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Introduction

Le terme ” Algebre” est derive du mot arabe al-jabr qui est tire du titre d’'un ouvrage
du mathematicien persan Al-Khwarizmi, redige vers 825 (source wikipedia) et intitule

Kitab al-mukhtasar fi hisab al-jabr wa-l-muqabala
Abrege du calcul par la restauration et la comparaison.

L’ouvrage fournissait des procedures generales de calcul pour resoudre des problemes
pratiques lies aux actes legaux (partage lors d’un heritage, subdivision de terrains et calculs
d’aires) qui conduisaient a resoudre des equations lineaires ou quadratiques. Le nom ”Al-
Khwarizmi” a d’ailleurs donne naissance au mot ” Algorithme”.

De nos jours le terme ” Algebre” designe plutot ’etude et la classification de structures
mathematiques formelles liees aux operations. 1’Algebre Lineaire se concentre plus partic-
ulierement sur l’etude des ”espaces vectoriels”. Cependant avant d’arriver a cette notion,
nous auront besoin d’introduire d’autre structures algebrique plus generales,

— Les ”groupes”,

— les 7anneaux”

— et les "corps” (qui sont des anneaux particuliers) ainsi que

— les "modules” sur les anneaux, les espaces vectoriels sont des modules sur des corps.

L’etude des premiers releve de la ”theorie des groupes” (qui sera developpee plus en
details dans le cours MATH-113) et celle des trois au tres releve de "I’algebre commutative”
(qui sera discutee en deuxieme annee) cependant, comme on va le voir, tous ces sujets sont
intimement connectes et il est impossible de traiter I'un de ces sujets sans avoir recours aux
autres.

Avant cela nous aurons besoin d’ introduire le language des ensembles.







CHAPITRE 1

Le language des ensembles

“Le langage est un ensemble de citations.”

1.1. La theorie des ensembles

La notion d’ensemble (et les operations qui y sont associees comme l'intersection ou
la reunion) est tellement naturelle qu’on peut legitimement s’interroger sur le bien-fonde
de construire une ”theorie des ensembles”. Cette necessite, bien reelle, n’est vraiment
apparue que dans le cours du 19eme siecle quand certains mathematiciens ont obtenus des
objets mathematiques (d’origine logique, analytique ou geometrique) semblant posseder des
proprietes paradoxales et en tout cas defiant 'intuition primaire. Dans certains cas on a
pu montrer qu’'une re-interpretation convenable ou le developpement d’une theorie plus
rigoureuse permettait de donner un sens a ces objets; dans d’autres, on a realises que de
tels objets conduisait a une contradiction avec les theories existantes ce qui a conduit a une
remise en cause des fondements meme sur lequels le raisonnement mathematiques etaient
basees. La' Theorie des Ensembles est I'un des fruits de ces reflexions.

Il est impossible, dans le cadre de ce cours, de presenter une definition rigoureuse de
la notion d’ensemble; nous preferons renvoyer le lecteur a un cours plus avance de ”logique
mathematique” (par exemple MATH-381) et en attendant nous en remettrons a l'intuition
du lecteur qui est souvent bien suffisante.

Cependant nous voulons insister que le developpement d’une theorie des ensemble ce
n’est pas du tout evident. Cela necessite au prealable d’introduire un concept de logique
appelle calcul des predicats du premier ordre: c’est un language forme de constituants et
muni d’une syntaze permettant creer des phrases (appellees ”formules” ou ”predicats”)
qui s’organisent en proprietes ou en relations et qui permet de modeliser le raisonnement
mathematique usuel. Une fois cela defini, on peut construire une theorie des ensembles a
partir d’ aziomes convenables de sorte que la theorie soit consistante (ie. ne conduise pas a
des contradictions comme c’etait le cas avec des contruction moins precises). Il n’y a pas de
choix unique pour les axiomes mais la plupart du temps on utilise les axiomes ZF ou ZFC?)

Le calcul des predicats du premier ordre (egalitaire) est un language dont les phrases
sont composes de

— Divers alphabets: des ensembles de symboles (usuellement des lettres ou des en-
sembles de lettres) representant soit des wariables, x,y,z--- ou des constantes
a,b,c,--- qui permettent d’identifier les divers objets sur lesquels on travaille et
egalement les predicats ou des fonctions

P()a Q()7 f()? COS(‘)

1) y a en fait plusieurs theories possibles
2d’apres Zermelo et Fraenkel
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permettant de d’expliciter les relations existant entre les divers ensembles consid-
eres.
— Quantificateurs logiques:
— Le quantificateur universel V:

V x P(x) : "pour tout x, la propriete P(x) est vraie” .
— Le quantificateur existentiel 3:
Jz P(x) (3 z|P(x)) : 7il existe x tel que la propriete P(x) est vraie”
ou la variante
'z P(z) (ou 3! z|P(x)) : il existe un unique x tel que la propriete P(z) est vraie”.

— Un symbole pour la relation d’egalite = permettant d’exprime le fait que deux
elements sont les memes et peuvent etre librement substitues dans toute formule
impliquant I'un ou 'autre.

— Connecteurs logiques reliant les predicats

A Yet”. V: "ou”
: s :

=—: 7implique”; <=: "equivaut a, si et seulement si”

"

- : "negation” ”contraposee”.

— Des regles syntaxiques de construction des formules (I'orthographe et la grammaire
du language en question).

— D’un systeme de deduction permettant de deriver des propositions (appellees con-
clusions) a partir de propositions existantes (appellees premices). Pour initier le
processus de deduction, on se donne un ensemble de proposition initiales appellees
axiomes.

Ce language est interprete dans le cadre d’un modele (dans notre cas, les ensembles; il

) )
peut a priori y avoir plusieurs modeles associes a un language donne) et il sert a exprimer
diverses relations existantes entre les divers objets du modele. En particulier on peut deter-
miner si certaines de ces formules (celles qui sont ”closes”: une formule est close si toutes
les variables qui apparaissent dedant ont devant elles 'un des deux quantificateurs logiques
V,3) sont ”vraies” ou ”fausses” quand on leur applique des elements du modele et le sys-
teme de deduction ci-dessus est construit de sorte qu’il preserve ces valeurs de verite: si
des formules ”premices” sont ”vraies” alors la formule ”conclusion” doit etre "vraie” (les
axiomes initiaux qu’on a pu se donner en dapart doivent egalement etre vrais).

1.1.1. Ensembles. La categorie des Ensembles est une collection d’objets (les ensem-
bles) munies d’une relation d’ appartenance qui lie entre eux certains couples d’ensembles.
Soient e, ¥ deux ensembles, si ces ensembles sont lies par cette relation, on le note

ec k.

On dit alors que ”e est un element de E” ou que ”e appartient a E”.
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1.1.2. Sous-ensemble. A partir de cette relation d’appartenance, on forme la relation
d’inclusion: un ensemble A est contenu (ou inclu) dans un ensemble B

ACB
si tout element de A appartient a B:
Va, a € A= a € B.
On dit egalement que A est un sous-ensemble de B et on le note
A CB.

REMARQUE 1.1.1. les relations d’appartenance € et d’inclusion C sont distinctes. On
peut tres bien avoir A € B (A est un element de B) sans que l'on ait A C B et on peut tres
bien avoir A C B sans que A € B (A est inclus dans B).

1.1.3. Axiomes de la theorie des ensembles. Les ensembles verifient un certain
nombre d’axiomes (une dizaine) qui permettent la construction de nouveaux ensembles a
partir d’ensembles primitifs: on va donner quelques uns des ces axiomes:

1.1.3.1. Ezistence de l’ensemble vide. 1l existe un ensemble ne contenant aucun autre
ensemble comme element et qui est inclut (C) dans tout ensemble (y compris dans lui-
meme): ’ensemble vide qu’on note

On a donc
VE, E€0NDC E.

REMARQUE 1.1.2. Il est important ici de ne pas confondre € et C.

1.1.3.2. Axiome de la double-inclusion. Deux ensembles sont egaux si ils sont inclus I'un
dans l'autre (si ils possedent les meme elements):

ACB N BCA=— A=B.

1.1.3.3. Ensemble des parties d’un ensemble. Si A est un ensemble, il existe un ensemble
dont les elements sont les sous-ensembles de A ; cet ensemble (unique par I'axiome de la
double inclusion) est appelle ’ensemble des parties (ou des sous-ensembles) de A on le note

P(A):
P(A)={B, B C A}.
En particulier on a toujours

0,A e P(A)

donc #(A) contient toujours au moins 1 element (et au moins 2 ssi A # ().
1.1.3.4. Axziome de la reunion. Soit E un ensemble, il existe un ensemble, la reunion de
E, qu’on notera

E

dont les elements sont exactement les elements des elements de E (on rappelle que les
element de F sont eux-meme des ensembles.
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1.1.3.5. Aziome de la paire. Soient A et B deux ensembles, si existe un ensemble (nec-
essairement unique par I'axiome de la double inclusion) dont les elements sont exactement
A et B, on le note

{A, B}.
En particulier, si A = B, on forme l'ensemble (a un element)
{4, A} = {A}

qu’on appelle le singleton {A}.

REMARQUE 1.1.3 (Reunion d’ensembles). Soient A et B deux ensembles, par I'axiome
de la paire il existe un ensemble £ = {A, B} dont les elements sont les ensembles A et B.

Par l’axiome de la reunion, la reunion de E = { A, B} est un ensemble compose des elements
de A et des elements de B: on 'appelle reunion de A et B et on le note

U =AUB={elec ANa € B}.
{A,B}
Plus generalement on montre que si I est un ensemble non vide et (A;);c; une famille
d’ensembles indexee par I (la donnee pour chaque element i € I d’un ensemble A;) alors il

existe un ensemble dont les elements sont exactement les elements appartenant a 'un des
A;, on le note
4.

i€l
1.1.3.6. ...et 5 autres axiomes supplementaires dans la theorie ZFC. notamment 7”1’ Axiome
de l'infini” et I’Axiome du choix”.
ExXEMPLE 1.1.1. Quelques ensembles
— On a deja vu l’ensemble vide qu’on va noter egalement
0 =:0.

— L’ensemble des parties de 1’ensemble vide Z?({)) possede ’ensemble vide comme
seul element et on le note

2(0) = {0} =: 1.
— Par 'axiome de la paire I’ensemble suivant existe
{@, 1} = {@a {0}} =2,
puis en iterant (en appliquant la Remarque 1.1.3) on construit
3= U = {(07{@}’2} = {0’{®}7 {@,{@}}} = {O’ 172}7 4:= {05 17273}a T
2,{2}
— On "arrive” alors a construire ’ensemble des entiers naturels:
N={0,1,2,3,---}

par un processus recursif: si 'entier n a ete construit on defini son successeur n*
comme etant ’ensemble obtenu comme reunion

ntl = U =nU{n}
{n.{n}}

ie. l'ensemble (cet existe par l’axiome de la reunion) dont les elements sont les
elements de n et le singleton {n}; on construit alors le successeur de ce n*?, etc...le
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fait de pouvoir repeter cette construction une infinite de fois necessite l’axiome de
linfini.
On defini sur N le relation ”inferieur ou egal” < en posant pour m,n € N
mi<n<man

et on definit egalement >, < et >.
— Puis on peut a partir de cela construire I’ensemble des entiers relatifs:

Z={-,-2,-1012- -}

(cela necessite la notion de produit cartesien, cf. ci-dessous) et on peut alors
etendre la relation <.
— On construit ensuite ’ensemble des nombres rationnels:

p
Q:{Ev p,qu, Q%O}a

auquel on etend la relation <

— et vous verrez en analyse la construction de ’ensemble des nombres reels R,

— et enfin a partir de R, on construira dans ce cours (en admettant ’existence de R)
I’ensemble des nombres complezes C et on a donc

)cNCZcQcRcC.

1.1.4. Notation. Comme on I’a vu dans les exemples, on designera un ensemble et les
elements qu’il contient par la notation ”crochets”:

E=1{-}).
Entre ces crochets {---} on mettra soit

— La liste explicite des elements de I’ensemble (si c’est possible) separes par des
virgules: on enumere les elements de I’ensemble.
— une formule indiquant qu’on considere les elements d’un autre ensemble (disons F')
qui verifient une certaine propriete P codee par une formule logique:
-{0,1,2,3} ={m e N, m < 3}.
—~N=Zso={meZ, mz=0}
— P = Ensemble des nombres premiers = {p € N, d|p = d =1 ou p}.
— Soit E-EPFL I’ensemble des etudiants de 'EPFL.

A := {e € E-EPFL, 3|SCIPER(e)},
B := {e € B-EPFL, 3|SCIPER(e) — 1},
C := {e € E-EPFL, 3|SCIPER(e) — 2}.

REMARQUE 1.1.4. (Paradoxe de Russell) L’ensemble ENS de tous les ensembles n’est
PAS un ensemble: en effet si c’etait le cas, on pourrait considerer, suivant Russell, I’ensemble
de tous les ensembles n’appartenant pas a euz-meme

Ncont = {E ensemble, F ¢ E}
et se poser la question de savoir si
Ncont € Ncont ou bien Ncont ¢ Ncont.

Si on est dans le premier cas, on a Ncont € Ncont ce qui par definition de Ncont implique
que Ncont & Ncont. Contradiction.
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Si on est dans le second cas, on a Ncont ¢ Ncont ce qui par definition de Ncont implique
que Ncont € Ncont. Contradiction!

Ce probleme qui etait present dans les versions initiales de la theorie des ensembles
(theories dites "naives”) a ete resolu dans la theorie ZF ou ZFC par l'ajout d’ axiomes
convenables. Par ailleurs pour donner un sens a la notion ”d’ensemble de tous les ensembles”
(qui n’est PAS un ensemble), on a introduit des concepts plus ”souples” appelles categories
qui sont exemptes de paradoxe de type Russell; ainsi ”"I’ensemble” de tous les ensembles
ENS forme ce qu’on appelle une categorie.

1.2. Operations sur les ensembles

1.2.1. Union, Intersection. Soient A, B C E des sous-ensembles d’un ensemble, on
a les operations suivantes

— la reunion de A et B,
AUB={e€ FElec Aouec€ B}.
— l'intersection de A et B,
ANB={ec Elec Aet ec B}.
— la difference de A et B,
A—B=A\B ={a€ Ala ¢ B}.
En particulier la difference
E—-—A={ecE, e¢g A} = A

s’appelle le complementaire de A dans F.
— la difference symetrique de A et B,

AAB = A\B U B\ A.
~ Si AN B =0, on dit que A et B sont disjoints.

Plus generalement si on dispose de n > 2 sous-ensembles E1,--- , E, C FE on note

UE=EU---UE,=E U(EyU---UE,) ={e € E| il existe i <n, ¢ € B},
=1

n
ﬂEi:E1ﬂ-~-ﬂEn:Elﬂ(E2ﬂ---ﬂEn):{e€E| pour tout i < n, e € F;}.
i=1

Plus generalement si I est un ensemble et (E;);er est une famille de sous-ensembles de E
indexes par I on definit

JEi={ecEBicl, cc E},
el
(Ei={ecENVicl, ccEj}.
el
EXERCICE 1.1. Montrer que
AAB=AUB - ANB.
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1.2.2. Produit cartesien.

DEFINITION 1.1. Etant donne deux ensembles A, B et a € A,b € B des elements de A
et B respectivement. On definit la paire ordonnee (a,b) comme etant l’ensemble

(a,b) :=={a,{a,b}}
obtenu a partir de l’axiome de la paire.

REMARQUE 1.2.1. Notons que si a # b alors la paire ordonnee (a,b) = {a,{a,b}} est
distincte de la paire ordonnee (b, a) = {b,{b,a}} = {b,{a,b}}.

DEFINITION 1.2. Le produit cartesien A x B est ’ensemble des paires ordonnees (a, b)
avec a un element de A et b un element de B:

A x B ={(a,b), a€ A be B}.
REMARQUE 1.2.2. Si un des facteurs est I’ensemble vide, le produit cartesien est vide:
dx B=Ax{0=40.

REMARQUE 1.2.3. Les ensembles A x B et B x A sont distincts sauf si A = Bousi A

ou B est ’ensemble vide.
Si A = B # () on ecrit alors

Ax A=:A*
On peut iterer cette construction: si on dispose de n > 1 ensembles Ay, -+, A, le
produit
Ay x -+ x A,
est 'ensemble des n-uples (ordonnes)
(a1, ,an), a1 € Ay, -an € Ap.
Si Ay =---= A, = A on note ce produit A™.

1.2.2.1. L’axiome du choiz. On peut chercher a definir le produit cartesien pour un
ensemble arbitraire de facteurs: soit I un ensemble et (A;);c; une famille d’ensembles
indexee par I; on veut construire un ensemble note

[14
el
dont les elements sont formes de toutes les familles de la forme
(ai)ier, Vi€ 1, a; € A;.

Ainsi, exhiber un element de [[;.; A; implique de choisir pour chaque i € I un element
a; € A;; cela ne pose pas de probleme si I est fini ou meme si I = N mais si I est general,
des problemes de logique peuvent apparaitre; pouvoir le faire en toute generalite (pour tout
ensemble I) implique d’admettre I aziome du choiz.

Vous verrez plus tard (notamment en analyse) d’autres formulations et applications de
cet axiome.
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FIGURE 1. Les relations < et | dans N x N.

1.2.2.2. Relation binaire. Une relation (binaire) R entre (les elements de) deux ensem-
bles A, B est un sous-ensemble
R C AxB.

Soient a € A, b € B, on dit que a et b sont lies par la relation R si
(a,b) e R
ce que l'on ecrit
a ~gr b ou bien aRb.

Si a et b ne sont pas en relation (ie. (a,b) ¢ R) on le note
a %r b ou bien a Rb.

Il se peut que le sous-ensemble R C A x B ai des proprietes supplementaires qui se
traduisent en des proprietes de la relation correspondante.

EXEMPLE 1.2.1. Si A = B =N, on a la relation "inferieur ou egal” m < n (par exemple
2 < 3). On a egalement la relation "divise” m|n: m divise n si il existe &k € N tel que
n=m.k (ex. 2|8). Voir la figure 1.2.2.2 pour les representations graphiques de ces relations.

En pratique, le cas le plus important est quand A = B. Soit donc une relation R C Ax A
de A sur lui-meme. On a les definitions suivantes:

— La relation R est reflexive si
Va € A,aRa

(cad (a,a) € R). En d’autre termes AA C R ou AA = {(a,a), a € A} est appellee
la diagonale de A x A. Par exemple pour N, les relations < et | sont reflexives.
— La relation R est symetrique si

Va,a' € A, aRd < da'Ra.

En d’autre termes la relation R C A x A est invariante par la symetrie par rapport
a la diagonale

san i (a,d) e Ax A (d',a) € A x A;

c’est a dire
sa(R) = R.

Par exemple sur N, < et | ne sont pas symetriques.
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— La relation R est antisymetrique si
Va,d' € A, aRad et d'Ra < a=d'.

Autrement dit la seule possibilite pour que I'on ai a la fois (a,a’) € Ret (a’,a) € R
est que a = a’. Par exemple sur N, les relations < et | sont antisymetriques.
— La relation R est transitive si

Va,d' ,a" € A, aRd' et dRa”" = aRd".
Par exemple pour N, les relations < et | sont transitives.

DEFINITION 1.3. Une relation R est dite d’equivalence si elle est reflexive, symetrique
et transitive.

Par exemple sur N la relation ”de congruence modulo 3” definie par
m =n(mod3) <= 3lm —n

est d’equivalence.
Plus generalement pour tout entier ¢ # 0 la relation ”de congruence modulo ¢” definie
par
m =n(modq) <= ¢lm —n

est d’equivalence.

DEFINITION 1.4. Une relation R est dite d’ordre si elle est reflexive, antisymetrique et
transitive.

Par exemple pour N, les relations < et | sont des relations d’ordre.

1.3. Applications entre ensembles

Une autre classe tres importante de relation est donnee par les applications entre en-
sembles.

DEFINITION 1.5. Soient X et Y des ensembles. Une application (appellee egalement
fonction) f de X (Iespace de depart) vers Y (I’espace d’arrivee) est la donnee pour tout
x € X d’un unique element f(x) € Y; l’element f(x) est 'image de x par f. Siy €Y est
de la forme y = f(x) pour un certain x € X on dit que x est un antecedent de y par f.

Une application est notee

f: XmY

EXEMPLE 1.3.1. — Application constante. Soit y € Y fixe; 'application qui a tout
element = € X associe y et I’application constante de valeur y et on la note

y:xeX—yeyY.

— Application Identite. Supposons que Y = X, I'application identite est celle qui a toute
element x € X associe x:
dy:ze X — 2z e X.

—Suites: si X =N =4{0,1,2,---} (ou Nyg ={1,2,---}) une application de N vers YV’
fineN— f(n)eY
s’appelle une suite de N a valeurs dans Y. On note souvent une suite sous la forme

(Un)nz0, yn = f(n).
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L’element g, s’appelle le n-ieme element de la suite.
—Projection Soit A1, --- A, des ensemble et

=1
leur produit cartesien. Pour ¢ = 1,--- ,n la projection sur le i-eme facteur est 'application
N |
ar, o an) =g

qui a un n-uple associe la i-eme coordonnee.

1.3.1. Graphe d’une application. On peut donner a la notion d’application une def-
inition purement ensembliste a I'aide du produit cartesien et voir cela en terme de relations.
Se donner une application

f: X—Y
est equivalent a se donner un sous-ensemble
rcXxxy

qu’on appelle un graphe:

DEFINITION 1.6. Un graphe I' C X x Y est un sous-ensemble de X x Y tel que pour
tout x € X, l’ensemble

Iy = {($>y)7 yEY} cr

(’ensemble des elements de I' dont la premiere coordonnee vaut x) possede exactement un
element.

REMARQUE 1.3.1. Un graphe I' definit donc une relation entre X et Y
x~ry < (z,y) el
Si f: X — Y est une application, le graphe associe a f est le sous ensemble
I'y={(z, f(x)), e X} C X xY.

Reciproquement si I' C X x Y est un graphe, on lui associe 'application fr: X — Y qui a
x € X associe f(x):=y ou y est 'unique element de Y tel que

(z,y) €T.
NoTATION 1.1. On note
Hompns(X,Y) ou encore F(X,Y) ou encore Y
lensemble des applications de X versY (aussi les fonctions de X a valeurs dans Y ).

La realisation ci-dessus des applications entre ensembles en terme de graphes permet de
dire que I’ensemble Homp,,s(X,Y) des applications entre X et Y est un ensemble et plus
precisement un sous-ensemble de & (X x Y') (on l'identifie avec le sous-ensemble de tous les
graphes dans X x Y).
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FI1GURE 2. Graphes de fi, fo, f3.

1.3.1.1. Ezemples. Soit X =Y = {1,2,3,4} et posont
fi:1—=3,2>2 3—2, 41

fo:1—=3, 22 3—4,4—1
f3:1—2 2—3, 3—4, 4—1.

Les graphes de ces applications sont donnees par les dessins ci-dessus.
— Le graphe de I'application constante y : X — Y est

I'(y) ={(z,y), re X} C X xY.
— Quand X =Y, le graphe de I'identite Idx est donne par
Fldy) =AX) ={(z,z), re X} C X x X

et s’appelle la diagonale de X x X.

1.3.2. Image, preimage.

DEFINITION 1.7. Soit une application

f: X—Y
et AC X. Limage de A par f est le sous-ensemble de Y
f(4) = F(A) = {f(2), z € A} C .

On appellera egalement “image de f”, l'image de l’ensemble de depart X tout entier

Im(f) := f(X).
DEFINITION 1.8. Soit une application
f: XY

et BC X. La preimage de B par f est le sous-ensemble de X
f*(B) = fCY(B) :={z e X, f(z) e B} C X.
Si B ={y} est un singleton
F{wh) ={z e X | f2) =y}

est l'ensemble des antecedents de y. On dit quelquefois que la preimage de B est [’ensemble
des antecedents des elements de B par f.
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Une application
f: XY
induit donc naturellement deux applications entre les ensembles des parties de X et Y:
— L’application ”image”
fC), fo, Im(f) : 2(X) = 2(Y)
qui a un sous-ensemble A C X associe son image:
fe(A) =Tm(f)(A) = {f(z), v € A} CY.
— L’application ”preimage”
fL s 2(Y) - 2(X)
qui a un sous-ensemble B C Y associe sa preimage:
1(B)=f"Y ={reX, f(x)e B} C X.

REMARQUE 1.3.2. Notons que ’application preimage est toujours defini : si B C Y ne
possede aucun antecedent dans X alors f(~1(B) = ().

EXEMPLE 1.3.2. Pour X =Y = {1,2,3,4}
Im(f1) = {1,2,3}, Im(f2) = {1,2,3,4}, Im(f3) = {1,2,3,4}
[({2,3) = {2}, fo({2,3}) = {2,4}, f3({2,3}) = {3,4}
A0z = 23} 70024 = 23) £ (24 = (13),
EXERCICE 1.2. Montrer que pour A C X, on a
Ac fEV(f(A).
Montrer par un exemple qu’en general on n’a pas I'egalite
A= fEV(f(A).
Soit B C Y, existe-t-il des relations d’inclusion entre B et f(f(~V(B)) ?

1.3.3. Injectivite, surjectivite, application reciproque.

— Une application f : X — Y est injective (f est une injection) si pour tout y €
Y, fEY({y}) (lensemble des antecedents de y par f) ne possede pas plus d’un
element. On note I'injectivite par

f: X =Y

— Une application f : X — Y est surjective (f est une surjection) si pour tout y € Y,
fEY({y}) (Pensemble des antecedents de y par f) possede au moins un element.
On note la surjectivite par

f: X =Y.

— Une application f : X — Y est bijective (f est une bijection) si elle est injective
et surjective : cad si pour tout y € Y, fCV({y}) (Pensemble des antecedents de 3
par f) possede exactement un element. On note la bijectivite par

f: X5 Youf: X~V
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REMARQUE 1.3.3. Notons qu'une application f : X — Y est tautologiquement surjec-
tive sur son image Im(f):
f: X —»Im(f) CY.

En particulier une application injective f : X — Y defini une bijection

f: X ~TIm(f).
On peut alors identifier les elements de X a certains elements de Y via cette derniere
bijection (on a "injecte” X dans Y).

NOTATION 1.2. On note
Inj (X7 Y)a SUI'j (Xa Y), Bl.] (Xv Y) - HomENS(X7 Y)
les ensemble d’applications, injective, surjectives et bijectives de X wvers Y.

ExXEMPLE 1.3.3. On a:
(1) f1 n'est ni injective (f;'({2}) = {2,3}) ni surjective (4 € Im(f1)). fo et f3 sont
bijectives.
(2) L’application n € Z — 2n € 7Z est injective mais pas surjective.
(3) L’application n € N +— [n/2] € N est surjective mais pas injective ([z] designe la
partie entiere d’'un nombre rationnel x, cad le plus grand entier < x).
(4) L’application polynomiale

C: (m,n) — ((m+n)? +m+3n)/2

et une bijection entre N? et N (Cantor).
(5) L’application
(m,n) — m+ (n+[(m+1)/2])*
et une bijection entre N2 et N.

EXERCICE 1.3. Demontrer (4). Pour cela

(1) Commencer a verifier qu’on a bien une application de N? vers N.

(2) Calculer les valeurs C(m,n) pour (m,n) < 5 et les reporter sur le plan (m,n).

(3) Pour montrer I'injectivite et la surjectivite on pourra etudier I’application (m, n) —
C(m,n) quand on la restreint au sous-ensemble

Dy ={(m,n) e N?, m+n =k}

pour k > 0 un entier et regarder les valeurs que prend cette fonction sur ces
ensembles.

Dans le cas des ensembles finis dont on connait le nombre d’element on a les proprietes
suivantes liant injectivite, surjectivite, bijectivite au nombres d’elements, tres utilie pour
demontrer la bijectivite.

PROPOSITION 1.1. Soient X et Y des ensembles finis possedant respectivement |X| et
Y| elements et f : X — Y wune application entre ces ensembles. On a les proprietes
susvantes

— Si f: X =Y est injective alors | X| < Y.
- Si f: X - Y est surjective alors | X| > |Y|.
— Si f: X =Y estinjective et | X| > |Y| alors | X| = |Y| et f est bijective.
- Si f: X =Y est surjective et | X| <|Y| alors | X|=|Y]| et f est bijective.
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1.3.3.1. Application reciproque d’une bijection. Soit f : X = Y une bijection, alors
pour tout y € Y, f(-V({y}) € X est un ensemble a un seul element

-1
FEO ) = {a},
a savoir I'unique element x de X tel que f(x) =y, ie. 'unique solution de ’equation
f(T) =y
(dont 'inconnue "T” est a valeur dans X).
On peut donc definir une application (’application reciproque de f)
iy - X
en posant
FHy) ==
REMARQUE 1.3.4. On prendra garde que I'application reciproque d’une application bi-
jective f~1: Y 55 X n’existe que si f est bijective alors que 1'application preimage existe
tout le temps.

oV 2(Y) - 2(X).

EXEMPLE 1.3.4. On a
Idy' = Idx.

1.3.3.2. Inwolutivite de la reciproque. On voit que si f : X = Y est bijective, sa re-
ciproque f~! : Y +— X est bijective: pour tout z € X, y € Y on a par definition de la
reciproque

(1.3.1) f@)=y<=z=f"y).
Ainsi pour tout x € X il existe bien y € Y tel que f~!(y) = z, clest y = f(x) et f~! est
surjective. Par ailleurs ’ensemble des antecedent de = par f~! est I'ensemble des y tels que
f~1(y) = =, c’est a dire que y = f(z) et y est unique.

On peut alors se demander quelle est la reciproque de la reciproque: c’est 'application
frona

(fH't=r
En effet pour # € X, posons y := (f~1)~!(z). On a (appliquant (1.3.1) a f~! au lieu de f
puis (1.3.1) )
U H M) =y=fly =cv=fla)=y
et ainsi pour tout z € X
(f ) He) =y = flz)

ce qui est precisement dire que (f~!)~! = f.

1.3.4. Composition d’applications. Soit X,Y,Z des ensembles et f : X — Y et
g:Y — Z des applications; a f et g on associe la composee de f et g

gof: Xm— 2
est I'application qui va de X a Z en allant, de X a Y via f et de Y a Z via g:

Y
N
x % 7
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Elle est definie par
reX—gof(xr):=g(f(x)) e Z
En d’autre termes on a une application (dite de composition)

o - HomENS(Y, Z) X HOIIlENs(X,Y) — HomENS(X, Z)
' (9. f) - golf

La composition a les proprietes suivantes:
— Associativite: soient f: X — Y, g: Y — Z h:Z— W,
ho(gof)=(hog)of
de sorte que la composee des trois applications s’ecrit simplement
hogo f.
— Neutralite de I'identite: soit f : X — Y alors
foldx =f, Idy o f = f.
— Simplification: soit f: X = Y une bijection,
ftof=Idx, fof~!'=Idy.

(1.3.2)

En particulier
Idx oldx = Idx.
LEMME 1.1. Soient des applications f: X — Y etg:Y — Z. Si
(1) Si f et g sont injectives, go f est injective.
(2) Si f et g sont surjectives, go f est surjective.
(8) Si f et g sont bijectives, go f est bijective et
(gof) " =ftog™"

Preuve: Pour le (1), il s’agit de montrer que pour tout z € Z, I'image reciproque (g o
f)~t({z}) a au plus un element. On a

(9o /)7 ({2} = {z € X, g(f(2)) = 2}

Si (go f)~t({z}) = 0 on a fini. Sinon supposons que = € (go f)~1({z}), on veut montrer
que z est unique. Comme ¢ est injective g~1({z}) possede au plus un element et comme

z=go f(z)=g(f(2))

on voit que f(z) appartient a g~({z}); en particulier g~*({z}) est non-vide et s’ecrit

-1
9 ({zh) ={y}
pour un certain y € Y (qui ne depend que de z); on a donc f(z) =y et donc x € f~1({y}).
Comme f est injective, f~!({y}) possede au plus un element et z est celui-ci donc z est
I'unique element de f~'({y}) ou y est I'unique element de g~!({z}) et z est donc unique.

Pour (2): comme f est surjective on a f(X) = Y et comme g est surjective on a
9(Y) = Z donc
go f(X)=g(f(X))=9(Y)=2
et donc g o f est surjective.
Pour (3), g o f est injective et surjective par les point (1) et (2) (car f et g le sont) et
est donc bijective.
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Pour montrer que (gof)~! = f~log™! (on parle cette fois-ci de reciproques d’applications

bijectives) il s’agit de montrer que pour tout z € Z on a
zi=(gof) T (z)=fTog M2) =g (2) = 2.
Posons z := (go f)71(2) et 2/ := f~1(g7(2)). On a
gof(z)==z
(par definition de la reciproque (go f)~!) et on a
go f(z') =g(f(f ' (¢7'(2))))
mais
g(f(f g @) =9(g 7 (2) = =

(car pour tout u € X, f~1(f(u)) = u) et g(g~*(z)) = 2) et donc

go f(a)=z=go f(z)

et comme g o f est injective cela implique que 2/ = z (car ce sont deux antecedents de z
par go f). O
En particulier ce lemme dit que ’application de composition 1.3.2 se restreint aux
applications bijectives:
Bij(Y,Z) x Bij(X,Y) ~— Bij(X,Z2)
O : .
(9. f) = gof

EXERCICE 1.4. Soient des applications f: X — Y et g : Y — Z. Montrer que

(1.3.3)

(1) Si go f est injective alors f est injective.
(2) Si go f est surjective alors g est surjective.
Montrer par des exemples que dans le premier cas g n’est pas forcement injective et que
dans le second cas f n’est pas forcement surjective.
On suppose que g o f est bijective, que peut on dire (ou ne pas dire) de f et de g 7

EXERCICE 1.5. Soit f : X — Y une application.

— On suppose qu’il existe g : Y — X telle que go f = Idx et f og =1dy. Montrer
qu’alors f est bijective et que g est sa reciproque.
— Montrer que ce n’est pas forcement vrai si on a seulement que go f = Idx.

1.4. Cardinal d’un ensemble

DEFINITION 1.9. Soient X et Y deux ensembles. Si il existe une bijection f: X =Y,
on dit que X et'Y ont le meme cardinal et on le note

[ X] =1Y].

PROPOSITION 1.2. La relation ”avoir le meme cardinal” a la proprietes suivantes
(1) Reflexivite: | X| = |X|
(2) Symetrie: | X|=|Y| = |Y|=|X]|,
(8) Transitivite: | X| =Y | et |Y|=1Z] = |X|=|Z|.

Preuve: Pour la reflexivite, il suffit de prendre Idx. Pour la Symetrie, si f : X ~ Y est une
bijection, sa reciproque f~!:Y ~ X est une bijection. Pour la Transitivite, si f: X ~Y
et g:Y ~ Z sont des bijections alors g o f : X +— Z est encore une bijection. |
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DEFINITION 1.10. Un ensemble X est fini si il est soit vide, soit en bijection avec un
ensemble de la forme {1,--- ,n} pour n € N un entier > 1. On ecrit alors
0] =0, |X]=n.
Un ensemble est infini sinon.

DEFINITION 1.11. Un ensemble X est denombrable si il est fini ou a meme cardinal que
N. Un ensemble est indenombrable sinon.

EXEMPLE 1.4.1. (1) Pour tout ensemble X, |22(X)| = |{0,1}¥]: en effet a un sous
ensemble A C X on associe sa fonction caracteristique
1 si A
la:zeX — Sre
0 sizgA

et on montre que 'application
AcP(X)14€{0,1}¥

est une bijection.
) Si|X|=neN, |Z(X) =2
) |Z| est denombrable.
) Q est denombrable.
) |X|=1Y]=IN| = [X]x[Y] = [N].
) (Cantor) Si X est denombrable et infini alors &(X) n’est pas denombrable.
)

2
3
4
5
6
7) R nest pas denombrable (c’est un corollaire du point precedent).

(
(
(
(
(
(

On va demontrer (6) qui est du a G. Cantor.
Preuve: Si X denombrable infini alors on a une identification X = N et donc
P(X) S 2(N) S {0, 11N
Il suffit donc de montrer que ce dernier ensemble n’est pas denombrable.
URemarquons d’abord qu’une application f : n € N — f(n) € {0,1} est simplement
une suite a valeurs dans {0, 1}.
Supposons qu’ il existe une bijection
fo:neNZ f(e) € {0,1}N.
Ainsi, a tout entier n on associe la suite a valeurs dans {0, 1},

fn = (fn(m))n>0
et par hypothese, toute suite f = (f(m))m>o € {0,1}" est de la forme f,, pour un certain
n (unique).
Considerons la suite (dite de Cantor) fo € {0,1}" definie par

)0 sifu(n) =1
Je(m) = {1 si fo(n) = 0.

Cette suite vaut donc 0 si le n-ieme terme f,,(n) de la n-ieme suite (fy,(m))m>0 vaut 1 et 1
si ce terme vaut 0.
Considerons le suite de Cantor fo: il existe ng € N telle que

fC’ = an'
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Quelle est la valeur de
fe(no) = fno(no)?
Il y a deux possibilites 0 ou 1:
— Si feo(ng) = 0 alors fy,,(no) = 1 par definition de fo mais alors 0 = fo(ng) =
fno(no) = 1, une contradiction.
- Si fo(ng) = 1 alors fc(ng) = 0 par definition de fo mais alors 1 = feo(ng) =
fro(no) = 0, une autre contradiction!
Ainsi la bijection f, n’existe pas et {0, 1}N n’est pas denombrable. Cet argument s’appelle
largument de la diagonale de Cantor (il vous rappellera certainement I’argument qui sous-
tend le paradoxe de Russell). g

EXERCICE 1.6. Deduire (7) de (6) (utiliser le developpement binaire d’un nombre reel
dans [0, 1] mais faire attention que par convention un developpement binaire ne se termine
pas par une suite constante de 1. Heureusement l’ensemble des suites a valeurs dans {0, 1}
qui sont ultimement constantes egales a 1 est ”petit” mais il faudra dire ce qu’on entend
par " petit”.

1.4.1. Le Theoreme de Cantor-Bernstein-Schroeder. On peut raffiner la notion
d’egalite des cardinaux:

DEFINITION 1.12. Soient X et Y deuz ensembles. Si il existe une application injective
entre X etY, ¢ : X — Y, on dit que le cardinal de X est plus petit que celui de Y et on
note cette relation | X| < |Y|. Si de plus | X| # |Y|, on le note | X| < |Y].

Bien evidemment si les ensembles sont finis cette definition correspond a la notion
habituelle de cardinal comme etant le nombre d’elements.

EXERCICE 1.7. Montrer la transitivite de cette relation:
X[ <[Y]et [Y]|<[Z] = [X]|<|Z].

En pensant au cas des ensembles finis il est tres tentant de penser que cette relation est
antisymetrique
(X[ <[YT]et Y] <[X]=|X]|=[Y].
Eh bien c’est vrai et c’est le theoreme suivant dont la preuve est donnee en exercice du
cours ”Structures Algebriques”:

THEOREME (Cantor-Bernstein-Schroeder). Soit X et Y deux ensembles (pas necessaire-
ment finis). Si il existe une injection ¢ : X — Y et une injection ¢ : Y — X alors il existe
une bijection ¢ : X ~ Y. En d’autre termes

(X[ < Y] et [Y] < [|X] = [X][=[Y].

1.4.2. Hypothese du continu. L’hypothese du continu est une question posee par
G. Cantor:

QUESTION (Cantor). On sait que |[N| < |R|. Existe-il un ensemble Xy tel que
IN] < [Ry| < [R].

L’hypothese du continu est que cet ensemble n’existe pas: en d’autre termes le plus
”petit” ensemble non-denombrable est R.

Cette question a motive en grande partie le developement de la logique mathematique
pendant le 20eme siecle.
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En 1938, K. Goedel a demontre que 'hypothese du continu ne pouvait etre refutee dans
la theorie ZFC: on ne peut pas montrer qu’elle est fausse.

En 1963, P. Cohen a demontre que ’hypothese du continu ne pouvait etre demontree
dans la theorie ZFC: on ne peut pas montrer qu’ell est vraie.

En fait 'hypothese du continu est indecidable dans la theorie ZFC et une grande partie
de la logique mathematique actuelle consiste a trouver un ou des axiomes supplementaires,
"naturels” et "minimaux” pour rendre 'hypothese decidable.






CHAPITRE 2

Groupes

”The introduction of the digit 0 or the group concept was general nonsense too,
and mathematics was more or less stagnating for thousands of years
because nobody was around to take such childish steps...”

2.1. Groupes abstraits

DEFINITION 2.1. Un groupe (G, *,eq,-~ ') est la donnee d’un quadruple forme de
— d’un ensemble G non-vide,
— d’une application (appelee loi de composition interne)
Y GxG — G
(9,9") = Hgg)=gxd
— d’un element eq € G (appele element neutre),
— d’une application (appele inversion)

_1.G — G
g o= gt

ayant les proprietes suivantes:
— Associativite: ¥g,9',9" € G, (gx g )xg" =g*(g'*g").
— Neutralite de eg: Vg € G, gxeg =eg*xg=g.
— Inversibilite: Vg € G, g ' xg=gx g~ = eq.
REMARQUE 2.1.1. Par soucis de concision on omettra I’element neutre et I'inversion (voire de
la loi de groupe) dans les donnees: notera souvent un groupe par G ou (G, *).

REMARQUE 2.1.2. La propriete d’associativite est indispensable et par ailleurs extremement
utile: si 'on se donne 3 elements

91,92,93 € G

dont on veut former le produit (dans cet ordre): pour cela on calcule g12 = g1 * g2 puis le produit
gi2 * g3 = (g1 * g2) * g3 et Passociativite nous dit qu’au lieu de cela on aurait pu commencer par
calculer go3 = go * g3 et faire le produit

91 % 923 = g1 * (92 * g3)
et lassociativite nous dit que cela de depend pas de la maniere dont on s’y prend:
(91 % g2) x g3 = g1 * (92 % g3)
et on peut ecrire sans ambiguite ce produit sans parantheses
g1 x g2 * g3 = g1 * (g2 * g3) = (g1 * g2) * gs.
De meme si on dispose de n elements g1, , g, € G, on defini sans ambiguite leur produit

n
g1 x- ok Gn = *,-10i-

27
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PROPOSITION 2.1. (Proprietes de base de la loi de groupe) Soit G un groupe. On a

(1) Involutivite de l’inversion:

Vg, (97 =9, g xg =ec.

(2) Unicite de Uelement neutre: soit er; € G tel qu’il existe g € G verifiant g x e; = g alors
eq = eq. On a la meme conclusion si il existe g’ tel que ey x g’ = eq.

(3) Unicite de Uinverse: si g € G verifie gx g’ = eq alors ¢ = g=* et on a donc egalement
g xg=eqg. De meme si g € G verifie ¢ xg = eq alors ¢ = g~ et on a donc egalement
gxg =eq.

(4) Inverse d’un produit: on a

(gxg) =g gt

Preuve: (2) Unicite de l’element neutre: dans l’equation

greg=9g

1

on multiple a gauche par ¢~ ce qui donne

g xgreg=eoxep=en=g ' xg=eq.
Pour le deuxieme cas, on multiplie a droite par ¢’ -1
(3) Unicite de l'inverse: en multipliant l'egalite g x ¢’ = e¢ a gauche par g~
I’associativite on a

L et en utilisant

gxg =ea =g 'xgxg =g ' xeq

et "l xg*g = ¢ tandis que g7 xeqg = g~ L.

On traite de la meme maniere le cas ¢’ x g = eg.

(1) Involutivite de I'inversion: en particulier, appliquant ce raisonnement a g~
comme g g~ ! = eg on obtient que (¢g71)7! = g.

(4) Inverse d’un produit:

1

Lavec ¢ = g,

’—

(¢ kg D (gxg) =g x (g xg) xgd =g xeaxgd =g xg =eq

et donc (par unicite de l'inverse)

— -1 —
(gxg) =g g "

2.1.1. Exemples de groupes.

— Le groupe additif des entiers relatifs. L’ensemble (Z,+,0, —e) des entiers relatifs Z
muni de ’addition, du zero 0 et de 'oppose n — —n forme un groupe d’ordre infini.

— En revanche (Z — {0}, +, 0, —e) forme des entiers non-nuls muni des memes structures ne
forme pas un groupe (il manque un element neutre et d’ailleurs il n’est pas stable par
addition).

— Le groupe additif des nombres rationels. L’ensemble (Q,+,0, —e) des nombres ra-
tionels Z muni de I'addition, du zero 0 et de 'oppose n — —n forme un groupe.

— Le groupe multiplicatif des nombres rationels. L’ensemble (Q*, x,1,1/e) avec
Q* = Q— {0} est ’ensemble des nombres rationels non-nuls muni de la multiplication, de
l'unite 1 et de I'inversion A — 1/X forme un groupe,

— Le groupe multiplicatif des entiers relatifs. De meme le sous-ensemble Z* := {+1}
muni des memes structures est un groupe.

— Groupe produit. soient (G, *) et (H,x*) deux groupes. Le groupe produit (G x H,KX)
est le groupe associe au produit cartesien

GxH={(g,h), g€ G, he H}

muni de la loi de composition interne X definie par

(g,h) R (¢, h') = (g* g, hx1).
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On peut le munir d’un element neutre et d’une inversion pour en faire un groupe (exercice).
Groupe trivial. Soit G = {eg} un ensemble reduit a un seul element. Alors G x G
possede un seul element ((eg,eq)) et la seule application possible de G x G vers G est

donnee par
*: (eg,eq) € G X G eq € G
de meme la seule application possible de G vers G est

o lieqceGrreq e

on verifie facilement que (G = {eg},*, e, o~ !) est un groupe appele le groupe trivial.
— Groupe des classes de congruences: Soit ¢ € N — {0} un entier non-nul. Pour a € Z, on

definit le sous-ensemble de Z

a(modq) :={a+qk, k € Z} € P(Z)

et qu’on appelle la classe de congruence de a modulo ¢. L’ensemble de ces sous-ensembles

est note
Z/qZ = {a(mod q), a € Z} C P(Z);

cet ensemble est fini de cardinal ¢. En effet on montre en utilisant la division euclidienne

par g que
Z/qZ = {a(modq), a € {0,1,- ,q—1}}

D’autre part, pour A, B € #(Z) des sous-ensembles de Z, on a pose

ABB:={a+b, ac A be B} e Z(Z),

et definit egalement
BA:={-a, a€ A} € Z(Z).

Alors (Z/qZ,8, 0 (mod ¢q),He) est un groupe commutatif appelle groupe additif des classes

des congruences modulo q.

2.1.1.1. Notation exponentielle. Soit g € G un element d’un groupe. Pour tout entier n > 1, on

forme le produit de g avec lui-meme n fois et on le note

grgx--Kkg=g"
On a donc

n+l _ n . n
g =9 *g=9g*g .
On pose ensuite

(2.1.1) ¢° =eq

et si n < 0 est un entier negatif, on pose

n

g"=(g ) =g x-xg (—n = |n| fois).

cela defini g" pour n € Z.
On a alors pour tout m,n € Z

(2.1.2) gmt =g x g™,
On a alors defini une fonction
(2.1.3) exp, : Z = G :g”

n + expy(n)=g" -
qu’on appelle exponentielle de n dans la base g. On dira alors que I'image
Im(exp,) = exp,(Z) = {g", n € Z}

est ’ensemble des puissances de g.
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2.1.2. Groupes commutatifs. Tous les groupes que nous avons vu possedent une propriete
supplementaire: la commutativite

DEFINITION 2.2. Soit (G,*) un groupe. Deux elements g, g’ commutent si
g*xg =g *g.
Un groupe G est abelien (ou commutatif) si toutes les paires d’elements de G commutent:
Vg.9 €G, gxg' =g *xg.
2.1.2.1. Notation additive. Si le groupe G est commutatif, sa loi de groupe sera souvent notee
(mais pas toujours) par une addition (par exemple +¢), l'element neutre par le signe ”0” (par
exemple Og) et l'inversion par —e : g — —g (par exemple —¢).
L’inverse de g, —g sera alors appele l'oppose de g. De plus, on ecrira
9+c9d,9+c0c =0c+cg=9,9+c(—g) =0c.
Enfin la notation exponentielle pour g+¢ - - -+¢ ¢ (nfois)) sera remplacee par la notation ”multiple”:
pour n > 1, on posera
ng=g+c--+agg (Tl fOiS)a (7”’)9 = (*Gg) +c - ta (*Gg)(n fOiS), 0.9 = 0Og,
de sorte que (2.1.2) devient
Ym,n € Z, (m+n).g =m.g+g n.g.
On dispose alors d’une application (de multiplication par g) de Z a valeurs dans G:

Z = G
‘n — n.g

On dira alors que son image
Z.g={n.g, neZ} CG

est I’ensemble des multiples de g.

2.1.3. Ordre d’un groupe.

DEFINITION 2.3. Soit (G, *,eq, e 1) un groupe, le cardinal |G| de l’ensemble sous-jacent s’appelle
egalement ’ordre du groupe G.

Ainsi (Z,+) est un groupe d’ordre infini alors que (Z*, X) est un groupe d’ordre 2 et que Z/qZ
est d’ordre q.

2.2. Le cas du groupe symetrique

Soit X un ensemble, on note
Bij(X) = 6(X) = Autgns(X) = Bij(X, X) C Homgns(X, X)
I’ensemble des bijections de X vers lui-meme.
Si X est fini non-vide (on peut alors supposer que X = {1,---n}) pour n > 1 une telle bijection
s’appelle alors une permutation de X sur lui-meme.
Cet ensemble admet des structures supplementaires

(1) Bij(X) est non-vide: Idx € Bij(X),

(2) Bij(X) est stable par composition des applications (1.3.2): soient f: X — X, g: X — X
des bijections alors I’application composee, f o g : X — X est encore une bijection (la
composee d’applications injectives est injective et la composee d’applications surjectives
est surjective). On dispose donc d’une application (de composition):

o Bij(X) x Bij(X) +— Bij(X)
' (f,9) = fog’
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(3) La composition est associative:
Vf,g,h € Bij(X), (fog)oh=fo(goh)=:fogoh.
(4) L’identite Idy a la propriete de neutralite:
Vf eBij(X), foldy =Idxo f=f.
(5) L’application reciproque f +— f~! envoie Bij(X) sur Bij(X)
ol Bij}X) : B?g()
et elle verifie
VfeBij(X), fof'=f"lof=Idy.
Ces proprietes font de 'ensemble Bij(X) un groupe qu’on appelle le groupe symetrique de X.

Ce groupe est la plupart du temps hautement non commutatif:

EXERCICE 2.1. Montrer que si X possede 2 elements ou moins alors Bij(X) est commutatif.
Montrer que si X possede au moins 3 elements, il n’est pas commutatif : pour cela choisir trois
elements distincts x1, 2,23 € X et trouver des bijections o, 7 qui verifient

Ve e X —{x1,22,23},0(x) =2, 7(x) =z
et telles que coT # T o 0.
2.2.1. Exemple: les permutations d’un ensemble fini. Considerons le cas ou X est un
ensemble fini, non-vide de cardinal n > 1; on peut alors supposer que X = {1,---n}. On note

souvent ce groupe X, ou G,,.
On rappelle qu’alors Bij(X) est fini de cardinal

|Bij(X)] = n!

avec
nl=12.---mn,n>1 0 =1.

Preuve: En effet pour definir une bijection o : {1,---n} = {1,---n}. On choist o(1) parmi n

elements, puis o(2) parmi les n — 1 element restants,... Le mieux est de demontrer cette egalite une

recurrence sur n. a
On peut representer une permutation par un tableau a deux lignes et n colonnes

(ol oy o)

Ainsi 'identite est ainsi codee par

Par exemple, pour n =4
(1 2 3 4
77\3 2 41
1—3,2—2 3—4, 4—1

et si on compose o avec elle-meme on obtient
oo — 1 2 3 4
7°9=\4 2 1 3)°

1—3,2—2,3—4,4—1;

est la permutation qui envoie

qui envoie
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iterant une fois de plus, on a

aoaoo-(l 2 3 4>—Idx.

1 2 3 4
2.2.1.1. Cycles. Un autre exemple est la permutation cyclique
(1 2 -+ n—-1 n
1=\2 3 .. a1
qui envoie
1—-2,2—3,---, k—k+1,--- ,n—1.

Pour les permutations cycliques telle que celle ci-dessus, une autre notation (plus compacte) est tres
utile: pour 1 < k£ < n, on se donne
{a17... ’ak} C {1’...n}
des elements distincts et on pose
(ala2 e ak)

la permutation qui envoie

aj — az, s — ag,--- ,a — a
et qui envoie chacun des n — k elements de {1,---n} — {a1, -+ ,ar} sur lui meme: la permutation
(aras - - ag) est appellee cycle de longueur k.
Par exemple
1 2 - n—1 n
U+1:(2 3 ... n 1>=(12~-~n)

est un cycle de longueur n et

1 2 3 4
o= (3 9 4 1> = (134)
est un cycle de longueur 3.

Transpositions. Une classe particulierement importante de cycles est celle des cycles de longueur
2, (a1a2), a1 # as. On les appelle transpositions: explicitement (ajas) echange a; et as et envoie
tous les autres elements sur eux-meme.

Dans le cours MATH-113 vous demontrerez le Theoreme de decomposition suivant

THEOREME 2.1. Soit &,, = Bij({1,--- ,n}) le groupe de permutations de n elements alors

(1) Toute permutation s’ecrit comme une composee de cycles,
(2) tout cycle s’ecrit comme compose de tranpositions,
(3) et donc toute permutation s’ecrit comme compose de tranpositions.

Par exemple
o = (134) = (34) o (14)
et (le demontrer)

(12---n)=(2n)o(23)o---o(k—1,k)o---0o(n—2,n—1) o (1n)

2.3. Sous-groupes

Avec la notion d’ensemble vient la notion de sous-ensemble. De meme avec la notion de groupe
vient la notion de sous-groupe d’'un groupe G: un sous-groupe est un sous-ensemble de G qui herite
naturellement des structures additionelles %, e, ! venant avec la structure de groupe de ’ensemble

G.

DEFINITION 2.4. Soit (G, *,eq,o" ') un groupe. Un sous-groupe H C G est un sous-ensemble
de G tel que

(1) eq € H.
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(2) H est stable pour la loi de composition interne *:
Vh,h' € H, hxh' € H.
(8) H est stable par linversion:
Vhe H, h™' € H.
Alors si on note g et 0;11 les restrictions de la loi de composition * et de 'inversion e~! aux
sous-ensembles H x H et H on a

. HxH — H | H
B (h,n') +— h*h” "H " h

— H
— h7!
et (H,*m,ec,e ) forme un groupe.

REMARQUE 2.3.1. Distinguer les restrictions a H de la loi de composition et de l'inversion est
formellement correct mais un peu pedant. La convention universelle est d’omettre cette restriction
dans les notations et d’ecrire (H,*, ey = e, ') ou plus simplement (,x).

En fait il n’est pas necessaire de verifer les trois conditions de la definition d’un sous-groupe.

PROPOSITION 2.2 (Critere de sous-groupe). Pour montrer qu’un sous-ensemble non-vide
0#HCG

est un sous-groupe il suffit de verifier l’'un ou l'autre des groupes de proprietes (1) ou (2) ci-dessous:
(1) (a) Yh,h' € H, hxh' € H,
(b) Vh € H, h! € H.
(2) Vh,W € H, hxh'~' € H.

Preuve: On va montrer que si (2) est verifiee alors H est un sous-groupe (le cas (1) est encore plus
simple):
— En prenant A’ = h, on a h«h™! = eg € H donc H contient I’element neutre.
— En applicant hx W' ™' € H avec h = e on a que si ' € H alors '~ € H.
— En applicant h+xh'~' € H avec h € H et B = h/~" et en utilisant que (h’_l)_1 =h/, on
a que si h,h' € H alors hxh' € H.
O

EXEMPLE 2.3.1. Voici quelques exemples de sous-groupes:

— {eg} C G est un sous.-groupe: le sous-groupe trivial.

— G C G est egalement un sous-groupe.

