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Série 9

Tous les exercices seront corriges.

Vous etes fortement encourages a essayer de resoudre (eventuellement a plusieurs)
l’exercice (󰂏) et a rendre votre solution (eventuellement a plusieurs) avant le mercredi
de la semaine suivante. Il faudra transmettre votre solution sur moodle, sous forme
d’un fichier pdf unique (eventuellement tape en LaTeX) en suivant le lien moodle de
la semaine relative a cette la serie.

Soit K un corps ; dans la suite si n est un entier on ecrira ”n” pour nK = n.1K . De
meme si n n’est pas divisible par car(K) (de sorte que nK est inversible), on ecrira
n−1 ou 1/n pour l’inverse multiplicatif de nK : par exemple si carK ∕= 3, on ecrira
2/3 = 2.3−1 pour 2K .3

−1
K .

Produits de matrices

Exercice 1. Effectuer tous les produits possibles des matrices suivantes

A =

󰀕
2 −1 7
3 5 −3

󰀖
, B =

󰀃
1 8 5

󰀄
, C =

󰀳

󰁃
3
2
5

󰀴

󰁄 , D =

󰀳

󰁃
2 7
1 −1
3 0

󰀴

󰁄 , E =

󰀕
1 2
3 −1

󰀖

Coefficients des applications lineaires

Soit d 󰃍 1, l’espace vectoriel produit Kd est muni d’une base dite base canonique
qu’on notera

B0
d = {e01 = (1, 0, · · · , 0), e02 = (0, 1, · · · , 0), · · · , e0d = (0, 0, · · · , 1)}.

Par exemple pour d = 3

B0
3 = {e01 = (1, 0, 0), e02 = (0, 1, 0), e03 = (0, 0, 1)}.



Exercice 2. Soit ϕ : K2 󰀁→ K3 definie par

ϕ(x, y) = (−x+ 3y, 2x− y, x+ y).

1. Donner une famille generatrice de Im(ϕ) puis donner une base de Im(ϕ).

2. Donner une representation cartesienne de Im(ϕ) avec une nombre minimal
d’equations.

3. Donner une representation cartesienne de ker(ϕ) avec une nombre minimal
d’equations. Trouver une base de ker(ϕ).

4. Montrer que les coefficients de ϕ relativement a BB0
3 ,B

0
2
sont donnes par

󰀳

󰁃
−1 ?
? −1
1 ?

󰀴

󰁄

5. Calculer directement ϕ(3, 3). Retrouver ce resultat a l’aide de la formule calcu-
lant l’image d’un vecteur par une application lineaire en fonction des coefficients
de celle-ci.

Exercice 3. Soient les applications lineaires suivante sur les polynomes :

α :
R[t]󰃑3 󰀁→ R[t]󰃑3

P (t) 󰀁→ 2P ′(t)− P (t)
, β :

R[t]󰃑3 󰀁→ R[t]󰃑2

P (t) 󰀁→ P ′(t)
.

1. Determiner le rang de α, donner une base de son noyau et de son image.

Meme question pour β et β ◦ α (on representera un polynome sous la forme
at3 + bt2 + ct+ d a, b, c, d ∈ R).

2. Determiner la matrice de α par rapport a la base canonique {1, t, t2, t3}.
3. Meme question pour β par rapport aux bases canoniques {1, t, t2, t3} et {1, t, t2}.
4. Meme question pour β ◦ α par rapport aux bases canoniques {1, t, t2, t3} et

{1, t, t2}.

Exercice 4. Soit V = K2 et

B0 = B0
2 = {e01 = (1, 0), e02 = (0, 1)}

la base canonique.

1. Determiner pour quelles valeurs de car(K) la famille

B = {e1 = (1, 2), e2 = (3, 1)}

est une base de V . On suppose pour toute la suite que la caracteristique de K
est telle que B est bien une base (on peut meme supposer que car(K) = 0 si
on prefere).



2. Exprimer e1, e2 comme CL de e01 et de e02. Exprimer e01, e
0
2 comme CL de e1 et

de e2.

3. On considere l’espace vectoriel des applications lineaires de V vers V

EndK(V ) = HomK(V, V ).

Suivant qu’on choisit B0 ou B comme bases de V vu comme espace de depart
ou comme d’arrivee, on obtient quatres bases possibles pour HomK(V, V ) :

BB0,B0 , BB,B, BB0,B, BB,B0 .

4. Soit
ϕ = IdV : v 󰀁→ v

l’application identite de V . Calculer les coefficient (mij(IdV ))i,j󰃑2 de IdV relati-
vement aux 4 bases ci-dessus. (les deux premiers cas ne demandent que tres peu
de calculs et les autres pas trop de calculs une fois qu’on a fait la question 2).
En particulier on verifiera qu’on obtient bien la matrice identite pour les deux
premieres bases.

5. Soit ψ : V 󰀁→ V l’unique application lineaire telle que

ψ(1, 2) = (2, 4), ψ(3, 1) = (−3,−1).

Calculer ψ(1, 0) et ψ(0, 1) comme CL des elements de B0 et comme CL des
elements de B.

6. Calculer les coefficients de ψ relativement aux bases

BB,B,BB,B0 ,BB0,B0 .

7. Calculer ψ(x, y) pour tout (x, y) ∈ K2 (par exemple en utilisant la formule
pour l’image d’un vecteur en fonctions des coefficients de l’application lineaire
relativement a des bases convenables).

