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Algebre Lineaire Avancee, MATH-110

Série 14

Pour cette serie il n’y aura pas d’exercice a rendre (fin du semestre).

Sauf mention explicite du contraire, on suppose que le corps de base K est de carac-
teristique # 2.

Calculs de determinants

Exercice 1. Calculer les determinants des matrices suivantes (pour a, b, ¢, A dans un
corps K) : utiliser des operations elementaires pour eventuellement vous ramener a
des matrices blocs.

1 0 1—a 1 1 1 1 A

-1 1 a b 1 1 X 1

A= a 1 a c » Bi= 1 X1 1
1 1 —a 0 A1 1 1

Exercice 2. On suppose K = C. On considere les matrices (a € C)

- | 00 0 5 0 0
0 542 —3i 247 a 291 —11 13 0 -3

o 1 —i 1 0 07 0 3 0 0
C=Ca)=|i T7T+i 6 3i —44i|, D= 30 8 5 0 4
8 (z) 2 ; 8 27 4 7T 0 2

51 6 12 3 1

1. Calculer le determinant de C' (en fonction de a) par des operations elementaires
sur les lignes.

2. Calculer le determinant de C' (en fonction de a) par developement de Lagrange
le long d’une ligne ou d'une colonne bien choisie.

Si la matrice C' est inversible pour a = 1 calculer son inverse.
Montrer (sans le calculer) que det D € Z.

Calculer le determinant de D (de la maniere que vous preferez) et celui de D3.



7.

Soit p un nombre premier. On ecrit D, pour la matrice D mais vue a coefficients
dans I, (on remplace 77 par 77, = 77.1g, = 77 (mod p) et pareil pour les autres
coordonnees). Montrer que

det D, = det D (mod p).

Pour quelles valeurs de p la matrice D, est elle de rang 67

Exercice 3. Montrer qu’il n’existe pas de matrice a coefficients reels M € M;(R)
verifiant

M 4 20241d; = 0345

(montrer que le determinant satisfait une equation polynomiale et etudier les solutions
possibles d'une telle equation).

Exercice 4. Soient E et I’ les matrices

4 2 0 320
E=(-2 5 3|, F=|261
0 a+5 3 40 1

Calculer cof(E) et cof(F).

Verifier les relations de Cramer
Ecof(E) = det(E)Ids, F.cof(F) = det(F)Ids.

Si E ou F est inversible, calculer leur inverse.

Calculer le polynome caracteristique de F' et verifier le Theoreme de Cayley-
Hamilton dans ce cas particulier.

Exercice 5. Soit M = (my;)ij<a € Ma(C) une matrice a coefficients complexes. On
pose M (T;;)ij<q la matrice obtenue an prenant le conjugue complexe de tous les
coordonnees de M.

1.

2
3.
4

Montrer que det(M) = det(M).

Montrer que det(M.M) € R,.

Montrer par un exemple que 1'on a pas toujours M.M € My(R).

Montrer que P, 37(X) = Prapar(X) ou pour un polynome P(X) € C[X], on a

note P(X) le polynome dont les coefficients sont les conjugues complexes des
coefficients de P.

Montrer que le polynome produit Pea(X). P, 37(X) € R[X] (on utilisera le
fait que si x € C alors
reER<=7=1.



Quelques groupes de matrices interessants

Exercice 6. Soit K un corps. Une matrice M € My(K) est dite orthogonale si elle
verifie
M.'M =1d,.

On note Oy4(K) I'ensemble des matrices orthogonales.
1. Montrer que det M = £1k.

2. Montrer que O4(K) C GL4(K) et que O4(K) est un sous-groupe de GL4(K)
(le groupe orthogonal).

3. Soit SO4(K) = {M € O4(K), det M = 1}. Montrer que SO,4(K) est un sous-
groupe distingue de O4(K).

4. On suppose que carK # 2 (de sorte que 1lx # —1k). Montrer qu’il existe
M~ une matrice orthogonale de determinant —1 (on cherchera M sous forme
diagonale).

5. Montrer que

Od(K) = SOd(K) U M‘SOd(K)

Exercice 7. Soit M, M’ € M,(K) des matrice triangulaires superieure par blocs
carres :

M = (]\gl ]\2)’ M1 EMdl(K), MQGMdQ(K), d1+d2:d
2

/
M' = (]\(4)1 ]\2/), M{EMdl(K), MéGMdz(K), d1+d2:d
2

1. Montrer que

Ml.M/ *
MM = 1
(5 )
Les termes "x” designent des matrices de taille d; x dy dont les valeurs sont
differentes et qu’on ne depend pas de calculer et 0 = 04,4, est la matrice nulle

de dimensions dy X d;.