— lensemble vide ) C G n’est pas un sous-groupe (il lui manque ’element neutre).
27 C Z ('ensemble des entiers pairs) est un sous-groupe.

— 1+ 27 C Z (I'ensemble des entiers impairs) n’est pas un sous-groupe.

— On peut classifier tous les sous-groupes de Z:

THEOREME 2.2. Les sous-groupes de Z sont exactement les sous-ensembles de la forme
qZ = {qk, k€ Z} = 0(mod q) C Z
pour q € Z un entier.
Preuve: Pour tout entier ¢ € Z, on verifie par la definition ou le critere de sous-groupe que
I’ensemble des multiples de ¢
qZ={qn,nelZ} CZ
est un sous-groupe.

Montrons que reciproquement, tout sous-groupe de Z est de la forme ¢.Z pour q € Z. En effet,
soit H C Z un sous-groupe. Si H = {0} on a termine car H = 0.Z. Sinon soit ¢ € H — {0}; quitte a
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remplacer ¢ par —q (qui est encore dans H car H est un sous-groupe) ops ¢ > 0. On peut egalement
supposer que ¢ est le plus petit entier > 0 contenu dans H. On va montrer qu’alors H = q.Z.
Comme g€ HonaZ.q CH
Soit h € H alors par division euclidienne, h peut s’ecrire
h=qk+r

avec k € Z et 0 < r < q. Mais comme H est un sous-groupe et que h et ¢.k = (¢4 ---+ q) (|¥|
fois) sont dans H,

r=h-—qkeH.

Comme 0 < 7 < g on a necessairement 7 = 0 (par definition de ¢ comme plus petit element positif
non-nul de H) et donc h = ¢.k € ¢.Z. O

— Pour g € G, 'ensemble des puissance de g
exp,(Z) = d={g", neZ}cG

est un sous-groupe commutatif de G.
— Si G est commutatif et que la loi de groupe est notee additivement, I’ensemble des multiples
de g,

Z.g={n.g, neZ} CG
est un sous-groupe commutatif de G.
— Soit X un ensemble G = Bij(X) et € X un element, alors le sous-ensemble

Bij(X)s = {0 € Bij(X), o(z) =z}
est un sous-groupe: on l'appelle le stabilisateur de x dans Bij(X).

Le resultat suivant qu’on demontrera plus tard nous dit que le cas du groupe symetrique est
fondamental (voir Exercice 2.6 pour la preuve) :

THEOREME 2.3. Soit G un groupe alors G s’identifie canoniquement a un sous-groupe du groupe
symetrique &g = Bij(G) des permutations de G.

2.3.1. Le Theoreme de Lagrange.

THEOREME 2.4. Soit G un groupe fini et H C G un sous-groupe alors l’ordre de H divise [’ordre
de G:

[H| [ |G].
Preuve: On consider I’ensemble des sous-ensembles de G la forme
Te(H)={g9.H C G, g€ G} CP(G)
avec
g.H={g.h, h e H}.

(Pensemble des translates a gauche de H par les elements de G). On montre que

Gng.H

geG

— les translates recouvrent G:

— les translates sont disjoints:
gHNg . H+#0) <= g.H=d¢ H,
— les translates ont tous le meme cardinal:

Vg€ G, |g.-H| =[H|.
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En particulier T (H) forme une partition de G: il existe un sous-ensemble Gy C G tel que

G= |_| g.H

9€Gu
et donc
Gl =Y lg-H| Y [H|=|Gul|H]|.
9eGu 9€Gu

COROLLAIRE 2.1. Si |G| est un nombre premier, ses seuls sous-groupes sont {ec} et G.

2.3.1.1. Ordre d’un element. On a vu precedement que le cardinal d’un groupe etait aussi appelle
son ordre. L’ordre d’un element g € G est definit par

DEFINITION 2.5. Soit G un groupe et ¢ € G un element de G. L’ordre de g est l'ordre du
sous-groupe g* C G (ou Z.g si la notation est additive). On le note

ord(g) = |g%| (= |Z.g| en notation additive).
COROLLAIRE 2.2. Soit G une groupe fini. Pour tout g € G, lordre de g divise l’ordre de G:
ord(g)||G|
COROLLAIRE 2.3. Si |G| est un nombre premier, pour tout g # eg on a
¢ =aG.
2.3.2. Groupe engendre par un ensemble.

PROPOSITION 2.3. (Invariance par intersection) Soit G un groupe et Hy, Hy C G deux sous-
groupes alors Hy N Hy est un sous-groupe. Plus generalement soit H;,i € I, H; € G une collection
de sous-groupes de G indexes par I alors

ﬂ H, G

iel
est un sous-groupe de G.
Preuve: On utilise le critere de sous-groupe: d’abord (,.; H; est non-vide car il contient I’element
neutre eg. Soient h,h’ € (,c; H; montrons que h * Wole ;e Hi. 1l s’agit de montrer que pour
tout i € I, hx nte H,; mais c’est vrai car H; est un sous-groupe de G. O

DEFINITION 2.6. Soit
Ga ={H C G sous-groupe |A C H}
lensemble de tous les sous-groupes de G contenant A (cet ensemble est non-vide car G est dedans).
Alors lintersection de ses sous-groupes

(1 HcG
HeGA

est un sous-groupe contenant A et c’est le plus petit (si H est un sous-groupe contenant A alors
(A) C H.) Ce sous-groupe
(A) := m H
HeGa
s’ appelle le sous-groupe engendre par A.
Si (A) = G on dit que G est engendre par A (ou que A est un systeme de generateurs de G ).

Voici une caracterisation plus constructive de (A) (qui justifie la terminologie):
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THEOREME 2.5 (Caracterisation linguistique du groupe engendre par un ensemble). Soit A C G
un ensemble, si A =1 alors (A) = {eg}, sinon on pose

Al ={g', geA}cG
limage de A par linversion, alors
(Ay={g1 % *gn, n>1, e AUAT'}

En d’autres termes, (A) est ’ensemble des elements de G qu’on peut former en multipliant ensemble
des elements de A et de son inverse A~! de toutes les manieres possibles.

Preuve: Si A= (), il est clair que le groupe trivial a les bonnes proprietes. Supposons A non-vide.
Il s’agit de montrer que I’ensemble

(A ={g1 %+ Hgn, n>1, g€ AUA™Y}
est un sous-groupe contenant A et qu'il est contenu dans tout sous-groupe H D A.
Considerant les mots de longueur 1, g1, g1 € A on voit que A C (A)’. Soient
gLk Kk Gy gy ko kg € (A)
deux tels mots alors
Grr kG x (Ghk ek gh) T =gk kg kg kgt € (A
ainsi (A)’ est un sous-groupe de G contenant A par consequent
(4) C (A).

Enfin, si A C H est un autre sous-groupe alors A~! € H (car H est stable par inversion) et pour
tout n > 1 et tout gy, -+ ,gn € AUA' C Hona g, x---xg, € H car H est stable par x et donc
(A) C H et donc
(A c (] H=(4) c(Ay.
HeGa
([l
2.3.2.1. Groupes monogenes/cycliques. Soit g € G alors le sous-groupe engendre par g, ({g})
vaut

({g}) = ¢* = expy(2).
DEFINITION 2.7. Un groupe G est dit

— monogene si il est engendre par un seul element:
dge G, G=({g}) =4"

On dit que g est un generateur de G.
— cyclique si il est fini et monogene.

EXEMPLE 2.3.2. — Le groupe Z est monogene : engendre par 1 ou —1.
— Le groupe Z/qZ est cyclique: il est engendre par 1(modgq) et plus generalement par
a (mod ¢) pour tout a premier avec q.

2.4. Morphismes de groupes

Les sous-groupes d’'un groupe sont les sous-ensembles qui preservent la structure de groupe;
les morphismes de groupes sont les applications entre deux groupes qui preservent les structures
respectives de groupes.
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DEFINITION 2.8. Soient (G,%) et (H,*) deuz groupes, un morphisme de groupes @ : G — H est
une application telle que
Vg,9' € G, p(gxg') = o(g) * ¢(g).
On notera
Home, (G, H)
l’ensemble des morphismes de G vers H.

THEOREME 2.6 (Propriete fonctionnelle d’un morphisme). Soit ¢ : G — H un morphisme de
groupes alors

(1) plec) = en,
(2) Vg€ G, p(g7") =plg9)~",
(3) V9.9’ € G, p(g*9g') =¢(g) = (g')
Preuve: La troisieme identite est juste une repetition de la definition.
Pour la premiere identite, on a

¢(9) = wlg*ec) = p(g) * plec)
et donc p(eg) = ey par unicite de 1’element neutre dans H.
Pour la deuxieme on a pour tout g € G

plgxg7") = plec) = en = p(g9) * (g")
et donc p(g~1) = ©(g)~! par unicite de I'inverse dans H. O

EXEMPLE 2.4.1. Les applications suivantes sont des morphismes de groupes
— Soit G un groupe (note multiplicativement) et g € G. Montrer que I'application

g*=exp,:n€Z—g"e€qG

est un morphisme de groupe.
— En particulier pour
Z Z
q € Z, [xq}.n o
est un morphisme de groupes.
— Les fonctions exponentielles et logarithme sont des morphismes de groupes:
exp : (R’+) = (R>Oa X)7 log . (R>07 X) = (R’ +).
x —  exp(x) x —  log(z)
— Soit ¢ > 1 et
7 7]qZ
a + a(modq)
Papplication qui a un entier a associe sa classe de congruence modulo ¢ alors e (mod q) est
un morphisme de (Z, +) vers (Z/qZ,8).

e (modgq) :

2.4.1. Noyau, Image. Les morphismes preservent la structure de sous-groupe:
PROPOSITION 2.4. (Invariance des sous-groupes par morphismes) Soit ¢ € Homeg, (G, H) un
morphisme de groupes.
(1) Soit K C G un sous-groupe alors p(K) C H est un sous-groupe. En particulier 'image de

(p7
Im(p) = p(G) C H

est un sous-groupe de H.
(2) Soit L C H un sous-groupe de H, alors la preimage

(L) ={g9€G, plg) €L} CG

est un sous-groupe de G. En particulier o= ({ey}) est un sous-groupe de G.
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Preuve: Soit i, i’ € p(K), on veut montrer que hx A~ € ¢(K). Par definition il existe k, k' € K
tels que p(k) = h, p(k') = h' et
hh' ™ = (k) x (k) = (k<K ") € ()
car kx k'' € K puisque K est un sous-groupe.
Soit ¢,¢' € ¢~ (L) alors montrons que ¢(g+ ¢~ ') € L. On a

—1 _
plgxg ) =wplg)xplg) " €L
car ¢(g),¢(g") € L par definition et L est un sous-groupe. O

DEFINITION 2.9. Le sous-groupe o~ ({eg}) s’appele le noyau de ¢ et est note
ker(p) = "V ({en}) = {9 € G, w(g) =en}-

L’importance du noyau vient du fait qu’il permet de tester facilement si un morphisme est
injectif.
THEOREME 2.7 (Critere d’injectivite). Soit ¢ € Homg,.(G, H) un morphisme de groupes alors
les proprietes suivantes sont equivalentes
(1) ¢ est injectif,
(2) ker(p) = {ec}.
Preuve: Supposons ¢ injectif alors ker(p) = {g € G, ¢(g) = ey} possede au plus un element. Mais
comme p(eg) = eg on a ker(¢) = {eg}.
Supposons que ker(p) = {eg}; on veut montrer que pour tout h € H,
eV({rY) ={9€G, lg) = h}

possede au plus un element. Soient g, g’ € (=) ({h}) (si 'ensemble est vide on a fini) alors

e(g) =¢lg") =h
et
p(9)xp(g) =hxh =eq
mais
en = olg)+olg) " = plgxg )
donc g+ g’ "' € ker(p) = {eg} et
gxg  =ea=g=4g
et donc ¢~V ({h}) possede au plus un element. O
2.4.1.1. Propriete d’invariance du Noyau.

THEOREME 2.8. Soit ¢ : G — H un morphisme de groupes et ker(p) C G son noyau. Alors
pour tout g € G on a I’ egalite suivante entre ensembles

g.ker(p).g7! = {g.k.g7", k € ker(p)} = ker(y).

Preuve: Montrons que pour tout g on a

g. ker(p).g7" C ker(y).

Il s’agit de montrer que pour k € ker(p) on a g.k.g~! € ker(p) c’est a dire p(g.k.g” ') = eq

0(g-kg7") = pg) * p(k) x 0(g™") = ¢(g) x e x 0(9) ™" = p(g) * p(9) ™" = enr.

Montrons 'inclusion reciproque: comme g.ker(¢).g~t C ker(p), en multipliant cette inclusion a
gauche par ¢g—! et a droite par g on a
97 g.ker(p).g7".g C g~ ker(p)g
et comme
g g ker(p).g7 g = e, ker(p).eq = K
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on a pour tout g € G
ker(p) C g™ ker(p)g.
En particulier substituant g par g~* on a

ker(p) C g.ker(p).g~!

et on a donc
g.ker(p).g7! = ker(yp).

|
DEFINITION 2.10. Un sous-groupe K C G ayant la propriete que pour tout g € G on a
gKg'=K
est dit normal ou distingue et on le note
K <G.

REMARQUE 2.4.1. Ainsi un noyau est un sous-groupe distingue. Reciproquement on peut mon-
trer que tout sous-groupe distingue est un noyau mais cela necessite la notion de groupe quotient.

EXERCICE 2.2 (Equations dans les groupes). Soit G, H des groupes et ¢ : G — H un morphisme.
Etant donne h € H, on cherche a resoudre I’equation d’inconnue g € G:

Eq(p,h): lg) = h.
L’ensemble des solutions de cette equation n’est autre que la preimage (=9 ({R})...
(1) Montrer que
)
est soit vide soit qu’il existe gyo € G tel que
PV ({h}) = go *ker(p)
ou
go* ker(p) = {go x k, k € ker(p)}.
(2) Montrer que
PV ({R}) = ker () * go
avec
ker(p) x go = {k * go, k € ker(p)}.

(3) Quel est 'ensemble de tous les gg € G ayant cette propriete ? Cela vous rappelle t il quelque
chose 7 (pensez a ”equation avec” et ”sans second membre”, ”solution particuliere”,
”solution generale” ...)

2.4.2. Exemple: ordre d’un element. Soit g € G un element d’un groupe. On rappelle que
lordre de g est egal a

ord(g) = |g”| = exp,(Z)],
le cardinal de 'image du morphisme ”puissances de g”

exp,:n€Z—g"eq.
Son noyau, ker(expg) est un sous-groupe de Z et donc de la forme
ker(exp,) = q.Z

avec ¢ = q(g) € N (car tous les sous-groupes de Z sont de cette forme). On a la caracterisation
suivante de l'ordre de g:

THEOREME 2.9. Soit G un groupe, g € G un element et ¢ € N un entier naturel tel que
qZ = ker(g*®).
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— Siq =0 alors ker(g®) = {0} et g° est injectif et ainsi on a un isomorphisme de groupes
(un morphisme de groupes bijectif)
L~ g
On a alors
ord(g) = |Z| = oc.
— Siq >0, alors q est le plus petit entier strictement positif verifiant
9 =eq
et on a
ord(g) = |¢*| = ¢.
~ Si G est fini on a ord(g) | |G| et g!¢ = eq
Preuve:
EXERCICE 2.3. Demontrer les affirmations precedentes et en particulier que si ¢ > 0 alors
9" ={9"=ec. g, 9" '}
est fini de cardinal ¢

d

2.4.3. Groupe quotient. On a vu qu’un noyau d’un morphisme ¢ : G — H est un sous-
groupe distingue de G. On va voir que reciproquement tout sous-groupe distingue K <1 G est le
noyau d’un morphisme de groupe. Pour cela on commencera par definir I'image de ce morphisme:
le groupe quotient G/ K.

DEFINITION 2.11. Soit K C G un sous-groupe d’'un groupe. Une classe a gauche (resp. a droite)
de G est un sous-ensemble de G de la forme

gK ={g.k, k€ K},
resp.

Kg={k.yg, ke K}
pour g € G.

— L’ensemble des classes a gauche de G est note
G/K :={¢yK, g € G} C P(Q).
On Uappelle egalement le quotient a droite de G par K.
— L’ensemble des classes a droite de G est note
K\G:={Kg, g€ G} C P(G).
On Uappelle egalement le quotient a gauche de G par K.

LEMME 2.1. les classes a gauche (resp. a droite) on les proprietes suivantes
- egK:K.
- gK=¢gK < ¢ =gk, ke K
- gKNJK#0 < gK =¢K.
- KeG:K.
- Kg=K¢ < ¢ =kg, ke K
- KgnNKg #0 <= Kg=Kg'.
Si G est fini on a
|G/K| = [K\G| = |G/|K].
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Preuve: Exercice O

Supposons maintenant que K est distingue dans G. On a alors
LEMME 2.2. Si K est distingue dans G on a
Vg € G, gK = Kg.
Ainsi
G/K = K\G.
Deplus, pour tout g,9' € G on a
gK.g'K = {gkd'K', k,k' € K} = gd'K.

Preuve: Exercice ]
On notera une classe a gauche (ou a droite, ) de la maniere suivante

g(mod K) :=gK = Kg
On definit sur 'ensemble G/K la loi de composition interne
'k G/IKxG/K - G/K
en posant
g(modK) -k ¢ (modK) =gK - ¢K := gK.gK = g¢'K.
THEOREME 2.10 (Existence du groupe quotient). Si K est distingue dans G, l'ensemble (G /K, i)

a une structure de groupe dont l’element neutre est

€G/K = egK =K
et linversion est donnee par

(9K)'=g7'K.
Preuve: Exercice. (]

DEFINITION 2.12. Si K est distingue dans G le groupe (G/K, k) est appele groupe quotient de
G par K.

Quotients et morphismes. Le groupe quotient a la propriete suivante par rapport aux mor-
phismes:

THEOREME 2.11. Soit K <1 G un sous-groupe distingue et G/K le groupe quotient.
L’application
e(modK): g€ G g(modK) =gK € G/K
est un morphisme de groupes surjectif de noyau K.
Soit p : G — H un morphisme de groupe tel que

K C ker(p)
alors il existe un unique morphisme de groupe
vk :G/K - H
tel que
Vg € G, ok (9K) = ¢(9).
On a alors

ker(¢r) = ker p (mod K) = (ker p). K = {k'K, k' € ker p}.

Preuve: Exercice. O
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THEOREME 2.12 (Theoreme Noyau-Image). Supposons que K est distingue dans G. Avec les
notations precedentes, on a
ker p = K <= @k est injectif
et on a alors un isomorphisme
oK :G/K ~ ¢o(G) C H.
En particulier si G est fini on a
GI/IK] = |o(G)].

Ainsi si @ est surjectif et si ker o = K on a un isomorphisme
G/K ~ H.
2.4.4. Operations entre morphismes de groupes.

Notation/Terminologie. On notera

— Homg, (G, H) I'ensemble des morphismes de groupes de G vers H,

— Inje, (G, H) 'ensemble des morphisme injectifs (qu’on appelle egalement monomorphismes
de groupes ),

— Surjg, (G, H) 'ensemble des morphisme surjectifs (qu’on appelle egalement epimorphismes
de groupes ), et

— Isomg, (G, H), I'ensemble des morphisme de groupes bijectifs (qu’on appelle lgalement
isomorphismes de groupes ).

— Si H = @, on ecrit notera ces ensembles

Home, (G), Injq,. (G), Surjg,. (G), Isomeg,(G);

en particulier ensemble des morphismes de G sur lui-meme Homg, (G) est aussi appelle
ensemble des endomorphismes du groupe G et est egalement note

Endg,(G) := Homg, (G, G).
L’ensemble des endomorphismes bijectifs (isomorphismes) de G sur lui-meme est note
Autg,(G) = Isomg, (G, G)
est est appele 'ensemble des automorphismes de G.
Les lois de compositions s’appliquent egalement aux morphismes de groupes:
PROPOSITION 2.5. (Invariance par composition et par reciproque) Soient (G,x), (H,*), (K, ®)
des groupes et
p:G—Hety:H—K
des morphismes de groupes alors la composee o ¢ : G — K est un morphisme de groupes.
Supposons que ¢ : G — H un morphisme de groupes bijectif alors ’application reciproque est un

morphisme de groupe bijectif:
¢! € Homg,(H,G).

Preuve: Soit g, ¢’ € G alors

Pop(gxg)=v(plg*g)) =1(e(9) *¢(g)) = v(e(g)) @ v(e(g') =1 op(g) ®Yop(g).

Supposons que ¢ soit bijectif. Il faut montrer que pour h,h' € H

e (') = o7 (h) x 7 ().
Soit g = o~ 1(h), ¢’ = ¢ *(I') alors
plgxg') = o(9) *o(g) = ol (h) * p(p™ (W) = h* .

Ainsi gx g’ € o~ ({h*h'}) mais comme ¢ est bijective =1 ({h xh'}) ne possede qu'un seul element
et comme ¢~ (h* h') en fait partie (puisque (o=t (h*h')) = h*h') on a

e ' (h)x o (W) =gxg = (hxh)
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On en deduit de la proposition precedente le
COROLLAIRE 2.4. L’ensemble des automorphismes de G
Aute,(G) C Bij(G)
est un sous-groupe pour la composition o.

Preuve: En effet 'ensemble Autg,(G) C Bijpng(G) est stable par composition et par reciproque.
On applique le critere de sous-groupe. O

2.4.5. Groupes isomorphes. Soient G, H deux groupes tels que Isog, (G, H) # 0 et il existe
donc un isomorphisme de groupes

0:G = H.
On dit alors que G et H sont isomorphes et one le note
G >~ar H.

Si c’est le cas, — pour autant que l'on soit interesse par les structures de groupes — G et H ont

exactement les meme proprietes et peuvent etre identifies 'un a l'autre comme groupes via les

morphismes ¢ et 1.

EXERCICE 2.4. Montrer que la relation pour deux groupes d’etre isomorphes est une relation
d’equivalence dans la categorie des groupes (qui n’est pas un ensemble): elle est reflexive, symetrique
et transitive.

EXERCICE 2.5. Soient G et H deux groupes isomorphes (de sorte que Isog, (G, H) # (). Montrer
que pour tout ¢ € Isog, (G, H) on a,

(1)
Isog (G, H) = ¢ o Aute,(G) = Autg,.(H) o
avec
poAutg, (G) ={pot, P € Aute,(G)}
et

Autg,(H)op={tpoyp, ¢ € Autg,(H)}.

2.5. Action d’un groupe sur un ensemble

I’exemple suivant de morphisme est fondamental en theorie des groupes et en mathematiques
en general

DEFINITION 2.13. Soit (G,*) un groupe, X un ensemble et (Bij(X),o) le groupe symetrique
de X (des bijections de X sur lui-meme). Une action (a gauche) de G sur X est la donnee d’un
morphisme

¢ : G~ Bij(X).
On dit alors que G agit sur X (a gauche) a travers le morphisme ¢ et on le note G ~, X.

PROPOSITION 2.6. La donnee d’une action G ~, X est equivalente a la donnee d’une application
(appellee loi de composition externe)

.G._GXX = X
" (gz) m gOw

veriftant

(1) neutralite de l’element neutre:

Vee X, eg Ox =2,
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(2) associativite: Vx € X, g,¢' € G,
(9xg) Oz =90 (¢ O).
(8) simplification: en combinant les deuzx proprietes precedentes on aVx € X, g € G,
9o (gl or)=go(gor) =1
Preuve: (a completer) Dans une direction, on associe a un morphisme ¢ : G — X lapplication

GxX = X

(JOPL (g,7) g®wx1:<ﬂ(9)(37)~

Dans I'autre direction, etant donne une application e ® e, on considere pour tout g € G, 'application

()_X — X
P p(g)a)=goa

On montre alors que ¢(g) est une bijection de X sur X, de reciproque

pl9) ™t =wlg™h)
et que 'application
¢ g ¢(g) € Bij(X)
est un morphisme de groupes. (]
EXEMPLE 2.5.1. Soit X un ensemble et o € Bij(X) une bijection de X sur X, on a vu que

I’application

c®:neZw— o" e Bij(X)
est un morphisme de groupes et on obtient donc une action du groupe (Z, +) sur X qu’on pourrait
noter par

Zne X:in@®yx:=0"(x).

Notons que si on change ¢ on obtient un autre action Z ~ X.

2.5.1. Action par translations dans un groupe. Soit (G, .) un groupe et g € G, Papplication
de translation a gauche par g est ’application

¢ G —» G
79 = 99"
Cette application n’est PAS un morphisme de groupe en general: elle ne l'est que si g = eg. En
effet si g = eq, on a ty(g') =eq.9' = ¢ et te, = Idg. Sinon on a
ty(ec) = g.ec = g # ea
donc t4, n’est PAS un morphisme de groupes.
En revanche t, € Bij(G). En effet, ¢, admet ;-1 comme application reciproque:

ty-10ty(g) =999 =9

et donc t,—1 oty = Idg et de meme t,0t,—1 = Idg.
THEOREME 2.13. L’application translation a gauche

.G = Bi(G)
g = tgig g9

est un morphisme de groupes de (G,.) vers (Bij(G),0). Le morphisme to definit donc une action a
gauche de G sur G qu’on appellera action par translations a gauche et qu’on notera G ~; G.
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Preuve: Pour tout g1,g2 € G et tout ¢’ € G on a
tgy 0tg,(g') = tg, (tgo(9")) = tg, (92-9") = 91.(92.9') = (91.92).9" = tg, 4. (9")

et donc
gy 0tg, =1g,.g,-

On a donc bien un morphisme de groupes. O

REMARQUE 2.5.1. La notation pour la definition equivalente d’une action a gauche dans la
Proposition 2.6 est faite pour copier ’action par translation a gauche sur le groupe.

EXERCICE 2.6. Soit G un groupe et
‘- G —  Bij(QG)
g = ty:G— G
l’action par translation a gauche de G vers G.

(1) Montrer que t, est injective.

REMARQUE 2.5.2. L’'image de ce morphisme tg C Bij(G) est donc un sous-groupe de G : le

groupe des translations a gauche sur G. Ainsi on a un isomorphisme de groupes
G S tg.

Ainsi un groupe quelconque, G, est toujours isomorphe a un sous-groupe d’un groupe de permutation
d’un ensemble, Bij(G).

2.5.2. La conjugaison dans un groupe. Un autre exemple fondamental d’action de groupe
est la conjugaison d’une groupe sur lui-meme.
Soit (G, .) un groupe et g € G un element. La conjugaison par g est Papplication

G = G

Adg'h —  g.h.g”

1.
THEOREME 2.14. Pour tout g, Uapplication Ady : G — G est un isomorphisme de groupes (ie
Ad, € Aute,(G)) dont Uapplication reciproque vaut
Ad,' =Ady- : G5 G
De plus Uapplication

est un morphisme de groupes.

Preuve: Calculons (comme g.g7! = eg)

Ady(h.h') = ghh.g7' = ghegh g =gh.gg B .g " = Ad,(h).Ad,(}).
Verifions que Ad, est injective en calculant son noyau:
ker(Ad,) = {h € G,g.h.g7! = eg}
mais
ghgl=ec=gh=g=h=cqg
(en multipliant a droite par g et a gauche par g~!. Notons ensuite que pour tout b’ € G
Ady(g7 0 g)=gg "W .gg =N
donc A’ € Im(Ad,) et I'application est surjective. En fait on a pour tout h € G
Ady- (Adg (1) = b Ady(Ady-1 (k) = b

de sorte que Ad,-1 est la reciproque de Ad,. Ainsi Ady € Bij(G).
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On a pour tout g,¢' € G, he G

Ady o Ady (h) = g.g' h.g "

-g_l = Adg.g’<h)

de sorte que
AdgoAdy = Adgy 4

et Papplication Ad : G — Bij(G) est bien un morphisme de groupes (dont I'image est contenue dans

Aute,r(GQ)). a
DEFINITION 2.14. L’application de conjugaison
G — Bij(G)
Ad: g — Ad,

etant un morphisme de groupes, elle defini une action a gauche de G sur G (par automorphismes
de groupes) qu’on appelle action par conjugaison et qu’on notera G ~pq G.
L’image de ce morphisme

Adg = {Ady, g € G} C Autg,(G) C Bij(G)

(formee d’automorphismes de groupe) et est appellee groupe des automorphismes "interieurs” de G
et est notee

Adg = IntGT(G) = InnGT(G).
("Inn” pour ”Inner”).

REMARQUE 2.5.3. Le noyau de Ad est le sous-groupe
ker(Ad) = {g € G, Ad, =1dg} ={g € G, Yhe€ G, g.h.g”' =h}
={g€ G, Vhe G, g.h=h.yg}
est 'ensemble des elements de G qui commutent avec tous les elements de G, on appelle ce sous-

groupe le centre de G et on le note
Z(GQ) C G.

EXERCICE 2.7. (suite de l'exercice 2.5) Soient G et H deux groupes isomorphes (de sorte que

Isogr (G, H) # 0). Montrer que pour tout ¢ € Isog, (G, H)
(1) L’application

. Autg,(G) —  Autg.(H)
C¢ = pogopT!
est un isomorphisme de groupes entre Autg,(G) et Autg,(H).

Ad,,

REMARQUE. Noter que cette application de conjugaison par ¢ n’est pas de Autg,(G) vers
Autg,(GQ) (sauf si G = H) mais de Autg,(G) vers Autg,(H) .

2.5.3. Action a droite d’un groupe sur un ensemble. On peut egalement definir la notion
d’action a droite. Pour cela la notion d’antimorphisme est tres utile:

DEFINITION 2.15. Soient (G, %) et (H,x) deuz groupes, un anti-morphisme de groupes ¢ : G —
H est une application telle que
V9.9 € G, w(gxg') =plg’) * ¢(9).
PROPOSITION 2.7. Une application entre groupes ¢ : G — H est un anti-morphisme de groupes
881
—1. -1
poe g p(gT)
est un morphisme de groupes ou bien ssi
o lop:igrp(g)!
est un morphisme de groupes.
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Preuve: Exercice. O

DEFINITION 2.16. Soit (G,*) un groupe, X un ensemble et (Bij(X),0) le groupe symetrique
de X (des bijections de X sur lui-meme). Une action a droite de G sur X est la donnee d’un
antimorphisme de groupes

v : G~ Bij(X).
On dit alors que G agit sur X a droite a travers ¢ et one le note X N, G.

PROPOSITION 2.8. La donnee d’une action a droite X v, G est equivalente a la donnee d’une
application
XxG —» X
oe(He:
(z,9) = zOy

verifiant

(1) neutralite de l’element neutre: Vo € X, x ©® eq = z,

(2) associativite: Ve € X, g, € G, 2@ (g*xg')=(x©0g)O 7.

(8) simplification: en combinant les deuzx proprietes precedentes on aVx € X, g € G,

(zog)eg ' =@og)og=u1
REMARQUE 2.5.4. On voit ainsi que dans une action a droite pour calculer 'action de g g’ sur

x, on fait d’abord ”agir” g sur z et ensuite on fait "agir” ¢’ sur le resultat alors que pour une action
a gauche c’est ¢’ qui agit en premier et ensuite g agit sur le resultat.

2.5.3.1. Action par translations a droite. Soit (G,.) un groupe et g € G, lapplication de trans-
lation a droite par g est ’application
G = G
g = g9
Tout comme pour la translation a gauche, cette application n’est PAS un morphisme de groupes en
general (sauf si g = eg).

Par ailleurs td, € Bij(G). En effet, td, admet td,~1 comme application reciproque: pour tout

/

g',ona

td,

tdg-1 otdg(g) = g'.9.97" =o'

et donc
ty-10ty = Idg
et de meme
tg o tg—l = IdG.
THEOREME 2.15. L’application de translation a droite
G — Bij(G)
tde : d o ,
g = tdg:g—g.g

est un anti-morphisme de (G, .) vers (Bij(G),o) et definit donc une action a droite de G sur G qu’on
appellera action par translations a droite et qu’on notera G v G (le premier G est vu comme un
ensemble et le second comme le groupe qui agit).

Preuve: Exercice. |

EXERCICE 2.8. Soit X,Y des ensembles, F(X,Y) l'espace des fonctions (ie. des applications)
de X a valeurs dans (ie. vers) Y et G ~ X un groupe agissant sur X a gauche: (g,z) — g ® x.

(1) Montrer que application

(FX,Y),G) = F(XY) —
o : (.9} o i cx = flg(w) = flgOx)

defini une action a droite de G sur F(X,Y).
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(2) Reciproquement, construire a partir d’une action a droite
XAG:(z,9)—~zx0 g
de G sur X, une action a gauche G ~ F(X,Y).



CHAPITRE 3

Anneaux

”Un Anneau pour les gouverner tous,
Un Anneau pour les trouver,

Un Anneau pour les amener tous,

Et dans les ténebres les lier”

3.1. Anneaux

DEFINITION 3.1. Un anneau (A, +,.,04,14) est la donnee, d'un groupe commutatif (A,+) (note
additivement) d’element neutre note 04, d’une loi de composition interne (dite de multiplication)

0o AXA = A
7 (a,b) — ab

et d’un element unite 14 € A ayant les proprietes suivantes
(1) Associativite de la multiplication:
Va,b,c € A, (a.b).c =a.(b.c) =a.b.c.
(2) distributivite:
Va,b,c€ A, (a+b).c=a.c+bc, c(a+b)=ca+c.b.
(8) Neutralite de 'unite:
Va€ A, aly=14.a=a.
Un anneau est dit commutatif si de plus la multiplication est commutative:

Va,b € A, a.b=b.a.

LEMME 3.1. Pour tout a,b € A, on a
04.a =a.04 =04,
(on dit que ’element neutre de ’addition 04 est absorbant). Pour l’oppose, on a
(—a).b = —(a.b) = a.(-b).
Preuve: Pour tout a on a
a=1pg.a=(1p4+04)a=a+04.a

et donc 04.a = 04. O

EXERCICE 3.1. Montrer que si 1’y a la propriete de neutralite: Ya € A, a.1’y = 1/;.a = a. alors
"w=1a.

EXEMPLE 3.1.1. Quelques exemples important d’anneaux:

(1) Les ensembles Z,Q, R, C munis de leurs lois usuelles sont des anneaux commutatifs.
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(2)

3. ANNEAUX

L’anneau nul: Soit Nul = {0} un ensemble non-vide forme d’un seul element. On muni
cet ensemble de I’addition et de la multiplication definies par

0+0:=0, 0.0:=0

alors
(Nul, +, ,0,0)

est un anneau commutatif qu'on appelle 'anneau nul.
Produits d’anneaux: Soient A et B des anneaux alors le produit A x B muni de I'addition
et de la multiplication ”coordonnee par coordonnee”

(a’a b) + (ala bl) = (a +A a/’ b +B bl)a (a,b)'(a’/v bl) = (G'-Aa,a b-Bb/)

est un anneau avec (04,0p) comme element neutre et (14,1p5) comme element unite.
Plus generalement si Ay, --- , A, sont des anneaux on peut munir le produit

A1><"'XAn

d’une structure d’anneau par addition et multiplication ” coordonnee par coordonnee” dont
le neutre et I'unite sont (04,,---,04,) et (1a,,---,14,).

Anneau de fonctions Soit X un ensemble et F(X;R) I’ensemble des fonctions sur X a
valeurs dans R: on definit ’addition et la multiplication de deux fonctions f, g € F(X;R)
par

frgz=(f+9)(x)=fl2)+9(x), f.9:2= (f9)(2):= f(2)g(z)

Alors si 0 et 1 sont les fonctions constantes egales a 0 et 1, (F(X;R),+,.,0,1) est un
anneau commutatif.
Plus generalement si (A, +,-,04,14) est un anneau, et que

04,14 : X — A

designent les fonctions de X vers A qui sont constantes egales respectivement a 04 et 14,
en posant pour f,g € F(X, A)

frg:z (f+9)(@)=f@)+9(x) €A fg:xz— (f9)(x):=f(z)g(x) €A,
on verifie que
(F(X54),+,.,04,14)

est un anneau.
Soit

RX]={P(X)=ao+a1.X +axX?+---+aq.X% d>1, ag,a1, - ,aq € R}

I'ensemble des fonctions polynomiales a coefficients dans R. Alors R[X] muni de Paddition
des polynomes et de la multiplication des polynomes est un anneau dont le neutre est le
polynome constant nul 0 et ’element unite est le polynome constant 1.

Plus generalement on verra plus tard que pour tout anneau commutatif A on peut former
Panneau des polynomes a coefficients dans A, A[X]:

AX|={P(X)=ap+a1.X + a2 X*+ - +aq. X%, d>1, ag,a1, - ,aq € A}

qui est un anneau commutatif muni des lois d’addition et de multiplication des polynomes
usuelles. Formellement, on ne definit PAS A[X] comme I’ensemble des fonctions polyno-
miales de A a valeurs dans A (ce dernier anneau est en general plus petit) mais comme
I’ensemble des symboles ag+a1.X +as X%+ --+aq.X 4 munis des regles usuelles d’addition
et de multiplications des polynomes.
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(7) Soit A un anneau commutatif, 'ensemble

Mo (A) :{(‘C‘ 2) a,b,c,d € A}

des matrices 2 x 2 a coefficients dans A et muni des lois d’addition et de multiplication des
matrices

a b n a v\ _ fa+d b+V a b a b\  [fad +bd ab + bd
c d d d)  \e+cd d+d )’ \c d) \cd d) \cd +dd cb +dd

est un anneau (non-commutatif) d’element nul la matrice nulle

(04 04
Onr(a) = 04 04
et d’unite la matrice identite

a0
Lagy(a) = Ido = (0“ 1A) :

REMARQUE 3.1.1. On peut definir egalement le produit (externe) d’un scalaire a’ € A

et d’'une matrice m = <(CL Z) en posant

;4 [a b\ _ (da a'b
a-m=a c d) 7 \de dd

(on multiplies toutes les coordonnees de la matrice par le scalaire a’.

Cette loi de multiplication externe a des proprietes d’associativite et de distributivite
relativement a 1’addition et au produit dans A et Ms(A): pour a/,a” € A, m,m’ € Ms(A)
on a

(@.a")-m=d-(a"-m)=ad -m

(a+ad) m=d -m+d -m,d (m+m')=d -m+ad- -m.

Exemple: ’anneau des classes de congruences Z/qZ. Soit ¢ > 1 un entier et
Z/qZ = {a(mod q), a € Z}, a(modq) = a + qZ

l’ensemble des classes de congruence de module g. On rappelle que (Z/qZ, 8,0 (mod ¢), B) forme un
groupe commutatif qu’on note additivement: pour a,b € Z on pose

a(mod ¢) B b (mod q) := a + b (mod q).
En particulier, on verifie que c’est bien defini: si a (modq) = a’ (modq) et b (modq) = ¥’ (mod q)
alors
a+b(modq) =a + b (modq).
Pour a (mod ¢), b(mod q) des classes de congruences, on pose'
a (mod ¢) ¥ b (mod q) := a.b(mod q).
On verifie a nouveau que c’est bien defini: si a (mod q) = @’ (mod q) et b (mod ¢) = ¥’ (mod q) alors
a (mod ¢) ¥ b (mod q) = a.b(modq) = a’.b' (mod q) = a’ (mod q) X b’ (mod q).
L’ operation X nous fourni une application

Z/qZ x 7./ qZ — Z/qZ

obde: (a (modq),b(modq)) + a.b(modq)

IRemarquer que ce n’est pas exactement la meme operation X que dans la serie 1.
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qui est bien definie: si a/,b’ € Z sont tels que
a’ (mod q) = a (mod q), b’ (mod q) = b (mod q)
alors
a’.b/ (mod q) = a.b(mod q).

Ainsi pour tout entier ¢ > 1, il existe un anneau commutatif fini de cardinal q.

Exemple: ’anneau des endomorphismes d’un groupe commutatif. Soit (M,+) un
groupe commutatif note additivement et End(M) := Endg, (M) l'ensemble des endomorphismes
de M (les morphismes de groupe de M vers M). Alors, on peut munir End(M) d’une structure
d’anneau (non-commutatif en general):

(1) L’addition est definie comme suit : soient ¢, € End(M), on pose

+¢'M — M
PV m s (p+)(m) == p(m) + (m)

alors ¢ 4+ 1 € End(M) est bien un morphisme de groupes;
(2) On definit 'oppose pour l'addition par

oM - M
Pim e (—)(m) = —p(m)

et on verifie que —¢ est encore un morphisme de groupes: cela utilise le fait que M est
commutatif.

(3) Ainsi on montre que (End(M),+) forme un groupe commutatif dont ’element neutre est
le morphisme nul:

QM :m € M — 0.
(4) La multiplication des endomorphismes est definie par la composition des applications:
potp:me M — porp(m)=(h(m)).
qui a la propriete d’associativite requise (cf. §1.3.4) et pour laquelle ’application identite

Idyy c:meM— M

(qui est bien un morphisme de groupes) a la propriete de neutralite par rapport a ’addition.
On verifie alors la distributivite de la composition par rapport a ’addition (on utilise a
nouveau les proprietes des morphismes de groupes)

Voo, ¢, € End(M), (p+¢') oy =pop+¢ o, Yo(p+y¢)=rvop+ioy.

En effet Vm € M
(p+¢")ov(m) = (¢ +¢)(W(m)) = p(¥(m)) + &' (Y(m)) = p o Yp(m) + ¢" 0 Y(m)

et

Vo (¢ +¢')(m) =v((¢+¢")(m) = Y(p(m) + ¢'(m))
= ¥(p(m)) +¥(¢'(m)) =1 o p(m) + ¥ o ¢'(m)
On obtient ainsi que
(End(M),+,0,0,,,Idx)

forme un anneau.
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3.2. Elements inversibles
DEFINITION 3.2. Soit A un anneau. Un element a € A est inversible si il existe b € A tel que
a.b=b.a=14.
On dit alors que b est un inverse (a gauche et a droite) de a (pour la multiplication).
PROPOSITION 3.1. (Unicite de linverse) Soit A un anneau et a € A un element inversible et
soit b tel que a.b =b.a = 14.

Soit b verifiant
a.b' = lA
alors V' = b; de meme si b verifie
b’.a = 1A

alors b =b

Preuve: Supposons que a est inversible avec a.b = b.a = 14 et soit b’ € A tel que
a.b’ = 1A
alors
ab =14 =bab =b=1,0 =V
|

NOTATION 3.1. Par la Proposition precedente si un element a € A est inversible son inverse est

unique. On notera cet inverse
a b

Notons que a™' est egalement inversible et on a
(e =a.
On deduit de cette discussion que
PROPOSITION 3.2. Soit A* l’ensemble des elements inversibles d’un anneau A, alors
(A*, 14,071
forme un groupe: le groupe des elements inversibles de A.

REMARQUE 3.2.1. Rappelons que I'on utilise la notations additive pour le groupe commutatif
(A,+). En particulier pour tout a € A, l'element —a (”'inverse” de a pour la loi +) sera appele
I'oppose de a:

a+(—a)=(—a)+a=04.

On reservera le terme ”inverse” a la multiplication.

REMARQUE 3.2.2. Par une perversite du vocabulaire, le groupe A* est egalement appele le
groupe des unites de A et ses elements sont des unites de A. Quelque fois quand on voudra parler
d’un element a inversible on parlera d’une ”unite” de A et on reservera le terme "I'unite de A” a
Pelement 14.

EXEMPLE 3.2.1. (1) On a
Z* ={+1,-1}, Q* =Q - {0},R* =R — {0},C* = C — {0}.

par exemple 2 n’est pas inversible dans Z car son inverse 1/2 n’est pas entier mais il est
inversible dans Q.
(2) On a
Nul(A)* = {04}.
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(3) Les matrices inversibles de R sont celles dont le determinant est inversible:

Mo (R)™ —{(‘Z Z) a,b,c,d € R, det (Z‘ Z) =ad —bc € R* =R — {0}}.

(4) Si(M,+) est un groupe commutatif et End(M) = Endg, (M) est son anneau d’endomorphismes,
le groupe des unites de End(M) est
End(M)* = Autg, (M)

le groupe des automorphismes du groupe (M, +).
(5) Si A et B sont des anneaux, le groupe des elements inversibles du produit A x B est

(Ax B)* = A* x B*.

(6) Anneau des classes de congruences: les elements inversibles de Z/qZ sont les classes de
congruences premieres a q:

(Z/qZ)" ={a(modq), (a,q) =1}.
En effet si a (mod q) € (Z/qZ)*, il existe d (mod q) tel que
a (mod ¢).d (mod ¢) = 1 (mod q)
et donc
a.d (mod ¢) = 1 (mod q).
Il existe donc b € Z tel que
ad=14+¢qgb<=ad—qgb=1.

Cela implique que a et d sont premiersa entre eux. Cela nous donne 'inclusion C.
Supposons (a,q) = 1 par Bezout il existe d,b € Z tel que

ad—qgb=1
et donc
ad =1 (mod q)
ce qui nous donne l'inclusion D.

EXERCICE 3.2. Soit A un anneau commutatif et M>(A) 'anneau des matrices a coefficients dans
a b

d) € Msy(A), la transposee de la matrice des cofacteurs de M est la matrice

definie par

teof (M) = (d ‘b> .

—C a

(1) Montrer que

M tcof (M) = teof (M).M = det(M).Ids = (det(M) 0 >

0 det(M)
ou det(M) (le determinant de M) est defini par
det(M) := ad — be € A.
(2) En deduire que

Ma(A)* =: GLa(A) :{<CCL Z) a,b,c,d € A, det <Z Z) — ad —be € AX).
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3.2.0.1. Divisibilite.
DEFINITION 3.3. Soit (A,+,.) un anneau commutatif et a,c € A, on dit que a divise c et on le
note
alc
si il existe b € A tel que
c=a.b.

On dit egalement que a est un diviseur de b.

EXERCICE 3.3. Soit A un anneau.

(1) Montrer que la relation de divisibilite est reflexive et transitive.
(2) Montrer que tout element du groupe des unites A* est un diviseur de tout element de A.
(3) Quels sont les diviseurs de 0, 7 de 14 7

3.3. Sous-anneau

DEFINITION 3.4. Soit (A, +,.) un anneau. Un sous-anneau B C A est un sous-groupe de (A, +)
qui est

— soit le sous-groupe trivial {04},
— soit qui contient l'unite 14 et qui est stable par multiplication:

Vb, b’ € B, bl € B.
Ainsi (B, +,.,04,14) est un anneau.

PROPOSITION 3.3. (Critere de sous-anneau) Soit (A, +,.) un anneau et B C A un sous-ensemble
non-vide; alors B est un sous-anneau ssi B = {04}, ou bien 14 € B et

(3.3.1) Vo, 0" € B, bV — V' € B
Preuve: Exercice. (]
EXEMPLE 3.3.1. (1) La chaine d’inclusions
ZCcQcRcC

est une chaine de sous-anneaux de C.
(2) Les seuls sous-anneaux de Z sont {0} et Z.

(3) Les seuls sous-anneaux de Z/¢Z sont {0 (mod q)} et Z/qZ.
(4) La chaine d’inclusions

M>(Z) € M2(Q) C My(R) € M5(C)

est une chaine de sous-anneaux.
(5) Pour tout anneau commutatif, 'ensemble des matrices scalaires

a 0

Aldy = {a.Id2 = (0 CL) , a € A} C MQ(A),

I’ensemble des matrices diagonales

Dines() = {({ ). a.d€ 4) < M)

et 'ensemble des matrices triangulaires superieures

Tyup2(A) = {(‘01 Z) , a,b,d € A} C Ma(A)

sont des sous-anneaux emboites les uns dans les autres.
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I’ensemble des matrices triangulaires inferieures

T 2(A) = {(i 2) L ae.d € A} C My(A)

est egalement un sous-anneau.
(6) Si B,C C A sont des sous-anneaux de A alors B N C est un sous-anneau de A. Plus
generalement pour toute collection (A;);c; de sous-anneaux A; C A de A, lintersection

(JAi={a€A Viel, ac A}
iel
est un sous-anneau de A. En particulier, pour tout ensemble X C A il existe un plus

petit sous-anneau de A contenant X ('intersection de l’ensemble des sous-anneaux de A
contenant X): on l'appelle le sous-anneau engendre par X et on le note

(X) C A
3.4. Morphismes d’anneaux

DEFINITION 3.5. Soient (A, +a4,.4), (B,+p5,.5) des anneauz. Un morphisme d’anneauz ¢ :
A B est un morphisme de groupes commutatif ¢ : (A, +4) — (B,+g) tel que

©(1a) =1p ou bien p(14) = 0p,
Va,a' € A, pla.ad’) = p(a).pp(d’).
REMARQUE 3.4.1. Si ¢(14) = 0p alors ¢ est application constante nulle 0:
Va € A, ¢(a) = p(a).p(la) = 05.

Le morphisme canonique. Le morphisme canonique associe a un anneau A est ’application

CanA:Z = 4
n = nly
ou
0 sin=20
nla=1q144- -+ 1u(n fois) sin>0

—(1a+---+14)(n| fois) sin<O0.
On notera egalement pour n € Z
na := Cang(n).
EXERCICE 3.4. On a deja vu que Cany est un morphisme de groupes commutatifs (pour
laddition). Verifier que ¢’est un morphisme d’anneaux.
3.4.1. Noyau, Image.

PROPOSITION 3.4. (Stabilite par morphismes) Soient ¢ € Homan, (A, B) un morphisme alors
©(A) C B est un sous-anneau. Par ailleurs le sous-groupe ker(y) est un sous-groupe de (A,+) qui
est de plus stable par multiplication (a gauche et a droite) par A:

Va € Ak € ker(yp), a.k, k.a € ker(p).
Preuve: On sait deja que ¢(A) est un sous-groupe de (B, +). Si ¢(A) n’est pas 'anneau nul alors
15 = ¢(14) € p(A) et pour tout b,b’ € p(A), on a b= p(a), b’ = ¢(a’) pour a,a’ € A et
bV = pla)p(d') = pla.a’) € p(A)
ainsi ¢(A) est stable par produit.
On sait deja que ker(p) est un sous-groupe de (A, +). De plus Va € A, k € ker(p), on a

plak) = pla).p(k) = ¢(a).0p = 0p
donc a.k € ker(yp). O
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REMARQUE 3.4.2. Notez que ker(p) est PAS un sous-anneau en general : il ne contient pas 14
sauf si 15 = 0p (c’est a dire sauf si B est I’anneau nul).

EXERCICE 3.5. Soit ¢ : A — B un morphisme d’anneaux et {0g} # B’ C B un sous-anneau qui
n’est pas ’anneau nul. Montrer que 'image reciproque A’ = <p(’1)(B’ ) est un sous-anneau de A.

Comme ¢ est un morphisme de groupes additifs on a
PROPOSITION 3.5. Un morphisme d’anneauz ¢ € Hom g, (A, B) est injectif ssi ker(p) = {04}.

PROPOSITION 3.6. Soient p: A B ety : B+ C des morphismes d’anneauz alors

—Yop: A C est un morphisme d’anneaut.

— Soit ¢ € Homun, (A, B) un morphisme d’anneauz bijectif, ’application reciproque o~
B+ A est un morphisme d’anneauz. On dit que ¢ est un isomorphisme d’anneauz et on
dit que A et B sont des anneauz isomorphes.

1.

Preuve: Exercice. U
NOTATION 3.2. Soient A, B des anneauz. On note
Hom gy (A, B), End gnn (A) = Hom gy, (A, A)
Isomann (A, B), Autan,(A) = Isoman, (4, A)

l’ensemble des morphismes d’anneauz entre A et B, des endomorphismes de 'anneau A, des iso-
morphismes d’anneaux entre A et B et des automorphismes de l’anneau A.

EXERCICE 3.6. L’ensemble des automorphismes Aut ., (A) muni de la composition forme un
sous-groupe de Bij(A).

3.5. Anneau quotient

Dans cette section on va donner une generalisation de la construction de 'anneau Z/qZ.

3.5.1. Ideal d’un anneau. On a vu que le noyau ker(y¢) d’un morphisme d’anneaux ¢ : A — B
n’est pas un sous-anneau en general. C’est un sous-groupe du groupe additif (A,4) stable par
multiplications par les elements de A. On va donner un nom a ces objets.

DEFINITION 3.6. Soit A un anneau pas forcement commutatif.
— Un ideal ( a gauche) de A est un sous-groupe additif (I,+) C (A,+) qui est stable par
multiplication (a gauche) par les elements de A:

Vae A bel, abel.

— Un ideal ( a droite) de A est un sous-groupe additif (I,+) C (A,+) qui est stable par
multiplication (a droite) par les elements de A:

Vae A, bel, baecl.

— Un ideal bilatere de A est un sous-groupe additif (I,+) C (A,+) qui est un ideal a gauche
et a droite:

VYae A, bel, ab, b.a€l.

En particulier si A est commutatif les notion d’ideal a gauche, a droite ou bilatere sont toutes les
memes.

EXEMPLE 3.5.1. Soit ¢ : A +— B un morphisme d’anneaux alors ker(p) est un ideal bilatere de
A.
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EXERCICE 3.7. Soit I C A un ideal (a gauche) d’un anneau A. Montrer que si
INA* £
alors
I=A
(on commencera par montrer que si AX NI # () alors 14 € I et on en deduira que I = A).
EXERCICE 3.8. Montrer que les ideaux de 'anneau Z sont les sous-groupes gZ pour ¢ > 0.
3.5.2. Anneau quotient par un ideal. Soit (A,+,.) un anneau et I C A un ideal bilatere

(c’est automatique si A est commutatif). Pour a € A, la classe de congruence de a modulo I est le
sous-ensemble

a(modl):=a+I={a+1i, i€} CA
Soient a,a’ € A; on dit que a est congru a a’ modulo I ssi on a
a(mod ) = a’ (modI);
on note cette relation

a=a (modlI).

EXERCICE 3.9. Montrer que la relation de congruence modulo I, a = a/ (mod I) est une rela-
tion d’equivalence sur A dont les classes d’equivalences sont precisement les classes de congruence
a (mod I). On pourra commencer par montrer ’equivalence

a=d (modl) < a—d €l
L’ensemble des classes de congruences modulo I (c’est un sous-ensemble de &?(A)) est note
A/l :={a+1, ac A}

On peut munir cet ensemble A/I d’une structure d’anneau qu’on appelle l’anneau quotient de
A par l'ideal 1.

THEOREME 3.1. Soit (A,+,+,04,14) un anneau et I C A un ideal bilatere et
A/I ={a(modI)=a+1I, a€ A}
l’ensemble des classes de congruences modulo I. En particulier on a
0a(modI)=1, 1y(modl)=14+1.
(1) Il existe une (unique) structure d’anneau
(A/I,+r1,1,04/1,14/1)
telle que ’application

A — A/l
7TI::.(mOdI):a — a(méd[)

soit un morphisme d’anneau surjectif de noyau
ker(my) = I.

On appelle cet anneau l’'anneau quotient de A par I et on appelle 71 morphisme canonique
de A vers son quotient A/I.
(2) On a en particulier

(351) OA/IZOA(mOdI):I, 1A/I:1A(m0d1):1A+I
et pour tout a,b € A
(3.5.2) a(modI)+;b(modl)=a+b(modI), a(modIl) -;b(modIl)=a-b(modI).



3.5. ANNEAU QUOTIENT 59

(8) Soit ¢ : A — B un morphisme d’anneaux. On suppose que I C ker(p). Alors il existe un
unique morphisme d’anneauz

pr: A/ - B
tel que
(3.5.3) Va € A, ¢r(a(modI)) = ¢(a).
En d’autre termes on a
(3.5.4) $=@romy;

On dit que le morphisme @ se factorise par le morphisme canonique et on le note avec le
diagramme suivant

A—2 B

"l A

A/l

Preuve: Notons que A/ est reduit a un seul element ssi I = A. Alors le resultat est evident.

