d) Observons qu’avec a), b) et c), on a montré que (S1, ∗) est un groupe. C’est un groupe commutatif, car d’après
a), la loi de composition ∗ est commutative.


