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Série 14

Pour cette serie il n’y aura pas d’exercice a rendre (fin du semestre).

Sauf mention explicite du contraire, on suppose que le corps de base K est de carac-
teristique ∕= 2.

Calculs de determinants

Exercice 1. Calculer les determinants des matrices suivantes (pour a, b, c,λ dans un
corps K) : utiliser des operations elementaires pour eventuellement vous ramener a
des matrices blocs.

A =

󰀳

󰁅󰁅󰁃

1 0 1− a 1
−1 1 a b
a 1 a c
1 1 −a 0

󰀴

󰁆󰁆󰁄 , Bλ =

󰀳

󰁅󰁅󰁃

1 1 1 λ
1 1 λ 1
1 λ 1 1
λ 1 1 1

󰀴

󰁆󰁆󰁄

Exercice 2. On suppose K = C. On considere les matrices (a ∈ C)

C = C(a) =

󰀳

󰁅󰁅󰁅󰁅󰁃

0 5 + 2i −3i 2 + 7i a
0 1 −i 1 0
i 7 + i 6i 3i −4 + i
0 i 0 a 0
0 0 a 2 0

󰀴

󰁆󰁆󰁆󰁆󰁄
, D =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0 0 5 0 0
2 1 −11 13 0 −3
0 7 0 3 0 0
3 0 8 5 0 4
2 7 4 77 0 2
5 1 6 12 3 1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
.

1. Calculer le determinant de C (en fonction de a) par des operations elementaires
sur les lignes.

2. Calculer le determinant de C (en fonction de a) par developement de Lagrange
le long d’une ligne ou d’une colonne bien choisie.

3. Si la matrice C est inversible pour a = 1 calculer son inverse.

4. Montrer (sans le calculer) que detD ∈ Z.
5. Calculer le determinant de D (de la maniere que vous preferez) et celui de D3.



6. Soit p un nombre premier. On ecrit Dp pour la matrice D mais vue a coefficients
dans Fp (on remplace 77 par 77p = 77.1Fp = 77 (mod p) et pareil pour les autres
coordonnees). Montrer que

detDp = detD (mod p).

7. Pour quelles valeurs de p la matrice Dp est elle de rang 6 ?

Exercice 3. Montrer qu’il n’existe pas de matrice a coefficients reels M ∈ M3(R)
verifiant

M2024 + 2024Id3 = 03×3

(montrer que le determinant satisfait une equation polynomiale et etudier les solutions
possibles d’une telle equation).

Exercice 4. Soient E et F les matrices

E =

󰀳

󰁃
4 2a 0
−2 5 −3
0 a+ 5 3

󰀴

󰁄 , F =

󰀳

󰁃
3 2 0
2 6 1
4 0 1

󰀴

󰁄 .

1. Calculer cof(E) et cof(F ).

2. Verifier les relations de Cramer

E.tcof(E) = det(E)Id3, F.tcof(F ) = det(F )Id3.

3. Si E ou F est inversible, calculer leur inverse.

4. Calculer le polynome caracteristique de F et verifier le Theoreme de Cayley-
Hamilton dans ce cas particulier.

Exercice 5. Soit M = (mij)ij󰃑d ∈ Md(C) une matrice a coefficients complexes. On
pose M(mij)ij󰃑d la matrice obtenue an prenant le conjugue complexe de tous les
coordonnees de M .

1. Montrer que det(M) = det(M).

2. Montrer que det(M.M) ∈ R󰃍0.

3. Montrer par un exemple que l’on a pas toujours M.M ∈ Md(R).
4. Montrer que Pcar,M(X) = Pcar,M(X) ou pour un polynome P (X) ∈ C[X], on a

note P (X) le polynome dont les coefficients sont les conjugues complexes des
coefficients de P .

5. Montrer que le polynome produit Pcar,M(X).Pcar,M(X) ∈ R[X] (on utilisera le
fait que si x ∈ C alors

x ∈ R ⇐⇒ x = x.



Quelques groupes de matrices interessants

Exercice 6. Soit K un corps. Une matrice M ∈ Md(K) est dite orthogonale si elle
verifie

M.tM = Idd.

On note Od(K) l’ensemble des matrices orthogonales.

1. Montrer que detM = ±1K .

2. Montrer que Od(K) ⊂ GLd(K) et que Od(K) est un sous-groupe de GLd(K)
(le groupe orthogonal).

3. Soit SOd(K) = {M ∈ Od(K), detM = 1}. Montrer que SOd(K) est un sous-
groupe distingue de Od(K).

4. On suppose que carK ∕= 2 (de sorte que 1K ∕= −1K). Montrer qu’il existe
M− une matrice orthogonale de determinant −1 (on cherchera M sous forme
diagonale).

5. Montrer que
Od(K) = SOd(K) ⊔M−.SOd(K).

Exercice 7. Soit M,M ′ ∈ Md(K) des matrice triangulaires superieure par blocs
carres :

M =

󰀕
M1 󰂏
0 M2

󰀖
, M1 ∈ Md1(K), M2 ∈ Md2(K), d1 + d2 = d.

M ′ =

󰀕
M ′

1 󰂏
0 M ′

2

󰀖
, M ′

1 ∈ Md1(K), M ′
2 ∈ Md2(K), d1 + d2 = d.

1. Montrer que

M.M ′ =

󰀕
M1.M

′
1 󰂏

0 M2.M
′
2

󰀖

Les termes ”󰂏” designent des matrices de taille d1 × d2 dont les valeurs sont
differentes et qu’on ne depend pas de calculer et 0 = 0d2×d1 est la matrice nulle
de dimensions d2 × d1.