Si A/I n’est pas reduit a un element (ie. si I C A) on a necessairement

W](OA) = O(modI) = OA/[, 7T[(1A) =1 (modI) = 1A/I
ce qui montre qu’on doit avoir (3.5.1). Le fait que 77 doive etre un morphisme d’anneaux implique
(3.5.2): en effet on doit avoir
a+b(modI) =mr(a+b)=mr(a)+r7r(a) =a(modl)+rb(modI)
et
a-b(modl)=mr(a-b)=mnr(a) - mr(a) =a(modl) ;b(modI).
Ainsi la structure d’anneau si elle existe est unique (I’application 7 est evidemment surjective:

tout element = de A/I s’ecrivant a + I est l'image de a par )
Pour montrer I'existence, on voudrait poser

a(modI)+;b(modl):=a+b(modI), a(modI) -rb(modI):=a-b(modI).

Le probleme est que un classe a (mod I) peut aussi s’ecrire a’ (mod I') pour tout a’ € a (mod I). On
veut que le resultat ne depende par du choix de I’element a’.
Il suffit donc de montrer que si

a(modI)=a'(modI) et b(modI)=">(modI)
alors
a+b(modI)=a +b (modI)eta-b(modl)=a"-b (modI).
On doit donc montrer que

(a+b)—(d+b)el,a-b—d Vel

On a
a—a e€l, b-b el

et donc

(a+b)—(d+V)=c+del+ICI
car I est un sous groupe de (A, +).

On a
a-b—a -t =a-b—a-b+a-b—d-¥V
=a-(b=V)—(a—d)-Vea-I+I1-V CI+ICI

car I est un ideal (bilatere) de A et donc stable par addition et multiplication a gauche et a droite
par des elements quelconques de A (ici a et V).
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Le fait que les lois +; et -1 soient associatives et distributives et que 04 (modI) et 14 (modI)
en soit les elements neutre provient des definitions de ces lois et des proprietes correspondantes pour
Panneau (A, +,-,04,14).

Soit ¢ : A — B un morphisme tel que I C ker ¢. On veut montrer 'existence de ¢y : A/I — B
verifiant (3.5.3). En particulier, comme 7; est surjectif un tel morphisme si il existe est unique.
Pour montrer Pexistence il suffit de montrer que si a (mod I) = a’ (mod I) alors

o(a) = ¢(a’).
Alors on pourra poser sans ambiguite
¢1(a(modT)) = p(d’)

pour tout @’ € a+ I (c’est a dire pour tout o’ tel que o’ + 1 =a+I).

Onaa =a+iavecie I et donc

p(a’) = p(a) + ¢(i) = (a) + 05 = ¢(a)
car
p(i) = 0B

puisque I C ker(ip). O



CHAPITRE 4
Corps

”Le corps conditionne le raisonnement.”

4.1. Corps

DEFINITION 4.1. Un corps K est un anneau commutatif possedant au moins deux elements
Ox # 1k et tel que tout element non-nul est inversible:

K* = K — {0k}

REMARQUE 4.1.1. Dans cette definition, on demande que K soit commutatif. Il existe des
anneaux non-commutatifs dont I’ensemble des elements inversibles sont exactement les elements
non-nuls. On les appelle corps gauche ou algebres a divisions.

EXEMPLE 4.1.1. On a Q, R, C sont des corps; Z n’en est pas un (par exemple 2 n’est pas inversible
dans Z).

4.1.1. Exemples de corps finis. Un autre exemple fondamental est celui des corps finis.

THEOREME 4.1. Soit ¢ > 2 un nombre premier (les seuls diviseurs de q sont 1 et q) alors
lanneau des classes de congruences modulo q (Z/qZ,+,.) est un corps (fini de cardinal q).

Preuve: Comme ¢ > 1 (par definition un premier n’est pas egal a 1) on a 0 (mod q) # 1 (mod q)
(car ¢ f1 —0=1). Ainsi Z/qZ a au moins deux elements.
On a montre au chapitre precedent que pour tout entier g > 1

(Z/q2)* = {a(modq), (a,q) =1}.
On va voir que si g est premier on a
(a,q) # 1 <= gla < a (mod q) = 0 (mod q).
Cela nous donnera que
(Z/qZ)* = Z/qZ — 0 (mod q).

<—: si g|a alors ¢ est un diviseur commun de a et g et donc ¢|(a,q) > 1 car ¢ > 1 (un premier
n’est pas egal a 1).

Montrons =>: si (a,q) > 1 alors a et ¢ admettent un diviseur commun non-trivial (le pged

(a,q)) et comme ¢ est premier ses seuls diviseurs sont 1 et ¢ et donc (a,q) = ¢ et ¢la.
(Il

NOTATION 4.1. Soit ¢ > 2 un nombre premier, le corps fini a q elements (Z/qZ,+,.) est note
F,.
REMARQUE 4.1.2. Reciproquement si (Z/qZ,+,.) est un corps alors ¢ est premier: en effet si
q = q1.q2 est compose (avec 2 < ¢q1,¢2 < q) alors on a
¢1 (mod q).g2 (mod q) = ¢1.g2 (mod q) = ¢ (mod ¢) = 0 (mod q).

La classe ¢ (mod ¢) est non-nulle (car ¢ ne divise par ¢;) mais elle n’est pas inversible non-plus: si
on avait ¢ tel que ¢} (mod q).¢; (mod ¢) = 1 (mod ¢) on aurait

¢y (mod g).¢q1 (mod q).g2 (mod ¢) = 0 (mod ¢) = 1 (mod q).g2 (mod ¢) = g2 (mod q)

61



62 4. CORPS

mais ¢ ne divise pas ¢ (car 1 < g3 < q).

PROPOSITION 4.1. Soit ¢ > 2 un nombre premier et F, = Z/qZ le corps a q elements. Pour
tout v € Fy on a
x? = x.
REMARQUE 4.1.3. En particulier les fonctions polynomiales sur F,
Fqg = Fy g Fg = Fy

X q
xT — x T — T

sont identiques !

Preuve: Comme F, est un corps, son groupe multiplicatif des elements inversible vaut
Fg =(Z/qZ)* =Fq — {0, }
est d’ordre ¢ — 1. Par le theoreme de Lagrange,
Vo € Fy =F, — {0}, 277" =1p,
et donc multipliant encore par x
Ve eFy =F, — {0}, 27 ==z
et cette derniere egalite est aussi valable pour x = O, - O

4.1.2. Injectivite des morphismes depuis un corps. Comme on va le voir, le fait, dans
un corps, de pouvoir inverser tous les elements non-nuls simplifie considerablement la theorie. Par
exemple on a

PROPOSITION 4.2. Soit K un corps, B un anneau et ¢ € Homupn, (K, B) un morphisme

d’anneauz. Alors si ¢ n'est pas nul (p # 05) ¢ est injectif:
p: K — B.
Preuve: Supposons que ¢ n’est pas nul. Il s’agit de montrer que ker p = {0k }. Soit = € K — {0},
alors x est inversible et soit 2! son inverse. On a
p(ra™) = p(lx) = p(z)p(™")

et comme ¢ Z 0p, p(lx) = 15 # 0p et p(x) # 0 et donc z & ker(p). O

REMARQUE 4.1.4. On a meme mieux: si x € K — {0} alors ¢(z) est inversible dans B, d’inverse

p(a)™ = (™).
Une autre propriete caracteristique des corps est la suivante:

PROPOSITION 4.3. Soit K un corps alors tout ideal I C K est soit I = {0k} ou bien I = K.
Reciproquement, soit A un anneau commutatif possedant au moins deux elements alors si ses
ideauz sont {0k} ou bien K alors K est un corps.

Preuve: Soit I C K un ideal non-nul et soit a € I — {0} alors a est inversible et il existe a=! € K
tel que
a .a=1

Comme a € I et que I est un ideal, on a a~'.a € I et donc 1 € I. Pour tout b € A in a alors
b=blcoulcClI

et donc A = 1.
Pour la reciproque, prendre a € K — {0} et considerer 'ensemble

(a) =a.K ={ak, ke K} CK

et montrer que c’est un ideal et conclure. O
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4.2. Construction de corp: corps des fractions

Etant donne un anneau A, sous certaines hypotheses, on peut construire un corps K (le plus
petit possible) dont A est peut etre considere comme un sous-anneau. En particulier si a € A — {0}
alors il existe a™! € K tel que a.a™! = 14 = 1g. Pour cela il faut que A satisfasse une propriete
particuliere: etre integre.

LEMME 4.1. Soit {0} # A C K un sous anneau non-nul d’un corps K alors A est commutatif
et

(4.2.1) Va,be A, ab=0<=a=0o0ub=0.

Preuve: A est commutatif car K est commutatif. Pour (4.2.1) seule la direction = est non
evidente: supposons que a, b # 0 alors il existe a=! € K tel que a~!.a = 1x mais alors on a

ab=0=a"tab=0xg =0,
contradiction. (]
DEFINITION 4.2. Un anneau A non-nul, commutatif, tel que Ya,b € A on ait
ab=0<=a=0o0ub=0
est dit integre.
REMARQUE 4.2.1. En particulier un corps est integre: appliquer le lemme precedent a A = K.

EXERCICE 4.1. Montrer que si ¢ = g1.g2 avec q1,q2 # 1, q (des diviseurs non-triviaux de ¢) alors
(Z/qZ,+,.) n’est pas integre et donc pas un corps (cf. Remarque 4.1.2)

THEOREME 4.2. Soit A un anneau integre (en particulier commutatif) , alors il existe un corps
K et un morphisme d’anneau injectif

1: A= K

(de sorte qu’on peut considerer A comme un sous-anneau de K en identifiant A a son image 1(A) C
K ) et tel que K a la propriete de minimalite suivante: pour tout corps K' et tout morphisme injectif

A K,
il existe un morphisme (necessairement injectif)
et K — K'
prolongeant le morphisme ' (ainsi A et K peuvent etre vus comme des sous-anneauz de K' ).
REMARQUE 4.2.2. ”Prolonge” signifie que pour a € A, on a
Ui (1(a)) = i/ (a).
DEFINITION 4.3. Le corps K s’appelle le corps des fractions K et se note Frac(A).
Preuve: Soit A un anneau integre. On considere le produit cartesien
Ax (A-{0}) ={(a,b), a,be A, b+#0}.
On definit sur A x (A — {0}) une relation ~ en posant
(a,b) ~ (a',b') < a.b =d.b.
Cette relation est une relation d’equivalence (reflexive, symetrique, transitive). En effet

— reflexive: (a,b) ~ (a,b) car ab = ab.
— symetrique: (a,b) ~ (a’,V) <= a'b = ab <= (d/,V’) ~ (a,b)
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— transitive: si (a,b) ~ (a’,b') et (a’,b') ~ (a”’,b"), alors on a
ab/:a/b a/ b”:a” bl
et comme A est commutatif
ab' b =abt =d.bb" =a"b.b=ad"bb.
On a donc
0a =ab’b —ad" bt/ = (ab’ —a".b).V
et comme A est integre et b’ # 0 on a
ab' —a"b=04 = ab’ =d"b< (a,b) ~ (a",b").
On note
K = Frac(A) = Ax (A—{0})/ ~
I’ensemble des classes d’equivalence et on note
a
—-eK
b €

la classe d’equivalence de la paire (a,b). On l'appelle la fraction ¢ de numerateur a et de denomi-
nateur b.

On munit Frac(A) d’une structure d’anneau en posant

a,¢ _gdtbc ac_ac a_—a
b d°  bd "bd bd b b
0 1

Notons que comme A est integre, si b et d sont non-nuls et produit b.d est non-nul et
(a.d + b.c,b.d), (a.c,b.d) € Ax (A—{0}).

On verifie premierement que ces definitions ne dependent pas du choix des representants de
/7 /7
chaque classe d’equivalence: si § = 37 et § = 7 cad si

(av b) ~ (a/a b/)a (Ca d) ~ (Cla d/)

alOrS d b ldl bl/ / /
g_’_fza + c:a +0'c :a_+c_
b d bd bd v o d
et
ac_ac_dcd_ac
b'd bd V.d b'd

c’est a dire que
(ad + be,bd) ~ (a’'d +b'd V' d'), (a.c,b.d) ~ (a'.c,b.d).
Par exemple pour la premiere relation on doit montrer que
(ad + be)b'd’ = (a'd’ + b'c)bd.
On a
(ad + be)b'd = ab'dd’ + bb'cd' = a’bdd’ + bb'c'd
en utilisant que
abl =a'b, cd =cd
et donc mettant bd en facteur on obtient
(ad + be)b'd’ = (a'd’ + b')bd.
On doit verifier ensuite que (K, +,.,0x, 1x) forme un anneau (exercice)
Soit 7 # 0x = %, cela signifie que
a.l#b60=0
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et donc la paire (b,a) € A x (A—{0}) et on a
ab ab 1y
ba ab 1x
donc 7 est inversible dans K et K est un corps.
Soit

1k

A - K
L: o -
a — 1
On verifie que ¢ est un morphisme d’anneau qui est de plus injectif: en effet

a 0
I=0K=I<:>a:a.120.1:0.
On peut donc identifier a a la fraction § et voir A comme un sous-anneau de K.

Soit +/ : A — K’ un morphisme injectif dans un corps K’. Comme ¢ est injectif, pour tout
be A—{0}, /(b) # 0k et l'inverse /(b)) ! € K’ — {0k} existe.

On defini alors pour toute fraction ¢ € Frac(A4),

On verifie alors que 'application

S Frac(4) ~— K’
K- e = (a)./ (b)) 1
est bien definie et est un morphisme non-nul de K vers K’ et qu’il prolonge ¢/ : A — K’. a

NOTATION 4.2. Dasn la suite et pour alleger les motation on identifiera l’anneau A avec son
image t(A) dans son corps des fraction: ainsi pour a € A on ecrira simplement "a” pour la fraction
T 4 € Frac(4).

REMARQUE 4.2.3. La condition que ¢/ soit injective est vraiment necessaire (merci a Estelle de
Pavoir remarque)

EXERCICE 4.2. Donner un exemple d’'un anneau integre A et d’'un morphisme d’anneau ¢ : A —
K’ non-nul et a valeurs dans un corps K’ qui n’est pas injectif.

4.3. Construction de corps: corps quotient

Soit A un anneau commutatif. On a vu que etant donne un ideal I on peut fabriquer un autre
anneau commutatif, 'anneau quotient dont les elements sont les classes de congruence modulo I

A/l ={a(modI):=a+1, a € A}
et les lois d’addition et de multiplications sont donnees par
a(mod ) +a (modI)=a+a' (modI), a(modI).a’ (modI) = a.a’ (modI)
et de plus I’application
e(modl):a€ A a(modl)=a+1€c A/l

est un morphisme d’anneaux.
On va donner une condition necessaire et suffisante pour que A/I soit un corps.

DEFINITION 4.4. soit A un anneau commutatif. Un ideal I C A est mazimal si I # A et si I
est maximal pour l’inclusion parmi tous les ideaux de A distincts de A:
VJCAJ#Aidealde A, I CJ=1=J.

REMARQUE 4.3.1. L’anneau nul A = {04} n’admet pas d’ideal # A et donc pas d’ideal maximal

au sens precedent. Si A n’est pas anneau nul alors A admet toujours un ideal maximal (pour des
anneaux generaux cela necessite I’axiome du choix).
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THEOREME 4.3. L’anneau commutatif A/I est un corps ssi I est un ideal mazimal.
Preuve: On va montrer que
I maximal = A/I est un corps.

Notons que comme I # A on a que A/I n’est pas reduit a la seule classe I = 04,7 (sia € A—1
alors @ (modI) = a+ 1 # I) donc A/I contient au moins deux elements distincts:

04 (modI) =1, 14 (modI) =1a+1

(repretons ce qu’on a dit ci-dessus : si on avait 14 +1 = I alors 14 € I et donc I D {a.1la, a €
A} =A).

Soit a (modI) € A/T — {047}, on veut montrer que a(modI) est inversible c’est a dire qu’il
existe b (mod I) tel que

a(modI).b(modI)=a.b(modl) =14 (modI).
Cela equivaut a trouver b € A tel que
ab—14€l.
Comme a (modT) # 04 (modI) =T alors a ¢ I. Considerons 'ideal J C A engendre par a et I:
J={a,I)y=Aa+Al=Aa+1T

(Uensemble A.a + I contient a et I; on verifie que c’est un ideal de A et tout ideal de A contenant
a et I doit contenir cet ensemble).
Comme a ¢ I on a J # I mais evidemment I C J. Comme I est maximal et que J # I cela

implique que

J=Aa+1=A.
En particulier 14 € A.a + I: il existe b € A et i € I tel que

la=ba+i

et donc

ab—1y=—i€el.

La reciproque est laissee en exercice. O

REMARQUE 4.3.2. Voyons directement que pZ C Z est maximal ssi p est premier. On a d’abord
que

pZ #Z <= p=0oup > 1.

L’ideal nul (le cas p = 0) n’est pas maximal (car contenu dans 27 # Z).

Si p > 2 est compose, p = q1q2 avec q1,q2 > 1 alors pZ C 17 # 7 et n’est donc pas maximal.

Si p est premier et si pZ C gZ avec q > 2 alors p est un multiple de ¢ et comme p est premier
p = q donc pZ est maximal.

DEFINITION 4.5. On dit qu’un ideal I C A est premier si I # {04}, A et si
Va,be A, abel = a€l oubel.
EXERCICE 4.3. Montrer que
I est premier <= A/I est integre.
Comme un corps est integre ou a que

{04} # I maximal = T premier .
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4.4. Caracteristique d’un corps, Sous-corps premier

Soit K un corps alors on a vu qu’il existe un morphisme d’anneaux canonique

— K
n — nlg==+(1g+- -+ 1k) |n| fois’

Cang :

NOTATION 4.3. Soit K un corps et n € Z un entier. On notera

ng = Cang(n) =n.lg

limage de n par le morphisme canonique.

Le noyau de ce morphisme est de la forme

ker(Cang) = p.Z, p > 0.
DEFINITION 4.6. L’entier p s’appelle la caracteristique du corps K et se note

p =: car(K).

4.4.0.1. Caracteristique nulle. Si car(K) = p = 0 alors Cang.Z < K est injectif et K contient
(un anneau isomorphe a) ’anneau Z et donc contient (un corps isomorphe au) le corps des fractions
de Z, le corps des nombres rationels Q: il existe une injection de corps

LK Q — K
obtenues en posant pour toute fraction rationelle § € Q
a
LK(Z) = Cang(a).Cang (b) "' € K.

En effet comme b € Z — {0} et que lapplication Cang est injective on a Cang (b) € K — {0k} est
donc inversible dans K.

NOTATION 4.4. Pour simplifier les notations on identifiera Q avec son image 1k (Q) dans le
corps K et on ecrira § € K pour l'image de la fraction correspondante vy (%).

4.4.0.2. Caracteristique strictement positive. On a alors
LEMME 4.2. Si car(K) > 0 alors car(K) = p est un nombre premier.

Preuve: Supposons que p n’est pas premier alors p > 1; sinon on aurait ker(Cang) = 1.Z = Z et
Cang serait le morphisme nul mais ce n’est pas possible car Cang (1) = 1x # Ok ).
On a alors p = ¢q1.q2 avec 2 < q1,q2 < p et on a

prk =0k = Q1K -G2K

et donc ou bien g1 = 0 ou bien gax = 0 (car un corps est integre). Cela signifie que g; ou bien go

appartient a ker(Cang) = p.Z mais cela contredit le fait que p est le plus petit entier strictement

positif contenu dans ker(Cang). O
Considerons alors l'image Cang (Z) = Z.1x, ¢’est un sous-anneau de K.

LEMME 4.3. L’anneau Cang(Z) = Z.1x est un corps fini de cardinal p isomorphe au corps
F, = Z/pZ.
Preuve: Notons que pour tout n,k € Z on a
Cang (n + p.k) = Cang (n) + Cang (p.k) = Cang (n)

car p.k € ker(Cang). Ainsi, la valeur de Cang(n) ne depend que de la classe de congruence
n (mod p). On peut donc definir une application

L Z/pZ  +— Cang(Z)

K n(modp) + Cang(n)
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Comme l'application
n € Z — n(modp) € Z/pZ

est un morphisme d’anneaux d’image Cang (Z), on en deduit que tx est un morphisme d’anneaux
non-nul et comme Z/pZ est un corps, ce morphisme est injectif: ¢ est un isomorphisme de Z/pZ =
F, sur son image Cang (Z).

NOTATION 4.5. Pour simplifier les notations on identifiera ¥, = Z/pZ avec l’image Cang (Z) C
K de Z dans K par le morphisme canonique. Ainsi on ecrira

Cang(Z) =Z1g =F),
et pour n € Z on ecrira indifferemment

nkg = n.lg = n(modp)
qu’on verra comme un element de K.

DEFINITION 4.7. Le corps Q C K (sicar(K) =0) ou bienF, C K (sicar(K) =p > 0) s’appelle
le sous-corps premier de K.

REMARQUE 4.4.1. On peut montrer (exercice) que si K contient un sous-corps K’ isomorphe
soit a Q soit a F,, pour p premier alors K’ est le sous-corps premier de K.

4.4.1. Arithmetique des corps de caracteristique positive: le Frobenius.

PROPOSITION 4.4. Soit K un corps de caracteristique p > 0 alors ’application

». K — K
ol :

r = af
est un morphisme d’anneauz non-nul (donc necessairement injectif).
Preuve: Comme K est un anneau commutatif, on a pour tout z,y € K

(zy)? = (zy). - (xy) = 2Py,
Montrons que
(+y)’ =2+

Par la formule du binome de Newton, on a (a nouveau parce que K est commutatif)

P p—1
(x + y)p - chxk.yp*k = xp +yp + chxk.ypfk
k=0 1
avec ' ( ) ( )
k D p(p—1).--- . (p—k+1
= — N
. kl(p — k)! k=121

(on rappelle que C;,f est le nombre de sous-ensembles de k elements dans un ensemble de p elements).

LEMME 4.4. Soit p un nombre premier et 1 < k < p— 1 alors C}’; est divisible par p: il existe
¢pk €N tel que CF = p.cyi. En particulier C}’,fK = 0Og.

Preuve: On a

Ck:p(p—l)-“--(p—kJrl)

PP e k=) 21 Pk
avec ¢p j a priori un nombre rationel. On sait que 1.2.--- .k divise p.(p — 1).--- .(p — k + 1) (car
C% est un entier). Comme p est un nombre premier k! = k.(k — 1).--- 2.1 est premier avec p (car

tout diviseur premier de k! est < p) et comme k! divise p.(p — 1).--- .(p — k + 1), il doit diviser
(p—1).--- .(p—k+1) et ¢, ) est premier. O
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On a alors
p—1

(x4+y)P =2 +9yP + Z Chlgabyt™ =af 4¢P
k=1
carpour 1 <k<p—1,
Cg.lK = Cp,k-(p~]-K) = OK.
Ainsi z — 2P est un morphisme d’anneau et comme 1%, = 15 # Ox ce morphisme est non-nul.
O

DEFINITION 4.8. Soit K un corps de caracteristique p, le morphisme d’anneau precedent s’appelle
le morphisme de Frobenius (ou simplement le Frobenius) de K se note
frob, :x € K — 2P € K.
THEOREME 4.4 (Petit Theoreme de Fermat). Soit K un corps de caracteristique positive p et
frob, : K — K le Frobenius. Pour tout x € F, =Z.1x on a

frob,(z) = 2P = x.
Recapitulatif concernant la caracteristique d’un corps

Si K est un corps et > 0 sa caracteristique, ie.
ker(Cang) = {n € Z, n.lg =0} = pZ.

Si p = 0. Alors Cang(Z) = {nx = n.lg, n € Z} est un sous-anneau isomorphe a Z et K
contient le corps Q comme sous-corps via le morphisme
a
b
De plus tout sous-corps K’ C K isomorphe a Q est egal a Qi et K ne contient aucun sous-corps
isomorphe a F,, pour p premier.

On identifiera Q avec son image dans K et ecrira simplement § pour I'image de la fraction

a _
oK:EEQ»—)( )K::aK.bKleK.

(%)K == aK.bI}I.
Si p > 0. Alors p est premier et
Cang(Z) ={nx =nlg, n€Z} =7Z.1k
est (isomorphe au) le corps F,, a p elements.
De plus siu K contient un sous-corps K’ C K isomorphe a F,, alors
K' = Cank (Z).
Enfin K ne contient aucun sous-corps isomorphe a Q ou a [, pour ¢ # p premier.
On identifiera F,, avec le sous-corps de K qui lui est isomorphe Cang(Z) = Z.1x et pour tout
n € Z on ecrira indifferement
nxOn.lxg = n(modp).
On a alors
ng =n.lg =0 < n € pZ
et plus generalement pour tout © € K — {0} on a
nx=nlg.x=ng.x =0 < n € pZ.
De plus ou a pour tout z,y € K
(o) =a? +y
Enfin (exercice) par le petit Theorem de Fermat pour tout € F, C K, on a
P =z

et reciproquement si x € K verifie 2” = z alors x € IF),.






CHAPITRE 5

Modules et Espaces Vectoriels

“An attempt at visualizing the Fourth Dimension:
Take a point, stretch it into a line,

curl it into a circle, twist it into a sphere,

and punch through the sphere.”

5.1. Module sur un anneau

DEFINITION 5.1. Soit (A, +,.) un anneau, un A-module (a gauche) est un groupe commutatif
(M, +) muni d’une loi de multiplication externe

AxM — M
exe:
(a,m) +— axm

(appellee multiplication par les scalaires) ayant les proprietes suivantes:
(1) Associativite: Ya,a' € A, m € M,
(a.a’)*m =ax* (a *m).
(2) Distributivite: Ya,a' € A, m,m’ € M,
(a+ad)ysm=axm+a*m, ax(m+m')=a*xm+a*m.
(3) Neutralite de 14: Ym € M,
laxm=m.

REMARQUE 5.1.1. On defini de maniere analogue la notion de A-module a droite a partir d’une
multiplication externe ”a droite”

MxA — M
@k @
(mya) +— mx4a
verifiant des proprietes analogues notamment 1’associativite
Va,a' € A, m € M, m x4 (a.a’) = (m*qa)*qa.
EXEMPLE 5.1.1. Quelques exemples de modules sur des anneaux:

(1) Un anneau A est un A-module sur lui-meme pour la multiplication.

(2) Le singleton element neutre {04} est un A-module: le module nul.

(3) Soit I C A un ideal d’un anneau A alors I est un A-module pour la multiplication de A.
(4) Soit d > 1, le produit cartesien

A= Ax - x A={(a1, " ,aq), a; €A, i=1,---d}
est un A-module avec la loi de groupes
(a1, ,aq) + (ay, - aq) = (a1 +ay, -+ aq + ag)
et la multiplication par les scalaires
a.(ar, -+ ,aq) = (a.ay,- -+ ,a.aq).
On dit que A? est un A-module libre de rang d.

71
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(5) Soit M un groupe abelien alors M est naturellement un Z-module pour la loi de multipli-
cation par les scalaires donnee par

Opsin=0
nm={m+m+---+m (nfoissin>1),
(=m)+ (=m)+- -+ (—m) (—n fois si n < —1)
EXERCICE 5.1. Soit M un A-module, alors M est egalement un Z-module. Montrer
que pour tout n € Z, on a
(na) *m=n.m
(on rappelle qu’on a note n4 := Cana(n)) En particulier

(=14).m=—m.

(6) Soit ¢ : A — B un morphisme d’anneaux alors ker(¢) C A est un A-module pour la
multiplication dans A (car A.kerp C kery). Par ailleurs Panneau d’arrivee B a une
structure de A-module en definissant comme multiplication externe:

a.,b = ¢(a).pb.

(7) Soit A un anneau, X un ensemble et F(X;A) I'ensemble des fonction de X a valeurs
dans A . On a vu que F(X;A) a une structure d’anneau; il a egalement une structure
de A-module: on definit la multiplication externe d’un element a € A et d’'une fonction
f: X +— Apar

a.f :x— (a.f)(x) = a.(f(z)).

(8) Soit A un anneau commutatif et A[X] 1 ’anneau des polynomes alors A[X] est naturellement
un A-module pour la multiplications d’un polynome par un scalaire: si P(X) =ag+---+
aq.X® alors la multiplication par les scalaires est donnee par

a.P(X)=a.ap +a.a;.X +---+ a.aq. X4
(9) Soit A un anneau commutatif et
AlX]<a = {ao + -+ aa.X?, ao, - ,aq € A}

1 ’anneau des polynomes de degre < d alors A[X]¢q est naturellement un A-module (par
contre ce n’est pas un anneau —sauf si d = 0 : les polynomes constants c’est a dire ’anneau
A- car A[X]<q4 n’est pas stable par produit en general).

(10) Soit A un anneau commutatif et My(A) Panneau des matrice 2 x 2 a coefficients dans A
alors M3(A) a une structure de A-module en definissant la multiplication par les scalaires

par
a b\  [(ad al
“\e @) 7 \aed ad)
Les exemples (7) (si A est commutatif), (8) et (10) sont des cas particuliers de ce qu’on appelle
une A-algebre:

DEFINITION 5.2. Soit A un anneau commutatif. Une A-algebre est un anneau (B,+p,.B)
possedant une structure de A-module qui verifie la propriete d’associativite suivante pour les deux
multiplications:

Vae A, bt/ € Bax(b.gl)=(axb).gt/ =b.glax?).



5.1. MODULE SUR UN ANNEAU 73

5.1.1. Sous-module.

DEFINITION 5.3. Soit M un A-module. Un sous-module N C M d’un A-module M est un
sous-groupe de (M,+) qui est stable pour la multiplication par les scalaires:

Va€e A, ne€ N, axn € N.

On a donc ¥n,n' € N, a,a’ € A
axn+axn €N

On a le critere suivant

PROPOSITION 5.1. (Critere de sous-module) Soit N C M un sous-ensemble d’un A-module M
alors N est un sous-module de M ssi

(5.1.1) Va€ A, n,n' € N, axn+n’ € N.
Preuve: Pour tout n,n’ € N, et applicant la condition (5.1.1) a n,n’ et a = —14 on a
n+(=1a)*n'=n-n"eN

donc N verifie le critere de sous-groupe et est donc un sous-groupe de (M,+). Il contient en
particulier 0ps et alors pour tout a € A, on a par (5.1.1)

a*n+0y =axn € N.

EXEMPLE 5.1.2. Exemples de sous-modules

(1) L’element nul {0y} forme un sous-module de M: le sous-module nul.
(2) Soit m € M, on note Am = {a.m, a € A} C M, alors A.m est un sous-module deA.
Soient m’ € M, alors

Am+ Am' ={am+d.m', a,d € A}

est un sous-module de M.
(3) Par exemple, soit A4 le module libre de rank d et

AA={(a,a---,a) =a.(1,1,--- 1), a€ A} C A?

est un sous-module de A?. Plus generalement pour tout @ = (ay,--- ,aq) € A¢ le sous-
ensemble des multiples de @
A.d = {a.d = (a.a1, - ,a.aq), a € A}

est un sous-module de A®.
(4) Soit 1 < d < d alors
AlX]<a € AlX]<a C A[X]

est un chaine de sous A-modules.
5.1.2. Module engendre par un ensemble.
PROPOSITION 5.2. Soit (M, +,*) un A-module et My, Ms des sous-modules alors
MyNMyCM
est un sous-module et plus generalement soit (M;);cr une collection de sous-modules alors
(\Mic M
i€l

est un sous-module.
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DEFINITION 5.4. Soit X C M un sous-ensemble d'un A-module, le module engendre par X est
le plus petit sous-module de M contenant X (I’intersection de tous les sous-modules contenant X ):

<X>A = m N.
XCNCM
N A-mod

REMARQUE 5.1.2. Si (M, +) est un groupe commutatif alors on a vu que c’est naturellement
un Z-module et si X C M est un sous-ensemble, le sous-groupe engendre par X (X) C M est
exactement le Z-module (X)z engendre par X dans M. Il n’y a donc pas de collision au niveau des
notations®.

PROPOSITION 5.3. Soit X C M un ensemble alors (X) 4 est soit le module nul {0y} si X est
vide, soit l’ensemble des combinaisons lineaires d’elements de X a coefficients dans A:

(X)a =CLA(X) := {Zai*mi, n>1, a, - ,an €A, 1, ,x, € X}.
i=1

Preuve: On suppose X non-vide. Soit X C N un sous-module contenant X alors pour tout n > 1,
tous ay,--- ,a, € A et tout x1,--- ,x, € X on a

ap¥xx1+ - +ap*xx, €N
par stabilite de N par + et *. Donc tout sous-module N contenant X contient CL 4(X).
Il reste a montrer que CL4(X) est un sous-module: soient u et u' des combinaison lineaires

d’elements de X:

U=a1*T1+ -+ Ay *Ty, v =a) x2) +--+a, xx),
alors

utu =ar kT A+t apxxy +al k2 + o +al, xal,
est bien une combinaison lineaire. De plus CL4(X) est stable par multiplication par A: pour tout
a € A on a par distributivite et associativite

axu=ax(a;*xx1+ - +ap*xx,) = (a.a1)*xx;+ -+ (a.a,) *z,

est bien une combinaison lineaire. (]

DEFINITION 5.5. Si (X)a = M, on dit que X est une famille generatrice de M.

DEFINITION 5.6. Un A-module M est de type fini si il possede une famille generatrice qui est
finie.
EXEMPLE 5.1.3. (1) Soit A% le A-module libre de rang d. La famille suivante est genera-
trice de A% (on pose 1 =14,0=04)
A = {e? = (1,0,---,0), 3 =(0,1,0,---,0),--- ,e4 = (0,0,--- ,1)}
(€9 est le d-uple dont toutes les coordonnees sont nulles sauf la i-ieme qui vaut 1). En effet
si
m=(ay, - ,aq) € A?
alors
m = al.e(l) + -+ ad.eg.
On appelle la famille 2° la base canonique de A
(2) La famille des monomes

{1,x,-- 7Xd,...XﬂlJrl’...}

est une famille generatrice (infinie) de A[X].

IMerci a 'etudiante qui a fait cette observation.
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(3) La famille des monomes de degre < d
{13X7"' )Xd}
est une famille generatrice de A[X]<4 (qui est donc un module de type fini)

EXERCICE 5.2. Soient uy,--- ,uq € A* des elements inversibles. Montrer que la famille suivante
est generatrice de A%

B = {el = (ulvov"' 70)7 €y = (O,UQ,O,"' 70)3'“ y€d = (0707 ,Ud)}.
Montrer que Pecriture d’un eleemtn de A? comme combinaison lineaire des elements de Z est unique.

EXERCICE 5.3. Soient a, b, c,d € Z tels que ad — be = +1. Montrer que {(a,b), (c,d)} engendre
le Z-module Z2. Pour cela on montrera que pour tout (m,n) € Z? le systeme lineaire

ar+cy=m
bx+dy=mn

admet une (unique) solution (z,y) € Z? et on montrera que (m,n) s’exprime en fonction de (a, b)
et (¢, d).
5.1.3. Morphismes de modules.

DEFINITION 5.7. Soit A un anneau et M, N des A-modules, un morphisme de A-modules entre
M et N est un morphisme de groupes

p:M—N
qui est compatible avec les lois de multiplications externes xp; et *pn:
Ya e A, me M, plaxpym)=axnp(m).
REMARQUE 5.1.3. Cette definition implique que pour tout a,a’ € A, m,m’ € M, on a
olaxpy m+a xym')=axno(m)+a *n e(m').

Plus generalement pour I un emsemble fini, (a;);c; un I-uple de scalaires et (m;)— € I un I-uple
d’elements de M on a

‘P(Z a; *prm;) = Zai *n p(m;).

iel i€l
En d’autres termes, I'image par ¢ d’'une combinaison lineaire est la combinaison lineaire des images.
On dit que ¢ est une application A-lineaire.

LEMME 5.1. (Critere d’application lineaire) Soit ¢ : M — N une application entre deux A-
modules alors ¢ est un morphisme (ie. est A-lineaire) si et seulement si

(5.1.2) Vae A, m,m' € M, p(a*xym+m')=axyo(m)+o(m').
Preuve: On applique (5.1.2) avec a = 14. On a donc

Vm,m' € M, p(m+m') = ¢(m) + ¢(m')
donc ¢ est un morphisme de groupes. On a donc ¢(0y7) = Oy et

elaxpym)=wplaxpym+0y)=axye(m)+0§ =axy p(m).
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5.1.4. Noyau, Image.
PROPOSITION 5.4. Soit ¢ : M — N un morphisme de A-modules et M' C M et N' C N des

sous-modules alors
©(M') C N et o"Y(N')c M
sont des sous-modules de M et N respectivement. En particulier
ker(p) = "V ({On}) € M et Im(p) = p(M) C N

sont des sous A-modules.

Preuve: Exercice. (I
Comme un morphisme de A-module est un morphisme de groupes additifs on a

COROLLAIRE 5.1. L’application A-lineaire ¢ : M — M’ est injective ssi ker(¢) = {0ns}.

5.1.5. Structure des espaces de morphismes. On a les proprietes de stabilite usuelles pour
la composition (similaires a celles pour les morphismes de groupes)

PROPOSITION 5.5. Soient o : L+— M et : M — N des morphismes de A-modules alors

—op: L+ N est un morphisme de A-modules.
~ Si@: L M est bijectif alors ¢~ : M + L est un morphisme de A-modules.

Preuve: Exercice. (]
NOTATION 5.1. On note
Hom 4 —moa(M, N), Isoma_meq(M, N),
EndA_moda(M) = Homg_meqa(M, M),
Aut g moa(M) = Isomg—_mea(M, M)

les ensembles de morphismes, morphismes bijectifs (ou isomorphismes), d’endomorphismes et
d’automorphismes des A-modules M et N. On note quelquefois

En particulier on a

COROLLAIRE 5.2. L’ensemble des automorphisme de M, Auta_mod(M) C Bij(M) est un sous-
groupe de Bij(M). Plus precisement Auta_moq(M) est un sous-groupe de Autg,(M). On note
egalement ce groupe (surtout dans le cas ou A est un corps)

Aut g—moa(M) = GL(M)
et on Uappelle le groupe lineaire du A-module M .
On a un propriete supplementaire de stabilite par somme:

PROPOSITION 5.6. Soient M et N des A-modules alors Hom g_,0q(M, N) a une structure na-
turelle de groupe commutatif. Si de plus A est commutatif alors Homg_meq(M, N) a une structure
naturelle de A-module.

Preuve: Soient ¢, € Homy_0q(M, N), on definit ’addition par
p+1:m = (p+9)(m) =p(m)+4P(m) € N.
C’est un morphisme de A-module car N est un A-module:
(o +¥)axm+m') =plaxm+m)+dlaxm+m)
=axp(m) +o(m') + axp(m) +p(m') = ax (o +9)(m) + (¢ +¥)(m).

et on definit 'oppose —p en posant
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et on verifie a nouveau que —¢p est A-lineaire. L’element neutre est le morphisme nul:
QN :m e M— 0y
et c’est une application A-lineaire:
Va € a,m € M,0n(axm) =0y = (ax0y)(m).

Supposons que A soit commutatif: on definit la multiplication par les scalaires en posant pour

a€A
axp:me (a*x@)(m):=axy p(m).
L’application a * ¢ est bien un morphisme de A-modules: pour @’ € A, on a (par linearite, distribu-
tivite et associativite)
(axp)(a xpym+m')=axy (pla *xpy m+m')) =axy (a"*n o(m) + o(m'))
= (a.d') x§ p(m) + axy p(m’) = (a’.a) x§y p(m) + axy p(m’) = a’ *n§ axy p(m) + (ax p)(m').
= a’ sy (ax@)(m) + (a*@)(m).

Ici on a utilise de maniere cruciale le fait que A est commutatif et donc a.a’ = da’.a. O

5.1.6. L’algebre des endomorphismes d’un module. On a vu que I'ensemble des endo-
morphisme du groupe additif Endg,-(M) muni de la composition et de I’addition est un anneau.
Pour les morphismes de A-modules, on a un peu plus. Pour cela nous auront besoin de la definition
de A-algebre:

DEFINITION 5.8. soit A un anneau commutatif. Une A-algebre associative est un anneau
(B,+,.5) muni d’une structure de A-module, note x : A x B — B wverifiant en plus des axiomes
habituels

— Distributivite par rapport a la multiplication:
Va € A, bt/ € B, ax (b.gt) = (axb).gb =b.glaxt).

REMARQUE 5.1.4. 1l existe une version plus generale d’algebre qui ne necessite pas que B soit
un anneau (en particulier qui ne necessite pas que la multiplication dans B soit associative ni qu’elle
possede une unite unite) mais nous n’en auront pas besoin ici.

EXEMPLE 5.1.4. (1) Les exemples (7) (si A est commutatif), (8) et (10) sont des exemples
de A algebres.
(2) Soit B est un anneau et A C B est un sous-anneau dont les elements commutent mul-
tiplicativement avec tous les elements de B (Va € A, b € B, a.b = b.a) alors B est une
A-algebre pour la multiplication dans B.

THEOREME 5.1. Soit M un A-module. L’ensemble Ends_0q(M) des endomorphismes de M
comme A-module est un sous-anneau de (Endg-(M),+,0) dont le groupe des unites est le groupe
des automorphismes

End;ifmod(M) = AutA_mod(M) = GLA—mod(M)-

Enda_moa(M) est lanneau des endomorphismes de (du A-module) M.
De plus, si A est commutatif, Enda_mea(M) possede une structure naturelle de A-module qui
en fait une A-algebre et Endg—_moeq(M) est appellee

Algebre des endomorphismes de (du A-module) M.

Preuve: D’abord Id, et I'application constante nulle 0,, qui sont des morphismes de groupes sont
egalement des morphismes de A-modules:

Va € a,m € M, Idpy(axm) =axm=axIdpy(m), 03;(axm) =0y =ax*0,,(m).
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On a vu que End g_,0q4(M) est stable par composition et on a vu que la somme de deux endomor-
phismes est encore un endomorphisme de A-module. Ainsi Enda_0q4(M) est un sous-anneau de
EndGT(M).

Si A est commutatif on a vu que End 4 —oq(M) = Hom g —moq (M, M) possede une multiplication
par les scalaires qui en fait un A-module ce qui fait de cet anneau une A-algebre: en effet pour tout
0, € Endg—moa(M) et a € A, on a pour m € M

axp (¢ o)(m) = axuy p(¥(m)) = (axp)(Y(m)) = ((a*)oy)(m).
De plus on a (par A-linearite de ()
axny (pov)(m) = axuy (¥(m)) = p(axy ¥(m)) = p((ax¥)(m)) =po(ax*)(m)

de sorte que

ax*(porh) = (axp)orp=po(ax).

5.2. Espaces vectoriel

Tout comme les corps sont des cas particuliers d’anneaux, les espaces vectoriels sont des cas
particuliers de modules: ce sont les modules dont I’anneau associe est un corps. Comme on va le voir
les proprietes d’'un module sur un corps sont tellement particuliere que cela justifie un changement
de terminologie.

DEFINITION 5.9. Soit K un corps, un K -espace vectoriel (K-ev) V est simplement un K -module.
Les elements de V' sont appeles vecteurs de V. Les elements de K sont appeles les scalaires.

EXEMPLE 5.2.1. Exemples d’espaces vectoriels:

(1) L’espace vectoriel nul {Ox}.
(2) K est un espace vectoriel sur lui-meme.
(3) Si Vet W sont des K-ev leur produit

VxW={(v,w), veV, we W}
muni de l'addition (composante par composante)
(v,w) + (v, w') == (v +v v, w+w w')
et de la mutliplication externe (composante par composante)
z.(v,w) = (x.v,x.W)
a une structure d’EV dont le vecteur nul est
Ovxw = (Ov, Ow).

(4) En particulier, pour d > 1, en iterant la construction precedente pour W = K on forme le
K-module libre de rank d,

K= {(z1, - ,2q), ; € K}
dont I’element neutre est le vecteur nul
04 = (0,---,0).
(5) Si X est un ensemble,
FX;K)=KX={f: X — K}

a une structure de K-espace vectoriel.
(6) Plus generalement si V' est un K-espace vectoriel et X est un ensemble,

FX;V)=VX={f: XV}

a une structure de K-espace vectoriel.
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NOTATION 5.2. Pour alleger les notation on notera la multiplication par les scalaires sous la
forme d’un point . (le meme point . que pour la multiplication dans le corps K) : pour A€ K, 7€V
on ecrira \.4U.

Les differentes structures associees aux modules sur un anneau ont un nouveau nom quand
I’anneau est un corps.

5.2.1. Sous-espace vectoriel.

DEFINITION 5.10. Soit V un K-espace vectoriel, un sous-espace vectoriel (SEV) de V est un
sous-K module W C V.

PROPOSITION 5.7 (Critere de SEV). Un sous-ensemble U C V' d’un K-ev est un SEV ssi
VAEK, v,v' €U, Av+v €U.
Preuve: C’est un cas particulier du critere de sous-module. O

EXEMPLE 5.2.2. Exemples de SEV:

- {Ov}, Vcv.

— PourecV, Ke={x.exc K}

- SiV'Cc Vet W CW sont des SEV, V/ x W’ en est un.

—{(z1, - ,zq) EKd, x1+ -+ x4 =0} c K<

~ {(x1, ,2q) €K xy + -+ 24 =1} C K n’est pas un SEV.

— Soit zp € X, dans F(X, V) le sous-espaces des fonctions f telles que f(zo) = Oy.
— Dans F(R,R) I’ensemble des fonctions paires (resp. impaires).

f:R=R, Vo eR, f(z)= f(-2) (resp. f(z) = —f(-2))
sont des SEVs.
5.2.2. Applications lineaires.

DEFINITION 5.11. Soient V et W deuz K-espaces vectoriels; un morphisme ¢ : V — W de
K-modules est appele une application K -lineaire.

PROPOSITION 5.8 (Critere d’application lineaire). Une application entre espaces vectoriels ¢ :
V= W est lineaire ssi

VAe K, v, €V, p(Av+v") = Xop(v) + o).
Preuve: C’est un cas particulier du critere de morphisme de modules. O
PROPOSITION 5.9. Si @ : V — W est une application lineaire, le noyau
kerop={veV, p(v)=0w}CV
et l'image
Imp:={p), veV}CW
sont des sous-espaces vectoriels de V' et de W respectivement.

Preuve: C’est un cas particulier du cas des morphismes de modules sur un anneau. (Il

PROPOSITION 5.10. Soit ¢ : V — W est une application lineaire, alors ¢ est injective ssi

ker p = {0y }.
EXEMPLE 5.2.3. Dans K%
X K - K
e,i : .
(1, ,@q) = @

ker(e}) = {(x1,--+,0,--- ,zq), x; € K, j # i}, Im(e]) = K.
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) K4 > K
(w1, ,ma) & Tt Td
ker(S) = {(z1,--- ,24) € K¢, 21+ -+ x4 =0}, Im(S) = K.
K? = K?

Lo (x1,22) +—  (2x1 + @2, 1 + 22)
ker(¢) = {05}, Im(yp) = K2
NOTATION 5.3. On notera
Homp ¢ (V, W), Isomg ., (V, W),
Endg ey (V) = Hompg ey (V, V), Autg_cy (V) = Isompg e, (V, V)

les ensembles des applications lineaires, applications lineaires bijectives (ou isomorphismes), d’ en-
domorphismes et d’automorphismes des K -espaces vectoriels V et W.
Pour simplifier on ecrira souvent

Hompg (V, W), Isomg(V,W),Endg(V), Autg (V)
On rappelle egalement que
PROPOSITION 5.11. L’ensemble des automorphismes du K-ev V,
Autg ey (V) = Isomp e (V, V)
est un groupe pour la composition. On appelle egalement le groupe lineaire de V et on le note
Autg (V) =: GL(V).

On rappelle que (les applications lineaires etant des applications lineaires entre K-modules) et
que K est par definition commutatif on a

PROPOSITION 5.12. La composee de deux applications K -lineaires est K-lineaire : pour ¢ €
Hompg (U, V) et ¢ € Homg (V, W) lineaires, alors ¥ o @ : U+ W est K-lineaire et si @ est bijective
alors =1 : V = U est encore lineaire.

Une combinaison lineaire de deux applications lineaires est lineaire: Yo, ¢ : U — V et VA € K,
Uapplication

Ao+ o:uelUm— \o(u)+o(u) eV

est K-lineaire.
On en deduit:

THEOREME 5.2. L’ensemble des application lineaires Homg (V, W) a une structure naturelle de
K-ev.

L’ensemble des endomorphismes de V, Endi (V') muni de addition et de la composition a une
structure naturelle de K-algebre. Son groupe des unites est le groupe

Endg ey (V) = Aut e (V) = GL(V)
des applications K -lineaires bijectives. C’est un sous-groupe de Bij(V).

5.2.2.1. Dual d’un espace vectoriel. Le cas W = K est important et admet un nom et une
notation particuliere:

DEFINITION 5.12. Une application lineaire de £ : V — K est egalement appellee une forme
lineaire. L’espace des formes lineaires Hompg (V, K) est egalement note

Homg (V,K) =V™.

On appelle egalement cet espace le dual de V.
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5.2.3. Sous-espace engendre par un sous-ensemble. On rappelle egalement que

PROPOSITION 5.13 (Les SEV sont stables par intersection). Soit W;, i € I une famille de SEV
de V indezxes par un ensemble I alors leur intersection
wWicV
iel
est un SEV de V.
DEFINITION 5.13. Soit # C V un sous-ensemble, on note
(F)k = Vect(F)CV
le sous-espace vectoriel (le sous-K module) engendre par F.
On rappelle qu’il s’agit de maniere equivalente

— de lintersection de tous les SE'V contenant 7,
— de l’ensemble des combinaisons lineaires d’elements de .F a coefficients dans K

<9>K:{Z>\Z.’IJ“ n}l, )\1,"',)\n€K, T1,- " ,xne,?}.
i=1

Cette notion admet des cas particuliers.
5.2.3.1. Sommes de SEVs, sommes directes.

DEFINITION 5.14. Soient X,Y C V des sous-espaces d’un espace vectoriel.
Leur somme
X4+4Y=(XUuY)CV

est par definition le sous-espace vectoriel engendre par les vecteurs de X et de Y.

LEMME 5.2. On a
X+Y={z+4y, z€X, yeY}.

Preuve: Soit W C V un SEV contenant X et Y alors W contient X + Y car W est stable par
somme. Il reste a montrer que X +Y est un SEV car ce sera necessairement le plus petit contenant
XetY.

Soit A€ K,z,2' € X, y,9/ €Y alors

AMz+y)+ (@' +y)=QAz+2)+Ay+y)eX+Y
car X et Y sont des SEV. g
NoTATION 5.4. Si X NY = {0y}, on dit que X et Y sont en somme directe et on ecrit
XeoYCV

pour leur somme.
Si de plus
XY=V
on dit que V est somme directe de X et Y. On dit alors que X et Y sont des espaces supplementaires
(dans V).

PROPOSITION 5.14. Soit V =X ®Y la somme directe de deux sous-espaces supplementaires X
et Y alors Uecriture de tout vecteur v eV e X @Y sous la forme

v=zx+y, x€X, yeY
est unique.
Preuve: Siz+y=2'+y alorsz —a' =y —yetdoncx —2' € XNY = {0y} cad que

r=a,ety=1y.
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EXERCICE 5.4. soit V un K-ev qui est une somme directe de deux SEVV = X @Y . Comme
onl’avutout v € V=X @Y s’ecrit de maniere unique

v=z+y, x€X, yeY.

Montrer que
(1) Les applications

TX

7r_V+—>X
X s a2

V. =Y
vo= Yy
sont lineaires.
(2) PEV V est isomorphe a lespace vectoriel produit X x Y.

5.3. Famille generatrice, libre, base
5.3.1. Famille generatrice. On rappelle la definition qu’on a vu pour les modules:

DEFINITION 5.15. Soit V un K-e.v. Un sous-ensemble ¢ C V est une famille generatrice si
Vect(¥) = () k =V,

te. tout element v € V' peut s’ecrire sous la forme d’une combinaison lineaire (finie) a coefficients
dans K d’elements de 4 : pour tout v € V il existen > 1, x1, -+ ,x, € K, €1, -+ ,e, € .F tels que

(5.3.1) 1= re
i=1

Si V' admet une famille generatrice finie, on dit que V est un K-module ou un K-ev de type
fini.

DEFINITION 5.16. Soit V un K-ev de type fini. Si V est non-nul, sa dimension est le cardinal
minimum d’une famille generatrice finie de V:

dim(V) := min  |9|.
9 generatrice

Par convention, la dimension de l’espace vectoriel nul {Oy} est
dim({Oy}) =0

(on peut prendre la famille vide comme famille generatrice).
On dira egalement "K-ev de dimension finie” a la place de ” K-ev de type fini”.
Un espace vectoriel qui n’est pas de type fini est dit de ”dimension infinie”.

On va maintenant se restreindre au cas des espaces vectoriels de dimension finie. A la fin du
chapitre, on decrira ce qui ce passe pour les espaces vectoriel qui ne sont pas de dimension finie.
Le resultat principal de cette section est le theoreme suivant:

THEOREME 5.3. Tout K-espace vectoriel de dimension finie d = dim V' est isomorphe (comme
K-ev) a Uespace vectoriel K¢ (avec la convention que {Ox} = K°). En d’autres termes V est
isomorphe au K-module libre de rang d = dim(V), K¢,

Avant de demontrer ce theoreme qui nous prendra un peu de temps, examinons sa signification
concrete: supposons que ¢4 = {ey, -+ ,e4} C V soit une famille generatrice finie de V' de cardinal
d > dimV. Tout element v € V peut donc se representer sous la forme d’une combinaison lineaire
des e;

d
V= E xz;.e;, r; € K.
=1
En d’autre termes, on dispose d’'une application ”combinaison lineaire” qui est surjective:
K4 > 1%

CLg : .
7 (-’171,"',.’13‘(1) = CL%('z‘lv"'axd):l'l-el‘f'"'"f'l'd.ed
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REMARQUE 5.3.1. Cette application depend de I'ordre dans lequel on enumere les elements de
la famille ¢: en general
1.1 + To.€9 # T1.€9 + To.€1.

LEMME 5.3. L’application CLg est lineaire.
Preuve: Soient
X = (-Tla"' )xd)a y = (yla"' )yd) € Kd
et A € K alors on veut verifier que
CLy(A\x+y) = \.CLy(x) + CLy(y).

C’est une consequence de la commutativite et de ’associativite des lois d’addition et de multiplica-
tion: on a

CLg()\.X + y) = CLg()\.JA + Y1, Axg + yd) = (/\.:L‘l + yl)el + -+ (/\.xd + yd)ed
Azri.er +yi.e1+ -+ Axg.eq+yq.eq

A(z1.€1 4+ +z4.€4) + (y1.€1 + - + Ya.€q)

= MCLy(x)+ CLy(y).

On a donc la definition suivante equivalente d’une famille generatrice:

DEFINITION. Soit V un K-e.v. Un sous-ensemble fini
¢ ={ey, - ,eq} CV
est une famille generatrice (du K-ev V') ssi les conditions equivalentes suivantes sont satisfaites:
(1) On a
Vect(4) = V.
(2) pour tous v € V, il existe x1,--- ,xq4 € K tels que
v=2x1.€1 + -+ x4.€q.
(3) L’application lineaire
d
ClLy : (21, K ,Xd) : x1.€1 + V + x4.€4
est surjective.

Si 'V admet une famille generatrice finie ou dit que V' est un K-ev de type fini ou est de dimension
finie. On a alors
dimg V < d.