8. Calculer les coefficients de ψ2 = ψ ◦ ψ relativement aux bases

BB,B,BB,B0 ,BB0,B0 .

”I push my fingers ...”

Exercice 5 (󰂏). Soit V,W deux EVs de dimensions finies. On rappelle que etant
donne ϕ : V 󰀁→ W une application lineaire, sa duale ϕ∗ : W ∗ 󰀁→ V ∗ est l’application
qui a toute forme lineaire ℓ : W 󰀁→ K sur W associe la forme lineaire sur V

ϕ∗(ℓ) : v 󰀁→ ϕ∗(ℓ)(v) := ℓ(ϕ(v)) ∈ K.



1. Montrer que l’application •∗ qui a une application lineaire de V vers W associe
l’application lineaire duale (de W ∗ vers V ∗)

•∗ : ϕ ∈ Hom(V,W ) 󰀁→ ϕ∗ ∈ Hom(W ∗, V ∗)

est elle meme lineaire : pour λ ∈ K, ϕ,ϕ′ ∈ Hom(V,W ), on a

(λϕ+ ϕ′)∗ = λ.ϕ∗ + ϕ′∗

2. Soit ψ : W 󰀁→ Z une autre application lineaire vers un espace vectoriel Z. On
a alors la composee ψ ◦ ϕ : V 󰀁→ Z et l’application duale (ψ ◦ ϕ)∗ : Z∗ 󰀁→ V ∗.
Montrer que

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

3. On a vu que le bi-dual V ∗∗ est identifie a V via l’isomorphisme

eval• : v ∈ V 󰀁→ evalv = (ℓ 󰀁→ ℓ(v)) ∈ V ∗∗.

Montrer que sous cette identification la duale de la duale qu’une application ϕ
est egale l’application elle-meme :

(ϕ∗)∗ = ϕ.

Exercice 6 (Forme lineaire trace). Soit V un K-ev de dimension finie d 󰃍 1, V ∗ =
Hom(V,K) son dual et End(V ) = Hom(V, V ) l’espace des endomorphismes de V .

Soit B = {e1, · · · , ed} une base de V et B∗ = {e∗1, · · · , e∗d} la base duale. On forme
alors la base des applications lineaires elementaires (prenant B′ = B)

BB,B := {Ei,j = e∗j .ei, i, j 󰃑 d}

de sorte que tout ϕ ∈ End(V ) se decompose de maniere unique

ϕ =
󰁛󰁛

i,j󰃑d

mij(ϕ)Ei,j.

On rappelle que les mij(ϕ) sont les valeurs de formes lineaires en ϕ

E∗
i,j : ϕ 󰀁→ mij(ϕ) = e∗i (ϕ(ej)) ∈ K.

On definit la trace de ϕ (relative a la base B) en posant

trB(ϕ) :=
d󰁛

i=1

mii(ϕ) =
d󰁛

i=1

e∗i (ϕ(ei)) ∈ K.

l’application trB est une somme de formes lineaires sur End(V ) et c’est donc une
forme lineaire.



On va montrer que cette forme lineaire trace, trB, est independente du choix de la
base B. On pourra alors la noter

tr : ϕ ∈ End(V ) → tr(ϕ) ∈ K.

Pour cela on introduit la famille des endomorphismes de rang 1 exactement

End(V )1 = {ϕ1 ∈ End(V ), rg(ϕ) = dim Im(ϕ1) = 1} ⊂ End(V ).

1. Montrer que End(V )1 n’est pas un SEV mais qu’en fait que End(V )1 est une
famille generatrice de End(V ) : tout element ϕ ∈ End(V ) est somme (finie)
endomorphismes de rang 1.

2. Soit ϕ1 ∈ End(V )1 un endomorphisme de rang 1. Montrer qu’il existe un vecteur
non-nul f ∈ V − {0V } et une forme lineaire non-nulle ℓ ∈ V ∗ − {0V ∗} tels que

ϕ1 = ℓ.f i.e. ∀v ∈ V, ϕ1(v) = ℓ(v).f .

3. Montrer que la paire (ℓ, f) associee a ϕ est unique au sens suivant : si ϕ = ℓ′.f ′

alors f ′ est proportionnel a f et ℓ′ est inversement proportionnel a ℓ.

4. En deduire que l’association de l’ensemble des endomorphismes de rang 1 vers
K donnee par

tr : ϕ1 = ℓ.f ∈ End(V )1 󰀁→ ℓ(f)

est independente de la maniere d’ecrire ϕ1 = ℓ.f et defini une application ”trace”

tr : ℓ.f ∈ End(V )1 → ℓ(f) ∈ K.

5. Montrer qu’il existe au plus une forme lineaire sur End(V ) qui prend la valeur
tr(ϕ1) pour tout ϕ1 de rang 1.

6. Montrer que pour tout ϕ1 de rang 1

tr(ϕ1) = trB(ϕ1).

Pour cela on ecrira ϕ1 = ℓ.f et on decomposera f dans la base B et ℓ dans la
base B∗ et on calculera tr(ϕ1) = ℓ(f) en fonction de ces decompositions.

7. Montrer que si B′ est une autre base de V alors pour tout ϕ ∈ End(V ) on a

trB(ϕ) = trB′(ϕ).