2. Montrer que M est inversible ssi M7 et M, le sont et si c¢’est le cas donner la
forme generale de M~!.

3. Montrer que pour d = dy + ds

Puyan(K) = {M = (]‘gl A}g) . M, € GLq,(K), My € GLgy(K)}

forme un sous-groupe de GL4(K). On I'appelle le sous-groupe parabolique de
type (di,ds).



4. Soit P(X) = a,. X"+ a1 X" '+ 4 ap € K[X] un polynome et
P(M) = evpr(P) = anM" + any M" ' 4 - + agldg € My(K)

son evaluation en la matrice M. Montrer que

Pon=("5" piny).

5. Soit V un K-ev de dimension d et & = {ej, -+ ,€e4} une base de V. On pose
pour 1 <d; <d

Vi = Vect(ey, -+ ,eq) = Ke; + -+ Key,.

On note GL(V)) = Aut(V) le groupe des automorphismes de V.

Montrer que
{o € GL(V), (Vi) c Vi} C GL(V)

est un sous-groupe de GL(V).
6. Montrer que pour ¢ € GL(V)

W(‘/I) - ‘/1 — Mat%?((p) € Pd1,d2<K>

et en deduire une autre preuve que Py, 4,(K) est un sous-groupe de GL4(K).

Autour de Cayley-Hamilton

Le retour de la matrice compagnon

Exercice 8. Soit un polynome unitaire de degre d,
P(X)=X"4+bg 1 X+ 4+ by € K[X].

On note b = (by, -+ ,bg_1) € K% le vecteur de ses coefficients.

La matrice compagnon de P est la matrice
00 0 0 —=by
10 0 0 —bh
Mp=|[01 0 0 =b [eMK).

00 0 1 —bg
On a deja vu en exercice (avec d = 4) que la matrice compagnon verifie I’'equation

polynomiale
P(Mp) = M@ + by Mg~ + -+ + boldg = Oyxa. (8.1)



Remarque 0.1. Par exemple pour K = R la matrice compagnon de X? + 1 est la

) 0
matrice [ = (1 0

> qui sert a definir le corps des nombres complexes et qui verifie

I’ +1d, = 0,.

On va demontrer (8.1) pour d > 1 general sans utiliser de calcul matriciel.

Soit # = {ey, - ,eq} la base canonique de K% et
0=qyp: K K¢
’endomorphisme dont la matrice dans la base % est Matg(p) = Mp.
1. Montrer que
pler) = ey, -, p(er 1) =e, - ,p0(es1) = eq,

que
gpk(el) =ep1, k<d—1

et que
o(eq) + bi—1€q+ bg—2eq_1+ -+ -+ bpe; = 0.

2. Montrer que
ol(er) + ba_1p"(er) + -+ -+ bip(er) + boe; = 0
et que pour tout k£ > 2
¢l(er) + barp’ ' (ex) + -+ + bip(er) + boey, = 0;
pour cela on se rappellera que I'image du morphisme d’evaluation en ¢
K[g] = {P(¢), P € K[X]} = ev,(K[X]) C Endx(K")

est un sous-anneau commutatif de Endg(K?) et que pour Q, R € K[X] des
polynomes on a

Q(p) o R(p) = R(p) o Q(¢).

3. Montrer que
QOd + bd,1g0d71 + -+ b1g0 + boIde =0

et (8.1).

Exercice 9. Soit
P rip(X) = det(X.Idy — Mp) € K[X]

le polynome caracteristique de la matrice compagnon.



1. Montrer que
Pearp(X) = P(X) = X4 by X5+ 4 by

Pour cela calculer

X 0 0 0 bo
-1 X 0 0 by
det(X.Idg— Mp) =det | 0 -1 X 0 by

0 0 0 -1 X+bs

En echelonnant la matrice X.Id; — Mp par une suite d’operations de type (III)
(dans le corps K (X) des fractions rationelles a coefficients dans K) (Cf. Exo 8
Serie 11).

2. Redemontrer cette egalite en developant le determinant par rapport a la derniere
colonne.

3. Retrouver le fait que Mp est inversible ssi by = 0 et montrer qu’alors
Mp' = Q(Mp)

avec

Q(X) = (=bg H(X¥ 4 by 1 X2+ -+ b)) € K[X].

Remarque. On a montre que le polynome caracteristique P, a, (X ) de la matrice
compagnon Mp est precisement P(X). D’autre part par (8.1), on a alors

Pcar,Mp (MP) - P(MP) = ded-

En d’autre termes, on a demontre le Theoreme Cayley-Hamilton (pour tout matrice
M on a Py (M) = 0454) dans le cas particulier des matrices compagnon.

Dans ce cours, la preuve que nous proposons du Theoreme Cayley-Hamilton consiste
precisement a nous ramener au cas des matrices compagnons (il y a d’autres preuves
utilisant la formule de Cramer).