Le Theoreme 5.3 sera alors consequence du

THEOREME. Soit 9 C V une famille generatrice de V de cardinal d = dimV alors ’application
CLy est injective et defini donc un isomorphisme

CLy: K~ V.
Preuve: Soit 4 = {e1, -+ ,e4} C V une famille generatrice de cardinal la dimension d = dim V.
Par definition de la dimension, une famille de cardinal < d ne peut etre generatrice. Supposons que
C'Ly ne soit pas injective: il existe donc (uy,--- ,uq) 7# 04 tel que

uy.e1 + -+ uq.eq = Oy

comme (u,--- ,uq) est non-nul il existe 7 tel que u; # Og. Supposons (quitte a permuter les
indiuces) que i = d. On a alors

Ug.€q = —(ul.el + -+ ud_l.ed_l)



84 5. MODULES ET ESPACES VECTORIELS

et donc comme ug est inversible (car non-nul)

e =Yyi-er+ -+ Yi—1.€d—1

avec
_ -1
Yi = Ui Uy .
Je dis que la famille {e;,--- ,e4_1} engendre V ce qui donnera une contradiction par minimalite de
d.
Soit v € V, il existe x1, - ,2q4 € K tel que
v = T1.€1+ -+ 2Tg-1.64—1 + Tq4.€q
= mpe+--+x4-1.4-1+2q.(y1-€1+ -+ Ya—1.€4-1)
= zhe +-+a_j.eq 1
avec

/ —1
T; =T +TaY; = Ty — TaUi-Uy -

Ainsi Papplication C'Lg est injective et comme elle est surjective (car & est generatrice) et sa
reciproque est egalement lineaire: c’est un isomorphisme de K-espaces vectoriels de K¢ vers V

O

Le corollaire suivant montre que la dimension determine completement la classe d’isomorphisme

des K-ev de dimension finie.

COROLLAIRE 5.3 (Critere dimensionel d’isomorphisme). Soient V,W des K-ev de dimensions

finie dy et dw alors V et W sont isomorphes ssi ils ont meme dimension:
VW« dy =dw.
Preuve: Si dy = dy = d alors il existe des isomorphismes
0: KV, p: Kin W

1

et alors Y o™ : V — W est un isomorphisme entre V et W.

Reciproquement soit ¢ : V' ~ W un isomorphisme, on veut mq dy = dy . Soit 4 = {eq,---

une famille generatrice de V' alors
p(@) = {pler), - ,plear )}
est generatrice de W: pour tout w € W il existe v € V tel que ¢(v) = w. Ecrivons
V=T1€1 + -+ Ty€y
alors

w = p(v) = zrp(er) + -+ aup(ey)

donc w est bien CL des elements de {¢(e1),- -+, p(eaq, )}
Par definition de la dimension on a donc

dw < 9(@)| < 9] = dy.
Echangeant V et W (en remplacant ¢ par ¢~ !) on a dy < dy et donc

dy =dw.

aedv}
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5.3.2. Famille libre. La discussion precedente nous conduit naturellement vers le point suivant
Soit .# = {e1,--- ,es} C V une famille de f vecteurs: on dispose alors d’une application lineaire
”Combinaison lineaire”:

Kf — V
C’Ly:(x -
1, ,xf) +— CLg(x1, - ,x5) =x1.€1+ -+ T5.€f

dont 'image est
CL#(K?) = Vect(F) =W CV
est le SEV engendre par .#; on s’est pose (dans le cas ou ¢ etait une famille generatrice de taille
minimale) la question de I'injectivite de cette application.
Soit w € W, alors w est combinaison lineaire d’elements de .7 et s’ecrit
w=2x1.€1+ -+ xrey
pour (z;,--- ,2q) € K% et par definition de I'injectivite, la representation de w sous cette forme est
unique:
w=ugx1.€ + -+ rrep =€+ +ape; => T =T, L5 =T}
D’autre part (par le critere d’injectivite des applications lineaires), l'injectivite est equivalente au
fait que
ker(CLr) = {x € K/, z1.e;+---+as.ef =0y} = {0xs = (0,---,0)}
ce qui s’interprete en disant que le vecteur nul Oy (qui appartient a W) admet une unique represen-
tation sous forme de combinaison lineaire des e;, 7 < d: la combinaision triviale ou nulle:
z1.€1 + - +zrey =0y <1z =--=x5 =0f.
Cela nous conduit a la definition generale suivante:

DEFINITION 5.17. Un sous-ensemble fini # = {e1,--- ,es} C V d’un espace vectoriel est une
famille libre de V' si et seulement si l'une des trois conditions equivalentes suivante est satisfaite:

(1) L’application lineaire

CLy - K/ — 1%
(1, ,2f) +— x1.€94+---+xs€)
est injective.
(2) pour tous xq,--- ,xyf, x4, ,m’f eK
ri.e+--txpep=aj.e1+ - +aey = 1x —x) = =x5— 1} =0k.
(8) pour tous x1,--- ,xy € K
r1.€1+ -+ zrrep =0y =z = =w5 =0g.

Une famille F qui n’est pas libre est dit liee.
EXEMPLE 5.3.1. Soit e € V — {0y} un vecteur non-nul alors {e} est libre: supposons que
z.e = 0y
pour x € K; si x # Ok alors x est inversible et
T lre=e= Oy

qui est une contradiction donc x = Og.

EXEMPLE 5.3.2. Dans K¢, la base canonique

B ={e? i=1,---,d}

qui est generatrice est egalement libre; on rappelle que €? est le vecteur dont toutes les coordonnes
sont nulles sauf la i-eme qui vaut 1,

9(1]:(1’07...’0%...’ eg:(()’o’... .1).
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En effet, pour tout z1,---z4 € K on a

d
0 _
xi'ei - (.’El,l'Q,’ o ,.'L'd)
=1
et donc si

d
= zi.e) =04=(0,---,0)
i=1
on a
1y =--=x4=0.
EXEMPLE 5.3.3. Dans R3, la famille
(1,1,0), (0,1,1), (1,0,1)

est libre.
En revanche si car(K) = 2 alors la famille est liee:

(1,1,0) + (0,1,1) + (1,0,1) = (2,2,2) = 05.
En fait, cette famille est libre dans K23 ou K est de caracteristique # 2.
EXEMPLE 5.3.4. Dans la preuve du Theorem 5.3 on a montre que

PROPOSITION 5.15. Soit V un K-ev de dimensiond et 9 = {e1,--- ,eq} une famille generatrice
de cardinal d alors 4 est libre.

On va donner un critere pour qu’une famille soit liee.

PROPOSITION 5.16. Une famille a 1 elements F = {e1, - ,e;} C V est liee ssi il existe i €
{1,---,1} tel que e; peut s’exprimer comme combinaison lineaire des autres elements de F :

<1, e; € Vect(F — {e;}) = Vect({e;, j #i}).

On a alors

W = Vect(.F) = Vect(F — {e;}).
Preuve: Si F est liee, il existe z1, - ,2; € K non-tous nuls tels que

Oy =x1.€1 + -+ x7.€.

Supposons (quitte a renumeroter) que z; # 0 alors

—rj.€=T1.€1 + -+ Tj—1.€—_1
et comme —x; est inversible

e = (x1/—m)er1+ -+ (rj—1/ — x).€1—1 € Vect(F — {e;}).
Reciproquement si e; € Vect(# — {e;}) alors
e=y.e1+ - +y-1€-1

et
Ov =yir.e1+--+y1e-1+ (—1).e
avec —1 # 0.
On a donc
F ={e1, -+ ,e; - ,e} C Vect(ZF —{e;})
et donc

W = Vect(.F) = Vect(F — {e;}).

On va maintenant montrer que les familles libres ne peuvent pas etre trop grandes.
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THEOREME 5.4 (Majoration du cardinal d’une famille libre). Soit V' un espace vectoriel non-nul

de dimension d et F = {v1,--- ,v5} CV une famille finie et libre; alors f < d.
Preuve: Notons que les vecteurs vy,--- , vy sont tous distincts: si on avait v; = vy alors vy serait
combinaison lineaire de v, - ,vy.

On procede par recurrence sur d.

Sid=1alors V = K.e avec e # Oy; soit .# = {vy,---,vs} une famille libre a f elements.

Montrons que f = 1.
Notons que v; # Oy : sinon on aurait

Oy = 1lug + 0w +---+ 0.0
et la famille ne serait pas libre. On a pour i =1,--- | f
v; = T;.€
avec x; € K et x1 # 0 (sinon vy serait nul). On a alors si f > 2
e= xl_l.vl, vy = Tg.e = (x2/x1).01

Ainsi v9 est combinaison lineaire de v; contredisant le fait que la famille est libre.
Supposons qu’on a demontre le resultat pour tout espace vectoriel de dimension < d — 1.
Soit V' de dimension d > 1, 4 = {ej, - ,e4} une famille qui engendre V et

F =A{v1,--- 05} CV
une famille libre a f elements. Montrons que f < d.
Par definition chaque element de .# est combinaison lineaire des elements de ¢: pour i =
1,---, f, il existe (z;) <a tel que
vi=w;1€1+ -+ Tigeq, i=1,---,f.

Le fait que F est libre implique que les v; sont tous non-nuls (cf. ci-dessus). En particulier, il existe
un indice jo € {1,--- ,d} tel que
L f,40 # 0.

Supposons (quitte a renumeroter les e;) que jo = d; on a donc x4 # 0 qui est donc inversible.
Posons

(5.3.2) Vi =v; — (@ia/Tfa)vp, i =1, f.
On a
vy = v — (xga/f.a)vp =0y
et en general
vi = xj @1+ + g €41+ (Tia — (Tia/Tpa)Tpa)ea =T €1+ F T g €41
ainsi la famille
F'={v,, i< f—-1} Cc V' =Vect({e1, - ,eqs_1}) CV
possede f —1 elements et est contenue dans un sous-espace vectoriel V' engendre par d — 1 elements
donc de dimension < d — 1. De plus cette famille est libre: supposons que

10+ a0 = Oy
utilisant (5.3.2) on voit que
T1.01 + -+ xpo1.0p-1 +yrop =0y
pour un certain yy € K et comme la famille F est libre on a
Ty =-=z5_1=0f.
On a alors par recurrence que

f—-1<dimV’' <d-1
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et donc f < d. a

5.3.3. Base.
DEFINITION 5.18. Soit V' un espace vectoriel de dimension finie. Une famille 8 = {e1, -+ ,eq}
est une base de V' si l'une des conditions equivalentes suivantes est verifiee:

(1) B est generatrice et libre,
(2) L’application combinaison lineaire de B,

CLyp:K'—V
est un isomorphisme,
(3) Pour tout v € V il existe un unique uplet (x1,--- ,x4) € K¢ tel que v s’ecrit sous la forme

v=21x1.€1 + -+ Tq.€4.
EXEMPLE 5.3.5. Pour V = K¢, la base canonique
#" ={el, -+ e}
forme (tautologiquement) une base.
On a

THEOREME 5.5. Soit V un K-ev de dimension d alors V possede une base et toute base % de
V werifie

(5.3.3) |B| = dim(V).

REMARQUE 5.3.2. En particulier
dim(K?) = d.

Preuve: On a vu d’une famille generatrice ¢ de cardinal minimal dim V' est libre et donc forme
une base de V.
Si # est un base de V alors comme elle est generatrice on a

|%| > dimV
et comme Z est libre on a par le Theoreme 5.4
|%8| < dim V.

O
Le Theoreme d’existence d’une base admet la variante suivante concernant les familles libres et
generatrices

THEOREME 5.6 (Extraction et Completion). Soit V un K-ev non nul de dimension d. On a

(1) Une famille generatrice 4 de cardinal d est une base.

(2) Une famille libre £ de cardinal d est une base.

(8) (Eztraction) Soit ¢ C V une famille generatrice alors il existe une base B de V' contenue
dans 9.

(4) (Completion) Soit £ C V une famille libre alors il existe une base B de V' contenant L.

Preuve: Soit ¢4 une famille generatrice (pas forcement finie); par definition de la dimension |¢| > d.
Montrons que ¢ contient une base. L’ensemble ¢ contient au moins un vecteur non-nul (sinon
V = Vect(¥) = {Oy} ce qui est exclut) et la famille reduite a un element {e} est libre. Soit Z C ¢4
une sous-famille libre dont le cardinal |#| est maximal parmi les sous-familles libres de ¢. Montrons
que £ est generatrice et est donc une base.
On sait deja que cette famille est finie:

P = {ela"' 79\53|}
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avec
| 2| < d.
On a les deux cas suivants:
(1) Si|9B| = |¥4| alors B =¥ est generatrice et A est une base.
(2) Si|4%| < |¥4|. Supposons que & n’est pas generatrice c’est a dire
Vect({e1, - ,e|z/}) # Vect(¥) =V,
alors il existe e € ¢ tel que
e & Vect(A)
c’est a dire que pour tout x1,--- , x5 € K on a toujours
e#r.ep+- - +x5€5/-
Montrons qu’alors la famille 8 U {e} est encore libre ce qui contredira la maximalite de
||: supposons que pour 1, , g,z € K on ait
z1.€e1+ -+ 9€9 t+r.e=0y
alors
(a) siz=0ona
ri.e1+ -+ T|51€|%| = Oy
et comme # est libre on a x1 = -+ = 114 =z = 0.
(b) Six # 0 alors z est inversible et on a
e=—(r1/r).e; — - — (z5//T)e|z
une contradiction: ainsi la famille est libre.

On obtient alors une contradiction avec la maximalite de |#| ce qui implique que %
est generatrice.

Soit .Z = {e1,--- ,e| ¢} une famille libre non-vide (on sait que |.Z| < d).

Montrons que £ est contenue dans une base. Il existe une famille generatrice finie contenant
& il suffit de prendre la reunion ZU¥ de £ et d’une famille generatrice finie ¢ de V' (par exemple
une base).

Soit # D £ une famille generatrice finie de V' contenant .Z et dont le cardinal |2| est minimal
parmi toutes les familles generatrices finies de V' contenant .. Montrons que & est libre et est donc
une base.

(1) Si|%B| = |-Z| alors B = £ est generatrice et libre et c’est une base.
(2) Si |4 > |-Z| ecrivons

B={e1, ez €5}
et supposons que # ne soit pas libre: il existe x1,- -+, 7|4 € K non tous nuls tels que
r1.€e1+ -+ T g€ 2 + T T g€2 = Oy.

Si T\ g|41 ="+ =T =0 alors on a

xri.e1+ -tz g€ =0v
et comme .Z est libre on a

Ty =+ =Ty =T)gj41 = =25 =0.
Sinon il existe i > |.Z] tel que z; # 0 disons que c’est x|4: on a alors
ez = —(21/2)3))-1 = - = (T21-1/23))€12) 1

et alors comme e 4| est combinaison lineaire des ey, - - - ,e|z|_1, la famille {e;,--- , €41}
contient .Z et est generatrice ce qui contredit la minimalite de |%|. Ainsi £ est libre.
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|
On a demontre dans la deuxieme partie un resultat un peu plus fort:

THEOREME 5.7 (de la base incomplete). Etant donne £ une famille libre de V et  C 'V une
base, on peut extraire de B une sous-famille &' C B de sorte que L UL forme une base de V.

EXERCICE 5.5. Montrer que si X et Y sont de dimension finie on a

dim(X x Y) = dim(X) + dim(Y).
Montrer que si V =X @Y, alors
dim (V) = dim(X) + dim(Y).

5.3.4. Sous-espaces vectoriels et dimension.

THEOREME 5.8 (Bases et SEV). Soit V' un espace vectoriel de dimension finie, et W C V un
sous-espace vectoriel alors W est de dimension finie et

(1) on a dim(W) < dim(V).
(2) Si dim(W) = dim(V') alors W = V.
(8) Si By est une base de W alors il existe une base By de V' contenant By .
Preuve: Soit .Z C W une famille libre et finie de W alors £ est libre dans V et de cardinal

l=1]%] <dimV. On peut donc supposer que .Z = {e1, -+ ,e;} est de cardinal maximal (parmi les
familles libres et finies de W). On suppose alors qu'’il existe e € W tel que

e & Vect({e1, -~ ,e})

et on en deduit comme dans le Theoreme d’Extraction/Completion que {eq,--- ,e;, e} est libre ce
qui contredit la maximalite de . Ainsi

Vect({e1,--- ,e}) =W

et W est de dimension finie egale a [ < dim V.
Les deux derniers points resultent du Theoreme d’ extraction/completion.

— Un sous-espace vectoriel de dimension 1 est appelle droite vectorielle .
— Un sous-espace vectoriel de dimension 2 est appelle plan vectoriel.
— Un sous-espace vectoriel de dimension dim(V') — 1 est appelle hyperplan vectoriel.

5.4. Espaces vectoriels de dimension infinie

DEFINITION 5.19. Un K-ev qui ne possede pas de famille generatrice finie est dit de dimension
infinie.

Repetons la definition de famille generatrice:

DEFINITION 5.20. Soit V un K-e.v. Un sous-ensemble 4 C V est une famille generatrice si

Vect(¥) =V,
ie. tout element v € V' peut s’ecrire sous la forme d’une combinaison lineaire (finie) d’elements de
G: il existed>1, €1, - ,eq €Y, x1,--- ,xq € K,, tels que
(5.4.1) v =x1€1 + "+ T4€4.

Donnons une definition generale d’une famille libre (pas forcement finie):

DEFINITION 5.21. Soit V un K-e.v., un sous-ensemble & C V est une famille libre si tout
sous-ensemble fini L' C L est libre: si L' = {e1,--- ,eq} (les elements tous distincts), on a

(5.4.2) ri€e1+ -+ z9eq =0y <= 21 = =24 = 0.
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On defini alors ce qu’est une base:
DEFINITION 5.22. Une base algebrique 8 C V est une famille libre et generatrice.

PROPOSITION 5.17. Soit 8 C V une base algebrique. Alors tout element v de V' est representable
comme combinaison lineaire finie d’elements de A et une telle representation est unique.

Preuve: L’existence est simplement le fait que B est generatrice.
Pour 'unicite supposons que

v=x1€1 + -+ 2060 = T1€] + -+ Tel
pour

B ={e, - ,eq}, B ={e},---,€e} CB.
Quitte a remplacer B et B’ par la reunion BUB’ on peut (en ajoutant des coefficients nuls) supposer
que B’ =B": on a

v=m1€1 + -+ Tgeq = They + -+ 1heqy
et donc

Ov = (z1 —2})er + -+ + (za — 7g)eq

et comme B est libre on a

c’est a dire

O

EXERCICE 5.6. Soit F(N,R) lespace des fonctions de N a valeurs reelles (ie. les suites a valeurs
reelles). Soit f : N +— R une telle fonction; son support est par definition I’ensemble des des point
ou f ne s’annulle PAS:

supp(f) = fCV(R - {0}) = {n €N, f(n) # 0}.
Soit F;(N,R) C F(N,R) le sous-ensemble des fonctions a support fini.
Pour m € N un element, on note 1, la fonction indicatrice de m:

1 sin=m
l{m}(n) = {

0 sin#m.

(1) Montrer que F¢(N,R) est un SEV de F(N,R).
(2) Montrer que la famille
{Lmy, m =0}
est une base de F;(N,R).

11 est beaucoup plus difficile d’imaginer une base de 1'espace F(N,R). Pourtant on a le resultat

suivant necessite de travailler dans une theorie des ensembles qui contient !’ axiome du choixz (par
exemple ZFC).

THEOREME 5.9 (Existence de bases sous I'axiome du choix). Dans une theorie des ensembles
contenant ’axiome du choix, tout espace vectoriel sur un corps K possede une base et toutes les
bases de V' ont meme cardinal: pour toutes bases B, %' il existe une bijection

B~ B
La dimension de V est de cardinal d’une base:

dim(V) = | 48|.

REMARQUE 5.4.1. Le Theoreme de la base incomplete est vrai (sous 'axiome du choix): soit
Z C une famille libre et ¢ un famille generatrice. Il existe une famille libre ¥’ C ¥ telle que
LY = P forme une base de V.
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Preuve: (idee) Pour demontrer ce theoreme, on utilise 'axiome du choix sous la forme equivalente
suivante qu’on appelle

LEMME DE ZORN. Soit E un ensemble ordonne tel que tout sous-ensemble A C E totalement
ordonne possede une majorant alors E possede un element maximal.

On applique le Lemme de Zorn a l’ensemble des familles libres de V' ordonne par I'inclusion et
on montre qu’une famille libre maximale pour I'inclusion est une base. O

REMARQUE 5.4.2. En fait on peut montrer que le Lemme de Zorn et donc ’axiome du choix
sont equivalent a ’existence d’une base pour tout espace vectoriel.



CHAPITRE 6

Applications lineaires

6.1. Le Theoreme Noyau-Image
6.1.1. Rang d’une application lineaire.

PROPOSITION 6.1. Soit ¢ : V — W wune application lineaire avec V' de dimension finie. Soit
4G ={e1, -+ ,ey,} CV une famille generatrice alors ¢ est completement determinee par l’ensemble
de images des elements de 94 :

o(@) ={ple1), - ,p(eg)} CW.
En particulier, o(9) est une famille generatrice de Im(yp) = (V') et on a
dim(Im ¢) < dim(V).
Preuve: Soit v € V, comme ¥ est generatrice il existe z1,--- ,z4 € K tels que
r1.€1 + -+ x40 =V
et alors
e(v) = z1p(e1) + -+ + zg0(ey).
Ainsi pour connaitre I'image d’un vecteur v il suffit de connaitre les vecteurs
(,0(91), e a(p(e!])

et une decomposition de v en combinaison lineaire d’elements de ¥.
En particulier pour w € Im(yp), il existe v € V' tel que ¢(v) = w; ecrivant

ri.e1+---+x45€9 =0
on a
w = p(v) = r1.p(e1) + -+ zg0(ey)
Ainsi p(¥) est generatrice de Im ¢. En particulier Im ¢ est de dimension finie et
dim(Im ) < [p(9)|.
Ainsi en prenant pour ¢ une base de V, on aura
dim(Im ) < p(9)| < [¢] = dim(V).
O
DEFINITION 6.1. Soit ¢ : V — W wune application lineaire. Le rang de ¢ est la dimension de
Imp:
rg(p) = dim(Im ).
PROPOSITION 6.2 (Inegalite du rang). Soit V' de dimension finie. On a
rg(y) < min(dim V, dim W).
Preuve: On vient de voir que rg(¢) < dimV et que rg(¢) = dimIm ¢ comme Im ¢ est un sev de

W on a
rg(p) < dim W.

93



94 6. APPLICATIONS LINEAIRES

REMARQUE 6.1.1. Cette inegalite reste vraie si V' ou W sont de dimension infinie.

EXERCICE 6.1. Soient V,W deux espaces vectoriels de dimension finie et ¢ : V — W une
application lineaire. Montrer que

(1) Si ¢ est injective alors I'image par ¢ d’une famille libre est libre et
dim (V) < dim(W)

(2) Si ¢ est surjective alors I'image par ¢ d’une famille generatrice est generatrice et
dim (V) > dim(W).

(3) Si ¢ est bijective, 'image d’une base de V' est une base de W et dim(V) = dim(W).

EXERCICE 6.2. montrer qu'une application lineaire envoyant une base sur une base est un
isomorphisme.

6.1.2. Le Theoreme Noyau-Image.

THEOREME 6.1 (Noyau-Image). Soit ¢ : V +— W une application lineaire avec V' de dimension
finie. On a
dim V' = dim(ker ) + dim(Im ¢).

Preuve: Notons que si Z est une base alors ¢(%) est une partie generatrice de Im ¢ qui est donc
de dimension finie de dimension

dimIm ¢ < |p(B)| < [48] = dim(V).
Soit {p(€}), -+ ,p(el)} une base de Im ¢ et {ej,--- ,er} une base de ker . Montrons que
{e1, - ,ep e, e}
est une base de V. Supposons que

r1€1 + -+ zpep + i€ + -+ 2lel =0y

alors
Ow = z10(€1) + -~ + z)p(e])
et donc ) =--- =2}, = 0. On a alors
T1€1 + -+ + Tep = Oy
et donc 1 =--- =z, =0.

Soit v € V alors
p(v) = zip(e]) + - +a.p(e) = p(zi€] + -+ x.€) = p(v').

On a
p(v—1")=0y = v—2 Ekerp
et donc
v—v =x1€1 4+ + Tp.€%
et

N / /
v=2x1€1 + -+ x.€ +T7€ + -+ T,.€.

O

COROLLAIRE 6.1 (Critere de bijectivite). Soit ¢ : V +— W une application lineaire entre espaces
de dimension finie. Si
dim(V) = dim(W)
alors est conditions suivantes sont equivalentes
(1) ¢ est injective.
(2) ¢ est surjective
(8) @ est bijective.
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Preuve: Si ¢ est injective on a dim(ker ¢) =0 et
dim(W) = dim(V) = dim(Im ¢) + 0
et donc dim(Im ) = dim(W) ce qui implique que W = Im et la surjectivite et la bijectivite.

Evidemment la bijectivite implique l'injectivite. O

6.1.3. Exemple: les formes lineaires. On rappelle la definition d’un forme lineaire (cf Def-
inition 5.12):

DEFINITION 6.2. Une forme lineaire sur V est une application lineaire de V' a valeurs dans le
corps K (vu comme K-ev sur lui-meme)

{:V— K.
On a la proposition suivante:
PROPOSITION 6.3. Soit ¢ une forme lineaire. Si elle est non-nulle, i.e. £ # O, alors
Im(¢) = K, dim(kerl) = dim(V') — 1.

Preuve: Soit ¢ # 0. Soit v € V tel que £(v) = A # 0; X est donc inversible, alors pour tout z € K,
on a

L(z/N)w) = (/N A==

donc £ est surjective. Ainsi Im¥¢ = K est de dimension 1 et ker ¢ est de diemsnion dim V' — 1. O

DEFINITION 6.3. Soit V de dimension finie. Un sous-espace vectoriel de dimension dimV — 1
est appelle un hyperplan vectoriel.

PROPOSITION 6.4. Soit V' de dimension finie et H C V un hyperplan vectoriel. Il existe une
forme lineaire £y telle que

kerf/y = H.
Preuve: Soit {e1, - ,e4—1} une base de H. C’est une famille libre et on peut la completer en une
base de V: il existe e; € V tel que
{er, - ,eq—1,eq}

forme une base de V. Considerons la forme lineaire d-ieme coordonnee:
ejiv=x1€1+ -+ T4-1€4-1€4-1 + Tg€q EV — x4 € K.

Alors
H={veV, ejw)=0}

REMARQUE 6.1.2. £y n’est pas unique: elle depend du choix de eg4.

6.2. Structure et dimension des espaces d’applications lineaires

On rappelle que (Hompg ¢, (V,W),+,.) a une structure naturelle de K-espace vectoriel, ou
I’addition est donnee par

e+ v o) +Y(v)
I'element neutre etant I’application identiquement nulle Oy;, et la multiplication externe, est donnee,
pour pour A € K and ¢ € Homg ., (V, W), par

A v Ap(v).
Rappelons que le fait que A\.p € Homg ¢, (V, W) provient du fait que K est commutatif: pour x € K
Ao(zo+0") = Ap(zo+0") = Mz.p) + () = 2.X.0(0) + X)) = 2.(A0)(v) + (A.p) ().
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THEOREME 6.2 (Dimension de ’espace des applications lineaires). SiV et W sont de dimensions
finies, alors Homg (V, W) est de dimension finie

dim(Homg (V, W)) = dim V. dim W.

Preuve: Soit & = {e1, - ,e4} une base de V. Soit ¢ une application lineaire, alors ¢ est entiere-
ment determinee des que ’on connait les valeurs des elements de %

pler), -, p(eq) € W.
En effet si v = x1.e1 + - - - + x4.€4 alors
p(v) = z1.0(e1) + - + za.p(eq).
En d’autres termes on dispose d’une application injective
evalg : ¢ € Homg (V,W) < (p(e1), -, ¢(eq)) € W4
L’application evalyg est lineaire puisque pour tout j < d
(Ap +)(e;) = Aple;) +¢(e;)
Par ailleurs, cette application est surjective: soit un uplet
(i, fa) e W?
alors on associe a (fi,- -, f4) I'application lineaire definie par
o(rr.e1+ -+ z4.€0) =21.f1+ -+ xa-fa.

Ainsi on a un isomorphisme
evaly : Homg (V, W) ~ wd
et (comme la dimension d’un produit d’EVs est la somme des dimensions)

dim(Hompg _ ¢, (V,W)) = dim(W?) = d. dim(W).

On va maintenant decrire une base de Homg (V, W).

6.2.1. Formes lineaires, dualite et base duale.
On commence par l’espace des formes lineaires et on rappelle que

DEFINITION 6.4. Une application lineaire, £ : V +— K, de V wvers le corps K est appelee "forme
lineaire”. On note ’espace des formes lineaires par

V* := Hompg _e (V, K)
et on Uappelle le dual de V.
Comme dim K =1, on a
dim(V*) = dim Homg (V, K) = dim(V') x 1 = dim(V).

En particulier un espace vectoriel V' et son dual V* sont isomorphes. Pour trouver un tel isomor-
phisme, on va exhiber une base de V*.

DEFINITION 6.5. Soit Z = {e1, -+ ,eq} une base de V, siv €V s’ecrit
v=2x1.€1 + -+ x4.€q,
pour i < d, le scalaire x; est la i-eme coordonnee de v dans la base B. On note ce scalaire
x; = e} (v).
PROPOSITION 6.5. Pour ¢ < d, l'application
X

€;

v=zx1.61+ -+ x460€V e (v)=x,€K

est une forme lineaire . On Uappelle la i-ieme forme lineaire coordonnee relative a la base B de V.
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Preuve: En effet, soit on dit que c’est la composee de deux application lineaires:

CL_I' 14 — Kd
Z y=mx1.€1+ - +zq60 — (1, ,Tq)
et
.. K4 = K
RN CATERRIN ) B S

Soit on utilise directement le fait que la decomposition en combinaison lineaire est unique:

/ / /
v=2x1.€1+ -+ 2Tg.€ UV =21.€1 + -+ 1T,.€g

alors
Av+v = Azi.e; + -+ Axgeq+2i.e + -+ 2eq
=z +2))e + - +.Axg+1).eq
de sorte que par unicite la i-eme coordonnee de A\.v + v’ est A.x; + 2} O

Plus precisement, soit
#={e1, - ,eq}

une base de V', on a associe a chaque element e; de cette base la forme lineaire ”i-ieme coordonnee
dans la base %:

ef:v=xe + - -t+zie+ -+xge €V i—a; €K.
THEOREME 6.3. Soit B une base de V, la famille
B ={ef, - e} CV*
est une base de V*. On a
1 sii=y
Vi,j <d, ef(e;) =0;—; = .
J l( J) =] {O SZZ#J

DEFINITION 6.6. La base
B ={e}], -, e} C V"
s’appelle la base duale de la base A.

Preuve: Pour i < don a

e; = l.e; + Zo.ej
J#i
de sorte que
e;(e)) =1, €j(e;) = 0.
Montrons que la famille #* est libre (comme dim(V*) = dim(V) = d cela montrera qu’elle est
generatrice). Supposons que

d
l:=x1.€]+ - +x4€)= Zmief =0g-
=1
On a pour j < d
d d
OK = é(e]‘) = inef(ej) = in(si:j = ;.
i=1 i=1
O

On a montre que %* est une base pour des raisons de cardinal et de dimension. En particulier
c’est une famille generatrice et toute forme lineaire est combinaison lineaire des elements de %*:
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COROLLAIRE 6.2. Soit £ : V +— K une forme lineaire. On a

d
0= lei)e;].
i=1

Autrement dit, les coordonnees de ¢ dans la base B* sont donnees par les (£(e;))i<a (ie. les valeurs
de £ en chacun des e;, i < d).

Preuve: On sait qu'il existe I; € K, i < d tel que
i<d
Calculant £(e;) on trouve
f(ei) = lee;(e,) = le(sj:i =1;.
Jj<d J<d
O

REMARQUE 6.2.1. Comment avoir 'idee de cette base duale: on a vu que l'application d’

”evaluation le long de la base #A”:
evalg : Ve K¢
7l s (Ley), o, L(eq))

est un isomorphisme lineaire.
On rappelle que dans I’espace d’arrivee K¢, on dispose d’une base preferee appellee la base
canonique de K¢
By =1{e?, i <d} C K%
avec e le vecteur dont la i-ieme coordonnee vaut 1 et les autres sont nulles:
e =(1,0,---,0), ---,e3=(0,---,0,1).

La base duale #* est alors I'image reciproque par evalg de la base canonique @2 de K.

Notons egalement que I'isomorphisme ”combinaison lineaire dans la base %*”
K4 - v

CLG’* .

P Ly la) = hel e+ lge]

est 'isomorphisme reciproque de I'isomorphisme eval .
REMARQUE 6.2.2. On a deux isomorphismes
evaly : V* ~ K% CLy: K¢~V
et donc un isomorphisme ”explicite”
CLgoevalg : V*~V
entre le dual V* et V. Il faut noter que cet isomorphisme depend du choix de la base %.
EXERCICE 6.3. Soit V** = (V*)* le bi-dual de V' (le dual du dual V* de V). On considere
I’application:
V = V™= (V*)*
eval, :
v eval,
ou
eval, : £ — f(v) € K
est I'application qui a une forme lineaire ¢ associe sa valeur au vecteur v.

(1) Montrer que eval, est bien une forme lineaire sur V*.
(2) Montrer que eval, est un isomorphisme.
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(3) Montrer que si on identifie V** a V par I'isomorphisme ci-dessus et que & = {e;, i < d}
est une base de V, la base duale de la base duale

B ={(e})", i=1,---,d}
vaut 4.

REMARQUE 6.2.3. A la difference de 'isomorphisme CLyg o evaly : V* ~ V qui depend du
choix d’une base. L’isomorphisme eval, : V ~ V** n’en depend pas. On dit que le bidual de V est
canoniquement isomorphe a V.

REMARQUE 6.2.4. L’application
(0, ) can, v : (£,0) eV xV i L(v) € K

est une forme lineaire’ sur V* x V appelee accouplement canonique entre V* et V. Le fait qu’il
permette de definir un isomorphisme entre V* et V fait dire que c’est un accouplement parfait.

1

6.2.2. Representation parametrique et cartesienne d’un SEV. Soit W C V un SEV
d’un espace vectoriel de dimension finie dyy = dim V" alors W est de dimension finie dy = dim W.

Soit 4w = {e1,--- ,e4}, g = dw une famille generatrice de W: W est I’ensemble des vecteurs
de v de la forme

W={weV, w=z1.e1+ - +x4€ 1, - ,24 € K}
Une telle presentation de W s’appelle une representation parametrique de W: chaque vecteur w € W
est obtenu comme somme de vecteurs de la forme
T1.€eq + -4 ;z:g.eg

pour un choix approprie (pas unique en general) de parametres scalaires z1,---,z, € K. En
particulier si %y = Py est une base de W le nombre de vecteurs {e;, i < g} impliques dans cette
representation est minimal et vaut dyy; la representation precedente est alors unique.

Par ailleurs un SEV W peut egalement etre represente comme l’ensemble des solutions d’un
systeme d’equations lineaires (de second membre nul):

PROPOSITION 6.6 (Representation cartesienne d'un SEV). Soit W C V un SEV (distinct de
V). 1l existe un entier d’ > 1 et une famille de d' formes lineaires

L= {51,--- ,ﬁd/} cv”
telles que
W ={w eV tels que {,(w) =0, la(w) =0,---, ¢y (w) = 0}.
De maniere equivalente, W = ker ¢ avec
or:we Vs (L(w),- Lly(w)) e KT,
En fait on peut prendre d' = dy — dw et la famille
L= {61,“- 7€dv—dw} cv®

forment une famille libre de V* (ie. les £;, i < dy — dw sont lineairement independantes).

Preuve: Soit By = {e1,--- ,eq, } une base de W et
%: {el’... 7edwaedw+1)"' vedv}
une base de V' contenant la base precedente. Soit
* * * * *
# = {elv' € a1y ’edv}

la base duale. Alors
W={veV, ey, ;1(v)="=ey, (v)=0}

len fait elle est meme bi-lineaire
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La representation
W={veV, ti(v)=--+=4L4y—ay (v) =0}

est appellee representation cartesienne de W d’equations
Zl(v) = 0, s agdv—dw (7)) =0.

REMARQUE 6.2.5. Le nombre d’ d’equations d’'une representation cartesienne est toujours au

moins egal a dy — dw . En effet si £ = {{y,--- ,£q} verifie
W = {U c V, g](’l)) == gd/('l))}

cela signifie que W est le noyau de I'application lineaire

evalg iv e Vs (4(v), - by (v) € K.

On a donc
dimV — dim W = dim V — dimker(eval) = dim(evalz (V))) < dim(K%) = d’
EXERCICE 6.4. Dans Q3, soit W = ((1,1,0), (1,0, 3)). Donner une equation cartesienne de W.
EXERCICE 6.5. Dans Q3, soit W = {(x,9,2) € Q3, 2 +y—2 =0, 2 — 2y + 3z = 0}. Donner

une representation parametrique de W.
6.2.3. Une base de Hom(V, W). Soient V et W des EVs de dimensions finies d et d’.

On a vu que
dim Hom(V, W) = dim(W?) = dim V dim W.
on va donner une base explicite de cet espace.
Etant donne & = {e1,--- ,eq} et ' = {f1,--- ,f5} des bases de V et W, on va construire une
base de Hom(V, W): soit
B ={el, - ey}

la base duale de %, et definissons pour i € {1,---,d'}, j € {1,---,d} application
Eij : Z : ef(vg) £,
J o
En d’autre termes, si
v =2x1.€1 + -+ Tq.€q,
&i;j(v) est egal a z;.f;, cad le produit de la j-eme coordonnee de v, x; dans la base Z et du i-ieme

vecteur de la base %4'.
En particulier on a pour k =1,--- ,d

Eijler) = {OW sk

LEMME 6.1. L’application & : V +— W est lineaire, de rang 1, d’image K.f; et de noyau
<¢% — {ej}> = K.e1 + e + K.ej,l —+ K.ej+1 + e + K.ed

ker (c/'ij =
Uhyperplan vectoriel engendre par les vecteurs de la base 8 moins le vecteur e;.

Preuve: Comme e;f est lineaire on a
gij ()\’U + U,) = e; ()\’U + U’).fi = ()\1‘3 + x;)fj = )\xjf, + x;fz = )\51](’1}) + Ez'j(’l}/).

Il est clair que Im&;; C K.f; et comme &;;(e;) = f; on a egalite. Ainsi rg(&;;) = 1 (fi # Ow, ce

vecteur etant dans une base).
Par ailleurs (f; # Ow) il est clair que &;;(v) = x;.f; = Ow si et seulement si la j-eme coordonnee
O

x; de v dans la base # est nulle.
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DEFINITION 6.7. Soit V,W des K-EV de dimensions finies d,d’ et
PB={ey, - ,eq} et B ={f1, - £}

des bases de V et W et #8* = {e],--- ,ei} CV* la base duale de A.
Pouri < d', j <d les applications lineaires definies par

gi,j eV = e;(v)fz eWw
sont appellees applications lineaires elementaires associees auxr bases B et B'.

THEOREME 6.4 (Une base de l'espace des applications lineaires). La famille des applications
lineaires elementaires

B "B = {Eij, 1 < d,, 7 < d} C HOmK_eU(V, W)
forme une base de Homp ¢, (V, W).

Preuve: Comme le cardinal de cette famille vaut dim(V) dim(W) = dimHomg ¢, (V, W) il suffit
de montrer qu’elle est libre: soit m;; € K,i < d’,j < d des scalaires tels que

DD mis€iy = O
,J
On a donc pour chaque k < d

(szijgij)(ek) = Zmikfi = Ow.

Comme %’ est une base de W on a pour tout i < d,
mik = 0
et donc pour tout 7,j on a m;; = 0. (]
6.2.3.1. Preuwve directe que (&; ;);; est generatrice. On peut en fait montrer directement (sans

utiliser la dimension) que By 4 est generatrice: soit ¢ : V +— W une application lineaire, on cherche
a trouver d.d’ scalaires (m; ;)i<a,j<d tels que

P RIIED 5) Sers
0, (%]
Supposons qu’on dispose d'une telle de composition et calculons pour k < d

pler) =YY mijei(er)fi =Y mixfi
1,7 [

et donc pour i < d’, m;j est la i-ieme coordonnee de ¢(ey) dans la base %'
mik = £ (p(ex)).

Considerons alors la combinaison lineaire d’applications elementaires
o =D £ (ele;)Eij
)
La raisonnement precedent montre que pour tout e, € % on a

p(er) = ¢'(ex).
Comme les deux applications lineaires prennent les memes valeurs sur une famille generatrice, elles
sont egales: on a donc

(6.2.1) p = szi*(<p<ej>)gij = szi,j&‘j
avec ! !

m; ;= £ (p(e;)).
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REMARQUE 6.2.6. Comme la notation I'indique Bz &z depend du choix d'une base de # et

d’une base de #'. Les applications &;; sont appellees applications elementaires associees aux bases
B et B

EXEMPLE 6.2.1. Soit V = R3, W = R? et prenons les bases canoniques
B = B3 = {(1,0,0),(0,1,0),(0,0,1)}, B'=BJ ={(1,0),(0,1)}.
On dispose de 6 applications lineaires elementaires
5113 5127 5135 6217 5229 523
et par exemple
512(xay,2) = y(la 0) = (yao)a 523(:177?17 Z) = Z(Oa 1) = (072)
Soit I'application lineaire de ¢ : R? — R? donnee par
e(z,y,2) = (2z +4y,y + 32)

alors
@ = 2E11 + 4&12 + Ea2 + 3E23.

DEFINITION 6.8. L’ensemble des d.d' scalaires (m j)i<ar,j<a donnes par
(6.2.2) mi; = £ (p(e;)).

sont les coefficients de ¢ dans la base By gz ou encore la matrice de ¢ relative auz bases B, X' .

6.3. Proprietes fonctionelles des coefficients d’une application lineaire

Dans cette section on va voir comment la donnee des coefficients (relative a des bases choisies)
d’une application lineaire permet de faire des calculs effectifs.
6.3.1. Image d’un vecteur. Soient V,W de dimensions d, d’ finies et de bases
B = {ej, j < d},%/ = {fl, 1< d/}
Soit
Bz .z = {52‘]‘ = e;.fi, i<d, 7 < d} C HOIIIK,@U(V, W)
la base de ’espace des application lineaires formee des applications elementaires.

PROPOSITION 6.7. Soit ¢ : V +— W une application lineaire et (mi;)i<ar j<d les coordonnees de
¢ dans la base By 5. Alors pour k =1,--- ,d le d'-uplet

(i k)i<ar

sont les coordonnees de ¢(ey) dans la base B':

(6.3.1) pler) = Y mafi.

i<d’
Preuve: On a
pler) = (szijgij)(ek) = Z Zmijgij(ek) = Z migf;.
i\ i i<d!
(]

Soit v € V un vecteur de coordonnees (z;),<q dans la base Z. Calculons les coordonnees (y;)i<a
de ¢(v) € W dans la base £’

PROPOSITION 6.8. Awec les notations precedentes, si v = Z?=1 x;€ej, on a

d’ d
p(v) =Y uifi avec yi =Y mij.a;.
=1 j=1
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Preuve: on a

v= Z%‘ew p(v) = Z yifi

j<d i<d!
et
o(ej) = Z mi;fi
i<d’
Ainsi on a
o) =Y wip(e;) =Y x> myfi) => (O mija;)fi
j<d j<d i<d’ i<d’ j<d
On a donc
Yi = Zmij.xj.
j<d

6.3.2. Combinaison lineaire d’applications lineaires.

PROPOSITION 6.9. Soit
o, : Ve W

deux applications lineaires et (Mi;)i<ar j<ds (Nij)i<d’,j<d leurs coordonnees dans la base By 5. Pour
tout A € K, Ao+ est lineaire et ses coordonnees dans la base By 5 sont donnees par

(Amij +nij)i<ar j<d-

Preuve: En effet pour tout EV E et toute base g de E et tout vecteur g € Br de cette base, la
fonction coordonnee g* : E'+— K qui a un element associe sa coordonne suivant le vecteur g est une
forme lineaire. On applique cela a Hom(V, W) et aux vecteurs de la base Bz 4.

Alternativement on a la formule

mi; () = 7 (¢(e;))
et I'application
¢ £ (p(e))) € K
est lineaire:
mii(Ap + ) = £ (Ap + ) (e;)) = £ (Ap(e;) +1(e))) =
A7 (0(e;)) + 17 (1h(e))) = Ami; () + miz ().
O
6.3.3. Composition d’ applications lineaires. Soient U, V, W trois espaces vectoriels. Soient
deux applications lineaires
p: U=V, Y: Ve Wetpop:U—W
leur composee. Soient
B={ep, k<d}, B ={f;, j<d},PB" ={gi, i <d"}
des bases de U,V et W, on dispose alors de bases
By .z = {ef;}, Bar o ={f;.gi}, By u = {e;.gi}

pour
Hom(U, V), Hom(V, W), Hom(U, W),
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THEOREME 6.5. Soient (ni)j<a k<d les coordonnees de ¢ dans la base By z et (mij)i<ar j<d
les coordonnees de v dans la base By g . Alors les coordonnees (Lix)i<ar k<d de 1 o ¢ dans la base
Bz 2 sont donnees par

d/
likz E Mg Nk
j=1

Preuve: Ecrivons

Y= ZZ njkez~fj, 2/} = ZZ mijf;~g7;-

j<d’ k<d j<d’ i<d”
On a pour tout k < det j <d

p(er) = Z nief;, (f;) = Z M8

J<d i<d”
et
Dpler)) = Y npd() = D mje Yy migi= Y (D mignge)gi = Y lingi
j<d j<di<dr i<d” j<d' i<d”
Ainsi
lik = Z mijnjk.
J<d

O
6.3.4. Application lineaire duale. Soit ¢ : V — W une application lineaire et ' : W — K
une forme lineaire. Alors la composee
Cop:veV = Llpl) e K
est une forme lineaire sur V. On la note
() =1 o .
En effet o*(¢') est a valeurs dans K et est lineaire comme composee de deux applications lineaires.

REMARQUE 6.3.1. Avec nos notations, on a la formule dite d’ adjonction : pour tout v € V, £’ €
W* on a
(6.3.2) U (p(v)) = " (') (v).

Ainsi a toute forme lineaire £ € W* on a associe une forme lineaire ¢*(¢') € V* a l'aide de ¢.

DEFINITION 6.9. Soit ¢ : V +— W une application lineaire. L’application duale ©* de ¢ est
Uapplication

oW VT

qui associe a une forme lineaire ¢’ : w € W — V'(w) € K, la forme lineaire sur V obtenue par
pre-composition par p:
V - K
v Lp(v))

EXEMPLE 6.3.1. Soit U C V un SEV d'un EV V alors I'injection
tpu€elU—=ueV

p () =Ll op:

est lineaire et son application lineaire duale
L*U=£|U:£€V*H€|UEU*
est simplement la restriction de £ a U:

w(O)(u) = L (u) = £(u).
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PRrOPOSITION 6.10. L’application duale
el eW s lopeV*
est lineaire:
©* € Homg (W*, V™).
Preuve: Soit ¢}, 0, € W* et A € K, on veut montrer que
@ (AL + £5) = A" (€1) + 97 (£3).
Pour tout v € V on a
@ (ALY + £5)(v) = (ALly + £5)(p(v)) = ALy (p(v)) + Lo (p(v) = A" (€1) (v) + ¢"(65) (v).

O
On laisse en exercice la preuve des proprietes fonctionnelles de "application duale.

EXERCICE 6.6. Soit ¢ : V +— W une application lineaire entre deux espaces de dimensions finies.
(1) (Linearite) Montrer que I’application

o : p € Hom(V, W) — ¢* € Hom(W*, V™)
qui a une application lineaire associe ’application lineaire duale est elle meme lineaire:
A +¢) = A" + ¢
En d’autres termes
" ¢ Hom(Hom(V,W),Hom(W™*,V*)).
(2) (Anti-morphisme) Soit ¢ : W +— Z. Montrer que
(Yop)* = oy
(3) (Involutivite) Montrer que si le bi-dual V** est identifie (canoniquement) a V' via I’isomorphisme
evalg ;v €V > (L= L(v)) e V™
alors la duale de la duale qu’une application est 'application elle-meme:
(") = ¢

REMARQUE 6.3.2. La propriete d’adjonction s’ecrit de la maniere suivante en termes des accou-
plements canoniques de V' et W: rappelons les notations

(0, ) can,v : (£,0) = (€, V) canv = £(v) € K.
<.» .>can,W : (el»w) = <£/7w>can,W = él(w) € K.
On a pour v € V, 0/ €¢ W*
<£/7 (p(v»can,W = <§0* (€l>7 v>can,V

Le resultat suivant calcule les coefficient de ’application duale.

THEOREME 6.6. Soit v : V — W une application lineaire et ©* : W* — V* Uapplication lineaire
duale; soient B et B’ des bases de V et V' et (mij)i<ar j<a les coefficients de ¢ dans la base By »;
soient (m};)j<d,i<a les coefficients de ¢* dans la base

ng*,a’/* C HOHI(W*, V*)
associee auz bases duales B* C V* et B C W*. On a

m}"z = Myy, igd/, jgd
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Preuve: Soient (m;i)jgdﬂvgd/ les coefficients de ¢* relatifs aux bases %*, %'". Par la formule
generale (6.3.1) appliquees a ¢*, on a pour i =1,--- ,d’
d

o (ff) = Z m;ie;'
j=1

*

On va calculer les m}; en evaluant cette forme lineaire ¢*(f;") sur les vecteurs e/, j' < d: on a d’'une
part (par definition de 'application duale)

dl
QO* (fi*)(ejf) = fi*(go(ej/)) = fz*(z mifj/fi/) = Z mi/j/fi*(fi/> = My’

i'=1 /=1

car £(f;) = ;= et donc un seul terme survit dans la somme precedente. D’autre part, on a
d
P (E)(ej) = Y _miie;(ey) = m},;
j=1

car e;(e;/) = d;j=;» et donc un seul terme survit dans la somme precedente. Ainsi pour tout i <
d,j <dona

*

mﬂ = Myj.

O

REMARQUE 6.3.3. Voici une autre presentation de la meme preuve si on est a ’aise avec le
bidual. On a vu que si on identifie V** a V via I'isomorphisme

evals : v — eval, : £ — £(v),
alors la base duale de la base duale est la base elle-meme:
B =B, B =R
On a vu egalement que
mj; = e;" (" (£7)).
Par definition de €j*, puis de ¢* on a
;" (¢ (7)) = ¢"(f7)(e)) = £i (p(e;)) = mi ;.

THEOREME 6.7 (Rang de Dapplication duale). Soit ¢ : V — W wune application lineaire et
" W* = V* sa duale, alors on a

rg() = dim(Im ) = dim(Im ") = rg(¢").
Preuve: Soit r = dim(Im ) et
{fi = p(e1), -, £ =ple,)} CW
une base de Im . On complete cette base en une base de W
B ={f, i<d} CW.
D’autre part on a vu dans la preuve du Thm Noyau-Image que si
{€rs1, +* ,€4—r} C ker(p)

est une base du noyau de ¢ alors

B = {el’... €y €pp, :ed}

est une base de V.
On a

rg(p”) = dim{Vect{p"(f;), -~ , " (f3)}-
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Ecrivons pour : = 1,--- ,d’

Par le Theoreme 6.6, on a
d
O (E7) = mije;
J=1
avec m;; defini par (cf. (6.3.1))

dl
plej) = mifi.
=1

U

Sij > r alors e € ker(p) et p(e;) = 0w: Vi < d', m;; =0 et donc

Vi <d, o (f) = Zmije;f.
j=1
Ainsi

Vect{o*(f7), -, " (£)} C Vect{e], -- ,er}.
De plus, on a pour i < r

O (£7) = mise;
j=1
avec
mi; = £ (p(e))) = £ (£;) = di=j.
Ainsisit <r,ona
o (f) =€f
et
Im(p*) = Vect{e}, i <r}.

Comme la famille {ef, i < r} est libre 'espace engendre est de dimension r.
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CHAPITRE 7

Matrices

- M: Do you know what I'm talking about ¢

- N: The Matriz ?

- M: Do you want to know what IT is ?
The Matrixz is everywhere. It is all around us.
Even now, in this very room.

7.1. Matrices et applications lineaires
Soient V', W des EVs de dimensions finies munis de bases
B={ej, j<d}, B ={f;, i<d}.
Alors on a des isomorphismes d’espaces vectoriels
CLy:K*~V, CLy : K¥ ~W

qui permettent d’identifier V et W aux espaces produits K% et K¢ et d’identifier des vecteurs v € V
et w € W avec des uplets

(2;)j<a = (x1,+ ,2a) € K Wi)icar = (1, yar) € K.
On dispose egalement d’une base
By z={E;=ef;, i <d, j<d}
de Homg (V, W) de sorte que I'application

(7.1.1) CLB%,_% : (mij)igd/,jgd € (Kd/)d =P = ZZ mijgij € HomK(Va W)
i<d’ j<d
est un isomorphisme d’espaces vectoriels entre (K d/)d et Homg (V, W); cet isomorphisme permet

d’identifier toute application lineaire ¢ avec un d’ x d uplet (m;;)i<ar j<d-

DEFINITION 7.1. L’espace vectoriel (Kd/)d s’appelle ’espace des matrices de dimension d' x d a
coefficients dans K et est note

My xa(K) = {(mij)i<a j<d: mij € K}
Un element de My «q(K) est appelle matrice de dimensions d’ x d ou juste une matrice d’ x d.

On a coutume de representer une matrice (m;;)i<qd’,j<d comme un ”tableau” de dimension 2
possedant d’ lignes et d colonnes: ainsi m;; est le coefficient de ce tableau qui se trouve a 'intersection
de la i-ieme ligne et de la j-ieme colonne compte a partir du coin superieur gauche.

mi1 Mmiz -+ Mid

ma1  M22 -+ Mad
M = (mij)i<ar,j<d =

Mg Mgz -+ Mdq

109
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REMARQUE 7.1.1. Habituellement quand on repere un point dans le plan, la premiere coordonnee
i donne la ”position horizontale” et la seconde j la ”position verticale”. On prend ici la convention
symetrique et il y a de bonnes rasions pour cela notamment lies au sens de l’ecriture gauche-droite.

DEFINITION 7.2. Soient  C V, ' C W des bases comme ci-dessous et By 4 C Hom(V, W)
la base de Hom(V, W) associee. L’application reciproque CLgil , sera egalement notee

matgg/’g : HOII’I(‘/, W) — Md/xd(K).

Explicitement, si on la la decomposition o = Y. > m;j(¢)E;; alors on a
i<d' ,j<d

mi1 mi2 et mid
ma1 ma2 et mad
matg, z(¢) = (Mij())i<d j<d =

Mg Mgz -+ Mad

La matrice matg () est appellee matrice associee a ¢ dans les bases B, B'. Rappelons que pour
tout 1 < j < d, (mij(p))ica est Uensemble des coordonnees de l'image ¢(e;) de e; € A dans la
base A’ : ie.

ple)) = Y mi(p)f.

1<i<d/
EXEMPLE 7.1.1. Soit V = R3, W = R? et prenons les bases canoniques
B =B§=1{(1,0,0),(0,1,0),(0,0,1)}, B = B3 ={(1,0),(0,1)}.
On dispose de 6 applications lineaires elementaires
&1, €12, 13, €21, E22, En3

et par exemple
812(mvya Z) = y(lu 0) = (y70)7 523(.’E, y,Z) = Z(Ov 1) = (03 Z)
Soit ’application lineaire de ¢ : R? — R? donnee par
o(r,y,2) = (2z + 4y,y + 32)

alors
@ =2E11 +0E1 + 4E12 + E22 + 0€13 + 3E23

et la matrice associee a ¢ vaut
2 40
math,Bg (90) = <0 1 3) :

7.1.0.1. Matrice nulle. Si ¢ = Qy, alors

0 0 0
0 0 0

mat g,z (Ow) = (0x)ij; = | . | = 0arxa
0 0 0

est la matrice nulle.
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7.1.0.2. Matrices elementaires. Une base de My »4(K) est obtenue en transportant une base de
Hompg (V, W) via cet isomorphisme, en particulier la base des applications elementaires
gij = e;‘fl
On note E;; = matg » (&;;) la matrice correspondante qu’on appelle matrice elementaire. Ainsi,
E;; est la matrice dont le coefficient a I'intersection de la i-ieme ligne et de la j-ieme colonne vaut
1 et tous les autres coefficients sont nuls: pour k < d’,l < d, on a
Eij ki = Ok=i-01=j-
L’ ensemble des matrices elementaires
Bg’xd = {Ey, i < d,j< d}
est forme une base de My «4(K) qu’on appelle la base canonique de My x q(K).
La base duale de la base canonique dans ’espace des formes lineaires
Md’xd(K)* = HOH’I(Md/Xd(K), K)
est notees
0, % L * . .
Bya=1{E;, i<d,j<d}.
Pour i < d',j < det m € Myyq(K) une matrice,
El*j (m) = Myy,
est le (i, j)-ieme coefficient de m.