2. Montrer que M est inversible ssi M1 et M2 le sont et si c’est le cas donner la
forme generale de M−1.

3. Montrer que pour d = d1 + d2

Pd1,d2(K) = {M =

󰀕
M1 󰂏
0 M2

󰀖
, M1 ∈ GLd1(K), M2 ∈ GLd2(K)}

forme un sous-groupe de GLd(K). On l’appelle le sous-groupe parabolique de
type (d1, d2).



4. Soit P (X) = an.X
n + an−1X

n−1 + · · ·+ a0 ∈ K[X] un polynome et

P (M) = evM(P ) = an.M
n + an−1M

n−1 + · · ·+ a0Idd ∈ Md(K)

son evaluation en la matrice M . Montrer que

P (M) =

󰀕
P (M1) 󰂏

0 P (M2)

󰀖
.

5. Soit V un K-ev de dimension d et B = {e1, · · · , ed} une base de V . On pose
pour 1 󰃑 d1 < d

V1 = Vect(e1, · · · , ed1) = Ke1 + · · ·+Ked1 .

On note GL(V ) = Aut(V ) le groupe des automorphismes de V .

Montrer que
{ϕ ∈ GL(V ), ϕ(V1) ⊂ V1} ⊂ GL(V )

est un sous-groupe de GL(V ).

6. Montrer que pour ϕ ∈ GL(V )

ϕ(V1) ⊂ V1 ⇐⇒ MatB(ϕ) ∈ Pd1,d2(K)

et en deduire une autre preuve que Pd1,d2(K) est un sous-groupe de GLd(K).

Autour de Cayley-Hamilton

Le retour de la matrice compagnon

Exercice 8. Soit un polynome unitaire de degre d,

P (X) = Xd + bd−1X
d−1 + · · ·+ b0 ∈ K[X].

On note b = (b0, · · · , bd−1) ∈ Kd le vecteur de ses coefficients.

La matrice compagnon de P est la matrice

MP =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

0 0 0 0 −b0
1 0 0 0 −b1
0 1 0 0 −b2
...

...
. . .

...
...

0 0 0 1 −bd−1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
∈ Md(K).

On a deja vu en exercice (avec d = 4) que la matrice compagnon verifie l’equation
polynomiale

P (MP ) = Md
P + bd−1M

d−1
P + · · ·+ b0Idd = 0d×d. (8.1)



Remarque 0.1. Par exemple pour K = R la matrice compagnon de X2 + 1 est la

matrice I =

󰀕
0 −1
1 0

󰀖
qui sert a definir le corps des nombres complexes et qui verifie

I2 + Id2 = 02.

On va demontrer (8.1) pour d 󰃍 1 general sans utiliser de calcul matriciel.

Soit B = {e1, · · · , ed} la base canonique de Kd et

ϕ = ϕP : Kd 󰀁→ Kd

l’endomorphisme dont la matrice dans la base B est MatB(ϕ) = MP .

1. Montrer que

ϕ(e1) = e2, · · · ,ϕ(ek−1) = ek, · · · ,ϕ(ed−1) = ed,

que
ϕk(e1) = ek+1, k 󰃑 d− 1

et que
ϕ(ed) + bd−1ed + bd−2ed−1 + · · ·+ b0e1 = 0.

2. Montrer que

ϕd(e1) + bd−1ϕ
d−1(e1) + · · ·+ b1ϕ(e1) + b0e1 = 0

et que pour tout k 󰃍 2

ϕd(ek) + bd−1ϕ
d−1(ek) + · · ·+ b1ϕ(ek) + b0ek = 0;

pour cela on se rappellera que l’image du morphisme d’evaluation en ϕ

K[ϕ] = {P (ϕ), P ∈ K[X]} = evϕ(K[X]) ⊂ EndK(K
d)

est un sous-anneau commutatif de EndK(K
d) et que pour Q,R ∈ K[X] des

polynomes on a
Q(ϕ) ◦R(ϕ) = R(ϕ) ◦Q(ϕ).

3. Montrer que
ϕd + bd−1ϕ

d−1 + · · ·+ b1ϕ+ b0IdKd = 0

et (8.1).

Exercice 9. Soit
Pcar,MP

(X) = det(X.Idd −MP ) ∈ K[X]

le polynome caracteristique de la matrice compagnon.



1. Montrer que

Pcar,MP
(X) = P (X) = Xd + bd−1X

d−1 + · · ·+ b0.

Pour cela calculer

det(X.Idd −MP ) = det

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

X 0 0 0 b0
−1 X 0 0 b1
0 −1 X 0 b2
...

...
. . .

...
...

0 0 0 −1 X + bd−1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄

En echelonnant la matrice X.Idd −MP par une suite d’operations de type (III)
(dans le corps K(X) des fractions rationelles a coefficients dans K) (Cf. Exo 8
Serie 11).

2. Redemontrer cette egalite en developant le determinant par rapport a la derniere
colonne.

3. Retrouver le fait que MP est inversible ssi b0 = 0 et montrer qu’alors

M−1
P = Q(MP )

avec
Q(X) = (−b−1

0 )(Xd−1 + bd−1X
d−2 + · · ·+ b1) ∈ K[X].

Remarque. On a montre que le polynome caracteristique Pcar,MP
(X) de la matrice

compagnon MP est precisement P (X). D’autre part par (8.1), on a alors

Pcar,MP
(MP ) = P (MP ) = 0d×d.

En d’autre termes, on a demontre le Theoreme Cayley-Hamilton (pour tout matrice
M on a Pcar,M(M) = 0d×d) dans le cas particulier des matrices compagnon.

Dans ce cours, la preuve que nous proposons du Theoreme Cayley-Hamilton consiste
precisement a nous ramener au cas des matrices compagnons (il y a d’autres preuves
utilisant la formule de Cramer).