7.1.0.3. Matrices carrees. Si d = d on dit que la matrice est carree et notera ’espaces des
matrices carrees de taille d par
Ma(K) = Myxa(K).
Ces matrices codent les applications lineaires de Hom(V, W) si dimV = dim W. En particulier si
V = W les elements de ’algebre des endomorphismes End (V') sont codes par des matrices carrees.
7.1.0.4. Matrice Identite. SiV =W, B = B’ et ¢ = Idy est I'identite alors

(7.1.2) mat%gg(ldv) =1. | = ((51‘:]‘)1”' =:1dy € Mgxa(K).

est appelee matrice identite de rang d et est notee Idy.

REMARQUE 7.1.2. En revanche si %' # % la matrice matg #(Idy) n’est pas egale a la matrice
identite Idg.
7.1.0.5. Matrices scalaires. Plus generalement notons pour A € K
V » V
AT v A

I’application lineaire de multiplication par le scalaire \.
Sa matrice associee matg z([x\]) vaut

10 -~ 0 A0 0

o1 --- 0 0 A 0
Aldg = A | . =

00 --- 1 0 0 - A

Elle est appellee matrice scalaire associee a A. On note
KIdg = {)\Id, A€ K} - Md(K)

I’ensemble des matrices scalaires. C’est un SEV de dimension 1 isomorphe a K et de base la matrice
identite{Id,}.
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7.1.0.6. Matrices colonnes.
Md/ x1 (K) =: Cold/ (K)
sont des matrices ”colonnes” de hauteur d’. on posera

T
T2

Col((zi)icar) =
Ty
7.1.0.7. Matrices lignes. Les element de
Mixqa(K) =: Lig, (K)
sont des matrices ”lignes” de longueur d: on posera
Lig((2;)j<a) = (21, -+ ,2a)

qui n’est autre que I’application identite de I’espace des matrices lignes.

DEFINITION 7.3. Soient 2 C V une base. Soit

v==zx1.€1+ -+ x9€€V

un vecteur decompose dans la base B. Alors la matrices

T

T2
Colg(v) = e Ligg(v) = (351 xd)

Zq
sont appellees respectivement

— la matrice colonne associee a v dans la base A,
— La matrice ligne associee a v dans la base A,

Ces applications sont des isomorphisme entre V' et Colyg(K) et Lig;(K).
7.1.0.8. Colonnes et lignes extraites d’une matrice.

DEFINITION 7.4. Soit une matrice

mi1 Mmi2 -+ Mid
ma1 Ma2 -+ Mad

M - . . € Md’xd(K)-
Mma1 Mar2 -+ Ma'd

Pour j < d (resp. i < d'), la j-ieme colonne de M (resp. la i-ieme ligne de M) est la matrice
colonne (resp. ligne)

mlj

mao,
Col;(M) = :] € Coly (K), resp. Lig;(M) = (mi1 miz -+ miq) € Ligy(K)

md/j
EXEMPLE 7.1.2. Si

M = (mij)igd/,jgd = matg 2(p)
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alors on a vu que pour j < d les coordonnees de ¢(e;) dans la base %’ sont donnees par le vecteur
ligne (m;;)i<q dont le vecteur colonne associe est la j-ieme colonne de la matrice M:

mijy
m2j

COlj (M) =
ma:j
7.2. Structure des espaces de matrices

7.2.1. Addition et multiplication par les scalaires. Les espaces de matrices My 4(K) sont
naturellement des K-ev pour les lois d’addition et de multiplication par les scalaires evidentes: si

/ / /
mi1 Miz - Mig my Mg 0 My
m21  Ma22 -+  Maqg , m21  Ma22 -+  Maqg
M = ) ) . , M' = ) ) . € My xq(K)
mgr1  Mqr2 e mard m:i,]_ m:i/2 e mfi,d
/ / /
Amip +mi, Amig+miy - Amig+myy

A.maq + m/21 A.Mmag + m’22 cee A.Mmag + m/2d
M + M = ()\.mij + m;j)ij = . X .
Amgn +mlyy Amao+mby oo Amag+mlyy,
de sorte que I'application

matg 5 : ¢ € Hom(V, W) — matg 2(p) € Mg xa(K)

est un isomorphisme de K-ev.
Il est facile de verifier que les applications lignes et colonnes

COll' : Md/xd(K) — COld/(K), Ligj : Md’xd(K) — ngd(K)

sont lineaires.

7.2.2. Multiplication de matrices. Soient U, V, W trois espaces vectoriels munis de bases
B={ep, k<d}, B ={fj, j<d},B" ={gi, i <d"}.
On dispose alors de bases
By .z = {e £}, Bar g ={f;.8i}, Bar .z ={e;8i}
pour
Hompg e, (U, V), Hompg _ e (V, W), Hompg e, (U, W).
Soient
p: U=V, V=W
deux applications lineaires et
Yvop: U W
leur composee.
Soient alors
N :=matg 5(p) = (k) j<a k<d € Marxa(K)
et
M :=matgn g (V) = (Mij)icar j<ar € Marxar (K)
et
L :=matgr 51 o ) = (lik)i<a’ k<d € Marxa(K)
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N: dlignes d colonnes

ny e(mg) . ma

. >

N \\
min e miy e \\\ he e ha
@ @ o (1) e

Mgy My Mg Ion oo e e laa

M: d” lignes d’ colonnes [L=MxN: a" lignes d colonnes|

FiGure 1. Calcul des coordonnees du produit de deux matrices

On a vu (Thm 6.5) que les (lix)i<a” k<d Pouvaient s’exprimer en fonction des (m;;)icar j<ar €t
des (njk)j<a’ k<a- Plus precisement, on a

d/
lik: E UCYRLTE
Jj=1

On definit ainsi une loi de multiplication (externe) sur les espaces de matrices en posant:

DEFINITION 7.5. Soient d,d',d” > 1 et M € Myrwa(K), N € My xq(K), on defini le produit
des matrices M et N comme etant la matrice

L:=M.N € Md”xd(K)
avec
d/
L= (lik)igd“,kgd S Mduxd(K) et L = Zmij.njk.
j=1

Soient d,d’,d” > 1, on a donc defini une application ”produit de matrices”

. Md”Xd’(K) X Md’xd(K) — Md”Xd(K)
: (M, N) s L=MN"

REMARQUE 7.2.1. Notons que ce produit est entre deux espaces de matrices de tailles qui peuvent
etre differentes d” x d' et d’ x d(!) et a valeurs dans un troisieme espace de matrices dont les tailles
peuvent encore etre differente (ie d” x d). La contrainte la plus importantw est que la deuxieme
dimension (d’) du premier espace de matrices soit egale a la premiere dimension du premier espace
de matrices . La resultat est a valeurs dans ’espace des matrices de tailles les deux dimensions
7extremes” (ie d” X d).

(7.2.1) .o

EXEMPLE 7.2.1. Quelques cas particuliers importants:

— Sid =1: on dispose d’une multiplication "externe” (a gauche) a valeurs dans les matrices
colonnes: on a Mg «1(K) = Coly (K) et donc

o0 Md”xd’(K) X COld/(K) — Cold//(K).

— Sid” = d’ = d: les matrices sont toutes carrees et on dispose d’une multiplication ”interne”
sur ’espace des matrices carrees de taille d:

o X e: Md(K) X Md(K) — Md(K)
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THEOREME 7.1 (Proprietes fonctionelles du produit de matrices). Soientd,d’,d” > 1 et Mgrxa (K),
My wq(K), Mgryqa(K) les espaces de matrices correspondants.
L’application "produit de matrices”

Md”xd’(K) X Md’xd(K) — Md”xd(K)
(M, N) —  MN

a les proprietes suivantes

(1) Distributive a gauche: pour N € K, M, M' € Mgxa(K), N € Mg xa(K),
(A\.M + M').N =X.M.N + M'".N.

(2) Distributive a droite: pour A\ € K, M € Marwa(K), N,N' € Mg x4(K),
M.(AN + N')=X.M.N + M.N".

(8) Neutralite de l'identite: pour M € Mgy q (K),

Idgw.M =M, MIdgy = M

(4) La matrice nulle est absorbante: pour M € Mgy (K),
Ogrrgrn-M = Oginrgry M.Ogrg = 0grrg-

(5) Associativite: Soit "' > 1 et L € Mg wqr(K), M € Magrwa(K), N € Mg «q(K) alors
(L.M).N = L.(M.N) € Myna(K)

Preuve: On demontre ces enonces soit par un calcul direct, soit sans faire de calcul mais en
interpretant la produit de matrices en terme de composition d’applications lineaires. On utilise le
Theoreme 7.2 ci-dessous et les proprietes d’associativite et de distributivite des applications lineaires
par rapport a la composition et ’addition (qu’on a plus ou moins vu precedement) et qu’on liste
dans le Theoreme 7.2.2 . (Il

Le Theorem ci-dessous est une tautologie puisqu’on a defini le produit des deux matrices pre-
cisement pour etre compatible avec la composition d’applications lineaires.

THEOREME 7.2. Soit U, V,W des espaces vectoriels de dimensions d,d',d" et B, B ,B" des
bases. Soient des applications lineaires

p: U=V, : V=W
On note les coefficients des matrices de @, et ¥ o ¢ dans les bases adequates par
mat g 5(p) = (njk)jk, matgr g (V) = (mij)i;
matg (1 0 ) = (Lik)ik

alors on a
(7.2.2) Inatggu’gg(lﬂ o) = mat g g (7,[1).matla,9/7gg(<p)
Autrement dit on a
lin -+ la mip Mz - Mia
l21 to le mo1 Moo -+ Mag niy -+ Nid
n21 -+ N2g
’ : Ngr1 +++ Nd'd
ld”l L ld”d md”l md"Q .. md”d’

Le resultat suivant est obtenu en demontrant 1’egalite de diverses applications lineaires en veri-
fiant que deux application prennent la meme valeurs pour tout vecteur de ’espace de depart.
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THEOREME (Proprietes fonctionelles de la composition des applications lineaires). Soient U, V, W, Z
des espaces vectoriels de dimensions finies.
L’application ”composition”

e Hompg (V,W) x Homg (U,V) +— Homg (U, W)
' (¥, ) - Yoy

a les proprietes suivantes

(1) Distributive a gauche: pour A € K, ¥,v¢" € Homg (V, W), ¢ € Homg (U,V),

A+ )op=Apop+iop.
(2) Distributive a droite: pour A\ € K, ¢ € Homg (V,W), ¢,¢’ € Homg (U,V),

po(Ap+¢)=Avoptioy
(8) Neutralite de lidentite: pour 1p € Homg (V, W),
Idw 0% = 9, ¥ oldy = 1.
(4) L’application lineaire nulle est absorbante: soit Z un K-ev et
0, W Z, 0,:V—Z 0y : VW 0y :U—=>W 0,:U—V
les applications constantes nulles; on a pour v € Homg (V, W),
0z 0% =07, Y00y =0Oy.
(5) Associativite: Soit § € Homg (W, Z), ¢ € Homg (V, W), ¢ € Homg (U, V) alors
(Bov)op =100 (o) € Homy (U, 2)

7.2.2.1. Image de vecteurs. La multiplication matricielle permet egalement de calculer I'image
d’un vecteur par une application lineaire:

PROPOSITION 7.1. Soit B C V, 8" C W des bases, v € V un vecteur de coordonnees (;)j<d
dans la base B (ie. v =11.€1+ -+ 2q.€q) et (y;)icar les coordonnees de o(v) dans la base B’ (ie.
p) =y1.f1 + - +ya-fo). On associe a v et p(v) leurs matrices colonnes (de hauteurs d et d' =

U1
1 Y2
To .
Colg(v) = | . |, Cola(p(v)) =
Zd
Ya

alors on a la relation
Colg (p(v)) = matz z(p).Colg(v).

Autrement dit si matg z(p) = (Mij)i<d j<d, 0N @

Y1 mi1 Mi2 - Mig

Y2 Moy Moz -+ Mag z1
T2
Td

Ya mgr1 Mdr2 -+ Mdrd
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7.2.2.2. Produit de matrices elementaires.

PROPOSITION 7.2. Soit E;; € Mgryq et Ej, € Mg xq alors
Eij.Ejy = 0j—j Ey.
Preuve: On raisonne en terme d’applications lineaires elementaires &;;, £;/,: on a
EijoEynlen) = Eij(Op=kfj) = Op=rbj=j'8 = j=j Eik(er).
|
7.2.2.3. Le cas des isomorphis mes. On considere le cas ou ¢ : U — V est un isomorphisme et

= 1: Vs W =U est I'application reciproque. En particulier U et V sont de meme dimension:
d=d =d".
PROPOSITION 7.3. soit ¢ : V ~ W un isomorphisme lineaire et o1 : W+ V la reciproque. On
a les relations
matgg’ggl(@_l).matggl’gy((p> = Idy,
Inat,%/“@(gp).mat,@,%/(ngl) = Idy.
En particulier si V=W et ¢ =1dy est lidentite on a
(723) mat%/,g(ldv).matg@vgg/(Idv) = Idy.

Preuve: On applique la relation (7.2.2) a la suite de K-EVs V,W,V, B, B, B" = B et 1) = p~ L.
On a donc
Yop=Idy, potp =Idw.
On a donc par (7.2.2)
matge,,%(ldv) = matgg,,@/(go_l).mat,%%g(cp)

Comme
matg’gg(ldv) =Idy
on obtient
matgg’gg/(@_l).matgg/’gg((p) =Id,.
L’autre relation se demontre de la meme maniere. O

7.2.3. Rang d’une matrice. On a defini le rang d’une application lineaire ¢ : V' +— W comme
etant la dimension de I'image

rg() = dim (V).
Soit M = matg () la matrice associce. Comme I'image ¢(V') est le SEV engendre par
{QD(ej), J< d} cw,
I'image ¢(V') s’identifie avec le SEV de I’espace vectoriel des matrices colonnes Coly (K) engendre
par les j-colonnes de M,

{Col, (M) = Col ((ey), j < d}.
La dimension de I’ espace engendre par ces matrices colonnes est donc de dimension r = rg(p):

DEFINITION 7.6. Soit M € My «q(K), le rang d’une matrice M est la dimension de l’espace
engendre par les d colonnes de M dans Coly (K):

rg(M) = dim Vect({Col,; (M), j < d}).

Autrement dit rg(M) est la taille mazimale d’une sous-famille libre de la famille {Col; (M), j < d}
des colonnes de M.

Compte-tenu de la discussion precedente on a

(7.2.4) rg(matg z(p)) = rg(p).
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REMARQUE 7.2.2. On a rg(M) < d (puisque d vecteurs engendrent un espace de dimension au
plus d) et
rg(M) < d’ = dim Coly (K).
Ainsi
rg(M) < min(d,d").
7.2.3.1. Ezemple d’une matrice de rang donne. Soit ¢ : V — W telle que rg(¢) = r. Soit
S = {fz :Qo(ei)a 1= 17 ,T‘}
une base de Im(p); completons Z en une base de W
# = Uty oy = {1, £}
et soit
H ={ept1, -+ ,eq} C ker(p)
une base de ker(y), on a vu que
B={e, e} UH CV

est une base de V. On a alors

et donc
10 0 «cev-- 0 0
01 0 -0
00 1 0 O .
(725) matgg/’gg((p) = 0 e .- 1 = Idr : =: Id/xd(r)
T e . 0 0 ov - .0
0« .- e 0 0 -en . 0

11 est clair que les r premieres colonnes de la matrice Iy xq(r) forment une famille libre et la matrice
est bien de rang r.

EXERCICE 7.1. Determiner le rang de la matrice

1 2 3 4
2 3 41
3 4 1 2
en fonction de la caracteristique du corps K.

7.2.4. Transposition. La transposition est ’application qui transforme une matrice par syme-
trie par rapport a la premiere diagonale i = j:

DEFINITION 7.7. La transposition est l’application des matrices d' x d vers les matrice d x d’
definie par
ty . My q(K) — Mgya (K)
"M = (mij)icarj<a = M= (M) j<ai<a’
avec
my; =mij, j <d,i< d.
Autrement dit si

M = (mij)icarj<as M = (m})j<ai<a = (Mij)j<di<a

s
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myp Mmiz2 -+ Mid mii Mol -+ -+ Ma1

Moy Moz -+ Ma2g Mia Mag -+ -+ Mo
M=| : @ - [, M=

Myl Maro -+ Mard Mid Maq -+ -+ Mdqd

La transposition est 'operation matricielle qui correspond a prendre la duale d’une application
lineaire.

Rappelons que si V' et W sont des K-EV de dimensions finies, a toute application lineaire
¢ € Hom(V, W) on associe une application lineaire duale ¢* € Hom(W™*,V*) donnes par

CeW*—p*(l)y=lop:v—l'(p)).

Munissons V' et W de bases B = {e;, j < d} et B’ = {f;, i < d'}; les espaces duaux V* et W*
sont munis des bases duales Z* = {e], j < d} et B = {fr, i <d'}. Onrappelle qu'on a demontre
le

THEOREME (Matrice de l'application duale). Soit ¢ : V +— W une application lineaire et o* :
W* — V* sa duale; B et ' des bases de V et V' et
matg, 5 (p) = (Mij)i<d j<d
la matrice de ¢ dans les bases B et B' et soit
mat g+ g+ (07) = (mj;) j<di<a’
la matrice de ¢* dans les bases duales B'* C W* et B* C V* alors on a
m;i:ml—j, igdl, jgd
En d’autres termes
matg g+ (p*) = tmat,@/,,%(cp).
THEOREME 7.3. (Proprietes fonctionelles de la transposition) La transposition a les proprietes
suivantes:
(1) Linearite: “(\M + M') = X'M + ' M.
(2) Involutivite: *("M) = M.
(3) Anti-multiplicativite: pour M € Mgr ¢ (K), N € Mg 4(K), M.N € Mg q(K) et
"(M.N)="*'N.'M.

Preuve: Seul le dernier point est un peu plus difficile: on peut le verifier par un calcul explicite sur
les produits de matrices ou ’obtenir de maniere abstraite. Pour cela on note que si on a
p: U=V, 0: V=W pop:U—W
alors on a les applications duales
VI U WV (o) W U

On a d’autre part la composee

oot i W U*
et il suffira de montrer que

(Yop)' = oy”

(et de passer aux matrices). On a par definition, pour £ € W* et par associativite

(Yop) (£")=L"0(pop)=(l"opp)op =" (l" ot)) = " (" (L")) = ¢" 0 y"(¢")
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Compte tenu de 'interpretation du rang d’une matrice comme rang d’une application lineaire
(cf. (7.2.4)), on deduit du Theoreme 6.7 qui dit que

rg(p) = rg(¢”),
le
THEOREME 7.4 (Invariance du rang par transposition). Soit M € My« 4(K) on a
rg(M) = rg("M).
Comme la transposee d’une matrice transforme les colonnes en lignes on obtient:

COROLLAIRE 7.1. La rang d’une matrice est egal a la dimension de Uespace K¢ engendre par
les vecteurs lignes de M

rg(M) = dimg Vect(Lig,; (M), j=1,---,d').
7.3. L’algebre des matrices carrees

Si d’ = d, on obtient ’espace vectoriel des matrices carres
Mxa(K) = My(K)

qui est de dimension dim My(K) = d?.

7.3.1. Structure d’anneau. Comme on ’a vu, la multiplication des matrices

(M, M'") € My(K) x Myg(K) — M.M" € My(K)

est alors une loi de composition interne et par le Theoreme 7.1, on a

THEOREME 7.5. L’espace My(K) muni de 'addition des matrices et de la multiplication est un
anneau (non-commutatif en general) dont ’element neutre est la matrice carree nulle 05 = 04,4 €t
dont lunite est la matrice identite Idg. De plus la structure de K-EV de My(K) fait de anneau
(My(K),+,.) une K-algebre (de dimension d?).

On Uappelle Ualgebre des matrices carres de dimension d (ou de rang d) sur le corps K (ou a
coefficient dans K ).

REMARQUE 7.3.1. Ici ”dimension d” designe a la taille des matrice, pas a la dimension de ’espace
des matrices My(K) (qui est d?).

7.3.2. Lien avec 1’algebre des endomorphismes. Soit V' de dimension d. On rappelle
que ’ensemble des endomorphismes de V', End(V) = Hom(V, V) est non seulement un K-espace
vectoriel (pour 'addition des applications lineaires) mais egalement possede une structure d’anneau
(et donc de K-algebre) ou la ”multiplication” est donnee par la composition des endomorphismes:
pour ¢, 1 € End(V)

potp:V Yy &y
L’element neutre est 'endomorphisme nul 0y, et I’element unite est I’application identite Idy .
Soit Z une base de V', on dispose alors d’un isomorphisme d’espaces vectoriels

matg % : ¢ € End(V) — matg 2(¢) € Ma(K).

Pour simplifier les notations on ecrira cet isomorphisme mat g (ou juste mat si la base £ est implicite)
et la matrice associee a un endomorphisme ¢ sera notee

matz(p) := matg 5(p).
THEOREME 7.6. Soit V de dimension finie d et 2 une base de V , 'application
matg : End(V) — My(K)

est un isomorphisme d’anneauz (et donc de K -algebres) pour les lois d’addition et de multiplication
decrites precedemment.
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Preuve: On sait deja que matg est un isomorphisme d’espace vectoriel (et est donc bijectif). Pour
montrer qu’on a un isomorphisme d’anneaux, il suffit de verifier que c¢’est morphisme d’anneaux
non-nul: on doit verifier que

matgg(ldv) = Idd

ce qu’on a deja vu et que pour ¢, € End(V)
matg(p o) = matg(p).matg ().

Mais c¢’est —aux notations pres— un cas particulier pour U = V = W du Theorem 7.2: si matg(p) =
M = (mij)m»gd et matg(w) =N= (nij)i)jgd alors

M.N =L = (Zik)i,kgd

avec
lik = Z mij.njk
j=1---d
et
L = (lik)i,k<a = matg(p o 9)
par le Thm 6.5. (]

REMARQUE 7.3.2. Comme on a vu, etant donne un endomorphisme ¢ : V — V on aurait pu
prendre deux bases %, %’ C V et associer la matrice matg %(¢) a ¢. Un des avantages de choisir
PB' = B est que lidentite Idy est alors representee par la matrice identite Idg, mais 'avantage
principal de choisir ' = 2 est le Theoreme 7.6.

7.3.2.1. La transposition est un antimorphisme. Si une matrice M est carree d X d sa transposee
*M est encore carree d x d. Compte tenu des proprietes generales de la transposition (cf. Prop 7.3),
on a

PROPOSITION 7.4. La transposition
‘e : My(K) > My(K)
est un endomorphisme de My(K) qui est
(1) Involutif:
Y(*M) = M.
(2) En particulier te est inversible et son inverse est lui-meme:

HEOE Idr, (), (e)7' ="e.

(3) Anti-multiplicatif: "(M.N) = 'N."M.
REMARQUE 7.3.3. On dit que la transposition est un anti-automorphisme d’algebres.

7.3.3. Le groupe lineaire.

DEFINITION 7.8. Soit V un K-EV de dimension finie. Le groupe lineaire de V est le groupe
(pour la composition dans End(V')) des elements inversibles de l'algebre Endg (V'); son element
neutre est l'identite Idy et on note ce groupe

GL(V) =Endg(V)* ={p:V =V, ¢ est bijectif}.

Soit d > 1. Le groupe lineaire de rang d sur K est le groupe des matrices carrees inversibles
dans Ualgebre My(K) pour la multiplication des matrices; son element neutre est la matrice identite
Idy et on note ce groupe

GL4(K) = My(K)* = {M € My(K), IM’' € My(K), M.M' = M'.M = 1d,}.

On a alors
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PROPOSITION 7.5. L’application matyg : End(V) — My(K) induit un isomorphisme de groupes
matg : GL(V) — GL4(K)

et en particulier

matz(p ) = matg(p) .

7.3.3.1. Critere d’inversibilite. Dans Endg (V), on a le critere d’inversibilite suivant

THEOREME 7.7 (Critere d’inversibilite des endomorphismes). Soit ¢ : V + V alors les condi-

tions suivantes son equivalentes:

(1) @ est inversible (ie. bijective),

(2) ¢ est injective,

(8) ¢ est surjective,

(4) rg(p) =d,

(5) ¢ transforme une base de V' en une famille libre,

(6) ¢ transforme une base de V' en une famille generatrice

On en deduit de ce critere et de I'isomorphisme matg : End(V) ~ My(K) le critere d’inversibilite
suivant

THEOREME 7.8 (Critere d’inversibilite pour les matrices (via les colonnes)). Soit une matrice
carree M = (myj)ij<da € Ma(K), les conditions suivantes sont equivalentes
(1) M est inversible, ie. M € GLq(V),
(2) rg(M) = d,
(3) {Col;(M), i=1,---d} forme une famille libre de Coly(K),
(4) {Col;(M), i=1,---d} forme une famille generatrice de Colg(K).

Preuve: On prend V = K% La matrice M est la matrice mat 4o (¢) de I'endomorphisme ¢ = ¢
de K% qui a un vecteur e(}, j < d de la base canonique, associe le vecteur ¢as(e;), j < d dont les
coordonnees dans %9 sont les (m;;)i<a-

La matrice M est inversible si et seulement si ¢ est inversible et on applique le critere precedent.
a

REMARQUE 7.3.4. Notons qu’alors I'inverse de M est la matrice
M~ =M’ =matg(p) :
en effet
M.M' = mat g (). mat go (') = mat g (p.p~") = maty(Idga) = Idg
et de meme M’'.M = Idy. Ainsi M’ est I'inverse de M.
7.3.3.2. Transposition. soit ¢ € End(V) et ¢* € End(V*) sa duale alors

rg(p) = rg(¢”)
et
p € GL(V) < ¢* € GL(V™").
Cela ce traduit en terme de matrices.
Soit M € My(K) on a vu que
rg(M) = rg("M)
et donc M est inversible (de rang d) ssi *M est inversible.
Comme la transposition echange lignes et colonnes on obtient

THEOREME 7.9 (Critere d’inversibilite pour les matrices (via les lignes)). Soit une matrice carree
M = (myj)ij<d € Ma(K), les conditions suivantes sont equivalentes
(1) M est inversible, ie. M € GL4q(V),
(2) "M est inversible, ie. "M € GLg(V),
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(3) rg("M) = d,
(4) {Lig;(M), i =1,---d} forme une famille libre de Lig,(K),
(5) {Lig;(M), i =1,---d} forme une famille generatrice de Ligy(K).

La transposition appliquee au groupe lineaire a les proprietes suivantes:
PROPOSITION 7.6. La transposition est une bijection de GLq(K) sur lui-meme qui verifie:
VM, N € GLyg(K), (*M)~' =*(M~Y), "(M.N) ='N.'M.
Preuve: Si M est inversible on a
MM ‘t=M"1M=Id,

et donc
MM =" (MYIM = (ML M) = Y(MY. (M) = F(1dy) = Tdg.
Ainsi *M est inversible d’inverse ‘(M ~1). O

EXERCICE 7.2. Soit

une matrice carree de taille 2.
(1) Calculer M? et montrer qu’il existe ¢, A € K (qui dependent de M et qu’on calculera) tels
que
M? —t.M + AIdy = 0.
(2) Montrer que M — t(M) est lineaire: pour A € K, M, N € Ms(K)
t(A.M + N) = A\t(M) + t(N).
(3) Montrer que M — A(M) est multiplicative:
A(M.N) = A(M).A(N).
(4) Montrer que M est inversible ssi A(M) # O et qu’alors
1 1

= stz = M),

7.4. Changement de base

La question est la suivante: soit matg #(p) la matrice associee a ¢ : V +— W dans des bases
B CV et B CW;soit

,@n:{en]‘, jgd}c‘/, e@;:{fn“ ng}CW
de nouvelles bases, quelle est la relation entre la matrice de ¢ dans les bases £, %’ , matg z(p)

et la matrice de ¢ dans les bases %,,,%,,, matg s, (¢) ? La proposition suivante repond a cette
question.

THEOREME 7.10 (Formule de changement de base). Soient B,%, C V et B, %5, C W des
bases de V et W. On a la relation
matg z, () = maty z (Idw)maty z(p).mats z, (Idy).
Preuve: On a evidemment
(p:Idwo(pOIdv.

1 suffit alors d’appliquer deux fois la relation (7.2.2) avec des bases convenables: une fois pour
poldy = ¢ et 'autre pour Idy o ¢ = . O
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DEFINITION 7.9. La matrice carree de taille d = dim 'V,
matg z, = maty z, (Idy)

est appelle matrice de changement de base, de la base B a la base B, ou encore la matrice de passage
de B a B,

Sa j-ieme colonne est formee par les coordonnees du j-ieme vecteur ey exprime comme combi-
naison lineaire dans la base 4.

La formule de changement de base se reecrit alors

mat,%,,%n ((p) = mat,%;w@/ .Hlatgg/,%(cp) .maty %, .

REMARQUE 7.4.1. On utilise la terminologie (par forcement standard) "matrice de passage de
B a B, car cette matrice permet de calculer la matrice d’une application lineaire ¢ quand la base
de depart est la base %,, a partir d’'une matrice de la meme application quand la base de depart est
la base Z et elle permet donc de ”passer” d’une matrice d’une application exprimee dans la base %
a sa matrice exprimee dans la base %,,.

Notons que la matrice de passage matg g, est inversible par le critere d’inversibilite. On va
calculer son inverse:

PROPOSITION 7.7. Soit trois bases B, %B1,PB> CV on a
(1) Formule d’inversion:
matg, z, maty, z = Idg.

En particulier une matrice de passage est inversible (dans Mg(K)) et son inverse est la
matrice de passage de la base initiale a la nouvelle base:

mat'%,l%1 = matg, %.
(2) Formule de transitivite:
matyg g, = maty z, .maty, z,.

Preuve: Cela resulte de (7.2.3) et de (7.2.2) appliques a ¢ = ¢ = Idy et a des bases convenables. O

7.4.0.1. Cas des endomorphismes. Si V. = W et qu'on prend &’ = % et qu'on se donne une
nouvelle base %,, = 4., la formule de changement de base devient alors

matg, (p) = matg, z.matz(p).mate s, = mat;?’l@n.matg(@)matﬂ,gn.

EXEMPLE 7.4.1. Prenons V = K? et # = {(1,0),(0,1)} la base canonique. Soit %, =
{(1,3),(1,2)}, c’est une base de K? (quelque soit la carateristique) et la matrice de passage de

B a B, vaut
(11
mata s, =3 2

et la matrice de passage de %, a £ est l'inverse

2 1 2 1
matz,.s=-(_3 1)=\3 -1
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7.4.1. Matrices equivalentes. Soit ¢ : V — W et B, B, B, B, des paires de bases de V

et W alors les matrices representant ¢ dans ces bases
M = matgz z(p), N =matg 2, (¢)
sont liees par la relation
N =AM.B
avec
A=maty », B=matgy,

les matrices de changement de bases qui sont inversibles. Comme M et N representent la meme

application lineaire on peut die qu’elles sont d’une certaine maniere equivalente. Cela induit la
definition purement matricielle suivante:

DEFINITION 7.10. Deuz matrices M,N € My «q(K) sont dites equivalentes si il existe des
matrices inversibles A € GLg (K), B € GLq(K) telles que

N = A.M.B.
Par la formule de changement de bases on a:

PROPOSITION 7.8. Deux matrices M,N € My xqi(K) sont equivalentes ssi il existe V de di-
mension d et W de dimension d’, des bases B, B, CV et B', B, C W et une application lineaire
p: V=W telle que

M = matg z(¢), N = matg z,(p)

Preuve: Le fait que des matrices M et N qui sont les matrices d’un meme endomorphisme ¢ dans
differentes bases, verifient la relation
N =AM.B

avec A et B inversibles resulte de la formule de changement de base en prenant A et B des matrices
de passage convenable.
Reciproquement, supposons que l'on ait la relation

N =AM.B

avec A et B inversibles. Soit V = K¢ W = K% et B C V,%' C W les bases canoniques et
go?( — K4 I'unique application lineaire qui envoie le j-ieme vecteur de la base canonique £ vers le
vecteur de W dont les corrdonnees dans la base canonique %’ soient donnees par la j-ieme colonne
de M: on a donc

M = mat,@/’%(go).
Soit %, la base formee des vecteurs de K¢ dont le j-ieme vecteur a pour coordonnees (dans la
base canonique %) la j-ieme colonne de B; en effet ces vecteurs forment une base cas comme B est
inversible, donc de rang d, les vecteurs colonnes de B forment une famille generatrice de I’espace des
vecteurs colonnes de taille d qui est donc libre. On a donc

B = matzz,, .

. / ..
Soit 4., la base formee des vecteurs de K¢ dont le i-ieme vecteur a pour coordonnees (dans la base
canonique #') la j-ieme colonne de A~': on a donc

At = matg g et donc A =matg z .
Alors la formule de changement de base nous dit que
N=AMDB = mat%»;gg/.Inat:@/’gg(tp).mat,@ggn = mat,@;”;gn (30)

C’est a dire
N = matga;“@n (Lp)
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PROPOSITION. La relation ”etre equivalente” est une relation d’equivalence (reflexive, symetrique,
transitive) sur Mg wq(K).

Preuve: Ecrivons la relation M ~ N. Reflexive: on a M = Idg MIdg donec M ~ M.
Symetrique: si M ~ N ona N = AMB, A€ GLy(K), B € GLy(K) et

AT 'NB '=A"'AMBB '=M

et N~ M.
Transitive: si M ~ N et N ~ P alors

P=ANB, N=AMB = P=AA'MB'B

et AA" € GLy(K), B'B € GL4(K) ainsi M ~ P. O
On en deduit le resultat suivant

THEOREME 7.11. Soient M, N € My «q(K). Les conditions suivantes sont equivalentes

(1) M et N sont equivalentes,
(2) rg(M) = rg(N),
(8) M et N sont equivalentes a Iy wq(r).

Preuve: Par la proposition precedente, deux matrices sont equivalentes ssi elle representent la meme
application lineaire ¢ dans des bases differentes. En particulier, elles ont dont le meme rang (celui
de ¢).

Si M et N ont meme rang elles sont les matrices d’applications lineaires o, ¢’ de meme rang.
On a vu qu’une application lineaire ¢ de rang r admettait pour matrice

0 0
d, =
Tirxa(r) = :
0 -ov - 0 0
0 o onn .0

dans des bases convenables (cf. §7.2.3.1) et donc, par la proposition precedente, toute matrice
equivalente a Iy «q(r) est la matrice de ¢ dans des bases convenables. Ainsi les matrices de M et
N sont equivalentes a Iy xq(r).

Finalement si les matrices de M et N sont equivalentes a Iy 4(r) alors elles sont equivalentes
(par transitivite de la relation d’equivalence). O

REMARQUE 7.4.2. La proposition precedente nous dit que toute matrice d’ x d est equivalente
a une des matrices de la forme

{Iaxa(r), 0 <r < min(d,d")}

et comme ces matrices sont de rang distincts elle ne sont pas equivalentes: ces matrices forment un
ensemble de representants des differentes classes d’equivalence de la relation equivalence de matrices
sur My xq(K). Ainsi Pensemble des classes d’equivalences

Mg wa(K)/ ~~ {Igxa(r), 0 <r < min(d,d)}
est un ensemble fini de min(d,d’) + 1 elements.
7.4.2. Matrices semblables/conjuguees. Supposons maintenant que
p: VeV
soit un endomorphisme et soit A, %, des bases de V. Posons encore

M =matgg, N =matyg, 4, € Md(K)
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On a alors par changement de base
N=C.M.D
avec
C =matyg, 5, D=matgy, = (matyg, ) ' =C!
ou encore
N=CMC™"

Ainsi, la formule de changement de base met en evidence une autre relation sur My(K):

DEFINITION 7.11. On dit que deuz matrices M, N sont semblables ou conjuguees si il existe
C € GL4(K) tel que

N=CM.C™'.

La relation ”etre semblables” ou “etre conjuguees” est une relation d’equivalence.
Une classe d’equivalence pour cette relation, l’ensemble des matrices de la forme

M* := Ad(GL4(K))(M) = {C.M.C™!, C € GL4(K)}
est appellee classe de conjugaison (de M) et on note
My(K)* = {M*} = My(K)/ ~
l’ensemble des classes de conjugaison.

EXERCICE 7.3. Verifier directement a partir de la definition que I’on a bien une relation d’equivalence
(reflexive, symetrique, transitive).

REMARQUE 7.4.3. On a vu que deux matrices representant le meme endomorphisme sont con-
juguees. La reciproque est vraie:

PROPOSITION 7.9. Deux matrices M, N € GLq(K) sont semblables ssi M et N sont les matrices
d’un meme endomorphisme dans des bases convenables: il existe un espace vectoriel de dimension
d, V, deuz bases B, B, CV et une application lineaire ¢ : V — V telle que

M = matg(p), N =matg, (¢).

EXERCICE 7.4. Completer la preuve et montrer que si M = matg(p) est la matrice representant
un endomorphisme ¢ € End(V') dans une base 2 C V alors M est I'ensemble des matrices mat .z ()
quand %’ parcourt toutes les bases de V.

REMARQUE 7.4.4. Deux matrices M, N € My(K) carrees de meme taille qui sont semblables
sont equivalentes (prendre A = C, B = C'~!) et en particulier ont meme rang. La reciproque n’est
pas vraie.

REMARQUE 7.4.5. On a vu que pour la relation ”equivalence de matrices” dans My yq(K)
Pespace quotient des classes d’equivalences etait tres simple: ¢’est un ensemble fini de min(d, d’) + 1
elements representes par les matrices standard de rang 0 < r < min(d, d’)

Iyxa(r), 7=0,--- ,min(d,d").

Il est beaucoup plus difficile de decrire My(K)?, 'ensemble des differentes classes de conjugaisons
de matrices dans My(K). Si le corps K est algebriqguement clos (par exemple K = C) cette classi-
fication est donnee par la decomposition de Jordan qui releve du semestre prochain. Et avant cela
vous aurez besoin de la notion de polynome caracteristique et du Theoreme de Cayley-Hamilton.
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7.4.3. Action par conjugaison.

DEFINITION 7.12. Soit C € GL4(K) une matrice inversible. Note note Ad(C) l’application dite
de conjugaison par C':
 My(K) = Mqa(K)

AC): 5 L oot

Ainsi deux matrices sont semblables si et seulement si elles sont image 'une de 'autre par
conjugaison par une matrice inversible.

EXEMPLE 7.4.2. Si C' = matg, » est une matrice de changement de base (de la base £ a la
base %) alors la formule de changement de base pour les matrices carrees s’ecrit

matg, (p) = Ad(maty, ,»)(matz(p)).
Proprietes fonctionelles de la conjugaison.

PROPOSITION 7.10. La conjugaison Ad(C) est un automorphisme de l’algebre My(K):

(1) Linearite: On a Ad(C)(A\.M + N) = MAd(C)(M) + Ad(C)(N).

(2) Multiplicativite: Ad(C)(M.N) = Ad(C)(M).Ad(C)(N).

(3) Inversibilite: Ad(C) est bijective et Ad(C)~' = Ad(C™1).
Preuve: On a

Ad(C)(\.M + N) =C.(\\M + N).C~' = (\.C.M + C.N).C™*
=A\C.M.C™' +C.N.C™' = \Ad(C)(M) + Ad(C)(N).
On a
Ad(C)(M.N)=C.M.N.C™' = C.M.Id4.N.C™' = C.M.C™*.C.N.C~! = Ad(C)(M).Ad(C)(N).
Par ailleurs
Ad(CTH(Ad(C) (M) =C e MO .C=M

et donc

PROPOSITION 7.11. On dispose donc d’une application
Ad(e) : C € GLy(K) — Ad(C) € Aut(My(K)) ~ GLg2 (K)

appellee application adjointe.
L’application adjointe Ad(e) est un morphisme de groupes et definit donc une action a gauche
GL4(K) ~ My(K). Son noyau est forme par les matrices scalaires:

ker Ad = K*1d.

Preuve: On a deja vu que Ad(C)~! = Ad(C~!). Reste a voir que
Ad(B.C) = Ad(B) o Ad(C).
On a
Ad(B.C)(M) = B.C.M.(B.C)™!' = B.C.M.C~'.B™! = Ad(B)(Ad(C)(M)).

Soit C' = (cg1)k,1<a une matrice inversible telle que pour tout M on ait

C.M.C™' =M.
On a donc pour tout M

CM=MC.

En particulier Vi, j < d
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On a par la proposition 7.2
OO emEw)Eij = cuBu.Eij =Y cub—iEy; = cxiE;
k.l k,l kL k

et
EZJ(Z ciBr) = chlEij~Ekl = chl6k:jEil = chlEil
k,l k.l k,l 1
On a donc necessairement dans les sommes ci-dessus cx; = 0 si k # j et comme c’est valable pour
tout j on voit que ¢;; = 0 sauf si s = j. on a donc

CEZJ = CiiEij = EUC = ijEij
ce qui force les ¢;; a etre tous egaux et donc C' = ¢17.1dy est une matrice scalaire. O

DEFINITION 7.13. L’ image Ad(GL4(K)) C Aut(M4(K)) est appellee groupe des automor-
phismes interieurs de My(K) et est notee

Int(Md(K)) C AutK(Md(K)).

La relation ”etre semblable” est une relation d’equivalence. On peut soit le verifier directement
a ’aide des proprietes fonctionelles de la conjugaison soit en notant que celle relation est definie via
Paction par conjugaison GLg4(K) ~ My(K): on a vu en exercice que etant donne une action d’un
groupe sur un ensemble
G X
la relation sur X donnee par
r~gr <= 3IgeqG, ' =gxx
est une relation d’equivalence (la relation d’appartenance a la meme G-orbite: 2’ € G x x).
En effet une telle relation est
— Symetrique: © = eg xx
— Reflexive:
¥ =grr=x=g 'xa
— Transitive:

i’ =g xa!, 2l =grr=1"=g'x(gx2) = (¢ .g)*x

Ici 'action est
CxM=C.MC™"

7.4.4. Conjugaison des endomorphismes. On peut egalement definir une notion de conju-
gaison pour ’algebre (abstraite) End(V') des endomorphismes d’un espace V' en disant que ¢, ¢ €
End(V) sont conjugues si il existe ¢ € Aut(V) tel que

p=1popoypr.
Si on choisit une base # de V et qu’on 'utilise pour identifier End(V) avec My(K) on obtient
exactement la meme notion (C' = matg(1))).

EXERCICE 7.5. Soit V et W des espaces vectoriels de dimension finie de meme dimension alors
End(V) et End(W) sont des K-EV isomorphes car de meme dimension d?). Montrer qu’ils sont
isomorphes en tant que K-algebres; pour cela construire un isomorphisme de K-algebres

End(W) ~ End(V)

a partir d’un isomorphisme ¢ : V ~ W.






CHAPITRE 8

Interlude: le corps des nombres complexes

»

. eine feine und wunderbare Zuflucht des menschlichen Geistes,
beinahe ein Zwitterwesen zwischen Sein und Nichtsein.”

”Even better than the real thing.”

8.1. Origine des nombres complexes

Le nombres complexes sont nés pendant la renaissance italienne dans le but de resoudre des
equations polynomiales: etant donne ag,--- ,aq-1,aq € Z, on cherchait a trouver les nombres z
verifiant

adzd + ad_lzd_l +---4ai.z+ag=0.

En particulier pour d = 2, on savait que les solutions d’une equation quadratique
az’+bz+c=0

etaient de la forme
_—bxvA

Z4 2

avec
A =b% — dac

pour peu que A soit positif ou nul. On n’avait pas de probleme a travailler avec les nombres tels
que VA, meme si A n’est pas le carre d’un entier car on definissait ce nombre comme le cote d’un
carre d’aire A. En revanche on evitait soigneusement les cas ou A < 0.

Les mathematiciens se sont egalement interesses aux equations cubiques et quartiques (de degre
3 ou 4), notamment les mathematiciens de la renaissance italienne (Del Ferro, Tartaglia, Cardano,
Ferrari, Bombelli)

az? + b2 +cz4+d=0, azt + b2 + 2> +dz+e=0, a,b,c,d,e € Z.

Dans son ouvrage Ars Magna (1545), Cardano (suivant del Ferro) a donne une methode algo-
rithmique pour trouver les solutions de nombreuses familles d’equations cubiques.
L’une d’elle etait soigneusement evitee

(8.1.1) 23 =152+ 4.

Bien qu’elle admette, 4 comme solution (tout a fait naturelle), la methode suivie par Cardano le
conduisait a resoudre l’equation

22 +121 = 0.
Cardano s’est refuse a introduire la solution formelle
V=121 =11v -1

131
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dans ses formules generales. C’est Bombelli' qui, 30 ans plus tard, sautant le pas introduisit les
regles de calcul impliquant des nombres imaginaires tels que v/ —121 et il retrouvera ainsi la solution
4 de (8.1.1) a partir des formules generales de del Ferro et Cardano?.

Dans ce chapitre, on va construire concretement le corps des nombres complexes comme une
sous-algebre de l’algebre des matrices reelles 2 x 2, M5(R). C’est en fait un cas particulier d’une
construction generale basee sur 'anneau des polynomes a coefficients dans un corps K,

K[X]:{ao+a1.X—|—-~-—|—ad.Xd,d>O, ag, -+ ,aq € K}

qu’on verra au chapitre sur les anneaux de polynomes.

8.2. Construction matricielle d’extensions quadratiques

On commence par une construction generale (la solution d’un exercices d’une des series prece-
dentes).
On rappelle que pour toute matrice

son determinant est le scalaire
a b
det(M) = det (c d) = ad — be.

Ce dernier verifie (par calcul direct)
det(M.N) = det(M). det(N)

et on a
M € GLa(K) (M est inversible) ssi det(M) # 0

1 d —b
M= .
det M <—c a >
THEOREME 8.1. Soit K un corps et My(K) lalgebre des matrices 2 X 2 a coefficients dans K.
Soit d € K — K? un element de K qui n'est pas un carre: Vo € K, 2> —d # 0 et

0 d
IdZZ (1 O>

I3 = d.Id,.

et on a alors

Alors la matrice I verifie

Soit
K[Ij = KIdy + K.Iy = {Z = 21do +y.Iy = (z Ci%’) T,y € K} C My(K)

le SEV de M5(K) engendre par Ids et Iy. Alors K[I4] a les proprietes suivantes:
(1) {Ida, Iz} est une base de K[14] et donc dimg (K[I4]) = 2.

(2) K14 muni du produit de matrices est un sous-anneau, commutatif de May(K) et ¢’est meme
un corps : toute matrice non-nulle de K[I] est inversible dans K|[I].

Lun cratere de la lune porte son nom.
2on renvoie a https://www.youtube.com/watch?v=cUzklzVXJwo&t=1072s pour une video passionnante
expliquant cette histoire


https://www.youtube.com/watch?v=cUzklzVXJwo&t=1072s
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(8) Plus precisemment soit
. [z dy
Z—$Id2+y.ld— (y .1‘)
alors
det(Z) = 2* — dy?
et si det(Z) # 0 (alors Z est inversible) on a

d=

1 x
-1 _ _ | z2—dy?
Z = R (zIdy — yly) = < —dv

oz
z2—dy? z2—dy?
Preuve: On a

Z:xId2+y.Id:<§ dé}>:02<:>x:y:0

donc {Ids, I} est libre et elle est generatrice de K[I,] par definition.

Y
z”y?) € K|[I].
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Montrons que c’est un sous-anneau de MoK (K): on a evidemment Idy € K[I4] et il reste a

montrer que K|[I;] est stable par produit: soient

' dy

r d
Z =zldy +y.Iy = (y $?/> , 2 =21y + o Iy = (y, m,) € K1)

on veut montrer que
7.7" € K[1).
On peut prendre brutalement le produit de matrices et on trouve

77— zx' +dyy  (xy +yx')d
. / / ! /
zy' + yx zx' + dyy

On peut egalement faire le calcul de maniere plus conceptuelle a partir de 'equation

21— 0 d 0 d\ (00+d1 0d+d0\ [(d O
d="d2d= 11 0)\1 0/ \1.0401 01.d+0.0)  \0 d
comme Idg =Idy et ] 3 = d.Ids, on a par distributivite et associativite

2.7 = (2ldg + y.1y).(x'1ds + ¢/ . 14) = x2' 1ds + (zy’ + y2') 4 + yy'dldy

) = (zz’ + dyy)lds + (xy’ + y2') 1, € K[I,4).

= (za’ + dyy")Idy + (zy’ + ya')I4 € K[14).

Comme (K est commutatif)
xr' +dyy =2z +dy'y, vy +yx’ =2’y +y'z
on a donc
2.7 =72'.Z

et donc 'anneau K[I4] est commutatif.

Montrons que tout element non-nul est inversible (et que son inverse est contenu dans K[I4]):

soit

d
Z=27=zaldy+y.ls = (z xy)

alors
det Z = 2% — dy?.
Supposons que det Z = 0 alors
2? = dy*;
siy=0alorsz=0et Z=0,. Siy#0 alors
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ce qui contredit I’hypothese que d n’est pas un carre. Ainsi
Z#0y<=detZ =2 —dy’ #0 <= Z € GLy(K).

Ainsi

_ 1 r —dy 1
z ' = = ———(xldy —y.1y) € K[I
det Z (—y x ) 332—dy2(x 2~ y-la) [£a]
8.2.0.1. Conjugaison algebrique. Etant donne Z = xIds + yIy € K|[I4], on pose
7 = xldy — yly € K[14)
qu'on appelle le conjugue algebrique de Z. La conjugaison algebrique Z — Z a les proprietes
suivantes:
ProrosiTION 8.1. L’application
. Kl
A

K[14]

|_>
- Z

verifie
(1) Est lineaire: Y\ € K, Z,Z' € K|[1,],
NZ+Z =XZ+Z .

(2) Est involutive (en particulier bijective)

Z=2Z.
(8) Est un morphisme de corps: en particulier en on a
77 =727

(4) On a
2.7 = (2 — dy*)1d,.
En particulier si Z # 02, on a
1 —

Preuve: On peut demontrer cela par un calcul direct. O

AR

REMARQUE 8.2.1. Notons que dans M»(K'), on peut trouver un grand nombre de matrices I
verifiant

I'? = d.Id,
en effet pour tout C' € GLo(K) la matrice conjuguee
Ad(C)(I) = C.1;.C™1

a cette propriete.

8.2.1. Notation algebrique. L’application

A0
0 A

identifie K avec l’ensemble des matrices scalaires qui forme un sous-corps de M (K). Comme K [1,]
contient K.Ids, on peut de cette maniere voir K comme un sous-corps de K[I;]. Comme I; verifie

I3 = d.1ds.

Si on identifie K au corps des matrices scalaires, d est identifie a d.Ids et la matrice I; est une
”racine carree” de d, une autre racine carree etant —I.

Si on a juste besoin de travailler avec le corps K[I;], plutot que d’ecrire ses elements sous forme
de matrices, on ecrira

A€ K — ANldy = ( ) EK.IdQCMg(K)
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|

1 pour Ids, x pour la matrice scalaire x.Ido,
V/d pour la matrice I, et yv/d pour la matrice y.I
— et a la place de

Z =xIds +yly = (z iy> on ecrira z = x + y\/g
— On ecrira egalement K[v/d] pour K|[I,]. Cette ecriture permet de representer naturellement
K comme sous-corps de K[v/d]:
K={z+0Vd, z € K}c K[Vd|.

Ainsi les sommes, produits et conjugue algebrique s’ecrivent Z + Z' et Z.Z', Z s’ecrivent sous la
forme

s+t =a42 + (y+y)Vd, 2.2 =xx’ +dyy + (zy +y2')WVd, z=x—yVd.
REMARQUE 8.2.2. Notons egalement qu’on peut ecrire
yVd = Vdy
(car y.Ig = yIde. Iy = I4.y.1dy).
Avec cette ecriture la relation (4) devient
(8.2.1) 27 = 2% — dy?,

et si z# 0 on a

_ 1 x Y
8.2.2 L= Z= - d.
(8.22) z Z—dp T P —dy? 22— dy? v

DEFINITION 8.1. Le scalaire x* — dy? € K (le determinant de la matrice Z) est appelle norme
algebrique de z et est note

Nrg(z) = Nrg(z 4+ yVd) = 2z = 22 — dy?.

Comme le determinant est multiplicatif (det(Z.Z’) = det(Z). det(Z’)), la norme algebrique est
multiplicative

(8.2.3) Nrg(z.2") = Nrg(2) Nrg (2'),
et on rappelle que
Nrg(z) =0 <=z =0.

Comme K[v/d] est un K-ev de dimension 2, on dit que le corps K [v/d] est une extension quadra-
tique du corps K.

REMARQUE 8.2.3. LK’algebre M5 (K) contient beaucoup de ”racines carrees” de d: pour tout
Ce GLQ(K)

I = Ad(C)(Iy) = C.I;.0*
verifie

137 =1ds.
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8.3. Le corps des nombres complexes; proprietes de base

Prenons K = R alors d = —1 n’est pas un carre car —1 est negatif. La matrice I_; vaut alors

0 -1
Il_I‘(1 0>

DEFINITION 8.2. Le sous-corps de Ms(R)

_ . _ 10 0 -1\ (z -y
R[I]—R.Idg—I—R.I—{Z—x.(O 1>—|—y<1 O>_(y x),:r,yER}

est appele corps des nombres complexes et est note C. La conjugaison algebrique
7 = xlds + yI — x1dy — yI

s’appelle conjuguaison complexe.
Comme precedement, on note les nombres complexes de maniere condensee en ecrivant

i=+-1

a la place de I et

z=a+iy=x+yialaplace de Z = x1dy +yl = (z _xy>

On a alors
242 =42+ (y+y)i, 22 =z —yy + (xy +y2)i, z=2 —yi

et

Nrg(2) = 2.2 = 22 + ¢/

et (8.2.3) devient
Nrg(2) Nig(2') = (2% + %) (2" + /%) = Nig(2.2) = (32" — yy')? + (a9 + y2')%,
REMARQUE 8.3.1. On a
PP=—i,it=1,=4,---
et donc
i" = +£1 ou bien +1
suivant la classe de congruence n (mod4).

DEFINITION 8.3. Le reel x est appele "partie reelle” de z et le reel y est la "partie imaginaire”
de z

r=Rez, y=Imz.
Dans la notation matricielle, la conjugaison algebrique est donnee par la transposition:
Z=aldy+ylw—"'Z=xldy —y.l.
Awvec la notation simplifiee la conjugaison algebrique
z=x+iy—z=x—1yi
s’appelle la conjugaison complexe. On a alors
2%z = Nrg(z) = 2° + 3> > 0.

Comme ce reel est positif ou nul, il admet deux racine carrees dans R, on note |z| celle qui est
positive ou nulle:
|2l = (22)/2 = (a® +¢*)"/? > 0;

on appelle le module de z.
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PROPOSITION 8.2. On a la proprietes suivantes:
(1) Les applications "partie reelle” et "imaginaire”
Re,Im: C— R
sont lineaires:
A€ R,Re(A\.z +2') = ARez + Rez’, Im(\.z +2') = A.Imz + Im 2'.
Les noyauz valent ker(Im) = R et ker(Re) = R.i est I’ensemble des nombres complexes
1Maginaires purs.
(2) La conjugaison complexe
e:2cC—zeC
est un automorphisme du corps C: in particulier
AER ANz 2 =AZ+7, 22/ =27
De plus ® est involutif
Z==z
et on a
Z=z<=z=z€R
(8) L’application module
2z |z = (2.2)Y/?
est multiplicative:
2.2 = |2|.|2'|
et on a
z2=0<|2z|=0
et pour tout t e R C C on a
(8.3.1) |z| = |z|g = max(z, —x)
Autrement dit, le module d’un nombre reel est egal a la "valeur absolue” usuelle de ce
nombre reel.

Preuve: (1) Les applications Re : C — R et Im : C — R sont lineaires car ce sont les formes lineaires
” premiere et seconde coordonnee” de la base {Ids, I} et on peut egalement le verifier directement.
Ces formes lineaires sont non-nulles donc surjectives sur R. On a

ker(Re) = {0+ iy, y € R} = R.i, ker(Im) = {z + 0i, x € R} =R.

(2) La conjugaison algebrique est un cas particulier de conjugaison algebrique et a les meme
proprietes de lineairite, multiplicativite et involutivite.

~On a

Z=z<=Z=x—y=c+iy=z2<=2iy=0<=y=0<=z=x R

(en effet 2. est non nul donc inversible dans C).

(3) La multiplicativite du module provient de la multiplicativite de la conjugaison complexe (et
le fait que C est commutatif.)

— On a de plus

z=0<=ar+iy=0<+<= (z,9) = (0,0) <=2 +3* =0 <= |2| = 0.
en effet comme 22,42 > 0 on ne peut avoir z2 4+ 32 =0 que si x = y = 0).
Y Y Y
— Soit z =z € R alors

|z] = |z +i.0] = (2% + 0°)Y/2 = (2*)Y/? = max(z, —z) = |z|r.
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REMARQUE 8.3.2. On notera egalement la formule d’inversion suivante qui est une cas particulier
de la formule d’inversion dans K[v/d] (8.2.2):

_ z T — 1y T ]
8.3.2 VzeC*, 27t = == = = — )
( ) z z P 212 2212 t2 ¥ 2

Pour retrouver cette formule il suffit de ce souvenir que

2Z =z|? = (22 +¢?)
etsi|z2=22+y?*#0ona
z

z.— = 1.
|2|2

8.3.1. Nombres complexes de module 1; decomposition polaire. Considerons le module
mais restreint au groupe multiplicatif C* = C — {0}:
| o | . C* R>0

Tz =@ )V

Comme le module | e | est multiplicatif, sa restriction a C* est un morphisme de groupe (mul-
tiplicatif) a valeurs dans R+ ¢; ce morphisme est surjectif (car pour z € Ry, |z| = x) et son noyau
est

ker|o| =CY ={z€C, |z| =1},
I’ensemble des nombres complexes de module 1.
En particulier C(Y) est un sous-groupe de C* (pour la multiplication).

PROPOSITION 8.3. On a un isomorphisme de groupes
pol : C* ~ Ry x CV
donne par
z € C* = pol(z) = (|2, 2/2|)

Preuve: Soit z € C*. On a |z| > 0 et comme ||z|| = |2| (]z| est un nombre reel positif de sorte que
sont module est egal a sa valeur absolue et donc a |z]), on a

12/ 12l = |zI/1IzIl = |2[/l2] = 1.
Ainsi
pol(z) € Ry x CM),
De plus on a
|2.2'| = |2].|] et 2.2 []2.2"]| = (2/)2]).(Z"/|Z]).
Ce morphisme de groupe pol est injectif:
(lzl,z/1z) = (1,1) = |z| =1=z2/|z]| = z = 1.

Il est egalement surjectif : pour tout p > 0 et (1) ¢ C!, on a
pol(p.2)) = (Ip.21], .21 /|p.2M]) = (p, 21);

en effet
0.2 = [pl.[zV] = p.1=p
car p € Ryp. (Il
DEFINITION 8.4. Soit z € C*, pol(z) = (|z|,2/|z|) s’appelle la decomposition polaire de z.

(1) Le premier terme |z| est le module et se note aussi p(z) = r(z) >0,
(2) le second terme z/|z| € C) est appelle argument complexe de z et on le note

z/|z| = ?®),



8.3. LE CORPS DES NOMBRES COMPLEXES; PROPRIETES DE BASE 139

(8) Si on decompose l'argument complexe en partie reelle et imaginaire,
z/|z| = ) = Re(z/|2]) +i. Im(z/|z]) = c(2) + s(2).i
on a donc
c(2)? +s(z)? =1

— le reel ¢(z) € [—1,1] s’appelle le cosinus de z,
— le nombre s(z) € [—1,1] s’appelle le sinus de z.

On a donc
2= +iy = p(2).”D = p(2)(c(2) +i5(2), @ = p(2)e(2), y = p(2)s(2).
REMARQUE 8.3.3. Compte tenu des definitions, on a

p(z) = |2 = (2* +9?)

O = T

1/2
)

c(z) =

(22 + 42)1/2°

8.3.2. Formules de trigonometrie. On retrouve les formules habituelles de trigonometrie:
8.3.2.1. Formules de produit. Pour z,z’ € C*

(8.3.3) p(2.2)) = |2.2'| = |2|.|2| = p(2).p(z"), %) = () £i0(=)

c(2.2") = c(2).c(2) —s(2).8(2), s(z.2) = s(2).c(z') +s(2').c(2).
Preuve: Les premieres identites resultent du fait que pol(e) est un morphisme de groupes. Ecrivant

02 = ¢(2.2") +is(2.2') =
e0(2) 0 = (¢(2) + is(2)).(c(z') + is(2"))

on obtient en developpant (suivant la regle de produit des complexes)

c(z.2") +is(z.2") = c(2)e(2) +is(2)c(2)) +ic(2)s(2)) + i%s(2)s(2)

=c(2)c(2") —s(2)s(2") +i(s(2)c(2) + c(2)s(2")).

8.3.2.2. Formule d’inversion. Pour z € C*, on a
p(z ) =17 = p(2) 7 = o7
e = o271 4is(z7h) = (0)) 1 = @03) = ¢(z) — is(2).
En particulier on a
c(z) =c(z71), s(z) = —s(z71).
Preuve: Cela resulte a nouveau du fait que pol(e) est un morphisme de groupes. De plus, on a vu

que (8.3.2)

B eit(z) _ ]
i = =) i)

(ew(z)>
car |e?)| = 1. O
8.3.2.3. Formule de I’angle double. On a
[2%] = 2%, ¢(2?) = ¢(2)? = 5(2)%, 5(2%) = 2s(2)c(2).

Preuve: Appliquer la formule du produit a 2z’ = z. |
Plus generalement on a les
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8.3.2.4. Formules de de Moivre. Pour tout entier n > 0, on al

|zn| — |Z|n7 eie(z") — (eiG(z))n
(8.3.4) c(z") = Z C2k(—1)Fc(2)"2ks(2)?F,
0<k<n/2
S(Zn) — Z Cgk—i-l(_1)kc(z)n—2k—ls(z)2k+1'
o<k 2yt

Preuve: Les premieres identites resultent a nouveau du fait que pol(e) est un morphisme de groupes.
Pour les deux autres on ecrit

WG = ¢(2") +is(2") = (e = (c(z) +is(2))™.
Par la formule du binome de Newton cela vaut

Z Cre(z)"Fiks(2)k.

0<k<n
On a
- (—1)’“/2 k pair
(=1)*+=1/2;  k impair

et on decompose la somme precedente suivant ces deux possibilites: la somme precedente s’ecrit

c(z™) +is(z") = Z CFe(z)"F(=1)*/25(2)F 4 Z Cﬁc(z)"‘ki.(—l)%s(z)k.
0<k<n 0<k<n
n=0 (mod 2) n=1 (mod 2)

On met i en facteur dans le second terme et on identifie les parties reelles et imaginaires des complexes
de part et d’autre ce cette identite: remplacant k par 2k < n dans la premiere somme et k par
2k + 1 < n dans la seconde, on obtient les identites annoncees. O

EXEMPLE 8.3.1. Par exemple pour n = 2, on obtient
c(2?) = c(2)? —s5(2)?, s(2?) = 2c(2)s(2).
Pour k = 3, on obtient
c(23) = c(2)® — 3c(2)s(2)?, s(2%) = 3c(2)%s(2) — s(2)3.
Pour n = 4, on obtient

c(zh) = c(2)* — 6c(2)%s(2)? +5(2)?, s(2?) = 4c(2)3s(2) — 4e(2)s(2)3.

8.3.3. Argument (reel) d’un nombre complexe. Dans ce cours qui est de nature alge-
brique, on a resiste jusqu’a present a parler d’ argument d’un nombre complexe. La raison est la def-
inition precise necessite des notions elaborees d’analyse (notamment la definition de ’exponentielle
sur les complexes). On peut parler d’argument reel d'un nombre complexe une fois qu’on a demontrer
(ou admis) le resultat suivant:

THEOREME 8.2 (Existence de ’exponentielle complexe). Il existe un unique morphisme de groupe
e R o (€D, %)
B, —  exp(if)

qui est derivable (comme fonction de R a valeurs dans C ~ R?) et qui verifie
!/

e’ (0) = i.
Ce morphisme est surjectif et son noyau est de la forme
ker e'® = 27.7Z

3d’apres Abraham de Moivre (1667-1754)
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ou 7 est un nombre reel dont le developpement decimal commence par m = 3.14159 - - - .

REMARQUE 8.3.4. On dit qu’une fonction a valeurs complexes
f:0eR— f(@)eC

est derivable sur R si les fonctions associees ”partie reelle” et ”partie imaginaire” sont derivables:
on ecrit

f(0) =Ref(0) +i.Im f(0)
et on demande que les deux fonctions
Ref, Imf:0 € R— Ref(0), Im f(#) € R

soient derivables sur R.

REMARQUE 8.3.5. On peut montrer que si un morphisme de groupes
p:R—C*
est continu (ie. ses parties reeles et imaginaires sont continuees) alors il est automatiquement

derivable et meme infiniment derivable.

Admettant ce Theoreme, on obtient par surjectivite que pour tout z € C(!) il existe 6 € R tel

que

2z =¢",

D’autre part, comme e*® est un morphisme de groupes, ’ensemble des 6’ verifiant z = et?’ (Pensemble
des antecedents de z, (¢**)~({z})) est egale a la classe de § modulo 27 (cf. Exercice 2.2)

() '({z}) =0 + ker(e®) =0+ 21.Z = {0 + 27k, k € Z}.
On obtient alors un isomorphisme de groupe (qu’on notera encore e®)
ois . R/27Z ~ CM
04217 — oz =€
La reciproque de cette bijection s’appelle l’argument (reel):
DEFINITION 8.5. Soit z un nombre compleze de module 1 L’argument reel (encore appelle ”an-
gle”) de z,
arg(z) := 0 (mod 27) = 0 + 27Z € R/27Z
est l'unique classe 6 (mod 2r) € R/277Z telle que €'’ = 2.
Plus generalement, pour z € C*, on defini son argument par

arg(z) := arg(z/|#|) € R/27Z.
Notons que I'application
arg : C* — R/27Z
est un morphisme de groupes: Vz,z’ € C* on a
arg(l) = 0, arg(z.2’) = arg(z) + arg(z’), arg(l/z) = —arg(z).
et la decomposition polaire se reecrit sous la form de I’isomorphisme
pol C* =~ Rygx R/27TZ‘
z = (|2l arg(2))
DEFINITION 8.6. Soit € R, le cosinus et le sinus de 0 sont defini par
cos(f) = Re(e'?), sin(f) = Im(e?).
On a donc
e = cos(0) + isin(f).
En particulier on a
1 = e = cos(0) + i sin(0)
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et donc
cos(0) =1, sin(0) = 0.

8.3.4. Formules de trigonometrie classiques. On "retrouve” les formules de trigonometrie
sous leur forme usuelle:
8.3.4.1. Formule des sommes. On a

cos(0 4 6') = Re(e ")) = Re(e'.€?") = cos(8) cos(#) — sin(h). sin(6')
et
sin(6 + ¢') = Im(e'®+9)) = Im(e.¢’") = sin(6) cos(6') + cos(f). sin(¢").
Preuve: On a
010" = cos(0 4+ 6') + isin(0 + 0') = €€ = (cos(0) + isin()).(cos(8') + isin(¢"))

et on obtient le result en developpant et en isolant les parties reeles et imaginaires. O
8.3.4.2. Formule de l’angle oppose. On a

cos(—0) = cos(#), sin(—0) = —sin(0).
Preuve: En effet comme on a un morphisme de groupes

e = cos(—0) + isin(—0) = 1/ = € = cos(0) — isin(0).

8.3.4.3. Formule de l’angle double. En prenant 6§’ = 6 on obtient
cos(20) = cos(6)? — sin(6)?, sin(20) = 2sin(#) cos(f)

et plus generalement
8.3.4.4. Formules de de Moivre.

e™? = cos(nb) + isin(nd) = (e¥)" = (cos(f) + isin(6))"
et en developpant par le binome de Newton et identifiant parties reelles et imaginaires, on obtient

cos(nf) = Z C2k(—1)* cos(0)"~ sin(0)?*.

0<k<n/2

sin(nf) = Z C2kH1(—1)F cos(0)" 2+~ L sin(9)?F 1.
0<k<(n—1)/2

8.4. Le plan complexe

Comme C est un R-ev de dimension 2, on peut identifier C a R? en choisissant une base. Ainsi
si on prend pour base {Id, I'} I'isomorphisme est donne par les parties reele et imaginaire:

C —  R?

(Re,Im) = 14 +yl — (x,y)

On parle alors du plan complexe et on represente un nombre complexe par un point dans le plan
reel R2. Le groupe des nombres complexes de module 1 est alors identifie avec le cercle unite

St = {(z,y) € R2, 2?2 +42% = 1}.
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FIGURE 1. Le plan complexe et le cercle unite.

8.4.1. Le plan euclidien. L’espace R? est muni d’une distance appellee distance euclidienne:
do((z,y), (@', 9) = (@ = 2",y =)o == (& =) + (y —y)*) /2.
Rappellons qu’'une distance sur un ensemble X est une application

XXX — R>0

d: (v,w) = d(v,w)

verifiant
(1) Separation: d(v,w) =0 <= v = w.
(2) Symetrie: d(v,w) = d(w,v).
(3) Inegalite du triangle: d(u,w) < d(u,v) + d(v,w).

DEFINITION 8.7. Une isometrie (euclidienne) de R? est une application ¢ : R? — R? preservant
la distance euclidienne:

da(p(v), p(w)) = da(v, w).
EXEMPLE 8.4.1. La translation de vecteur vy € R?:
o, v eR? = v+ .

THEOREME 8.3. Une isometrie est bijective et sa reciproque est encore une isometrie. L’ensemble
des isometrie Isom(R?) C Bij(R?) est un sous-groupe du groupe des bijections de R?.

Grace a Iisomorphisme de R-ev C ~ R? ci-dessus on peut realiser les isometries en terme de trans-
formations simples sur le corps des nombres complexes (on admettra le resultat suivante)

THEOREME 8.4. Quand on identifie (x,y) € R? avec le nombre compleze z = x + iy toute
isometrie de R? est de la forme suivante

— Rotation: il existe a € CV) et zy € C tels que
Ta,zg - 2 > Q.2+ 20.
— Symetrie: il existe o € C) et 2y € C tels que

Sa,zg - 2 Q.Z + 2.
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On a la classification suivante plus fine des rotations et des translations. Rappellons que si
¢ : X — X est une application, un point fixe de ¢ est un elementz € X tel que
p(r) = .
THEOREME 8.5. La rotation r,, ,, peut etre de deuz types
- Sia=1, alors r1,, : 2 — 2+ zo est une translation (par zp). On dit egalement que c’est
une rotation triviale ou d’angle nul. Si zg = 0 alors c’est identite et tous les points de C
sont fizes. Si zg # 0 alors la translation n’a aucun point fize.
- Sia#1, alors ro », possede un unique point fize: un point zy verifiant
Ta,zo (Zf) = zf

donne par
20

2f = —.
T -
Si 6 (mod 27) = arg(«) est Uargument de « on dit que 74, est une rotation d’angle 6.
La symetrie s, peut etre de deux types

— L’ensemble des points fizes de s, est une droite et la symetrie est appelle symetrie
orthogonale par rapport a cette droite de points fizes.

— L’ensemble des points fizes de s, ., est vide; il existe alors une unique droite de C telle
que Sq.z, est la composee d’une symetrie orthogonale par rapport a cette droite et d’une
translation par un complexe parallele a cette droite. On dit alors que s, ., est une symetrie
glissee (par rapport a cette droite).

EXEMPLE 8.4.2. Par exemple
Z 1.2

est la rotation d’angle 7/2 (dans le sens inverse des aiguillles d’une montre) et de centre l'origine et
Z=Z
est la symetrie orthogonale par rapport a I’axe des z. Par contre
z—=zZ+1
est une symetrie glissee par rapport a I’axe des x.

L’interet de representer les isometries sous forme de transformations sur les nombres complexes
c’est qu'il est plus facile de calculer leur composees ou leurs espaces de points fixes: par exemple
Sa,z €st la composee de la symetrie z — Z, de la rotation 2’ — a2’ et de la translation 2/ — 2z + 2.

8.5. Equations polynomiales complexes

Comme on ’a explique, le corps des nombres complexes C a ete introduit (pas sous forme de
matrices) dans la renaissance italienne dans l’etude des equations polynomiales: 1’etude des solutions
z des equations de la forme

(8.5.1) P(z) = ag2t +ag1.27 '+ 4aj.z4a9 =0,
avec ag, - - ,aq € R des nombres reels*.
DEFINITION 8.8. Soit
P(X)=0ag. X" +ag_1. X"+ 4 a1.X +ag

un polynome a coefficient dans C. L’ensemble des racines de P dans C, Racp(C) est l’ensemble des
solution dans C. de l’equation P(z) = 0:

Racp(C) = {z € C, P(z) =0}.

4en fait c’etait plutot les nombres rationels car le corps des reels n’existait pas encore mais on s’autorisait
a extraire des racines n-iemes de nombres rationnels positifs ou nuls
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On rappelle (cf. Thm A.6 dans le chapitre sur les polynomes) que
|Racp(C)| < deg P < d.
En particulier pour d = 2 (les equations quadratiques) on obtient
(8.5.2) az’ +bz+c=0, a,b,ceR, a#0

Rappelons d’abord la methode permettant de trouver la forme generale des solutions qui consiste a
” completer le carre”’: on a

b b
a22+bz+c:a(zz—|——z+g):a(22+2—z+£)
a a 2a a

on reconnait dans 22 + Q%z le debut d’un carre:

b b b b b b
2,9% 2,99 Oy Oy LRV
S 2az S 2az+(2a) (2(1) (z+2a) (2a)
et 'equation devient
b o b, ¢ 2 b, ¢ 2
N2 _ (L oy — 72 _(—_ z 72— =
a((z+2a) (2(1) +a) 0+ (2a) +a — 102

en posant Z = z + %. Si A > 0 on obtient comme solutions de cette equation

7, -+ Y8
2a

dont on deduit les formules bien connues

b+ VA

- 2a

Si A < 0 les equations precedentes n’ont pas de solutions dans R; en particulier c’est le cas de
I’equation

2+

2Z241=0
dont le discriminant vaut —4 < 0. On® a alors introduit ”formellement” une solution 7 verifiant
2 =—1
qu’on a appelle nombre ”imaginaire” et on a ainsi obtenu le corps abstrait des nombres complexes

C. On a alors trouve dans C des solutions de toutes les equations quadratiques a coefficients reels :
elles sont donnees par la formule usuelle

b VA
B 2a
ou VA est I'une des racines carrees de A si A >0 et si A < 0 on prend

VA = /|Ali
8.5.1. Equations quadratiques a coefficients complexes. Considerons maintenant la meme
equation
(8.5.3) az’? +bz+c=0

mais avec a,b,c € C. Les meme manipulations algebriques nous disent que les solutions de cette
equation devraient etre de la forme

2+

-bEt VA
zi:—\/_, A =b* — 4ac € C.
2a
Ce qui nous reduit a trouver les solutions de I’equation quadratique ”"monomiale”
7?2 =A

5Bombelli le premier
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pour A € C. Pour cela on ecrit A=A+ IBet Z =X +iY et on a donc
ZP=X?-Y?+2XY.i=A+iB

ce qui nous amene a un systeme de deux equations polynomiales a coefficients dans R en deux
inconnues X,Y dans R:

X2 _Y?2=A, 2XY = B.
On peut supposer que B # 0 car sinon on a A = A € R et on sait resoudre l'equation (meme si
A <0). On a donc X,Y # 0 et on peut ecrire Y = B/2X et substituer:

X2 - B?/(4X?) = A<= 4X* —4AX? - B?*=0, X #0
Posant U = 2X? on doit resoudre I'equation quadratique
U? —24AU - B*=0

dont le discriminant vaut
A" = 4(A? + B?) > 0.

Ur =A+ A2+ B2
Comme A2 + B2 > A, I'une de ses solution est positive et ’autre negative mais comme U = X2
et que X € R on doit avoir U > 0 et on prend

U =A+VA2+ B?

X:t = :l: U+.
On trouve alors Y1 = +B/(2,/U+) et on obtient deux solutions
Zy =+(\/Us +iB/(2/U,)).
8.5.2. Equations monomiales. Les equation monomiales sont celles de la forme
X4 _w=0

pour d > 1 et w € C. Si w =0 alors z = 0 est la seule racine.
Si w # 0 alors l'existence de 1’exponentielle complexe garantit I'existence de m solutions dis-
tinctes: soit z € Racya_,,(C) alors on a

On trouve donc deux racines reelles

et on prend

|2 = Juwl
et donc
|| = Jw]'/.
Pour 'argument on a
darg(z) = arg(w) (mod 27).

On reecrit cela sous la forme

1
darg(z) = arg(w) + 27Z <= arg(z) = argéw) + 27‘(‘32
Ainsi arg(z) prend d valeurs distinctes modulo 27:
k
arg(z) = arg(w) +2r—, 0<k<d-1
d d
et jarg(w) | .ok
Racya_y,(C) = {|jw|/?e!™ e +273 0 < k<d—1}
notons que
isgpel ion g _ eiargd(w)ws, avec wg = '@ .
Ainsi on a

8.5.4 Racya_,,(C) = {|w 1/dei&rgd(w)wk, 0<k<d-1
d
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8.5.3. Racines de I’unite. En particulier si w = 1 on obtient

DEFINITION 8.9. Pour d > 1 l’ensemble des racines de l’equation
24 = 1,
pa = Racxa_1(C) = {wh, 0<k<d—1}
est appele ensemble des racines d-iemes de l'unite

On a donc "
- arg(w
Racxa_,(C) = [w]/%e" 0 g
Notons que g est un sous-groupe du groupe multiplicatif C*: en effet c’est un noyau
- d . C* = C*
tq = ker(e® : L )
REMARQUE 8.5.1. Pour une equation monomiale generale, I’ensemble des solutions (8.5.4) s’ecrit
donc

;are(w)
Racxa_,(C) = 20.pd, 20 =¢€" @

C’est un cas particulier de resolution d’equations dans les groupes, cf. Exo 2.2 (pour le groupe
(C*, x)).
Notons egalement que
Ha = Wg )
ce groupe est donc cyclique de generateur wy = ¢*T . En fait c’est un cas particulier d’un resultat
general purement algebrique:

THEOREME 8.6. Soit K un corps et p C K™ un sous-groupe fini du groupe multiplicatif (K>, x).
Alors p est cyclique et si on note d = |u| son cardinal alors
= pa(K) = Racya_1(K) = {w € K, w' =1}
est le groupe des racines d-iemes de l'unite de K.

On rappelle que de part la theorie des groupes cycliques le groupe pq(K) possede
pd)={0<k<d-1, (kd) =1}
generateurs donnes pour tout generateur wqy de g par
wh={wf, 0<k<d-1, (k,d) =1}
Ce sont egalement les elements du groupe pq(K) d’ordre d exactement:
ph={wekK, wl=1, Vd'|d, w? # 1}
On appelle p); des racines primitives d-iemes de I'unite de K.

8.5.4. Racines complexes de I’unite ayant des arguments particuliers. Il y a extreme-
ment peu de nombres complexes de module 1 pour lesquel on dispose d’une formule simple pour leur
argument reel et il y a de bonnes raisons a cela. Pour d > 1 un entier on pose

Wa = 6127‘-/‘1.

On va calculer quelques wy.

Pour cela on remarque que comme ker(e’®) = 277 et que €’ est surjective sur C(V), e induit
une bijection

e : [0, 27~ CW,
On peut commencer:
8.5.4.1. d=1. Ona
wy=e?=1

car un morphisme de groupe envoie I’element neutre sur I’element neutre.
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8.5.4.2. d =2. On a (formule d’Euler)
wy = e = —1.

En effet on a 4
(W2)2 — 61271' -1
donc wy est une racine carree de 1 et donc vaut =1. Comme on sait que e = 1 et que '™ # e
c’est que wy = —1.
8.5.4.3. d=4. On a
wy = e =4
Preuve: Exercice. O
8.5.4.4. d=38. On a
V2 2

w8:7+i7.

Preuve: Exercice. O
8.5.4.5. d=3. On a

1403

-—

Preuve: Exercice. O
8.5.4.6. d=5. On a

w3

ws = cos(2m/5) + isin(27/5)

avec

1+V5 1+5
0 , sin(27/5) = 4/1 — ( 1 )2.

Preuve: Exercice. O
8.5.4.7. Formule de l’angle moitie. Le calcul de ws,wy,ws proviennent d’un principe general:

si on connait wy = €27/% alors on saura exprimer simplement wog = €'27/2¢ des parties reelles et
imaginaires de wy. En effet

cos(2m/5) =

wgd = Wq
et woq est solution de I'equation
X 2= Wy
que l'on sait resoudre sur les complexes. On obtient ainsi
_ VB+i
W — 2 .
On voit que les parties reelles et imaginaires de tous ces nombres complexes s’expriment par
extractions successives de racines carrees. Une condition geometrique equivalente de cette propriete
est la suivante:

DEFINITION 8.10 (Constructibilite a la regle et au compas). Soit Py = (0,0) et P, = (1,0).
Un point P du plan est constructible a la regle et au compas a partir d’un ensemble fini de points
Pn={Po, P1, -+, Pp} contenant Py et P, si P est obtenu soit
— comme lintersection de deuzx droites passant par des points distincts de {Py, Py, -+, Pp}
— de Uintersection d’une droite passant par deux points distincts de {Py, -+ ,P,} et d'un
cercle dont le centre est contenu dans {Py, P1,--- ,P,} et le rayon est egal a la distance
| P P;| pour 0 < i,j <n.
— de lintersection de deuz cercles centres en des elements de Py, et de rayons |P;P;| et |PyP)|.

Un point P est constructible a la regle et au compas si il existe un ensemble de points
{POaPIa"' 7Pn7PTl+1}

avec P,y1 = P tel que pour tout i > 2, P; soit constructible a la regle et au compas a partir de
{Po, P, , Pi1}.
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FIGURE 3. Construction (fausse !) a la regle et au compas d’un heptagone
regulier (w7).

En fait il n’y a pas beaucoup d’autre cas de racine de 'unite constructibles:

THEOREME 8.7 (Gauss-Wantzel). On peut exprimer les parties reelles et imaginaires du nombre
compleze wg = €2™/% par extraction successive de racines carrees (ou de maniere equivalente, est
constructible a la regle et au compas) si et seulement si

d=2" ou biend:2kai

ou [, pi est un produit (non-vide) de nombres premiers tous distincts et “de Fermat”: on dit qu’un

nombre premier p; est de Fermat si p; = Fy, := 22" 1 1 quec fi = 0 un entier.

REMARQUE 8.5.2. Les nombres premiers Fy = 3, Fy = 5, F» = 17 sont de Fermat et Gauss est
devenu celebre quand a 19 ans il a montre que la condition etait suffisante et a exprimer wi7 sous
cette forme; un peu plus tard Wantzel a montre qu’elle etait necessaire. Les autres premiers de
Fermat connus sont F3 = 257 et Fy = 65537; les entiers Fj,--- , F32 ne sont pas premiers et on ne
sait pas si F33 ou les entiers de Fermat suivant sont premiers ou pas.

8.5.5. Equations de degre superieur. On a egalement pu resoudre dans C de nombreuses
autres equations polynomiales a coefficient reels. En particulier pour les equations de degre 2, 3
ou 4, on (les italiens) a pu obtenir des expressions algebriques explicites pour les solutions des
equations polynomiales en fonction des coefficients du polynome (formules de Cardan) ainsi que
pour des polynomes de degre superieur mais speciaux cela en extrayant des racines carrees, cubiques
ou quartiques ou d’ordre superieur: on parle d’equation resolubles par radicaux.

Le resultat le plus general est du a Gauss qui a demontre le
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THEOREME (fondamental de I'algebre). Soit P(X) € R[X]| = ag.2%+a4_1.29" 1+ +a1.2 +ag
un polynome reel non-constant alors l'equation (8.5.1) admet au moins une solution dans C: il
existe z € C tel que P(z) = 0. En fait c’est egalement vrai si P(X) € C[X] c’est a dire si l'equation
polynomiale est a coefficient dans C. On dit que C est algebriqguement clos.

REMARQUE 8.5.3. Ce theoreme n’est pas constructif : il demontre ’existence de solutions mais
ne donne pas d’expression des solutions en fonctions des coefficients de P (comme c’est le cas pour
les equations quadratiques ou cubiques ou quartiques). Ce probleme a ete analyse en details par
Abel et Galois. En particulier Abel a donne un polynome explicite

XP-X-1

dont les racines ne peuvent s’exprimer par ’extractino de racines carrees, cubiques, quartique,
quintiques (ou de tout ordre) de nombres rationnels (cette equation n’est pas resoluble par radicaux).
Galois a ensuite donne une condition necessaire et suffisante (en terme d’un certain groupe associe
au polynome) pour decider si ’equation est resoluble par radicaux ou pas. C’est 'objet de ce qu’on
appelle la Theorie de Galois.

EXERCICE 8.1. Demontrer la partie facile du Theoreme de Gauss: si tout polynome a coefficient
reel admet une racine alors tout polynome a coefficient complexes admet une racine.

Pour cela considerer

P(X)=ag.2% 4+ aqg_1.297  + -+ a1.2 + ap € C[X]
et .
P(X)=ag2'+ag 1.2+ +ar.z+a

et montrer que Q(X) = P(X).P(X) € R[X] et conclure.

On n’a pas encore les moyens de demontre ce resultat fondamental. On peut le faire soit

(1) Avec de I'analyse reele classique (theoreme des valeurs intermediaires) et de la Theorie de
Galois.
(2) Ou bien avec de I’analyse complexe: soit

2€Crw— P(2)eC
un polynome non-constant qui ne s’annule pas sur C alors la fonction
z— 1/P(2)

est holomorphe sur C et bornee; cela implique necessairement qu’elle est constante et donc
que P(z) est constant.



CHAPITRE 9

Operations elementaires sur les matrices

The first matriz I designed was quite naturally perfect.
It was a work of art. Flawless. Sublime.
A triumph only equaled by its monumental failure.

9.1. Operation elementaires sur les lignes

Soit M = (mij) € My «qa(K) une matrice. Pour simplifier les notations on ecrira sa i-ieme ligne
(i<d)
L; = Li(M) = Lig;(M) = (mij)<a
DEFINITION 9.1. Les operations elementaires sur les lignes d’une matrice sont les applications
suivantes de My xq(K) vers My xa(K): pouri,j € {1,--- ,d'} et \€e K* et p € K
(I) Transposition: Echanger deuz lignes i # j < d' de M:
L <— L;

(II) Dilatation: Multiplier la i-eme ligne par un scalaire X # 0:

L; — \.L;.
(III) Combinaison Lineaire: Additionner a la ligne i un multiple scalaire de la la j-ieme ligne pour
1#£j:pneK
Li — Ll + /JLj

Ces transformations sont appellees transformations elementaires.

EXEMPLE 9.1.1. Considerons la matrice

0 1 1

(9.1.1) M=12 2 2
2 1 2

On lui applique la transposition L; <> Lo et on obtient
2 2 2
Mi=10 1 1

2 1 2
On applique Ly — (1/2).L; et on obtient

My=[0 1 1

—_
—_
—

N———— N————

On applique L3 — L3 — 2.L1 et on obtient
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On applique Ls — L3 + Lo et on obtient

1 1 1
My=10 1 1
0 0 1
On applique L; — Ly — Ly et on obtient
1 0 0
Ms=1{0 1 1
0 0 1
On applique Ly — Lo — L3 et on obtient
1 0 0
Mg=10 1 0| =1Ids.
0 0 1
PROPOSITION 9.1. Ces trois operations sont des applications lineaires bijectives

(1), II),(I11) : Maxa(K) = Ma xa(K).
Preuve: La linearite vient du fait que les applications
Lig;(e), Lig;(e) : M € Maxa(K) — M; € Lig,(K)
sont lineaires et que I'application
(Lig; + pLig;)(e) : M € Mg wa(K) = L; + p.L; € Lig,(K)
est lineaire. Elle sont bijectives car elle admettent des applications reciproques:
(I) Echanger les deux memes lignes 7, j < d’ de M:
L <— L;
(IT) Multiplier la i-eme ligne par le scalaire A\~
Li— AL,
(III) Soustraire a la ligne 4 un multiple scalaire de la j-ieme ligne: p € K

REMARQUE 9.1.1. On peut etendre les transformations (I) et (II) au cas i = j:
- On a Tii = Ide’xd(K)'
— On Cli;, = Dj 14, et pour que ces transformation soit inversible il faut que p # —1

PROPOSITION 9.2. Les trois operations elementaires sont obtenues par multiplication a gauche
de M par des matrices convenables: pour 1 <i# j < d'

(I) T%j.’tM*-)T’ij.M
(I) D;x.0: M > D;y.M
(III) Clij“un. M — Clij,u-M'

ou les matrices carrees T;;, D; x, Clij,, € My (K) sont definies par:
Tyj =1dg — By — Ej; + Eiy + Ej;.
Diy=Idg +(AN=1).E;, X#0
Cliju=1da + p.Eyj, i #j oup# =1 sii=j.
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Preuve: Notons E;; = (e k1)k,j<ar la matrice elementaire sous forme de coefficients: on a
€ijkl = Op=i-O1=j
On a donc pour 1 < k, 1 < d’
(Eij M) = E €ij,ku-Mul = E Ok=iOu=j Myl = Op=iM;y.
u<d’ u<d’

Ainsi le produit E;;.M est la matrice dont la i-ieme ligne est la j-ieme ligne L; = (mj;)i<a et dont
toutes les autres coordonnees sont nulles.

— Ainsi (Idg + p.E;;). M est la matrice formee a partir de M et ou la i-ligne L; est remplacee
par L; + pu.L;.

— En particulier, si i = j, (Idg + p.E;;).M est la matrice forme a partir de M et ou la i-ligne L;
est remplacee par L; + p.L; = (14 p).L;. Ainsi en prenant A = 1 + p, on multiplie la i-ieme ligne
de M par \.

— De meme (Idg — E;; — Ej;;).M est la matrice M ou les lignes i et j sont remplacees par la
ligne nulle (0);<q et

(Idd/ —FE; — EJJ)M + (Eij + EJZ)M
est la matrice precedente ou la ligne L; est ajoutee a la i-ieme ligne et ou la ligne L; est ajoutee a
la j-ieme ligne de M et c’est donc la matrice M ou les ligne i et j ont ete echangees. O

REMARQUE 9.1.2. En particulier, le fait que ces applications sont lineaires provient du fait que
pour toute matrice D € My (K) la multiplication a gauche par D

D.e: M€ Mdlxd(K) — D.M e Mdfxd(K>

est lineaire (par distributivite de la multiplication a gauche, Thm. 7.1).
De plus si D est inversible: D € GLg (K) alors D.e est inversible d’inverse D~'.e: en effet

D' (D.M)= (D '.D).M =1dy.M = M, D.(D"*.M) = (D.D™*).M = 1dy.M = M.
Notons que les matrices T;;, D; x, Cl;j, sont inversibles (si A # 0 ou i # j pour Cl;;,,) et on a
T;;' =Ty, Djy =Djx-1, Clj\, = Clij .
REMARQUE 9.1.3. On peut verifier directement que
Ti;.Tij = 1dgr, D;x.D; -1 =1dg, Cly;,,.Clyj —,, = 1dg
en utilisant que
Ei; By = 0=y
DEFINITION 9.2. Les matrices
Tij, Dix, A#0, Clij

pour i,j < d', N#0, et sii=j, u# —1 sont appellees matrices de transformations elementaires.

REMARQUE 9.1.4. On ne confondra pas les matrices de transformations elementaires avec les
matrices elementaires qui sont les matrices Fj;.

DEFINITION 9.3. On dit que N est ligne-equivalente a M ssi il existe une suite de transformations
elementaires qui transforme M en N.

— De maniere equivalente, N est ligne-equivalente a M ssi il existe une suite finie de matrices
des transformations elementaires telle que N est obtenue a partir de M par multiplications a gauche
par cette suite de matrices.

EXEMPLE 9.1.2. La matrice M de (9.1.1) est ligne equivalente a la matrice identite Ids: on a

Id3z = Cla3,1Cl12,1Cl321Cl31, 2D 1 joT12 M
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PROPOSITION 9.3. La relation etre "ligne-equivalente” est une relation d’equivalence sur My xq4(K).
— De plus deuz matrices M, N ligne-equivalentes sont equivalentes au sens de la notion d’equivalence
de deur matrices de la Definition 7.10.

Preuve: Comme toutes les transfomations elementaires sont inversibles et que leur inverse sont des
transformations elementaires, cette relation est reflexive, symetrique et transitive.
Si M et N sont lignes-equivalentes, alors

N =AM=AMJId,4

ou ou A le produit des matrices de transformations elementaires qui permettrent de passer de M a
N et M et N sont donc equivalentes. O

COROLLAIRE. Si M et N sont lignes equivalentes alors
rg(M) = rg(N).
Preuve: En effet si elles sont lignes-equivalentes elles sont equivalentes et donc ont meme rang. [

PROPOSITION 9.4. Si N € Mg «q(K) est ligne-equivalente a M alors toute ligne de N est
combinaison lineaire des lignes de M :
Vi < d', Lig;(N) € (Lig;(M),--- ,Ligg (M)) C K*
et inversement les lignes de M sont combinaisons lineaires des lignes de N. En particulier les SEV
engendres par les lignes de M et de N sont les memes
(Lig; (M), -+, Ligy (M)) = (Lig;(N), - , Ligy (N)) C K“

Preuve: Par definition des transformations elementaires, les lignes de N sont des combinaisons
lineaires des lignes de M. Mais comme la relation ”ligne-equivalente” est une relation d’equivalence
les lignes de M sont CL des lignes de N. O

9.2. Echelonnage

DEFINITION 9.4. Une matrice M = (m;;) € Mgy xa(K) est echelonnee si elle est nulle ou bien si
(1) Ilexiste l <r<detl<j; <---<jr<d tels que
— Pour la ligne Ly, le premier terme non-nul est le ji-ieme: on a my; = 0 pour tout

j < jl et mljl # 07
— Pour la ligne Lo, le premier terme non-nul est le ja-ieme: on a mgj; = 0 pour tout

J < Jj2 et magj, #0,

— Pour la ligne L,, le premier terme non-nul est le j.-ieme: on a my,; = 0 pour tout
J<jretmg; #0

(2) Sir <d les lignes Ly11,--+ ,Lq sont toutes nulles.
Si M est non-nulle les j1 < --- < j, sont appeles les echelons de M et les m;j,, 1 < i < r sont les
pivots de M.

La matrice ci-dessous a = 3 echelons: j; =2,jo =4,j3 =25

mi2 M1z Mig -+ -+ Mid
0 0 m24 PR P m2d
0 0 0 Mg -+ oeeee
0 0 0 0 0 0

o o oo

0 0 0 0 0 o0 0
DEFINITION 9.5. Une matrice est echelonnee reduite si le seul coefficient non-nul d’une colonne
contenant un pivot est le pivot lui-meme et il vaut 1:
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— pour toutt=1,---,r
mz’ji:L

— Pour touti=1,--- ,rettout 1 < #i1<d, ona
mi/ji:O.

La matrice ci-dessous a r = 3 echelons: j; = 2, jo = 4,j3 = 5 et est echelonnee reduite.

0 1 miz 0 0 -+ mqq
0 0 0 1 0-- mod
00 0O 00 0 O
O 0 O 00 0 O

THEOREME 9.1 (Gauss). Toute matrice est ligne-equivalente a une matrice echelonnee reduite.

Preuve: Si M = 0z xq on a termine. Si M # 04 xq, soit ji le plus petit indice d’'une colonne
non-nulle. Soit m;;, # 0. Quitte a remplacer M par T3;.M ops i = 1.

On peut remplacer la premiere ligne Ly par mi_jll.Ll et supposons que my j, = 1. En remplacant
les L;,i > 1 par L; —m;j;, L annule les autres coefficients de la colonne j; et on obtient une matrice

ligne-equivalente de la forme (ici j; = 3)

0 0 1 * * *
00 0 mh 4y * *

, 0 0 O * *
M = 0O 0 O * * ok %
0 0 O m’d,’j1+1 * ok %

On repete la procedure avec la matrice extraite de M’ a partir de la deuxieme ligne et de la j; + 1-
ieme colonne. On effectue des operations sur les lignes a partir de la deuxieme et donc sans changer
la premiere. La matrice M est remplacee par une matrice de la forme

OOl*m’l'jz**-n *

00 00 1 * % - *
. 00 0 O 0 * ok -
Mi=10 000 0 x % % =x

o0

00 0 O 0 * % k%

et on peut alors remplacer la premiere ligne L7 par Li —mf{; L5 pour forcer le coefficient au dessus
du deuxieme pivot a etre egal a 0. Notons que cette transformation ne modifie par les coefficients
de la ligne L; qui sont en position < jy car les coefficent de L} dans ces positions sont nuls.

On repete 'operation ad nauseam.

|
EXEMPLE 9.2.1. L’exemple 9.1.1 est ’echelonnage de la matrice
01 1
M=(2 2 2
2 1 2

en la matrice echelonnee reduite Ids.
THEOREME 9.2 (Gauss). Deuz matrices ligne-equivalentes et echelonnees reduites sont egales.

PREUVE. (due a Yinghan).
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EXERCICE 9.1. (xx) Soient R, R € My xq(K) deux matrices echelonnees reduites et qui sont
lignes equivalentes. On veut montrer que

R=R.
Pour L = (I1,ls--- ,13) € K¢ un vecteur ligne et 1 < j < d, on note
6; (L) = lj
la j-ieme coordonnee (dans la base canonique) de L.
Soient Ly, -+, Ly, L}, L. C K% les lignes non-nulles de R et R’ (comme R et R’ sont lignes

equivalentes elles ont meme rang donc r = r’), et soit
1<ji< - <jr<d1<jj<--<j.<d
les positions des pivots de R et R’ et
W(R) = Vect({L1, -+, L}), W(R') = Vect({L},--- ,L.}) C K*
les espaces vectoriels engendres par les lignes (non-nulles) de R et R’. On notera egalement pour
1<i<r
Wi(R) = Vect({L;, Liy1,- -+, Ly}), Wi(R') = Vect({L;, L}, ,--- ,L.})

les SEV engendres par les lignes L;, j > et L}, j > i. En particulier W1(R) = W(R), W,.(R) =
K.L, et WH_l(R) C WZ(R)

(1) Pourquoi a t’on W(R) = W(R') ?

(2) Montrer que pour 1 < i,k <, on a

L=> e (L)L

(pour la deuxiemem partie, on ecrira L comme CL des L;, i < r) et on identifiera les
coefficients en applicant les formes lineaires €7, .
(3) Montrer que pour L € K%, on a

LeW(R) = Vj <ji, e;(L)=0.
(4) En deduire que j; > j; puis que j; = j; (en observant que R et R’ ont des roles
symetriques).
(5) Montrer que pour L € W(R), on a
L e Wl(R) V5 < ji e;(L) =0.

(6) Montrer que pour tout 1 <14 < r et tout j < ji on a e} (L;) = 0.

(7) Montrer que L, € Wh(R) (utiliser que que j5 > ji = j1), puis que j5 > jo et enfin que
J5 = ja.

(8) Montrer (par recurrence) que pour ¢ = 1,--- ,r, j; = ji.

(9) En deduire que pour ¢ = 1,--- ,r L, = L; puis que R = R’ (on appliquera la premiere
partie de la Question 2 aux L), en utilisant que j; = j;).

O

REMARQUE 9.2.1. Les matrices suivantes ne sont pas lignes equivalentes (quelque soit la carac-
teristique): elles sont echelonnees reduites et distinctes;

10 1 10 2 10 2
01 1],{o 1 1])],]010
00 0 00 0 00 0
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COROLLAIRE 9.1. (Unicite de la forme echelonne reduite) Soit M € My «q4(K) une matrice alors
M est ligne-equivalente a une unique matrice echelonnee reduite (qu’on appelle la forme echelonnee
reduite de M ).

Preuve: Si M est ligne-equivalente a deux matrices echelonnees reduites R, R’ alors R et R’ sont

ligne-equivalentes (car ¢’est une relation d’equivalence) et donc R = R'. O

9.3. Applications

9.3.1. Calcul du rang. Comme on a observe si M et N sont lignes-equivalentes elles sont
equivalentes; on a donc

PROPOSITION 9.5. Si M et N sont lignes equivalentes
rg(M) = rg(N).
Ensuite on a
PROPOSITION 9.6. Si R est echelonnee avec r echelons alors
rg(R) =
Preuve: Il s’agit de voir que R possede exactement r lignes lineairement independantes (cf. Corol-
laire 7.1). Comme R est echelonnee, elle possede d’ — r ligne nulles et r lignes de la forme
L;, = (()’... STy %y ’*), i1 <r
ou m;j, # 0 est en position j;, ¢ < 7 sur la ligne L;. Si
x1.L1+---+x..L, =04
la coordonnee j; de cette expression donne
x1mij, =0
et donc z1 = 0 (car m;j # 0), ensuite (sachant que z; = 0) la coordonnee j, devient xomoj, =
0 = 22 =0,..., et enfin z,m,;, =0 = 2z, =0.
9.3.2. Application aux matrices inversibles.

PROPOSITION 9.7 (Critere d’inversibilite par operations elementaires). Soit M € My(K) une
matrice carree alors M est inversible ssi M est ligne equivalente a la matrice identite Id,.

Preuve: La matrice M est inversible ssi elle est de rang d. Une matrice echelonne reduite carree
de taille d et de rang d possede d echelons et est donc triangulaire superieure avec des 1 sur la
diagonale; comme elle est reduite, on dessu de chaque 1 on n’a que des 0 et la matrice ne peut etre
que l’identite. (I
9.3.2.1. Engendrement du groupe lineaire par les matrices de transformations elementaires.

THEOREME 9.3. Le groupe lineaire GL4(K) est engendre par les matrices des transformations
elementaires
Tij, Dix, Clijpu, 4, <d, A, pe K, X#0, et sii=j, p# —1.
En d’autres termes (puisque l’ensemble des matrices de transformations elementaires est stable par
inverse) tout matrice M € GL4(K) s’ecrit comme un produit fini de ces matrices.

Preuve: Si M est inversible elle est ligne equivalente a ’identite ce qui signifie qu’on peut multiplier
a gauche M par un produit IT de n > 1 matrices de transformations elementaires et obtenir Idg:

II.M = 1dg.
On a donc
M=T1""!
est un produit d’inverses de matrices de transformations elementaires et donc un produit de matrices
de transformations elementaires. O
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9.3.2.2. Inversion de matrices par la methode de Gauss. Cette preuve donne une methode sys-
tematique pour inverser une matrice: supposons qu’apres une suite de transformations elementaires
on passe de la matrice inversible M a la matrice identite: il existe des matrices de transformations
elementaires
T, Ty, -, Ty
telles que
Th.--- T Th.M =1d
alors
Mt=1T, - T5.T.
En pratique, on utilise la methode des vases communicants: on ecrit I'une a cote de 'autre
M et Idg.
Ensuite

— 1. On effectue la premiere transformation elementaire permettant d’echelonner M et on
fait la meme transformation sur la matrice Idy, ce qui revient a multiplier M et Idg a
gauche par T, ce qui donne

Tl.M et Tl.Idd.

— 2. On effectue la deuxieme transformation elementaire sur T77.M et on fait la meme trans-
formation sur la matrice 7T1.1dg, ce qui revient a multiplier les deux matrices a gauche par
T5, ce qui donne

TQ.Tl.M et TQ.Tl.Idd.

— n. On effectue la n-ieme transformation elementaire sur T;,_1.--- .7T7.M et on fait la meme
transformation sur la matrice T,,_1.- -+ .T1.1dg, ce qui revient a multiplier les deux matrices
a gauche par T;, ce qui donne

Ty To.Tv.M =1dg et Tp,.---To. Ty = ML,

9.3.3. Extraction d’une base d’une famille generatrice. Soit V' un K-EV de diemsnino

d>1et
G ={wy, -, w}CV
une famille de vecteurs (lignes) et
W =(¥)

Iespace vectoriel qu’ils engendrent. On cherche une base de W.

On choisit # = {e;, i < d} C V un base et on identifie alors V a K? de cette maniere; on
associe a chaque w; son vecteur ligne

L; = Ligy(w;) € K¢, i < L
dans cette base. On a donc
(Li, i < 1) = Lig4((¥)) = Ligg(W).

PROPOSITION 9.8 (Description matricielle d'une base d'un SEV). Soit M € M;xq(K) la matrice
dont les | lignes sont formees des vecteurs lignes L;, © < l. Soit R la matrice echelonee reduite
associee a M et

L; = Lig,(R), i <1
l’ensemble des lignes de R alors si R possede r echelons on a
dimW =r
et les vecteurs de V' correspondants auzx r premieres lignes
Bw = {w; = Ligy! (L), i <1}



9.3. APPLICATIONS 159

forment une base de W (et les | — r autres vecteurs sont nuls).
On peut alors completer By en un base B de V en prenant

B = Bw U{e;, j nest pas un echelon de R}.
Preuve: Les {L,, i < r} forment une famille libre et par la proposition 9.4
({Li, i <r}) = ({Li, 1 <1}) = Ligg(W)
et comme les L] sont nuls pour ¢ > r, on a
W= ({w;, i <1}) = ({wi, i <1}) = {wi, i <r}).
Pour la completion on note que la famille possede dim V' elements et est libre. (]
9.3.4. Resolution de systemes lineaires. Soit ¢ : V — W une application lineaire entre
espaces vectoriels de dimension finies (d = dim V' et d’ = dim W). Le probleme qu’on se pose est le

suivant:
Etant donne w € W, trouver les v € V tels que

(9.3.1) o(v) = w.

Autrement dit, il s’agit de determiner si w appartient a o(V'), 'image de V par ¢ et de calculer
I’ensemble des antecedents de w

Sol,(w) = ¢~ ({w}) = {v €V, p(v) = w}.

L’equation (9.3.1) s’appelle un systeme lineaire.
Rappelons (dans le cadre plus general des groupes quelconques) la structure generale de ’ensemble
des solutions de cette equation.

THEOREME 9.4 (Resolution d’equations dans les groupes). Soit ¢ : G — H un morphisme de
groupes alors pour tout h € H, on pose

Soly(h) = ¢~ ({h}) ={g € G, w(9) =h} C G
la preimage de h par ¢. En particulier Sol,(eq) = ker ¢. Alors Sol,(h) est

— soit l'ensemble vide (ssi h & o(Q)),
— soit il existe go € Sol,(h) (ce qui equivaut a dire que h € p(G)) et

Sol,(h) = go-Soly(er) = go- ker o = {go.k, (k) =en}.
Preuve: Si o~ 1({h}) # 0, soit go € G tel que p(go) = h. Alors pour tout g tel que ¢(g) = h on a
©(90'-9) = ¢(90) "plg) =h~"h=en
et donc g = gg.k avec k = go_l.g € ker ¢ ce qui montre que
Sol,(h) C go.Sol,(eq).
Reciproquement pour k € ker ¢
©(90-k) = ¢(90)-p(k) = ¢(g0) = h
ce qui montre

Sol,(h) D go.Sol,(eq).

|
Appliquant ce resultat general au cas des especes vectoriels (vus vomme groupes additifs) G =
V,H = W et une application lineaire ¢ : V +— W on obtient
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THEOREME 9.5 (Resolution d’equations dans les espaces vectoriels). Soit ¢ : V +— W une
application lineaire entre deux espaces vectoriels de dimension finie. Pour tout w € W, on pose

Soly(w) = ¢~ ({w}) ={v eV, pv) =w}CV
la preimage de w par . En particulier Sol,(Ow ) = ker . Alors Sol,(w) est
— soit w & p(V) et Sol,(w) est l’ensemble vide,
— soit w € p(V) et il existe v° € V tel que o(v°) = w et alors
Soly,(w) = 1% 4 Soly,(04) = v° + ker ¢ = {vo + k, k € ker p}.
Le corollaire immediat suivant peut alors etre couple avec le Theoreme Noyau-Image:

COROLLAIRE 9.2. Awec les notations precedente, on a en particulier

— st dimkerg = 0 (cad. kerp = {0y} et ¢ est injective), Sol,(w) possede 0 ou 1 element
pour tout w.

— sirgy = dimp(V) = dim(W) (cad. (V) = W et ¢ est surjective) Sol,(w) possede au
moins un element pour tout w.

— SidimV =dim W et que ¢ est ou bien injective ou bien surjective, ¢ est bijective et pour
tout w, Sol,(w) possede exactement un element.

On va maintenant resoudre ce systeme ”abstrait” en le transformant en un probleme concret.
Pour cela on se donne des bases

BCV, B W
et
M = (mij)ij = mat,ag/,a/;(go)

la matrice de ¢ dans ces bases. Soient (v;);<a les coordonnes d’un vecteur v € V' et (w;)i < d’ celles
de w € W. L’equation (9.3.1) est equivalente au systeme lineaire a d’ equations et d inconnues dans
K, Uja J < d

mi11.01 + -+ M1q.Vqg = W1
mo1.V1 + 4+ Mog. Vg = W2

mgr1.01 + -+ +Mqgq.vg = Wy

ou a ’equation matricielle

mi1 Mmiz2 -+ Mid U1 w1
m21 Ma22 -+ Mg V2 w2

(9.3.2) M.Col(v) = . . . . 1=1 . | =Col(w)
mqg1 Mi2 -+ Mdd Vd wq'

On cherche alors une condition necessaire et suffisante sur les (w;);<qs pour que ces equations ad-
mettent des solutions (v;);j<d-

REMARQUE 9.3.1. En particulier si w = 04 est le vecteur nul, les solutions nous donnerons les
coordonnees des elements du noyau ker .

DEFINITION 9.6. L’equation lineaire (9.3.2) pour un vecteur general w s’appelle equation (ou
systeme) lineaire avec second membre (ou non-homogene).

L’equation lineaire (9.3.2) pour le vecteur nul Oy s’appelle equation (ou systeme) lineaire sans
second membre ou homogene.

Le Theoreme 9.5 et son corollaire 9.2 se reecrivent alors
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THEOREME 9.6 (Resolution d’equations lineaires). Soit M = (mi;)i<a j<a une matrice. Pour

wy
w2
toute matrice colonne w = | . | € Coly(K), on pose
wqr
U1
U2
Soly(w)={v=| . | € Coly(K), Mv=w} C Coly(K)
vg

l’ensemble des solution de l’equation matricielle

mir Mi2 -+ Mid U1 w1
m21 M2 -+ Mg V2 w2
mq1 Mi2 -+ Mgd Vd Wy

Alors Solps (w) est

— soit ’ensemble vide si w n’est pas de la forme w = M.vg pour vy € Coly(K),
— soit de la forme

SolM(w) = v + SOlM(Od/) = {’UO + k, kSOlM(Od/)}
pour tout vy € Colg(K) tel que w = M.y

9.3.4.1. Systemes lineaires et reduction de matrices. Pour trouver ces conditions, on applique
une suite de transformations elementaires de part et d’autre de legalite (9.3.2) de maniere a
echelonner-reduire la matrice de gauche. On multiplie les deux termes par un produit II, =
E,.--- .E; de matrices de transformations elementaires. Ici, on ne fixe pas la valeurs de w mais on
considere ses coordonnees comme des variables:

mix Mmiz - Mid U1 wq
m21  M22 ~---  Mad V2 w2
mgr1 Mgz -+ Mad Ud wqr

On obtient alors un produit dont la premiere matrice est reduite (supposons que le premier pivot
soit .jl = 1)

1 * 0 0 * V1 . w1 .

0 0 1 0 * vy : Wy y
0 0 0 1 % =|w=m.| “|=] %
: 0 : Wy 41
0O 0 0O 0 0 0 Vd 0 Wy :

ou les

w”L :wg(wla"' awd')a 1< d
sont des combinaisons lineaires des w;, ¢ < d’. Notons egalement que comme les lignes d’indice
> r + 1 sont nulles le premier produit fournit un vecteur colonne dont les coordonnes d’indice
> r + 1 sont nulles.

DEFINITION 9.7. Les inconnues v;, pour j;, 1 <i <r etant un echelon sont appelles inconnues
principales du systeme. Les inconnues v; pour j < d qui n’est pas un echelon sont appelles inconnues
libres du systeme.

On en retire plusieurs informations:
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(1) Le nombre d’echelons est egal au rang de M qui est le rang de .
(2) Les egalites obtenues
Wi, =-=wy =0
forment un systeme de d’ — r equations qui sont les equations cartesiennes I'image ¢(V):
(V) = {(wi)ica, wi, (w1, ,wg) =0, k=r+1} C W.

(3) Siw € W ne satisfait pas les equations ci-dessus alors w & ¢(V) et I’ensemble des solutions
est vide.
(4) Si w € W satisfait les equations ci-dessus alors w € (V) et 'ensemble des solutions est
non-vide. On obtient toutes les solutions
— en fixant de maniere arbitraire les inconnues libres v; (j pas un echelon),
— puis en resolvant le systeme echelone (dont les inconnues sont les variables principales
vj;, © < r) en fonctions des inconnues libres prealablement fixees et des wj(w), ¢ < r:
on resoud chacune des equations

12 .
v+ = wlw), i<
independament 1'une de I'autre; elles ont chacune une solution unique.
Par exemple on peut fixer vjo- = 0 si j n’est pas un echelon et on ptrouve alors ’UJO'i = w;

pour ¢ < 7.

(5) Alternativement on obtient toutes les solutions en calculant resolvant le systeme en prenant
w = 0 le vecteur nul, et en obtenant une relation lineaire entre chaque v;,, i < r et les
inconnues libres. Cela nous donne les vecteur du noyau ker ¢: une base du noyau (qui est
de dimension d — r) est obtenue en fixant une des inconnue libre egale a 1, et toutes les
autres inconnues libres egales a 0 et en fixant (de maniere unique) les inconnues principales
de sorte que le systeme d’equations

1 * 0 0 * % v 0
0 0 1 0 * % Vo :
0 0 0 1 x x =
0 0 0 0 0 0 Vd 0

soit satisfait.
Ensuite etant donne w € ¢(V), on calcule alors une solution particuliere v° comme
ci-dessus et on lui ajoute un vecteur arbitraire du noyau ker .

9.4. Operation elementaires sur les colonnes

Soit M = (mj;) € Mg xq(K) une matrice. Pour simplifier les notations on ecrira sa i-ieme ligne
(i<d)
C; = C3(M) = Col; (M) = (myj)i<ar
DEFINITION 9.8. Les operations elementaires sur les colonnes d’une matrice sont les applications
suivantes de Mg wq(K) vers Mg xa(K): pouri,j € {1l,---,d} et \€ K* et pe€ K
(1) Transposition: Echanger deuz colonnes i # j < d' de M:
Ci — Cj
(II) Dilatation: Multiplier la i-eme colonne par un scalaire X # 0:

(III) Combinaison Lineaire: Additionner a la colonne i un multiple scalaire de la la j-ieme colonne
pouri# j: p€ K
Ci — CZ + MCj

Ces transformations sont appellees transformations elementaires sur les colonnes d’une matrice.
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On rappelle que les transformations sur les lignes sont donnes par des multiplications a gauche

par des matrices inversibles de transformations elementaires (sur les lignes):
M — T, M’
Comme la transposition d’une matrice
M M ="M
transforme la i-ieme colonne de M en la i-ieme ligne de M’ et que
o.M ="M T = M,

on obtient immediatement

PROPOSITION 9.9. Une operation elementaire sur les colonnes d’une matrice M equivaut a une
operation elementaire sur les lignes de M' =M.
Une telle transformation est donnee par multiplication par la droite

M — M.'T,

par la transposee d’une matrice de transformation elementaire sur les lignes Ty en composant les
operations suivantes
M s "M Tp.PM s "T1.PM = MLAT) = MLT..
1l en resulte que des transformations sont bijectives et lineaires.

DEFINITION 9.9. On dit que N est colonne-equivalente a M ssi il existe une suite de transfor-
mations elementaires qui transforme M en N.

— De maniere equivalente, N est colonne-equivalente a M ssi il existe une suite finie de matri-
ces de transformations elementaires (sur les colonnes) telle que N est obtenue a partir de M par
multiplications a droite par cette suite de matrices.

PROPOSITION 9.10. La relation etre ”colonne-equivalente” est une relation d’equivalence sur
My wq(K).

— De plus deux matrices M, N colonnes-equivalentes sont equivalentes au sens de la notion
d’equivalence de deux matrices de la Definition 7.10. En particulier elles ont meme rang.






CHAPITRE 10

Determinants

That object was to present the subject as a continuous chain of
arguments, separated from all accessories of explanation or
illustration, a form which I venture to think better suited for a
treatise on exact science than the semi -colloquial semi-logical
form often adopted by Mathematical writers.

Lewis Carroll (1867)

10.1. Formes multilineaires

DEFINITION 10.1. Soit V' un K-espace vectoriel et n > 1 un entier. Une forme multilineaire en
n variables sur V est une application

) vn — K
.(Ula"'a’un) = A('Ul,"',’l]n)
telle que pour tout i = 1,--- ,n et tout choiz de n — 1 vecteurs v; € V, j # i, Uapplication A
"restreinte a la i-ieme composante”
v; € V*-)A('Ul,"' Sy ,'Un) c K

est lineaire:
A(vi, - A vl vn) = MA (v, -+ 04,00, vn) F Avg, - 00 o).
L’ensemble des formes multilineaires en n variables sur V est note
Mult™ (V, K) ou bien (V*)®™(notation ”produit tensoriel”).

REMARQUE 10.1.1. Si n = 1 c’est la definition usuelle d’une forme lineaire. Si n = 2 on parle
de forme bi-lineaire, n = 3 tri-lineaire, etc...

REMARQUE 10.1.2. Quelques exemple en basse dimension:
- SiV = K, n=2lapplication

H . K2 — K
2 (x1,22) — J[y(21,22) = z1.22

est multilineaire. Plus generalement

I1 : K" = K
"'(1’1,-~',$n) — Hn(x1’~-~7xn):x1x...xggn

est multilineaire.
~ Soit V = K? et n =2, on a I’application ”produit scalaire”

.. KPxK? — K
T (@), (w2,92)) = (21, y1) (22, 42) = @122 Y142
qui est bilineaire.

165
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— Soit V = K? et n = 2, on a 'application ”produit alterne”

K? x K? — K
(z1,91), (z2,92)) = (z1,91) A (@2, 92) = T1.92 — Y1.72
qui est bilineaire.

e/Ne:

ExXeEMPLE 10.1.1. Soient ¢1,--- ,£¢, : V +— K des formes lineaires, alors ’application
L@ Qb : V"= K

definie par
LR @Lly(vy,-- - v,) = Hﬁi(vi) =Ll1(vy). - Lp(vp)
i=1

est une forme multilineaire en n variables. C’est en fait I’exemple principal. En effet soit i € [1,d]
fixons des vecteurs v; pour chaque j € [1,d] different de ¢; Papplication

v by (vr). e Li() e o (vn) = (] 45 (0))ki(v)
J#i
est un multiple scalaire (de facteur ([];; ¢;(v;))) de la forme lineaire v — £;(v) et est donc une
forme lineaire en v.

REMARQUE 10.1.3. On prendra garde de distinguer la fonction ¢1 ®- - -®¥,, du produit £;.- -+ .£y:
le produit ¢;.--- ., est la fonction d’'UNE variable

byoooo v €V = Ly(v). -+ Ly (v)
alors que la fonction ¢ ® - - - ® £,, est une fonction de n variables
(R @y (v, ,v,) €V ly(v1). -+ Ly(vy) € K.
On a en fait
by Lpy() =0 Q- R Ly (v, -+ ,v).
REMARQUE 10.1.4. Notons egalement que l'ordre importe : si £; # £5 alors
LRL®  QlnFHLOL® - ®ly
alors que pour le produit usuel
by lo. v Ly £l by L.
Par exemple is ¢, = e}, ¢o = e} on a pour (vy,v3) = (er, e2)
el ®ej(e;,e) =€ ®(er).e5(e) =1.1=1
alors que
el ®ej(ez,e1) =€ ® (ez).e5(e1) =0.0=0.
REMARQUE 10.1.5. Attention, V™ est muni d’une structure naturelle de K-ev en posant
A(v1, ey vop) + (V- 0h) = (Ao + 0], Ay, + o))

mais une application A : V" — K qui est lineaire pour cette structure (une forme lineaire sur V")
n’est pas multilineaire en general.
Par exemple prenons V = K, n = 2 et considerons la forme lineaire

Y (r1,20) € KPSz + 10 € K.
Fixons x5 et calculons
S(A\ry + 2, 22) = Azy + 2] + 20
et si la forme etait lineaire en la variable z; on aurait
S(Ary + 2, 22) = AB(21, 12) + B(2), 2) = N2y + 20 + 7] + 22

qui ne vaut pas \xy + x| + x2 (sauf si 29 = Of).
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Notons egalement que si A est multilineaire alors pour tout ¢ < n pour tout choix de n — 1
vecteurs v; € V' j # i, application

Vi A(vla"' s Vgy vt ,'Ud)
est une forme lineaire et sa valeur en 0y est nulle
A(Ulv"' aOVa"' avd) :OK

(le Oy est place ”en position i”). C’est n’est pas forcement le cas d’une forme lineaire sur l’espace
vectoriel V™ (sauf si (vq,---,0y, -+ ,vq) est dans le noyau).

REMARQUE 10.1.6. Soient Ay, -+, Ap, pt1,- - 5 fbn € K, v1,--+ v, € V et A une forme multilin-
eaire alors

Av1 + pa0], 0 A+ vl

est la somme de 2™ termes (2" est le nombre de decompositions de l’ensemble {1,---,n} en deux
sous-ensembles disjoints):
Z (H Al)(H 1) Mwr g, -+ wrn)
IUJ={1, ,n} i€l jeJ

avec
Ju osiiel
WIne = v, siielJ’
En particulier
AAvr, - Aon) = A1 A Ao, -, op)
et
AAwvr, -+, Awvy) = AV A(vr, -+, vp).

PROPOSITION 10.1. L’ensemble Mult™ (V, K) = (V*)®" des formes multilineaires en n vari-
ables est un K -espace vectoriel quand on le muni de l’addition et de la multiplication par les scalaires
usuelle pour les fonctions de V™ a valeurs dans K: VA, Z € (V*)®" et pour A\ € K, la fonction

(A +E) (v, -+, on) = AA(v1, -+, 0n) + E(v1,- -+, vp)
est encore une forme multilineaire.

PREUVE. Exercice. O

THEOREME 10.1 (Dimension et base de l'espace des formes multilineaires). Soit d = dimV/,
B = {e1, -+ ,eq} CV une base et B* = {e},---,e;} C V* la base duale. Alors V*®" est de
dimension finie egale a d*; une base de V*®™ est donnee par l’ensemble des formes multilineaires
de la forme
e ®---®@ej , quand ji,- - ,jn parcourent {1,--- ,d}.
On note cette base
(#7)°" ={ej, ®---®ej,, (j1,,jn) € [L,d]"}.

Pour tout A € (V*)®" on a la decomposition
(10.1.1) A=Y ") Alej,,-ej,)ef, @@,
Ji,sin<d

Preuve: On va montrer que la famille (2*)®" est libre: soit une familles de d" scalaires

Ajl,"',jna Jiy o ajn <d

Z'”Z)‘jl,“',jne; ®...®e;§n =0,

Jiyeesjn<d

tels que
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on veut montrer que
vjh T ajn < d7 )‘jh“wjn =0.
Soient i1, - ,in < d, on evalue de deux manieres A(e;,, - ,e; ). On a d’abord
A(eil, s ,ein) =0.

D’autre part

A(ei17"' 7ein) = Z'.'Z)\jlv'“’jne;l ®...®e;‘n(eil7... 7ein)

iy, Jn<d
P ... . . * . PR “ .. . .
= E E :/\Jl,~~~,3nej1 (ei,)- -€; ezn E E Ajiyeee g Oy =is - O =i,
Ji,yinsd Ji,in<d

21, ;in
Ainsi

Vit, - in <dy Aiyoq, =0

stn
et c’est ce que 1'on voulait.

On va montrer que la famille est generatrice. On sait deja que c’est le cas pour n = 1 (le cas
des formes lineaires).

Pour se donner une idee, on traite le cas n = 2 (les formes bilineaires) . Soit A : V x V — K

une forme bilineaire et v1,v9 € V. On ecrit pour i = 1,2

d d
*k
vV, = E Tij€e; = E e]»(vi)ej
j=1 =1
et alors on a

A(Ul,UQ E J)ljle]l,vg

Ji=1
On a par linearite en la premiere variable

111,’[12 E :3:1]1 e]wUQ E :xlh e]17 E :zQJzejz

Ji<d Jji<d Jo2=1
et par linearite en la deuxieme variable on a

ehv E :1'2J29J2 E :$232 e]17e32)

J2=1 Jj2=1
et donc
* *
1)1,’02 E : E :A eJl’ejz L1j1T255 = E E A(ejl’ejz)ejl(vl)'ejg(UQ)
j1,j2<d J1,j2<d
* *
E E A(ej17ej2)ej1 ® ej, (v1,v2).
J1,j2<d
Ainsi
- . . * *
A= ZZA(ereh)ejl ® ey,
J1,j2<d

ce qui est la formule (10.1.1) pour n = 2.

On traite maintenant le cas general. On montre par recurrence sur n que la famille (%*)®" est
generatrice et que l'on a ’egalite (10.1.1):

A:Z”'ZA(eﬁ"” Jej.)ef ®--®e] .

Jiy s in<Sd
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On a deja montre cela pour n = 1 et n = 2. Supposons que (10.1.1) est vraie pour tout A €
Mult™ (V, K) et montrons la formule pour A € Mult™* Y (V, K). Soit

A:('Ul,"','Un+1)—>A('U17"','Un+1)EK
une forme multilineaire en n + 1 variables. Pour tout v,41 € V la fonction
Avn+1 :(’Ula"' ,/Un)_>A('U1,"‘ 7vn7vn+l)€K

est une forme multilineaire en n variables. Elle s’ecrit donc

_ * *
Avn+1 - E E Avn+1(ej1a T 7ejn)ej1 - €5,

Jisin<d
et on rappelle que
Av,i(€jrso€j,) = A€, - 5 €5, Ung)-
Pour chaque (ej,,--- ,e;, ) € ZA", les fonctions
Unt1 €V = Alej,, - ,€j,,0n41) € K
sont des formes lineaires en v,41 et s’ecrivent donc comme CL de la base #* = {e},--- ,e}}
—_— . ... . . *
A(ejlv' t 7ejn’.) - E A(e]17 aejn,yejn+1)ejn+1(.)'
Jn+1<d
On a donc
* *
A(Ula"' 7vnavn+1): E E A’Un+1(ej17"' 7ejn)ej1®"'®ejn(vl7"' a'Un)
Ji,jn<d
— * * . ... . . *
= E E €5, (v1).--- €, (vn) E Aley,, 7e]n7e3n+1)ejn+1 (Vn+1)
Jisjn<d Jnt+1<d

= D Y e eg,e,.,)e (v). e (va)e], (V)

15 s JnsJnt+1<d

_ * *
- E § A(ejla"’ 7ejn’ejn+l)ej1 ® "'®ejn+1(v17"' a’l}navn+1)'

J1s s dnsJnt1Sd
Ainsi on a montre que
— . ... . . * P *
A= E E Alej,, ,ej",eJ”Jrl)ej1 Q€ . -
J1y s dnsdnt1<d

La famille (#*)®"*1 est donc generatrice.
]

EXEMPLE 10.1.2. Pour V = K2 Pespace Mult?(K?2, K) est de dimension 22 = 4 et une base est
donnee en terme de la base canonique %°{e?, €3}

(#°)%% = {e] @ €], e] ® e}, ) @ e, e} @ ey}
et le produit scalaire s’ecrit
oe=ci®el +ey@e)
et le produit alterne

ene=el®e)—e)@e!
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10.1.1. Formes symetriques/alternees. A partir d’'une forme multilineaire en n variables
on peut en obtenir des nouvelles par ”permutation” des variables: par exemple soit n > 2 et
A e Mult™(V, K ), une formme multilineaire; on definit alors la forme multilineaire

(12).A : (v1,v2,v3, -+ ,vn) = A(v2, 01,03, -+ ,Up)

en echangeant v; et vy. Cette formes est a nouveau multilineaire (le verifier).
Plus generalement pour 1 <7 < 7 < n, on pose

(Z])A(vla s Uiyt ne 5 Ugy 0t avn) HA(Ula"' y Vg 3 Vgy o ,vn)~

DEFINITION 10.2. Une forme multilineaire

A:VP— K
est dite
— Symetrique siVi # j < n
(ij). A=A
c’est a dire V(vy, -+ ,v,) €V™, on a
A(’Ul,-'- JUjy ety Uy a'Un) ZA(’Ul,-'- Uiy, Ujy e a'Un>'

Autrement dit si la valeur de A ne change pas quand on echange deuxr composantes.
— Alternee siVi # j < n

(ij).A = —A
c’est a dire V(vy,--- ,v,) €V™, on a
A(Ula"' yUjyc s U4y 7Un):_A(U1a"' P RN O PR avn)'

Autrement dit si sa valeur est changee en son opposee si on echange deur composantes
distinctes.

L’ensemble des formes multilineaires symetriques en n variables sur V' est note
Sym™(V; K).
L’ensemble des formes multilineaires alternees en n variables sur V' est note
A (V; K).
PROPOSITION 10.2. Les ensembles Sym™ (V; K) et Alt"™ (V; K) sont des SEV de Uespace vec-
toriel Mult™ (V; K).
Preuve: Exercice. Pour cela on utilisera (apres 'avoir demontre) le fait que Papplication
(ij) : A € Mult™(V, K) — (i)A € Mult™ (V, K)
est lineaire. (]
EXEMPLE 10.1.3. On reprend certains exemples vus precedemment pour V = K?2:
— L’application ”produit scalaire”
K? x K? >
((x1,91), (22,92)) = (21,51)-(%2,92) = 2122 + Y192
qui est bilineaire symmetrique:

(@1, 91)-(22,92) = T1.22 + y1.y2 = (¥2,92)-(z1,91)
— L’application ”produit alterne”
K? x K?
((z1,91), (z2,92))
qui est bilineaire alternee:

K

e/Ne:
(w1,91) A (22,92) = T1.Y2 — Y122

}_>
—

(x1,y1) A (x2,y2) = T1Y2 — Y122 = —(2y1 — Yo2x1) = —(22,92) A (21, 91).
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REMARQUE 10.1.7. Pourquoi demande t on que

(ij)A = £A
et pas

(i) A =3A7
Soit A un scalaire tel que

(i7)A = AA.

En reappliquant (ij) a l'egalite precedente on a
(i) (i)A = A(ij)A = X2A.
Mais
(23)(2j)A = A
de sorte que si A # 0 on obtient
N =1 A=+l
10.1.2. Permutation et signature. La transformation
(ij). A — A
est un cas particulier d’une transformation plus generale: soit n > 1 et
o:ie€{l,---,n}—o(i)e{l,---,n}
une permutation de {1,--- ,n}, on dficit alors pour tout n-uple
(v1,-+ ,vp) €V"
un nouvel uplet obtenu par permutation des indices en posant
(01, ,0n)7 = (Va(1)s > Vo(m))-
On defini alors pour toute forme multilineaire A € Mult™ (V, K) une nouvelle fonction obtenue par
precomposition par 7:
G A (01, v v) = AL Vs 0)7) = AVa(1)y s Vo) s Vo(m))-

On verifie facilement que si A est multilineaire alors ¢.A est encore multilineaire.

THEOREME 10.2 (Action par permutation sur les formes multilineaires). Pour tout o € &,
Uapplication
o.e: A e Mult™ (V,K) = o.A € Mult™ (V, K)
definit un automorphisme du K-ev Mult(")(V, K).
Plus precisement, 'application
o €6, o.ec Aut(Mult™™(V, K))
verifie

— Soit 1d,, la permutation triviale. On a VA, Id,.A = A autrement dit

Idn.. = IdMult(") (V,K)*
- VA, Vo,7 € &, on a
(co7).A=0.(T.A)
autrement dit
(coT).e =(c.0)0(1.0) =0.(T.0).
En particulier, pour tout o
(0.8)o (07 .e)=1d,.e = Idypuieon (v, 5)

et donc o.e est un automorphisme lineaire de Mult(”)(V, K) de reciproque o~ .e.
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Ainsi
o 0.
definit une action a gauche &, Mult(”)(V, K) par automorphismes lineaires.
Preuve: On va montrer que
(coT).e = (c.0)0(1.0) =0.(T.0).

et le reste s’en deduit. On a, pour toute forme multilineaire A et tout uplet (vy,--- ,v,) € V"

(0oT) A1, -+ ,vn) = AVo(r(1))s "+ s Vo(r(n)))-
Par ailleurs

o (T.A) (v, vn) = (TA)((v1, -+ ,vn)7) = T A1), 5 Va(n))-
Pour calculer cette derniere expression, faisons le changement de variable
W1 = Vg(1)s """ s Wn = Vg(n)-

On a alors

et
Wr (i) = Vo (r(i)) = Voor(4)
et ainsi

0'(T-A)(Ula T ,’Un) = A(UO'OT(l)? T 7UUOT(TL)) = ((U © T)~A)(U17 to ,Un)

Pour decrire cette action il est utile de savoir comment &,, agit sur une base de Mult(”)(V; K),
notamment la base

(B*)®" = {e;.l @...e;n, G, 5jn) € {1,---,d}"}.
On a le lemme suivant:

LEMME 10.1. Soit V un K-EV de dimension finie, n > 1 un entier, {1,--- £, € V* n forme
lineaires et o € S,, une permutation, on a

o1 QL = ég—l(l) X R Za—l(n)
ou o1 est la permutation inverse.

Preuve: Pour (vy,---,v,) € V" on a

n

U'(gl & --- ®én)(vl)' o 7vn) = El & --- ®€n(vo(1),' T avo(n)) = ng(va'(i))

i=1
Faisons le changement de variable j = (i), i = 1,--- ,n, on a alors i = o~ 1(j) et
n n
H&(vg(i)) = H fg—l(j)(’l}j) = 30—1(1)(1}1). e .f0—1(n)(vn>
i=1 j=1

= Eo"l(l) - ®£o‘1(n)(vla T ,’Un)
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Rappels sur la signature. On rappelle que si K est un corps de caracteristique # 2, le groupe
symetrique &,, possede un (unique) morphisme non-trivial de &,, vers le groupe multiplicatif (K, x)
appelle signature et que ce morphisme est a valeurs dans le sous-groupe {£1} C K*

. +1
sign : S = { }
o+ sign(o)
defini de la maniere suivante: si o est la composee de t > 0 transpositions
O=T10 Ty
alors
sign(o) = (—1)".

REMARQUE 10.1.8. On rappelle que toute permutation est la composee de transpositions (ie.
lensemble des transpositions {(ij), 1 < i < j < n} engendre &,,). En particulier il existe au plus
un morphisme de groupes &,, — K* prenant la valeurs —1 sur toute transposition. Rappelons que
cette decomposition en transpositions n’est pas unique. En revanche la parite ¢ (mod 2) du nombre
de ces transpositions est unique et ainsi

1 si t =0 (mod 2)
sign(o) = (1)t =
gn(0) = (=1 {—1 sit=1(mod2)
est bien definie.

THEOREME 10.3. Les formes multilineaires alternees Alt"™ (V; K) (resp. symetriques Sym™ (V; K))
sont exactement les formes multilineaires verifiant

(10.1.2) Vo € 6,,0.A =sign(o)A (resp. o.A = A).
Preuve: Il est clair qu'une forme verifiant (10.1.2) est alternee (resp. symetrique) puisque la

signature de la transposition 7;; echangeant i # j vaut —1. Inversement soit A une forme alternee;
pour tout ¢ € &,,, si on ecrit ¢ = 11 o - - - 73 alors

oA=(ro-1)A=(-1)(ri0o-T_1)A=---=(=1).--- (=1)A = (—=1)'A = sign(o)A
puisque sign est un morphisme de groupes. O

10.1.3. Dimension des espaces de formes symetriques ou alternees. On va s’interesse
particulierement a ’espace des formes alternees.

THEOREME 10.4 (Dimension des espaces de formes alternees). On suppose que car(K) # 2. Soit
d=dimV. On a
0 sin>d

dim ALt™ (V; K) ={1 sin=d
Tsin<d
REMARQUE 10.1.9. Si car(K) =2 alors —1x = 1 et
Sym™ (V; K) = Alt™ (V; K).

Le theoreme est faux: pour d = n = 2 les produit scalaire e.e et le produit alterne e A ® sont alternes
et lineairement independants.

Preuve: (debut) On va seulement demontrer les cas n > d et n = d (qui est celui qui nous interesse
le plus.
Notons que si A est alternee alors on a

A(Ul,"' ’v’... 7v7...’vn>:_A(v1’... ,'U,"' ,v,...’vn)

et donc
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et donc (car 2k # Ok )

Plus generalement si la famille
{vi,-++ o} CV
est liee alors
Alvr, -+ vn) = 0.
En effet si la famille est liee, il existe 7 tel que v; est combinaison lineaire des autres vecteurs:
supposons par exemple que ce Soit vy,:
Up =101+ + Tpp—1.Vp—1

alors

A(Ul, cee e 7Un) = A(Ul, Cee e Up_1, X101+ l'nfl-vn~1)

=x1A(v1, - ,0p—1,v1) + -+ Tp_1A(V1, - ,Vp—1,05-1) = 0.
car on a toujours deux vecteurs egaux dans chacun des n — 1 termes de la somme.
En particulier si n > d une famille {vy,--- ,v,} de n vecteurs est toujours liee et donc

A(Ula t 7Un) =0.
Cela montre que pour n > d
AL (V5 K) = {0}
Le cas n = d. Supposons que n = d. Soit # = {ey,--- ,eq} une base de V et Z = {e},--- ,e}}

la base duale.
Comme A est multilineaire, elle se decompose dans la base (%*)®4:

(10.1.3) A=) "> Aej,, - ej,)ef, @@ e,
Ji,ee,jasd
et A est completement determinee si on connait les valeurs A(ej,,- - ,e;,) pour tout les choix

possibles de j1,---jq € {1,--- ,d}.

Notons que si pour ¢ # i’ on a j; = j; alors

A(ejl,"' » €55t ’ejimejd) = A(ejl,' €4, aejwejd) =0.
Ainsi la somme (10.1.3) est restreinte aux ji,---,jq4 € {1,---,d} qui dont distincts. Mais cela
signifie que 'application
i€ {13 7d}'_)ji € {17 ad}

est une permutation o de {1,--- ,d}.

Etant donne une telle permutation o; comme A est alternee on a

A(ejl y ’ejd) = A(ea(l)a T 7ea(d)) = Sign(J)A(ela o ’ed)‘

On a donc
A= Z Ales(1), 1 €o(a))€r1) @ ® €y
€S,y
(10.1.4) = Z sign(o)A(er, - ,eq)e, ) @ @ ey
ceS,
=Aer, - ,eq)Az
avec
(10.1.5) Ag =Y sign(o)e) ;) ® - ®e}).

oceBSy

Pour conclure il suffira alors de montrer que
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THEOREME 10.5. La forme multilineaire Ag : V¢ — K
Ag = Z sign(o)e, ) ® -+ @ ey,
oeBGy

est alternee et non-nulle.

En effet, si on admet que Ay est une forme alternee non-nulle la formule (10.1.4) nous dit que
tout forme alternee est proportionelle a Ag; cela montre que {Ag} est une base de Alt(d)(V; K) et
que

dim AltD(V; K) = 1.

Preuve: (du Theoreme 10.5) Evaluons cette forme en (eq,- - ,eq):
Agler, -, eq) = Z Sign(U)(e;(l) ®"'®eZ(d))(el,"' ,€d)
oceG,
= Z sign(a)e;(l)(el). e 'e;(d)(ed)
0’6671
= Z sign(0)ds(1)=1-"** 0o (d)=d-
oceG,

Ainsi, le seul terme non-nul de cette somme est celui ou
o(l)=1,0(2)=2,---,0(d)=d

c’est a dire la permutation triviale: on a donc

(10.1.6) Agler, - ,eq) = o(ldg) = 1.

La forme est non-nulle; montrons qu’elle est alternee.
Soit 7 une permutation; calculons

T.Ag = 7( Z sign(o)e, ) ® - @ ey )
ceS,

= Z sign(o)T.e;) @ - ® ey,
oceS,
car l'action est lineaire. Par le Lemme 10.1 on a donc

T.Agg = Z sign(a)eZ(Tfl(l)) K& e:.(.r—l(d))
oceS,

= Z sign(o)eg,,-1(1) @+ ® €5 -1y
O'GGn

Faisons le changement de variable

!/ - . !/
o' =007 je.o=0"or.

On a alors
TAg = Z sign(o’ o T)e, (1) ® - @ ey (g)-
o'e6,
On a
sign(o’ o 7) = sign(o”)sign(r)
et donc

T.A g = sign(T) Z sign(a’)ey, ;) ® -+ ® €},q) = sign(7)Ag.
o'eS,
et Ay est bien une forme alternee. O
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Explicitement, si les vecteurs v;, i = 1,--- ,d ecrivent dans la base %
d
v = injej, ) < d
j=1

avec z;; = €} (v;), on obtient

Ag(vi, - ,vq) = Z Sign(0)$10(1)~ © Tdo(d)-
oeS,y

DEFINITION. Soit V un K-EV de dimension d et 8 = {e1,--- ,eq} une base de V.
La forme alternee Ay est appellee determinant de V' dans la base . On la note egalement

dety = Ay = Z sign(o)eg ) ® - ® ey g

oGy
. . d .
Si on ecrit v; = ijl zijej, 1< d, on a
detg (v, -+ ,vq) = E sign(o)215(1)- - Lo (d)-
oSGy

La forme detg est l'unique forme multilineaire alternee A verifiant

(10.1.7) Aler, - ,eq) = 1.
Cest une base de Alt'D(V, K) et pour A € Alt'D(V,K) on a
(10.1.8) A= A(er,-- ,eq)dety.

En particulier, pour V.= K¢ et % = %2 la base canonique on note simplement Ay = dety.
Ainsi si pouri=1,---,d on a v; = (xij)j<d

detgq(vy, -+ ,vq) = Z sign(0)T14(1)- -+ Tdo(d)-
ceGy

REMARQUE 10.1.10. La forme dety depend de la base £ puisqu’elle s’exprime comme un poly-
nome en les coefficients des vecteurs v; exprimes dans la base 4. Si on choisit une autre base

#B = {e},---,e}} alors dety est une autre forme alternee, non-nulle et on a une relation de pro-
portionalite

dety = dety (€], ,e))dety
avec detg (€}, -+ ,e}) € K* car sinon on obtiendrait que detg = 0. Echangeant les role de £ et

%' on obtient
detg (€], , €)= detg(er, - ,eq) " .

10.1.4. Interlude: Principe general de symmetrisation. On va ici donner un principe
general de construction des formes alternees.

Pour illustrer dans un cas simple ce processus on rappelle comment on construit une fonction
paire ou impaire a partir d’une fonction generale f : R — R: on pose

fi(@) = f(@) + f(=2), f-(z):= f(z) - f(—2);
alors fy est une fonction paire
fi(=2) = f(=2) + f(=(-2)) = f(—2) + f(z) = f+(2)
et f_ est impaire
f-(=z) = f(=z) = f(=(=2)) = f(—2) = f(z) = —f-(2).
REMARQUE 10.1.11. De plus on a
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Le cas precedent et le cas de I'action du groupe symetrique &,, ~ Mult(")(V, K) sont des cas
particulier du contexte suivant: soit W un K-EV et G un groupe fini agissant a gauche sur W
lineairement: I'action de G est donnee par un morphisme de G vers le groupe des automorphismes
lineaires de W

t: G — GL(W).
On notera cette action
g-w=ug)(w).
EXEMPLE 10.1.4. Le groupe {£1} agit sur les fonctions f : R — R par (¢ = £1)
- f(z) = flex).
Le groupe &, agit sur Mult™ (V; K) par
oA (v, ,v0) €V AMvsy, o+ 5 Vo(n)) € K.
Supposons qu’on veuille trouver un vecteur wy invariant sous 'action de G: tel que
Vg € G, g-wy = ws.
EXEMPLE 10.1.5. Par exemple pour G = {£1} et W = F(R;R) on veut que
f(Ez) = f(2)
c’est a dire que f est paire.
Alors on considere pour tout w € W la somme des transformes de w par tous les elements de g

w1 ::Zh-w

heq@
Alors w; est invariant:
Vg € G, g-wy = w;.
En effet comme ’action est lineaire

grwr=g-(Y_hw=> g-h-uw

heG heG

= Z(g.h) “w

heG
= Z hw=uwu
h'eG
en faisant le changement de variable A’ = g.h car la translation

heG—ghelG

est une bijection de G sur G.
Cela permet d’obtenir les fonctions paires. Pour les fonctions impaire on a la variante suivante:

THEOREME 10.6 (Processus de symetrisation pour I'action d’un groupe fini). Soit K un corps,
(G,.) un groupe fini, W un K-ev de dimension finie et
t:G— GL(W)
une action a gauche de G sur W qui est lineaire: 1 est morphisme de groupe de G vers le groupe des
automorphismes de W. On notera cette action
g-w=u(g)(w).
Soit
x: G (K*,X)
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un morphisme de G vers le groupe multiplicatif de K (on dit que x est un caractere de G a valeurs
dans K*). Soit w € W un vecteur, alors le vecteur

Wy 1= Z x(h)"Lh-v
heG
verifie pour tout g € G
g - wy = x(g)-wy.

REMARQUE 10.1.12. Au semestre prochain vous verrez la notion de vecteur propre et de
valeur propre pour un endomorphisme: le vecteur v, est un vecteur propre pour chaque endo-
morphisme ¢(g) de valeur propre x(g).

Preuve: Comme g - o est lineaire, on a
grwy=g-(O_ x(W) " how)=Y x(h) g -h-w=>" x(h)"(g.h) - w.
heG heG heG
Posons h' = g.h alors quand h parcours G, h' parcourt G, on a donc (changement de variable
h=g LK)
S ox) gy w= > x(g7 )RR w = x(g) Y x(R) TR - w = x(g)-wy;
heG h'eG h'eG

en effet comme y est un morphisme

X(g~ BT = x(g ) T ()T = x(g) x (W)
0

10.1.5. Application a la construction de formes alternees. Prenant W = Mult™ (V; K),
G = G, agissant par

U'A(U17 e 7U7L) = A(UO'(].)’ e 7UU(n))

et x =sign: &, — {£1}, et applicant le Theoreme 10.6 et utilisant que fait que comme sign(o) €
{£1} on a sign(o) = sign(c) ™!, on obtient

COROLLAIRE 10.1. Soit A une forme multilineaire en n variables sur V' alors

Agign = Z sign(o)o. A
eSS,

est alternee.

REMARQUE 10.1.13. On a demontre que si n > d, Alt" (V; K) = {0} donc pour toute forme
multilineaire A en n > d variables

Asign = QK-

Par contre pour n < d cette construction produit souvent une forme alternee non-nulle et cela permet
des calculer les dimensions des Alt™ (V; K) si n < d.

Pour n =d et

A=el® --®e)

on a une forme alternee

(€] @ @elsign = »_ sign(o)o.(e] @ - @ef)
oceGy
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qui est donc un multiple de detg. On a

(6{ (SR ®eZ)sign(ely' o aed) = Zsign(a)a.(e{ K- ®e;ki)(e1" o 7ed)

= Zsign(a)e’{ ®R---®eg(e,(1), " 1€x(a))

d
= Zsign(a) H(Si:c,(i) = sign(Idy)1 = 1.

i=1
Ainsi on a
(eT X ® e;)sign = detg.

10.2. Determinants

10.2.1. Determinant relatif a une base. Rappelons la

DEFINITION 10.3. Soit V un K-EV de dimension d et 8 = {e1,--- ,eq} une base de V.
La forme alternee definie par

detyg = Ag = Z sign(o)e;(l) K Q e:(d)
c€G,y

est appellee determinant de V' dans la base 2.
La forme detg est l'unique forme multilineaire alternee A verifiant

(10.2.1) Aley, -+ ,eq) = 1.
C’est une base de Alt'D(V, K) et pour A € Al'D(V,K) on a
(10.2.2) A= A(el, cee ed)det;g.

Si on prend V = K¢ et B = Y la base canonique on note simplement Ay = detq. Ainsi si
vi = (i) j<d
detg(vy, -+ ,vq) = Z Sign(g)mlo(l)- © Lo (d)-
oceSy

10.2.1.1. Expression explicite de detg.

THEOREME 10.7 (Formules combinatoire pour le determinant). Soient vy, -- ,vq des vecteurs
et (x;5)j<a leurs coordonnees dans la base A:

d
V; = E xijej.
=1

On a les formules suivantes

d
(10.2.3) detg(vy, - ,vq) = Z sign(o) wa(i) = Z sign(o)T15(1)- - Tdo(d)-
eSSy =1 ceSy
d
(10.2.4) detg(vy, - ,vq) = Z sign(o) Hacg(j)j = Z sign(o)To(1)1- - To(d)a-
oceSy Jj=1 €Sy
Preuve: On a deja vu la premiere formule. Pour la deuxieme, ecrivons j = o(i), on a alors

i =0"1(j) et quand i parcours {1,--- ,d}, j parcours egalement {1,--- ,d}. On a donc

d d
detgz(vi, -+ ,vq) = Z sign(o) Haci,,(i) = Z sign(o) H To1(5))-
=1 j=1

ceGy ceGy
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On fait le changement de variable ¢ = o~ et la somme s’ecrit

d
detg(vy, -+ ,vq) = Z sign(o™1) H Ty (j)j
0€G, Jj=1
et comme
sign(o ') = sign(o) ! = sign(o)

car sign(o) = 1 on obtient

d
detg(vr,--+,va) = Y sign(o) [ [ 2@,
j=1

oSGy
U
REMARQUE 10.2.1. Les formules (10.2.3) ou (10.2.4) auraient pu etre prise comme definissant
le determinant de d vecteurs exprimes dans une base % dans un espace de dimension d sans jamais

parler de formes multilineaires alternees et c’est ce qu’on trouve dans de nombreux cours d’algebre
lineaires.

10.2.2. Determinant d’un endomorphisme. Soit ¢ : V +— V un endomorphisme. A toute
forme multilineaire A (en n variables) on associe une nouvelle forme (inspiree de la construction de
Papplication adjointe pour les formes lineaires) en posant

@ (M) (01, vn) == A(p(ve), -+, p(vn)).
On verifie que ¢*(A) est multilineaire et que si A est alternee ou symetrique ¢*(A) est alternee
ou symetrique: si 0 € &,, est une permutation, on a
O"(‘)O*A)(Ula te ,Un) = (p*A(’UU(l)a T 7U0'(n))
= A(@(”o’(l))a to 7@(”0’(77.))) = (P* (U'A)(Ulv e ,Un)
et
oA =2A = 0.(p"A) = p*A.

REMARQUE 10.2.2. Cette notation ¢*(A) est analogue avec la notation pour I’application lineaire
duale dans le cas des formes lineaires (ie. les formes multilineaires en une variable). Il faut cependant
remarquer que ¢*(A) est la composee A o p®™ ou p®™ : V™ i V™ est I'application
‘p®n : (Ulv T 7vn) = ((,0(111), e v@(vn))'

Ainsi on aurait pu/du poser (p®")*(A) au lieu de p*(A).
En particulier si n = d, ¢*(dety) est proportionel a detg:
(p* (detgg) = )\<p.detgg.
En fait si A est n’importe quelle autre forme alternee, on a A = A.dety, A\ € K (car Alt(d)(V; K)
est de dimension 1) et

P*A =" (Adetg) = Ao (detg) = A A,.detz = A, Adetz = A A.
Le facteur de proportionalite A, € K s’appelle le determinant de ¢ et est note det ¢.

DEFINITION 10.4. Le determinant de ¢, detyp € K est le scalaire verifiant pour tout A €
ALD(V: K)

(10.2.5) ©*(A) = det(p)A.
En particulier det(y) ne depend pas du choiz d’une base de V' et pour toute base B CV on a
©*(dety) = det(p)det .



10.2. DETERMINANTS 181

THEOREME 10.8 (Proprietes fonctionelles du determinant). Soit ¢ : V +— V un endomorphisme.
L’application det : End(V') — K a les proprietes suivantes

(1) Homogeneite: soit A € K alors
det(X.p) = A%, det(¢p).
(2) Multiplicativite: on a
det(v) o ) = det (1)) det(p) = det(p) det(¢p) = det(gp o ).
(8) Critere d’inversibilite: on a
det(p) # 0 <= p € GL(V).
(4) Invariance par conjugaison: pour tout ¢ € End(V) et ¢ € GL(V) on a
det(Ad(¥)(p)) = det(vpy™) = det(p).
(5) Morphisme: L’application
det : GL(V) — K*
est un morphisme de groupes. En particulier det(Idy) = 1.

Preuve: Soit det(p) tel que
©*(dety) = det(p)det .
Soit A une forme alternee quelconque, alors
A= MXdetyg, e K
et
©*(A) = p*(A\dety) = (A\dety) o ¥4 = \.(dety 0 0®?) = X\.¢*(dety) = A.det(p)dety = det(p)A.
— Homogeneite: on calcule pour A une forme alternee quelconque
@) (M) (w1, yva) = AAp(v1), -+, Ap(va)) = AMA(p(v1), -+, p(va)) = A% (A) (v, -+, va)
car A est multilineaire en d variables. Ainsi par (10.2.5)
(A)*(A) = det(Ap)A = X4 det(p)A.
— Multiplicativite: Soient ¢, € End(V), on a
(Wop) A =Aoy®op® = p* (P A) = ¢" 0 P*(A).
En effet
(o@) (A)(ve, -+ svn) = APp(p(v1)),- -, 1b(p(vn))
= (" A)(p(v1), -, p(vn))
=@ (W A) (01, s on
Par (10.2.5) on a donc
(¢ 0 @)"A = det(y o p)A
et
@ o™ (A) = det(p)y"(A) = det(p)det(¥)A
Ainsi
det(1) o ) = det(t)det(y):

de plus come K est commutatif

det (1) o ) = det(1p)det(p) = det(p)det(1)) = det(p o ).

Si ¢ = Idy, on a a bien sur
det(Idy) =1
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car
Idj,A = A.
— Critere d’inversibilite (condition necessaire) Si ¢ est inversible, on a
det(Idy) = 1 = det(¢p ™" 0 ) = det(p ™) det(p)
ce qui implique que det(p~!), det(y) sont non-nuls et inverse I'un de 1'autre:
det(p™1) = det(p) 1.
— Morphisme: On a donc montre que
det : GL(V) — K*

est un morphisme de groupes.
— Critere d’inversibilite (condition suffisante) Soit ¢ € End(V)—GL(V) (qui n’est pas inversible)
alors

{Qp(el)’ U a‘p(ed)}

n’est pas une base et est donc liee. En particulier

det(p) = det(p)detz(e1,--- ,eq) = detg(p(er), -, ¢(eq)) = 0.
O

DEFINITION 10.5. Le noyau du morphisme det : GL(V) — K> est appelle "groupe special
lineaire de V7 et on le note

SL(V) = kerdet = {¢ € GL(V), detp = 1}.

C’est un sous-groupe distingue de GL(V) (car c¢’est un noyau,).

10.2.3. Determinant d’une matrice.

DEFINITION 10.6. Soit M € My(K) une matrice carree de coefficients M = (mj)ij<a- Le
determinant det(M) de M est (de maniere equivalente):

(1) Le scalaire
det M = det(par)

ou pyr : K% K® est Uapplication lineaire sur K¢ dont la matrice dans la base canonique
matgo (o) = M.

(2) Le determinant —relatif a la base canonique B¢, de Uespace vectoriel Colq(K) des vecteurs
colonnes de hauteur d— de l’ensemble des vecteurs colonnes de la matrice M :

det(M) = dety_ (Coli(M),- -, Cola(M))
oly

(3) Le determinant — relatif a la base canonique ,@Eigd de l’espace wvectoriel Lig,(K) des

vecteurs lignes de longueur d— des vecteurs lignes de la matrice M dans l’espace des vecteurs
lignes Lig, (K):

det(M) = det gy (Ligy(M), - ,Ligg(M))
(4) La somme

(10.2.6) det(M) = Y sign(o)mo()1-- -+ Mo (aa-
ceSy
(5) La somme

(10.2.7) det(M) = Z sign(o)mig(1). -+ Mao(d)-
ceBy
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REMARQUE 10.2.3. En sens inverse, pour tout K-EV V| tout endomorphisme ¢ : V. — V et
toute base Z C V, on a

det(matgz(p)) = det(ep).
Preuve: (de l'equivalence de la premiere definition avec les autres) Soit ¢y : K¢ — K9 telle que

matgo (oar) = M. Cest a dire que la j-ieme colonne de M est formee par les coordonnees de ¢ (€;)
dans la base canonique:

d
prle;) =Y mije;.
i=1

Par definition

det(M) := det(pnr)
ou det(ppy) verifie

©*(detgo) = det(ppr)det go.
Evaluons cette egalite a (e1,---,eq). On obtient
detgo(p(er), -, p(eq)) = det(par)detzo(er, -+, eq) = det(par) = det(M).

— Cela montre I'equivalence de la premiere et de la deuxieme definition.
— La quatrieme egalite (10.2.6) provient du fait que les coordonnees du vecteur colonne Col;(M)
sont donnees par les (mij)igd et du Theoreme 10.7 : on a

detgo(p(e1), -, p(eq)) = detgo((mar, -+ ,ma1), -+, (Mad, + ,Mda)
d
= Z sign(o) Hma(l)l- S Mg(d)d
0’6,1 =1
(on a pose v; = (my, -+ ,mg;) le vecteur correspondant a la i-eme colonne).

— La troisieme et la cinquieme egalite (10.2.7) proviennet a nouveau du Theoreme 10.7: on a

detgp  (Ligy (M), -, Ligg(M)) = detpspy((mar, -~ ;mua), -+ s (Mars - -+ s Maa))

d
= Z sign(o) Hm10(1)~ S Mg (d)
i=1

oG4

REMARQUE 10.2.4. Pour tout endomorphisme ¢ : V' — V et toute base & on a
det(p) = det(matz(p)).

mi1 Mi2
M =
ma21 Ma22

det(M) = M11M22 — MM12M27].

u (2

det(M) = ad — be.

EXEMPLE 10.2.1. Sid=2et

et Gy = {Idz, (12)} On trouve

Autrement dit si

Sid=3,
mi1 M2 Mi3
M= [ m21 ma ma3
m31 M3z2 M33

&5 = {1ds, (12), (13), (23), (123), (132)}



184 10. DETERMINANTS

FIGURE 1. Regle de Sarrus

det(M) = M11M22M33 — M12M21M33 — M13M22M31 — M11M23M31 + M12M23M31 + M13M21M32.

On reecrit quelquefois ce determinant en groupant ensemble les terme avec un + et ceux avec
— pour calculer selon la regle de Sarrus.

det(M) = M11M22M33 + M12M23M31 + M13M21M32 — M12M21M33 — M13M22M31 — M11M23M31.

Il resulte de cette definition et des proprietes du determinant d’une application lineaire et de
(10.2.6) et (10.2.7) que:

THEOREME 10.9 (Proprietes fonctionelles du determinant des matrices). Le determinant d’une
matrice a les proprietes suivantes

(1) Homogeneite: soit A € K alors
det(A\.M) = X4 det(M).
(2) Invariance par transposition:
det(M) = det(*M).
(3) Multiplicativite: on a
det(M.N) = det(M) det(N) = det(N) det(M) = det(N.M).
(4) Critere d’inversibilite: on a
det(M) # 0 <= M € GLy(K).
(5) Invariance par conjugaison: pour C € GL4(K)
det(Ad(C)M) = det(CMC~1) = det(M).
(6) Morphisme: L’application
det : GL4(K) — K*
est un morphisme de groupes. En particulier det(Idg) = 1.
Preuve: Rappelons que si M = matg,(¢), N = matg, (1)) alors M.N = matg, (¢ o) et
det(M.N) = det(p 0 9) = det(p) det(yp) = det(M) det(N).

Cela montre la multiplicativite qui permet de montrer le critere d’inversibilite ou le fait qu'on a un
morphisme.

Pour montrer que (on pose ‘M = (mi;)ig = (mji)ig)

det(M) = det(*M)
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on remarque que

det M = Z sign(o)me1y1- -+ Mo(dyd = Z sign(o)mis(1)- -+ Mo (d)

oceGy 0ceGy
= Z sign(o)mg(1y1- - My aya = det(* M)
oGy

O

COROLLAIRE 10.2. (Invariance du determinant par dualite) Soit ¢ € End(V) et ¢* € End(V™*)
Uapplication lineaire duale. On

det ¢* = det .
Preuve: C’est un corollaire de (2) du Theorem 10.9. d

COROLLAIRE 10.3. Soient M et N deux matrices semblables (ie. conjugues): il existe P €
GLq4(K) tel que

N=PMP*
Alors
det(M) = det(N).
Le determinant ne depend que de la classe de conjugaison (d’une matrice ou d’un endomorphisme).
Preuve: On a
det(N) = det(P.M.P~!) = det(P) det(M) det(P)~* = det(P) det(P)~* det(M) = det(M)
car la corps K est commutatif. O

REMARQUE 10.2.5. Ce resultat s’interprete en terme de changement de base: si M = matg(p)
est la matrice dans une certaine base d’une application lineaire ¢ et N = matg (¢) est la matrice
de la meme application calculee dans une autre base. On a par la formule de changement de base

N=PM.P!
ou P = matg 4 est une matrice de changement de base et on obtient que
det N = det M = det .

DEFINITION 10.7. Le noyau du morphisme det : GLg(K) — K> est appelle "groupe special
lineaire des matrices de taille d” et on le note

SLq(K) = kerdet = {M € GLy(K), det M = 1}.

C’est un sous-groupe distingue de GL4(K) (car ¢’est un noyau).

10.3. Calcul de determinants

Pour calculer explicitement des determinants il est pratique de les noter

mii T mid
det(M) = |M| =

mq1 -+ Mdd
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10.3.1. Matrices blocs.

THEOREME 10.10 (Determinant des matrices par blocs). Supposons que la matrice M € My(K)
s’ecrive sous forme triangulaire superieure par blocs:

A4:<M1 *>,Aﬁeﬂh&K%A@eA@AK%dy+@:d
0 M,

alors

det(M) = det(M;) det(Ms)

On va donner deux preuves.
Preuve: (Methode purement combinatoire) Notons que pour j < dy et @ > d; on a m;; = 0. On
considere I'expression du determinant sous la forme

det(M) = det(*M) = Z sign(o)my(1)1- -+ Mo (d)d-
ceG,y

Dans cette somme, on voit donc que les o tels qu’il existe 1 < j < dy verifiant o(j) > dy ont une
contribution nulle car mq(;); = 0. Ainsi la somme definissant le determinant est le long de I'ensemble
G4,4, des permutations o verifiant

0’({1,”' ’dl}) C{l,"' ’dl}
et donc
O({d1+1,~-- ,dy —|—d2})C{d1+1,~-~ ,d1—|—d2}.

Notons qu’une telle permutation ¢ induit alors (par restriction) deux permutations

01 = 0)1,,d1} € Say

T2 = O|{dy 41, di+da} € Sdr 41, di+d2) = Gy

et on a

0 = 01009
en considerant o1 comme la permutation de {1, -- ,d} qui permute le sous-ensemble {1,--- ,d;} par
o1 et qui est l'identite sur {dy + 1,--- ,d; + d2} (et similairement pour o). En particulier on a

sign(o) = sign (o )sign(os).
On laisse le lemme suivant au lecteur:
LEMME 10.2. L’ensemble Gq44, est un sous groupe de &4 et l’application
o (01,09)
est un isomorphisme de groupes
Gady = 6ay X Gfg 41, di+ds} = G4y X Ga,.
On peut donc reecrire

d] d2
det(M) =" > sign(o1)sign(o2) [ [ moryi X [ [ mMas+oatiy.ar+i-
=1 =1

U1€Gdl G‘2€6d2

dy d2
= ( Z sign(al)ngl(i)i) X ( Z sign(ag)HmlerUQ(i)’le) = det (M) det(My).

0‘166d1 =1 0266(12 =1



10.3. CALCUL DE DETERMINANTS 187

COROLLAIRE 10.4. Soit k > 2 un entier, si M est une matrice triangulaire superieure a k blocs

Ml * *
M= 0 * aMiGMdi(K),igk" dy+--+d,=d
0 0 My

on a
det M = det(Ml). cee det(Mk).

En particulier, si M est triangulaire superieure (k = d) —par exemple diagonale—

)\1 *
0 )\2 * *
M = . )
0 *
0 Ad

on a
det M = A\ -+ g

10.3.1.1. Matrices triangulaires inferieures par blocs. Un matrice M est triangulaire inferieure
par blocs si elle est de la forme

M; 0
= (M) 0 0, 2 0. =

THEOREME 10.11. Supposons que la matrice M € My(K) s’ecrive sous forme triangulaire in-
ferieure par blocs:

My 0
M = < L Mz)’ My € My, (K), My € Mg, (K), di +dp = d.

alors
det(M) = det(M;) det(Ms).

Soit k > 2 un entier, si M est une matrice triangulaire inferieure a k blocs

M, O 0
M=|, . ol MieMy(K), i<k, di+---+dy=d
* * Mk

on a
det M = det(My). - -- . det(My).

Preuve: Sa transposee M est alors triangulaire superieure par blocs de la forme
‘M *
t 1
M = .
( 0 tMg)

alors on a par invariance du determinant par transposition

det(M) = det(*M) = det(*M,) det(*Ms) = det(M;) det(My).
Preuve: (Par factorisation) Ecrivons

M, M
M = ( 01 Mi) , M3 € matdlde(K).

Notons que si M; ou My n’est pas inversible la matrice M n’est pas inversible: c’est clair si M;
n’est pas inversible car la famille des d; premieres colonnes sera liee et si My n’est pas inversible la
famille des dy dernieres colonnes sera liee: dans ces deux cas det M = 0 = det(M;) det(Mz).
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Si My et M5 sont inversibles, on a la factorisation

A= (My Mg\ _ My 0 (Idg, M Ms

“\0 M) 0 Idg 0 M,
(My 0\ [1dg, M;'M3\ (1dg, M;'Ms;
“\ 0 Idg 0 M, 0 M,
_(M; 0 (1dg, M;'MzM;Y\ (Idg, O
“\ 0 Idg 0 Id, 0 M,
= MMz M

On a donc

B My O Idg, M;*MsM;* Idg, O
det(M) = det < 0 Idd2> det < 0 Tdg, det 0o M,

et il suffit de montrer que ces determinants valent
det(M;) = det(M), det(M3) =1, det(M3) = det(Ms)

respectivement.

On a

My 0\ . , ,
det < 0 Idd2) = ezc: sign(o)m} yay1-+ MY g (aya-
ceG,

Notons que pour j > dy + 1, la j-ieme colonne n’a qu’un seul terme non-nul, le j-ieme; on a donc
m’lyg(j)j = 0 sauf si o(j) = j auquel cas m;j = 1. Ainsi la somme porte sur les permutations o telles
que o(j) = j pour tout j > d; + 1 c’est a dire les permutations qui fixent tous les elements entre
dy +1 et d. L'ensemble de ces permutations Sg >4, +1 forme un sous-groupe isomorphe a &4, (en
envoyant une permutation de &4, sur la permutation de {1,--- ,d} qui permute les elements de 1 a

dy et fixe les autres)

o1 (), G < d
01 €64, —0€By>d+1: ] 1(]) Is @
JrJ, j=zdi+ 1
et on a
sign(o) = sign(oy).
On a alors

M, 0\ _ / /
det ( 0 Iddg) = Z sign(0)m4 yy1-+ MY gayya 1 -1

0€64,>d;+1

Z Sign(a)mll,a(l)l' T 'mll,a(dl)dl = det(My).
€Sy,

On montre par un raisonnement similaire que

Idg, 0
det( 0 M2> = det(M>)

en notant que la somme ) -- pour sur les o tels que

Vji<dy, o(j) =

et ’ensemble de ces permutations G4 ¢4, est un sous-groupe isomorphe a Sg4,, I'isomorphisme etant
donne par

eSS,y ’

Je g, < dy

02 €620 € Gygq, - . .
{d1 +j = di 4+ 02(j).

et que la signature est preservee.
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Pour la matrice du milieu M} on ecrit
do

’ . /
det M5 = Z sign(oz) H M3 4y 4oa(7)dr 4
02664, J=1

. ) . p _ . p . . .
Notons que si o5(j) > j alors M3 4 4oa ()i = 0 car la matrice M5 est triangulaire superieure donc

necessairement la somme porte sur les oy telles que
Vj: 13 7d2> U(]) <]

mais il n’existe qu'une seul telle permutation, Id,, et alors

/ ) _
M3, 4y +1d gy ()5 = 3,di+jsda+s = L
On obtient donc
det M} = 1.

10.3.2. Calcul par operations elementaires sur les lignes.

LeMME 10.3. Soient Ti;, D;,CL;j, les matrices associees aux transformations elementaires
sur les lignes d’une matrice. On a

detTj; = —1 (si i # j)
det D; » = A
det Clij,, =1, (sii#j).
Preuve: Notons que 7}; est la matrice telle que pour tout matrice carree de taille d x d ’application
M w— T;; M
echange les lignes i et j de M. On a donc (disons que i < j)
det(T;;.M) = det(T;;) det(M) = det%&g(Ll, oo Lj,oov Lo+, Lg)
= _detgggig(Ll,"’ Liy--+,Lj,-+ ,Lq)

car detgg&g(- -+ ) est alternee.
La matrice D; » est diagonale avec des 1 sur la diagonale sauf en i-eme position ou on a A et
donc
detD;y=1.--- 1A=\
On a pour i # j,
Clij,u = Idd + ,u.Eij, ) 75]
qui est une matrice triangulaire inferieure ou superieure (suivant que ¢ < j ou i > j) avec des 1 sur
la diagonale, son determinant vaut donc 1. (Il

COROLLAIRE 10.5. Supposons que N soit deduite de M par une des trois type de transformations
elementaires sur les lignes de M alors on a
— Type (I): det N = —det M.
— Type (II): det N = Adet M
— Type (II1): det M = det N

Preuve: En effet on a suivant les cas
N =T;;M, N=D; M, N=Cl,

et det(NN) est le produit du determinant de M et de cette matrice. O
En utilisant ce corollaire on peut calculer det M en echelonnant la matrice M et en gardant
la trace des transformations elementaires effectuees. Si F est une forme echelonnee de M, on a
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det E =0 =det M si E ar < d echelons (car E et donc M ne sont pas inversibles) et si E a d
echelons E est triangulaire superieure et son determinant se calcule facilement.
Par exemple is E est la forme echelonnee reduite et que r = d alors on a E = Idg. On a alors

Ty Typ—1. - T1.M =1dq
avec T); des matrices de transformations elementaires et on a
det(Ty . Ty—1.--- .T1.M) = det(T}). - - - det(T1). det(M) = det(Idg) = 1
et
det M = det(Ty) 7 . - - - det(T};) L.

REMARQUE 10.3.1. En pratique il vaut mieux ne pas appliquer de transformation de type II
juste des transformations de type I (de determinant —1) ou IIT (de determinant 1). On peut alors
toujours reduire la matrice sous forme triangulaire superieure avec A1, --- , A\g sur la diagonale et si
on se souvient du nombre e d’echanges de lignes realises on aura

det M = (=1)Ay. -+ g

EXEMPLE 10.3.1.

2 3 1 2 3 1] 1 23 [t 2 3] [t 2 3
3 1 2=—1 2 3/=23 1|=|0 -1 —5/=[0 -1 -5/=-18
123 312 312 Jo -5 -7 [0 0 18
X 0 0 d X 0 0 d X 0 0 d
-1 X 0 ¢ |_|0 X 0 c+&l_ |0 X 0 ct+ %
0 -1 X b | [0 -1 X b [ |0 0 X b+s+-%
0 0 -1 X+a |0 0 -1 X+af [0 0 -1 X+a
X 0 0 d
10X 0 c+% _ y4 3 2
=g o0 x b+%+)?2 =X"+aX°+0X" +cX +d.
0 0 0 X+a++(b+L+%)

10.3.3. Developpement —de Lagrange— le long d’une ligne-colonne. On va maintenant
donner une methode (due a Lagrange) de calcul du determinant par recurrence sur la dimension d.
Soit M = (m;;) € My(K) une matrice de dimension d et k,I < d, on pose M (k|l) € My_1(K) la
matrice de dimension d — 1 obtenue a partir de M en effacant la i-ieme ligne et la j-ieme colonne:
le scalaire M(i|j) est le (i, j)-ieme mineur de la matrice M.

THEOREME 10.12 (Developpement de Lagrange le long d’une colonne). On a pour tout j < d

d
det M = Zmij(—l)iﬂ det(M (i]j)).
i=1
Preuve: On va montrer le resultat pour car(K) # 2. Soient vi,---,vy € K% les vecteurs de

coordonnees des colonnes de M qu’on note

Vi = Mig€1 + - + Myreq.

On a
det M = detg(vi, - ,vj, -+ ,vq).

On va d’abord montrer la formule pour j = 1: soit le premier vecteur

v =mi1€1 + -+ Mmgi€q



10.3. CALCUL DE DETERMINANTS 191

et par multilinearite on a
d
dety (v, v, -+ ,va) = E mi1detg(e;, va, -+, va).

i=1

Pour fixer les idees on suppose que i # 1,d. Notons pour [ > 2

o = m .
= kl€k;

k#i
alors on a 4 '
detgj’(ei, V2, - ,'Ud) = det@(eiv /Uél)v e ,’Uc(ll))'
Notons que 'application
AD 0 0Dy s detg(es, vl - 0l

est une forme multilineaire alternee en d — 1 variables sur le sous-espace vectoriel

K40 = [y e K7, ef(v) =0} = Vect(er,--- ,€;_1,€i41, - ,€q)

i
des vecteurs de V' dont la coordonnee suivant e; est nulle: (disons que i # 1,d).
Une base de cet espace est donne par

BYD = {er, 1<k#i<d}

Comme (car(K) # 2) l'espace des formes alternees est de dimension 1, on a (disons que i # 1,d)

AD (o) = AD(ey, -, &, ,e4)detyu) (o) = detz(es, €1, € 1,€i11, -, eq)det 4o (o)
et donc
A(Z)(ela e 7ei—17ei+13 te 7ed) = detu@(eiaelv e 7ei—17ei+1) e 7ed);
mais
detfﬂ<ei7el7 5 €-1,€541, 7ed) = (_1)2_1det33(e17 €, 7ed) = (_1)l+1

car on ramene e; de la premiere a la i-ieme position par i — 1 transpositions. On obtient donc
d . .
detgz(vi,- -+ ,vq) = Z mi1(—1)"tdet 4 (vél), e ,v((;))
i=1

et donc ' '
det g (057, -+, 05)) = det(M(i|1))
on conclut si j = 1.
Dans la cas general, si j # 1, on pose M' = (m};)r1<a = (1j).M la matrice dont on a echange
la premiere et la j-ieme colonne: on a donc
miy = mij, m;j = mj1.
On a (par transposition)
det M/ = —det M

et developpant par rapport a la premiere colonne on a
d
—det M = det M' = " my;(—1)""" det(M’(i[1)).
i=1

Mais M’(i|1) est la matrice carre de taille d — 1 dont on a retire la i-ieme ligne et dont la j — 1-ieme
colonne est la premiere colonne de M (moins le i-ieme coefficient). On ramene alors la j — 1-ieme
colonne en premiere position par j — 1 transpositions; le determinant de cette derniere matrice est
le mineur det(M (i|7)). On a donc

det(M'(i[1)) = (—1)7~ ! det(M (i|5))
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et
det M = Zm 1) det(M (i[5)).

Par le meme raisonnement, on demontre le

THEOREME 10.13 (Developpement de Lagrange le long d’une ligne). On a pour tout i < d
det M = Zml 1) det(M (i]5)).

Preuve: Par calcul direct ou en utlhsant I'invariance par transposition et le fait quun developpe-
ment le long d’une ligne devient un developpement le long d’une colonne par transposition. O

EXEMPLE 10.3.2. Soit la matrice 3 x 3

a b c
M=|d e f
g h i

Si on developpe par rapport a la premiere colonne on obtient

b ¢
)-i—gdet <e f)

a a c¢
hdet
9 ) (d f )
et si on developpe par rapport a la premieres ligne

det M = adet ¢ f — bdet d f + cdet d e
h 1 g 1t g h

10.3.4. Formule de Cramer.

detM-adet( )—ddet(
et par rapport a la deuxieme colonne on obtient

detM:—bdet( )—i—edet

DEFINITION 10.8. Pour k,1 < d
— le determinant det(M (k|l)) est appele le (k,1) mineur de M.
— le determinant avec signe, (—1)FT det(M (k|l)) est appele le (k1) cofacteur de M.
— La matrice des cofacteurs de M, est la matrice dont les coefficients sont les cofacteurs de
M:
cof (M) = () icar i; = (—1)™ det(M(il))
Jj<d
THEOREME 10.14 (Formule de Cramer). Soit M € My(K) et cof (M) sa matrice des cofacteurs.
On a
M. cof (M) = cof (M).M = det(M).Id,.
En particulier si det M # 0, alors M est inversible et son inverse est donnee par

_ 1
M~ = detMtcof(M).

REMARQUE 10.3.2. En particulier si d = 2 et M = <‘;’ Z) on a

_(d —c\ . _(d =b
cof (M) = (—b a ) , ‘cof (M) = (—c a)
et on retrouve la formule

ORI RO N BRI}



10.3. CALCUL DE DETERMINANTS 193

Preuve: Soit M = (m;;); j<q comme ci-dessus et soit M = tcof (M) la transposee de la matrice des
cofacteurs de M: on a

mji = (=1)"7 det M (i)
et le developpement de Lagrange le long d’'une colonne se reecrit

d
Z ﬁzjimij = det M.
i=1
Par la regle de produit de matrices, on voit qu’il s’agit du coefficient (j,7) de la matrice produit
M .M.
Les autres coeflicients de ce produit sont donnes, pour k # j par les sommes

Z MpiMi; = Z mij(— l+k det(M (i|k)).

On va les calculer (montrer qu'ils valent 0) en les interpretant comme un developpement d’un
determinant.

Soit MU*) 1a matrice dont toutes les colonnes sont egales a celles de M sauf la k-ieme qui est
egale a la j-ieme colonne de M. On a pouri=1,---,d

m3*) = my;, MOP(i]k) = M(ilk);

en effet la matrice extraire MU*)(i|k) est egale a la matrice extraite M (i|k) car cette dernieres
obtenue en effacant la k-ieme colonne (la i ligne) et c’est seulement le long de cette colonne que M
et MU*) different.

D’autre part, comme M%) a deux colonnes egales, on a

det MUK =

et par le developpement de Lagrange par rapport a la k-ieme colonne on a
d
Zm“ k) 1R MOR) (k) = me 1)k det (M (i kaimij.

On a donc montre que
teof (M).M = det(M).Id,.
En utilisant le developpement suivant les lignes on obtient

M. cof (M) = det(M).Id,.

On a donc demontre la formule de Cramer. O

10.3.5. Applications de la formula de Cramer. L’interet de la formule de Cramer est
surtout theorique: pour calculer en pratique I'inverse d’une matrice il vaut mieux utiliser la methode
de Gauss.

En revanche, on observe que la transposee de la matrice des cofacteurs *cof (M) a pour coefficients
des polynomes en les coefficients M et que det M est egalement un polynome en les coefficients de
M.

On en tire des application algebriques et analytique
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Application algebrique. Soit A C K est un sous-anneau et M € My(A) alors
det M € A, ‘cof (M) € My(A)
et sidet M #0
Mte

My(A).
En particulier si det M € A,
M~ € My(A).

On en deduit que My(A) est un sous-anneau de My(K) dont le groupe des unites (des elements
inversibles) est

GL4(A) = {M € My(A), det M € A*}.
Application analytique. Supposons que K = R alors
My(R) ~ RY

herite de la topologie produit de celle de R.
Les fonctions

:Md(]R) — R :Md(R) —  My(R)

det(e): 0 T s detar OfO T T teof(a)

sont continues (car polynomiales) et
GL4(R) = {M € My(R), det M # 0}
est un ouvert de My(R). On en deduit que I'inversion

M € GLyg(R) — M~ = ‘cof (M) € GL4(R)

det M

est continue.

10.4. Le determinant en caracteristique 2

Si car(K) = 2 une partie des raisonnements precedents ne s’appliquent pas car l’espace des
formes alternees en d variables tel qu’on ’a defini n’est pas forcement de dimension 1 (cet espace
coincide avec I'espace des formes symetriques car —1x = 1k).

Un maniere de s’en tirer est de redefinir une forme alternee de la maniere suivante:

DEFINITION 10.9. Soit V un K-EV de dimension d > 1. Une forme multilineaire

Az (v, ) €V = Avy, -+ o) € K
est alternee si pour tout 1 < i < j < n, et tout (vi, -+ ,0j,-- ,v,) €EV" L ona
Az (ur, ey viy e Uiy ) = 0.
On note

AL (V; K) € Mult™ (V; K)
le sous-ensemble des formes alternees.

REMARQUE 10.4.1. Si carK # 2 c’est equivalent a la definition precedente mais pas en carac-
tristique 2.

On peut alors montrer que Alt(")(V; K) est un SEV de Mult(")(V; K) et que
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THEOREME 10.15. Soit K un corps (quelconque) et V un K-EV de dimension d > 1 alors
dim AltD(V; K) =1
et une base de Alt'D (V; K) est donnee par la forme
dety = Z sign(o)e, ) ® -+ @ ey
€S,

qui est alternee et non-nulle.

On peut alors etendre la theorie en adaptant les preuves en consequence.
Une autre maniere est de voir qu'on dispose toujours de la forme multilineaire obtenue par
symetrisation:
dety = sign(o)ey ;) ® - ®eyy
car dans un corps de caracteristique 2, sign(o)x = (+1)x = 1x. Elle verifie donc
o.dety = sign(o)dety = detg.

On peut partir de la pour definir une theorie du determinant.
Par exemple on a

THEOREME 10.16. Soit K un corps quelconque et V un K-ev de dimension d. La forme det g
verifie que si pour i # j, on a v; = v; alors

detg(vy, - ,v4) = 0k
et c’est plus generalement vrai si la famille {vy,--- ,vq} est liee.

PREUVE. On donne la preuve en caracteristique generale: on peut supposer en appliquant une
permutation convenable que i =1 et j = 2 et donc pour k =1,--- ,d, on a

T1k = T2k
Soit 7 = (12) la transposition qui permute 1 et 2. Soit
g = ker(sign) = {0 € &4, sign(o) = +1}
le groupe alterne des permutation paires. alors 204 est d’indice 2 dans &4 et comme 7 ¢ 204 on a
Gy=AgUA 0 (12).
On a alors

detgz (v, -+ ,vq) = Z Sign(a)xla(l)-fﬁza(z) o Tdo(d) = Z Sign(a)ﬂflou)ww(z) © Zdo(d)
oceG, AP

= Z Sign(0)Z10(1)-T10(2) " * -Tdo(d) + Z Sign(o © T)T1507(1)-T100r(2)*** Tdo(d)

o€y o€y
= Z T1(1)-1e(2) *** Ldo(d) — Z T15(2)-L10(1)- " " Tdo(d) = OK-
g€y g€y

|
On developpe alors la theorie du determinant en caracteristique quelconque de la maniere suiv-
ante:
(1) Prenant V = K% et % = %°, on definit ainsi le determinant de d vecteurs de K¢,
(2) On definit egalement le determinant d’une matrice par la meme formule:

det(M) = Y sign(o)mig). -+ Mag@) = P sign(o)moy1--+ Mo(aya-
€Sy ceGy

et on montre par un calcul direct sur les matrices et les permutations que le theoreme 10.9
reste vrai.
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(3) On definit alors le determinant d’une application lineaire generale ¢ : V — V en posant
det(p) := det matz(y)

pour une base quelconque & de V. On peut montrer par un calcul direct (utilisant la
Theoreme 10.16) que
©*(detg) = det p.detg.

Par ailleurs la formule de changement de base, conjuguee au Theoreme 10.9 montre que
cette definition ne depend pas du choix de la base. On deduit du Theoreme 10.9 que le
Theoreme 10.8 est vrai.

(4) La resultats concernant le determinant des matrice par bloc restent vrais.

(5) On montre directement par le calcul que les developements de Lagrange le long d’une ligne
ou d’une colonnes restent vrais (Theoremes 10.12 et 10.13) ainsi que la formule de Cramer.

REMARQUE 10.4.2. Un interet de ce dernier point de vue est qu’on peut remplacer K par un
anneau commutatif pas forcement integre.



CHAPITRE 11

Le polynome caracteristique

11.1. Le polynome caracteristique d’une matrice

Soit K[X] anneau des polynomes a coefficients dans K. C’est (voir le 'appendice A pour la
definition formelle en terme de suite (ay)n>0 € K ?‘m a support fini) ensemble des expressions de la
forme

P(X)=a X"+ a1 X +-asX?=ag+ a1 X +---aqX? d>0, ag,-- ,aq4 € K.
C’est un K-EV d’element neutre le polynome nul 0(X) = 0 en posant
(P+Q)(X) = (ap +bo) + (a1 +b1)X 4 -+ (ag + ba) X%, \P(X) = Naog+ A\ar X +--- XagX?.

C’est un anneau commutatif d’unite de polynome constant 1(X) = 1 quand on le munit du produit
usuel

PQ(X) =) X'
k<2d
avec

L = Z a;bj, en posant a;,b; = 0 pour 4,5 > d.
ilj=k
L’application degree
deg P = max{j >0, a; # 0}, deg0 = —c0
et le fait que
deg(P.Q) = deg P + deg Q
permet de montrer que c’est anneau integre dont le corps des fractions est le corps des fractions
rationelles a coefficients dans K

K(X) ={%, P.Q e K[X], Q#0}.

Soit M € M4(K) une matrice. Comme K — K(X) (tout element de A € K peut etre identifie a
le polynome constant A(X) = \) on peut voir M comme une matrice a coefficients dans My (K (X))
ainsi que la matrice
X.Idg — M € My(K(X))
dont les coordonnees sont donnees par
(X.Idd — M)ij = X(Si:j — Myy.

On peut donc calculer son determinant

d
det(X.Idg — M) = Y sign(o) [ [(X6io(i) — mios))
eSSy i=1

qui est en fait un polynome en X.

DEFINITION 11.1. Le polynome caracteristique de M est le determinant
d

Pcar,M(X) = det(XIdd - M) = Z Sign(a) H(X(S’La(z) - mia(i)) € K[X}

=1

197
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THEOREME 11.1. Le polynome caracteristique est un polynome unitaire de degree d et si on ecrit
det(XIdg— M) =X +ag 1 X1+ 4a
On a
ap = P(0) = (—1)%det M,
ag-1 = —tr(M) = —(ma1 + - - + mqa)

est la trace de la matrice M.

Preuve: On voit que

d
det(X.Idg — M) = sign(0) [ [(X6io(s) — Mic(:))
o =1
est une somme de polynomes de degre au plus d; de plus la contribution de o = Id; est

d

[x = mii)

i=1

est un polynome unitaire de degree d.

Notons egalement que si o # Id il existe i tel que o(i) # i et Xd;5(;) — Mio(i) = —Mio(;); ainsi
H?ZI(X&-G(Z-) — Mg(;)) est degree < d donc det(X.Idg — M) est unitaire de degree d.

On a

aqg = P(0) = det(—M) = (—1)%det M.
Par ailleurs si o # Id soit ¢ tel que o (i) = j # ¢ alors 0(j) # j (car o est injective) et on a
(Xio(i) = Mio()))(X0jo() = Mjo(5)) = Mio(i)Mijo(s)

ainsi si o # Idg le polynome Hle(Xéw(i) — Mig(iy) est de degre < d — 2 et le terme de degree d — 1
de det(X.Idg — M) est celui de

d
H(X—m”) :Xd—(mu+-~-+mdd)Xd*1+~-- .
i=1

d

THEOREME 11.2 (Proprietes fonctionnelles du polynome caracteristique). Soient M, N des ma-
trices, on a

Pcar,tM (X) = PCGT,M(X)
et
Pcar,MN(X) - Pcar,NM(X)~

Ainsi pour tout k < d

CLk(MN) = ak(NM)
et en particulier

tr(M.N) = tr(N.M).
Preuve: On a

Prarnr(X) = det(XIdg — ‘M) = det((X Idg — M)) = det(X.Idg — M) = Pegr a1 (X).
On suppose d’abord que M est inversible. On a
Pearun(X) = det(X.Idg — M.N) = det(X.M.M~* — M.N)

= det(M.(X.M~' = N)) = det(X.M~' — N)M) = det(X.Idqg — N.M).

Soit T' une autre indeterminee; on considere le corps K/ = K(T).
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On peut faire des calculs dans ce corps de base K’ qui contient K. Notons My := M —T.Id, €
M4(K'): ¢ est une matrice inversible car son determinant est un polynome de degre d en la variable
T et est en particulier est non-nul. On a donc

det(X.Idd — MTN) = det(X.Idd — NMT)

Ce determinant est un polynome en 7" a coefficients dans K[X] dont la valeur en T' = O vaut (car
Mo = M)
det(X.Idy — M.N) = det(X.Idg — N.M).
]

THEOREME 11.3 (Invariance par conjugaison). Le polynome caracteristique est un invariant de
la classe de conjugaison de la matrice M : pour toute matrice inversible P € GL4(K), on a

]Dcar,P.M.P*1 (X) = Pcar,M(X)~
Preuve: On a

P.orparp-1(X) = det(X.Idg — PM.P™") = det(P.X.1dg.P~" — P.M.P")

= det(P(X.Idg — M).P~") = det(X.Idg — M) = Prgr.ps(X).

COROLLAIRE 11.1. Soient (ax(M))ogk<a les coefficients de Pegr ar(X) :
det(X.Idg — M) = X+ ag_1(M)X' 4+ 4+ ag(M)

(on aag(M)=1).
Ces coefficients sont des invariants de la classe de conjugaison de M.
Autrement dit, pour toute matrice inversible P € GL4(K) et 0 < k < d

ap(M) = ap(P.M.P™1).

REMARQUE 11.1.1. On retrouve ainsi que la trace d’une matrice ne depend que de la classe de
conjugaison de celle-ci.
11.1.1. Exemple: la ”matrice compagnon”. On aura egalement besoin de la ”matrice

compagnon” qu’on a deja rencontre en seance d’exercices: soit un polynome unitaire de degre d,

P(X)=X%4bg 1 X1 -+ by;

on note b = (by, - ,bg_1) € K¢ le vecteur de ces coefficients. La matrice compagnion de P est la
matrice
00 0 0 —b
10 0 0 —b
— 10 1

Mp = M, 0 0 =b2 | ¢ pyKk).

0 0 0 1 —bg—
On a vu en exercice que

P(Mp) = Mp +ba 1 M3~ + -+ + boldg = 0g.

. . -1 . .
Par exemple la matrice compagnon de X2 + 1 est la matrice I = <(1) 0 > qui sert a definir les

nombres complexes et qui verifie
I? +1dy = 0,.
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ProrosITION 11.1. Soit

un polynome et

= O
o O
o O
o O
I
o o
=]

0 0 0 1 —byg_q
la matrice compagnion associee au polynome P. Alors son polynome caracteristique est egal a P:

Peararp(X) = det(X.Idg — Mp) = P(X) = X4+ by 1 X1 -+ by.

PREUVE. (par developpement de Lagrange) On developpe par rapport a la derniere colonne:
d—1
Pearatp (X) =Y (1) 1b; det(M (i + 1|d))
=0
ou M (i+ 1|d) est la matrice dont on a efface la derniere colonne et la i + 1-eme ligne. Cette matrice
est triangulaire superieure avec i, X’s et d — 1 — i (—1)’s le long de la diagonale. Par exemple

X ¢ ¢ ¢ »
-1 X 0 0 4
X

M@ =0 -1 0 21

0 0 0 -1 X4bg

On a donc
det M (i + 1|d) = (—1)? 17 X!
et
d—1 ' . o d-l '
PcaT,Mp (X) — Z(_l)d+z+1+d—1—zbin _ Z bZXl _ P(X)
i=0 i=0
a
EXERCICE 11.1. Redemontrer la Proposition en echelonnant la matrice
X 0 0 0 bo
-1 X 0 O b1

et 0 -1 X 0 bo

0 0 0 -1 X-+bjq
(dans le corps K (X) des fractions rationelles) par une suite d’operations de type (III) pour la rendre
triangulaire superieure.

11.1.2. Cas des matrices triangulaires par blocs.

PROPOSITION 11.2. Supposons que la matrice M € My(K) s’ecrive sous forme triangulaire
superieure par blocs:

M = (1\(4)1 A}) M € My, (K), M € Mg,(K), di +d> =d
2

alors
Pcar,M(X) - Pcar,Ml (X)Pcar,MQ (X)
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Preuve: Exercice. O
En iterant on obtient

COROLLAIRE 11.2. soit k > 2 un entier, si M est une matrice triangulaire superieure a k blocs

M] * *
M = 0 % ,MiEMdi(K),i<k7 di+--+dy,=d
0 0 M,

on a
Pcar,M(X) - Pcar,Ml (X) te -Pcar‘,Mk (X)

En particulier, si M est triangulaire superieure (k = d) —par exemple diagonale—

/\1 *

on a

Pcar,M(X) - H(X — )\1)

=1

REMARQUE 11.1.2. Notons enfin que par invariance du polynome caracteristique par transpo-
sition le Corollaire reste vrai pour une matrice triangulaire inferieure par blocs.

11.2. Le polynome caracteristique d’un endomorphisme

L’invariance par conjugaison du polynome caracteristique permet de definir le polynome carac-
teristique d’une application lineaire:

DEFINITION 11.2. Soit ¢ € End(V) une application lineaire, on definit son polynome caracter-
istique par
Pcar,(p(X) = Pcm‘,M(X)

ou M = matg(p) est la matrice de ¢ dans une base quelconque de V.

Notons que cette definition ne depend pas de la base Z choisie: si M’ = matg (¢) est la matrice
de ¢ dans une autre base alors par la formule de changement de base

M’ = matg gz .Mmat, ,

et
Pcar,M’ (X) = Pcar,M(X) = PCGT,#J(X)‘

En particulier les coefficient ax () = ar(M) du polynome caracteristique ne dependent pas du choix
de la base.

DEFINITION 11.3. On definit la trace de ¢ comme etant la trace de M
tr(o) = tr(M) =my1 + -+ + maq
et cette definition ne depend pas du choix de la base A.

PROPOSITION 11.3. Le polynome caracteristique Peqr o(X) ne depend que de la classe de con-
Jugaison de ¢ dans End(V'): pour tout 1 € GL(V)

Pcar,w.cp.w*I (X) = PCG?”#P(X)'
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11.2.1. Sous-espaces propres. L’interet du polynome caracteristique est qu’il permet d’identifier
des sous-espaces interessant de V' relativement a ¢:

THEOREME 11.4. S0it Peor o le polynome caracteristique d’une application lineaire .
Les enonces suivants sont equivalents

(1) Le scalaire A € K est racine de Pear o Pear,p(X) = 0.
(2) 1l existe v € V — {0} tel que p(v) = Aw

Preuve: On a les equivalences suivantes

— Poorp(A) = det(AIdy — ) =0,
— AJIdy — ¢ n’est pas inversible,
— AIdy — ¢ n’est pas injective,

- ker(\Idy — ) # {0y},

— Il existe v € V — {0y} tel que

Oy = (AIdy — ¢)(v) = Av — ¢(v).

DEFINITION 11.4. Soit A € K, le sous-espace
Vo i=ker(¢ — Aldy) ={v eV, p(v) =Av}

est appelle sous-espace propre associe a X. Si Vi, x # {0y} on dit que X est une valeur propre de ¢
et tout vecteur non-nul de Vi, x (ie. verifiant p(v) = X\.v) est appelle vecteur propre de ¢ associe a
la valeur propre \.

L’ensemble des valeurs propres de ¢ est appelle le spectre de ¢ (dans K ) est est note

Spec,,(K).

Le Theoreme precedent dit ainsi que les racines dans K du polynome caracteristique sont ex-
actement les valeurs propres de ¢:

Racp

care () = Spec, (K).
Voici quelques proprietes de base des sous-espaces propres:

THEOREME 11.5. Soit ¢ € End(V) et A\, N des valeurs propres de ¢ et Vi, 5, Vyn les sous-
espaces propres associes.

— Le sous-espace Vi, » est stable par p:
e(Vio,x) C V.
— Si A# X les sous-espaces Vi, x et Vi, x sont en somme directe:
Vox N Von = {0y }.
Preuve: Soit v € V, 5, et w = ¢(v), on a
p(w) = p(p(v)) = p(Av) = Ap(v) = Aw

et donc w = p(v) € Vi, ».
Soit A# N et v eV, NV, n, ona

o) =Av=Nw

et donc
(/\ - /\,).U =0y

mais comme A — X # O, on a v = 0y. a
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11.3. Le Theoreme de Cayley-Hamilton

Soit K[X] l’algebre des polynomes sur un corps K , (4, +,.) une K-algebre et ¢ € A un element
de cette algebre. Cette donnee permet de definir une application d’ ”evaluation en ¢”

KX] —» A
YPIP(X) = Pe)
ou on a note
P(@) = an.¢" +an_1.9" 44 ag.la
pour P(X) un polynome a coefficients dans K
P(X)=a, X"+ 1. X" 1+ 4ag, ag, - ,aq € K.

On rappelle que

eli=p. - @ (dfoissid>1), o :=14.

On verifie facilement que

PROPOSITION 11.4. L’application ev, est un morphisme de K-algebres:
evyo(AP 4+ Q) = AP(p) + Q(p) = Aevy(P) + ev,(Q)
evy(P.Q) = P(p).Q(p) = evy(P).evy(Q).
Son image ev,(K[X]) est notee
Klp] = {an.@" + an_1.0" ' 4+ +ag.la, n>1,a9,--- ,a, € K} C A
est une sous-algebre commutative de A engendree comme K-ev par les puissance de @:
{1a=¢%@,--, 0" -}
REMARQUE 11.3.1. La commutativite resulte du fait que K[X] est commutatif et donc

P(p)-Qp) = (P.Q)(¢) = (Q-P)(¢) = Qp)-P(p).

On va appliquer cette construction a l’algebre des endomorphismes (Endg (V), +,0) d'un K-EV
de dimension d et ¢ : V — V un endomorphisme et/ou a l’algebre des matrices (My(K),+,.) pour
une matrice M € My(K). Pour tout polynome P(X) € K[X] son evaluation en ¢ ou en M est
donnee par

eV (P) := P(p) = an.¢™ + an_1.9" ' + -+ + ag.Idy € Endg (V)
et
evp(M) := P(M) = a, M" + ap—1.M" ' + - + ag.Idg € My(K).

Notons que comme Endg (V) et My(K) sont de dimensions finies (egale a d?) et que K[X] est
de dimension infinie ev,, et evys ne sont pas injectives et les noyaux ker ev,, et ker evy; sont non nuls:
plus precisement, si on restreint ces applications au SEV des polynomes de degre < d?, K[X l<az qui
est de dimension d? + 1, on a par le Theoreme noyau-Image

dimker ev,, + dimg (K[p]) = dimkerevy, + dimg (K[M]) = d* + 1
et comme
dimg (K[p]), dimg(K[M]) < dimEndg (V) = dim My(K) = d*
on a
dimker ev,, dimkerevy, > 1.
On peut donc trouver dans les noyaux kerev, et ker evy; un polynome non-nul de degree < d?. En
fait on peut trouver un polynome de degre d:

THEOREME 11.6 (Cayley-Hamilton). Soit ¢ € End(V) (resp. M € My(K)) alors son polynome
caracteristique Peqro(X) (resp. Pear (X)) appartient a kerevy, (resp. kerevys ); en d’autre termes

Pcar,ap(@) = QV7 Pcar,M<M) = 0d><d~
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Preuve: Soit ¢ : V +— V. 1l s’agit de montrer que pour tout v € V — {0},
Pcar,go((p)(v) = OV-

Si v = 0y c’est evident. Sinon on considere la suite de vecteurs

v, QD(U)’ 902(1))7 IR ,Sok(v)," .
Comme V est de dimension finie il existe d; < d tel que

v, QO('U), ()02(1})7 R a(pdl (U)
est liee. Prenons d; > 1 le plus petit possible pour cette propriete de sorte que
B = {Uv 30(1)), 902(1))7 Tty ’Qodl_l(v)}

est libre et il existe bg,--- ,bq,—1 € K tels que

e (v) = bo.v 4 -+ -+ bg, 10" H(w).

Completons la famille %, en une base de V: & = % U HB5. Soit M = matz(yp) la matrice de ¢
dans cette base. Elle est de la forme

00 0 0 b %
10 0 0 b
0 1 0 0 bg * M1

*

00 0 1 bgy_q =
0 M, 0

i*****
V)

de sorte que
Pcar,go(X) == Pcar,M(X) = Pcar,Ml (X)Pcar,Mg (X) = Pcar,Mg (X)Pcar,Ml (X)

La matrice M; est une matrice compagnion dont on connait le polynome caracteristique (cf. Prop
11.1)

X 0 0 0 —bo
-1 X 0 0 —by
Pearas, (X) =det | 0 -1 X 0 I I GO SRS (il P

0 0 0 -1 X—by
et
Pear,o(9)(V) = Pear,iy () © Pear,m, (0) (V) = Pear,s (@) (Pear,ar, (9) (v) = Oy
car
Prart, (0)(0) = M (0) = bgy, 1M () — -+ — bgv = Oy
O

REMARQUE 11.3.2. Dans cette preuve on a implicitement utilise le fait que ’on connaissait deja
le Theoreme pour les matrices compagnons (Prop 11.1 et la remarque qui suit).

COROLLAIRE 11.3. Soit K[p] C End(V) ou K[M] C My(K) les images de K[X] par les appli-
cations

ev, : P € K[X]|— P(¢) € End(V)
evar: P e K[X] s P(¢) € My(K)

alors K[p] et K[M)] sont des sous-anneaux (commutatifs) et des K-evs de dimension < d.
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Preuve: Soit P(X) € K[X] un polynome de degree > d, alors par division euclidienne on a
P(X) = Q(X)Pear,o(X) + R(X)
avec @Q, R € K[X] et deg R < d — 1. Evaluant en ¢ on a
P(p) = Q(¢) Pearp(p) + R(p) = R(p).

Ainsi

avec
K[X]<q1 ={R(X) € K[X], degR < d—1}
qui est un K-ev de dimension d. In a donc

dim K [p]<q—1 = dim(Im(evy xx),_,)) < dim K[X]<q-1 = d.

O

COROLLAIRE 11.4. Soit ¢ un endomorphisme et M sa matrice associee dans une base quel-
conque. Si det(p) = det(M) # 0 alors ¢ et M sont inversibles et on a

N d-2 |  _d-1

P = ety (aldv e aaet 4 ¢
—1 (71)d+1 d—2 d—1
M~ = (arldg+ -+ +ag—1 M + M)

det M
ou

Pcar,ga(X) = Pcar,M(X) =a+aX+--+ ad—leil + Xd.
En particulier p=' € K|[p| et M~1 € K[M].
Preuve: On a
04 = apldg + a1 M + ~-~+ad_1Md_1 +Md
de sorte que
—aogldg = a1 M + -+ ag_ 1M1 + M? = M.(ayIdy + - + ag_1 M2 + M)

et si ap = (—1)4det(M) # 0, on a

-1

Idg = M.—(a11dg + - - + ag_ M2 + M971)

ao

ce qui montre que M est inversible. O






APPENDICE A

L’anneau des polynomes sur un corps

"Trois anneaux pour les rois Elfes sous le ciel,

Bcrys, Bst, BdRa

Sept pour les Seigneurs Nains dans leurs demeures de pierre,
E@p’ AQP’ BQp’ E7 A’ B7 A

Neuf pour les Hommes Mortels destinés au trépas,

(Dpa Z%H E}H quv E%v (:pa C)Cpa (ggr’ But

Un pour le Seigneur Ténébreux sur son sombre trone

Aint”

Dans ce chapitre on donne la construction algebrique des polynomes a coefficients dans un anneau
commutatif A (et en particulier quand A = K est un corps). On rappellera ensuite la terminologie et
les proprietes de base concernant polynomes (degree, monomes, division euclidienne, factorisation,
polynomes irreductibles, racines). on appliquera la theorie a la construction de sous-algebres dans
des algebres sur un corps (algebres monogenes)

A.1. Preliminaire: fonctions polynomiales

Sur le corps des nombres reels R, on a ’habitude de definir un polynome comme etant une
fonction de R a valeurs dans R de la forme

P(e):x €R s P(z) = agz® + ag_127 + - +ap €R

ou ag,- - ,aq sont des reels fixes (les coefficients du polynome) et si ag # 0 on dit que P est un
polynome de degree deg P = d. La fonction identiquement nulle 0 est egalement une fonction
polynomiale correspondant a ag = --- = ap = 0 et on declare que

deg0 = —o0.

De plus, on sait que la somme et le produit de deux fonctions polynomiales sont des fonctions
polynomiales: si P et @ sont des fonctions polynomiales, on peut toujours les ecrire sous la forme

P(z) = adxd + ad—ll'd_1 +--+ag, Qz) = bdxd + bd_lxd_l + -+ by

(avec d = max(deg P,deg @) et en posant ag = -+ = Gdeg@ = 0 0u bg = -+ = bgegp = 0 si
deg P # deg Q) et on a

= (P4 Q)(x) = (ag + ba)x? + (aa—1 + ba—1)xz* "t + -+ -+ (ag + bo)
et
P.Q(e) : z + P.Q(z) = (agx® + ag_12%7 1 + - + ag).(bax? + bg_12 4 - 4+ bp)
= c2a2®? + cog 122 4+ g

avec

Cp = Z ap.by = Z bg.ap, 0 < n < 2d.

ptrq=n q+p=n
207
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On a alors
deg(P + Q) < max(deg P, deg @), deg(P.Q) = deg(P) + deg(Q)

REMARQUE A.1.1. Cette derniere formule reste vraie si P ou Q = 0 car on a pose deg 0 = —o0.

L’ensemble des fonctions polynomiales sur R forme alors un anneau commutatif que I'on note
R[X] dont le nul est le polynome nul et 1'unite le polynome constant egal a 1.

De plus R[z] a une structure R-module via la multiplication des polynomes par les polynomes
constants:

(a,P) e RxR[X]— a.P:z aagz® + aag_ 1% + -+ + aao.
Ainsi R[X] est une R-algebre.

On pourrait faire de meme pour tout anneau commutatif A en definissant ’anneau des polynomes
A[X] comme etant I’ensemble des fonction polynomiales de A vers A c’est a dire les fonctions de la
forme

P:xe A P(x) =agz® + ag_129 4+ +ap
ou ag, - ,aq € A sont des elements de A fixes. On voit de me que la somme et le produit de
deux fonctions polynomiales sont polynomiales et I’ensemble des fonctions polynomiales est un sous-
anneau commutatif de ’anneau des fonctions de A vers A. Cependant dans certains cas, on rencontre
des problemes avec un telle definition: une meme fonction polynomiale peut avoir des expressions
differentes, ainsi les notions de coefficients d’un polynome ou de degree ne sont pas bien definies:

Prenons A = F,, pour p premier le corps a p elements. On a vu que pour tout € F,, on a

=z
et en d’autre termes la fonction polynomiale identiquement nulle est egalement donnee par la fonction
relF,—a? —x.

Cette absence d’unicite pose notamment des problemes quand on considere I’extension suivante: soit
B D A un autre anneau commutaif contenant A alors une expression polynomiale sur A

P:zxe A P(x) =agrt+ag_ 12 '+ +a e A
defini une fonction polynomiale sur B en posant
P:xz e Bw— P(x) =agrt+ag_12° '+ +ay € B

et il se peut qu’une fonction polynomiale identiquement nulle sur A ne le soit pas sur B. Par exemple,
si A=TF, et B=T,[l,] le corps a p* element construit en exercices il existe z € F,[I4] tel que

o — & 7 O, 1,)-
Ainsi pour definir les polynomes on va devoir le faire a partir de leur expression polynomiale abstraite
P(z) = agz® + ag_ 1% + -+ + ao.
A.2. Les polynomes sont des suites
Soit A un anneau commutatif et soit

AN =S {(an)ngo, a, € A}

Pensemble des suites a valeurs dans A (ou encore I'ensemble des fonctions de N a valeurs dans A,
(an)ns0 : m > a,). L'ensemble AN a une structure de A-module pour I'addition terme a terme

(an)n20 + (bn)n20 = (an + bn)n}O
dont I’element neutre est la suite identiquement nulle
04 = (04, ,04,")
et la multiplication par les scalaires est donnee pour a € A par

a.(an)n>0 = (@.an)n>o0.
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DEFINITION A.1l. Soit (ay)n>0 € AN une suite a valeurs dans A. Le support de cette suite est
defini comme etant l’ensemble des indices ou la suite prend une valeur non-nulle

Supp((an)n20) = {n eN, ay # OA} CcN.
L’ensemble des polynomes A[X] est construit algebriquement de la maniere suivante:
DEFINITION A.2. Un polynome P a coefficient dans A est une suite
P = (an)nZO
de support fini: telle que
supp(P) ={n €N, a, # 04} est fini.

Le n-ieme terme de cette suite a,, est le coefficient d’ordre n de P; on le note egalement ¢, (P).

L’ensemble des polynomes a coefficients dans A est le sous-ensemble AI}] C AN forme des suites
a support fini; on le note

AY = {(an)n>0, an € A, [supp((an)nzo| < 0o}

PROPOSITION A.1. L’ensemble A?’ est un sous-A module de AN pour Uaddition et la multipli-
cation par les scalaire sur l’espaces des suites.

Preuve: Rappelons que si a = (an)n>0), €t b = (by)n>0) sont des suites et a € A, I'addition est
definie par

a+b:= (an + bn)n20
et la multiplication par a est definie par

a.a:= (a.an)n>0)-

On a
Qp + by #04 = ay 704 ou by, # 04
et
a.a, #04 = a, # 04
et donc

supp(a + b) C supp(a) Usupp(b), supp(a.a) C supp(a).
Ainsi, si a et b sont a supports finis alors a + b et a.a sont a supports finis et ainsi AI}’ est un sous
A-module de AN, |

A.2.1. Degre d’un polynome. Un sous-ensemble de N est fini ssi il possede un plus grand
element:
DEFINITION A.3. Le degree d’un polynome non-nul P = (an)n>o0 est le plus grand element de

supp(P):
deg(P) = max{d > 0, aq # 0}.

Si P = 0k est le polynome nul, le support de P est l’ensemble vide et on defini son degree comme
etant
deg(0g) = —oc0.
DEFINITION A.4. Etant donne un polynome de degre < d
P = (a07"’ aadvoa"')
le d-ieme coefficient aq est appele coefficient dominant de P. Un polynome non-nul est unitaire si
le coefficient de degre deg P verifie
Gdeg P = 1.
PROPOSITION A.2. Soient P,Q des polynomes, on a
deg(P + Q) < max(deg P, deg Q)

avec egalite si deg P # deg Q.
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Preuve: C’est evident si P ou @ = 0.
Sinon soit d = deg P > d' = deg @, on a
P = (aOaala"' 7ad707"')7 Q = (b07b1a"' vbd’ao,"')

avec ag, by # 0.
Supposons d’' > d, on a

P+Q = (ag+bo,a1 + by, ,aq +ba, 0+ bay1,--- ,0+0,,0,---)
et deg(P + Q) < d' (avec egalite ssi d = d' et ag + by # 0). O
COROLLAIRE A.1. Soitd >0 et
Af_,=1{P e A}, degP < d}

N

l’ensemble des polynomes de degre < d. Alors Af<d

est un sous A-module de AI?.
A.2.2. La famille des monomes unitaires. On va maintenant identifier une famille partic-
uliere de polynomes:

NOTATION A.1. Soit k > 0 un entier, on a note X* le polynome (ie la suite de support fini)
defini par

X* = (bp=k)n>0

avec (0p—r le symbole de Kronecker)

O  sinon.

1 L n =
5n_k={K sin==k

Le polynome XF* est appelle monome unitaire de degree k.
On note ’ensemble des monomes unitaires

M ={X* k>=0}C AX].
EXEMPLE A.2.1. Le monome X% est de degre d.
Avec cet notation on a pour tout polynome P = (a,)n>0 non nul de degre d
P = (ag,ay, - ,aq,0,0,---,0,--)
=ag(1,0,---,) +a1.(0,1,0,---) +--- +aq(0,--- ,1,0,--+)
=ap. X" +a;. X'+ -+ ad.Xd
et plus generalement on a le theoreme suivant qu’on ne montrera pas

THEOREME A.1. La famille des monomes .4 engendre Alﬁ comme A-module: tout polynome se

decompose en combinaison lineaire (a coefficient dans A) de monomes: pour tout P € AI}I il existe
d>0 etag, - ,aq € A tels que

P= ao.XO + al.Xl + -4 ad.X‘i.
De plus, cette decomposition est unique: si
P=ap. X' +ay. X'+ +ag X =a). X" +a/ . X'+ +a). X

avec d < d' alors pour tout k < d on a ap = aj, et pour d <k < d' on aaj, =0g.
La famille des monomes unitaires est aussi appellee base canonique de ’espace des polynomes.
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NOTATION A.2. On notera l’espace des polynomes
A[X] := Af

et
A[X]gd = {P € A[X], degP < d}

le sous A-module des polynomes de degre < d.
On notera egalement quelquefois un polynome P(X) au lieu de P.

Alors le theoreme precedent dit que I'application
(ag, - ,aq) € A% 5 ag X%+ - 4+ apX° € A[X]<a

est un isomorphisme de A-module et A[X]<q est libre de rang d + 1.

A.3. Structure d’anneau

A.3.1. Fonction polynomiale associee a un polynome. Armes de la notion abstraite de
polynome et de la notation monomiale on peut associer une fonction polynomiale a un polynome:

DEFINITION A.5. Soit A un anneau commutatif et
P=ag X%+ ag 1. X'+ a1 X+ apX°
un polynome a coefficient dans A. La fonction polynomiale associee a P est la fonction
P(e): A A
definie par
P(e):z € A P(x) :=agz® + ag_1.27 '+ 4 a1.x 4+ ag € A
ProroOSITION A.3. L’application ”fonction polynomiale”
Pe AlX]|— P(e) € F(A,A)

est un morphisme de A-modules pour la structure naturelle de A-module sur l’espaces des fonctions
de A vers A: on a

(P+Q)(e) = P(s) + Qo)
et pour a € A
(a.P)(e) = a.P(e).
Par ailleurs, ’espace F (A, A) possede egalement une structure d’anneau (et meme de A-algebre)
donnee par pour f,g € F(A,A)et A€ A
(f.g):xeAm f(x)g(x) e A (\f):x€ A \f(x).
PROPOSITION A.4. Soitd > 1 et P et Q deux polynomes de degre < d
P=ag X" +aq 1. X'+ 4 a1 X +a0X?, Q=03 X +bs_1. X+ 4. X+ b X0,
alors le produit de leur fonctions polynomiales,
P(e).Q(e) : x € A P(x).Q(x)
est encore une fonction polynomiale: C’est la fonction associee au polynome
PQ=cog X+ 41X +co
ou pour n < 2d,

Cn = Z ap.bg = ag.by +a1.bp_1 + -+ an.b.
ptg=n
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Preuve: Pour tout = € A, on a (utilisant la distributivite, ’associativite et la commutativite de A)

P(z).Q(z) = (ag. + ar.x + - - - + ag.z?).(bg + by.x + - - - + bg.x?) =
Z ap. XP.by. X9 = Z ap.bg. a4 = Z ( Z ap.by)z™ = Z Cn-x"
p,a<d p.a<d n<2d p+q=n n<2d

O

A.3.2. Multiplication abstraite des polynomes. La proposition precedente motive I'introdution
de la loi de multiplication interne sur A[X]: on defini le produit de polynomes
) A[X] x A[X] — AN
’ (P = (an)n>OaQ = (bn)n>0) = P.Q= (Cn)n>O
avec

Cp = Z ap.by = ap.by, +a1.by—1 + -+ ay.bo.
pt+q=n

Notons que si les suites P = (an)n>0 €t Q@ = (bn)n>0 sont a support fini, alors P.QQ est a support
fini, plus precisement

PROPOSITION A.5. Soient P,Q des polynomes, alors P.Q est un polynome de degree

deg(P.Q) < deg P + deg Q.
Preuve: Si P ou Q = (04),>0 alors P.QQ = (04),>0 et compte-tenu du fait que deg04 = —oco on a
bien
deg(P.Q) = —oo = deg P + deg Q.
Si P et @@ sont non-nuls, on a pour n > deg P + deg @
Cp = Z ap.bg =04
ptq=n

car sip+q =mn > deg P + deg Q ou bien p > deg P et a, = 0 ou bien ¢ > deg @ et b, = 0. Ainsi
P.Q est a support fini et de degre < deg P + deg Q. O
On verifie alors (exercice)

THEOREME A.2. La loi de multiplication interne e.e sur A[X] est associative, commutative et
distributive par rapport a l'addition et fait de (A[X],+,.) un anneau commutatif dont l’element unite
est le monome unitaire de degre 0,

X° = (14,0,---).
Par ailleurs A[X] muni de la multiplication externe (a, P) — a.P fait de A[X]| une A-algebre.

A.3.3. Retour sur les fonctions polynomiales. L’interet d’avoir defini I’addition et la mul-
tiplication des polynomes comme on I’a fait est la proposition suivante:

PROPOSITION A.6. Soit F(A; A) Uespace des fonctions de A a valeurs dans A: L’application
”fonction polynomiale”

P e A[X]— P(e) € F(A; A)

qui a un polynome associe sa fonction polynomiale est un morphisme d’anneauz.
En particulier si P = agX° est un polynome de degree 0 ou —oo < la fonction correspondante
est la fonction constante egale a ag € A

apX"(e) = ag : > ag.
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NOTATION A.3. Un polynome de degre 0 ou —oo, ag.X° sera appelle "polynome constant” (de
valeur ag). L’application ”polynome constant”

a€ A aX® e AlX]<o C A[X]

identifie A avec l'anneau des polynomes constant et pour simplifier les notations on ecrira ag au lieu
de ay.X°. En particulier on ecrira 1 =1, au liew de X°.

De meme on ecrira X a la place du monome X'.

Le coefficient ag(P) de degre 0 d’un polynome P est appele coefficient constant de P. On a la
formule

REMARQUE A.3.1. Notons qu’en general I'application ”fonction polynomiale” n’est PAS injec-
tive: par exemple si A = F,, est le corps fini a p elements, la fonction polynomiale sur F, associee
au polynome X? — X est la fonction identiquement nulle: on a vu que Vz € F,,, on a

2P —x = 0Op,.
On va analyser plus tard quand cette application est injective (et donc quand on peut identifier

lalgebre des polynomes a ’algebre des fonctions polynomiales).

A.3.4. Fonction polynomiales sur une A-algebre. Soit (A, +,.) une A-algebre (pas force-
ment commutative) d’unite 14). On associe a tout polynome a coefficients dans A, P(X) € A[X]
une fonction (polynomiale) de A vers A en posant

P(e): M e A P(M) =aqg.M? + - +ay.M + ag.1 4.
On a alors
(P+Q)(M) = P(M) +Q(M), (P.Q)(M) = P(M).Q(M), (a.P)(M) = a.P(M)
autrement dit
P e AlX]— P(e) € F(A,A)
est un morphisme de A-algebre dont I'image est I’ensemble des fonctions polynomiales sur A.
A.3.5. Derivation formelle. Sur I'espace des fonctions de R vers R on a la notion de derivee

d’une fonction obtenue a partir de la notion de limite (limite d’un taux d’accroissement) et on sait
que la derivee d’une fonction polynomiale est polynomiale: si

P(X)=a4.X"+ - +a1.X +ap € RIX]
alors pour tout x € R on a
lim P(z+h) — P(x)
h—0 h

=P () =a4g.(d—1). X"+ tapka T+ gy

est donc une fonction polynomiale (de degree < deg P — 1).
On peut definir la derivation des polynomes asur un anneau de maniere purement formelle:

DEFINITION A.6. Soit
P(X)=ag.X"+  +a1.X +ap € A[X]
un polynome a coefficient dans un anneau commutatif A; son polynome derive est le polynome
P'(X)=a4.(d—1). X"+ +apkab Tt +- +a; € A[X).
Ici on a note
a2.2 = ag.24 = as + as (2 fois), aq.d =as.da =aq+ -+ aq (d fois)

ou
da=1a4+---+14 (d fois)
est l'image de d par le morphisme canonique de Z vers A.
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THEOREME A.3. La derivation
o . Pe A[X]— P € A[X]
— est lineaire:
Vae A, P,Q € A[X], (a.P+Q) =a.P +Q

et son noyau contient les polynomes constants.
— werifie la regle de Leibnitz:

VP,Q € A[X], (P.Q) =P .Q+ PQ'.
Preuve: Exercice. O

REMARQUE A.3.2. En general la derivation n’annule pas que les polynomes constants: si d est
tel que dg = 04 (si d est contenu dans le noyau du morphisme canonique: par exemple si A est un
corps et d = carK) on a

(XY =dp. X1 =04.
On a
ker(e') = {P € A[X], supp(P) C ker(Cany)}.

Si K est un corps de caracteristique nulle

ker(e') = {a1, a; € K}.

A.3.6. Integralite de A[X] et corps des fractions.

PROPOSITION A.7. L’anneau A[X] est integre ssi A est integre et on a alors pour tout P,Q €
A[X],
deg(P.Q) = deg P + deg Q.
Preuve: Si A n’est pas integre alors A[X] ne est pas: soient a,b € A tels que a.b = O4 alors le
produit des polynomes constants (de degre < 0) a et b vaut le polynome constant a.b = 04.

Supposons que A est integre et soient P et ) tous deux non-nuls et (¢, )n>0 les coefficients de
P.Q: alors pour n = deg P + deg @, on a

Cp = E ap.bq = adegp.bdegQ
pt+g=deg P+deg Q

car p < deg P et ¢ < deg Q). Par definition du degre ageg p,bdeg @ 7 04 et comme A est integre
Qdeg P~bdeg Q 7é 0a4.
Ainsi deg P.QQ > deg P + deg @ et donc deg P.QQ = deg P + deg Q. |

PROPOSITION A.8. Si A est integre de corps des fraction K, alors le corps des fractions de
Uanneau integre A[X]| est egal au corps des fractions de l'anneau des polynomes a coefficients dans
K[X]: on a

Frac(A[X]) = {F(X)= 53, P,Q € A[X], Q #0}
= {F(X) =553, P.Q € K[X], Q#0} =TFrac(K[X]).

On Uappelle le corps des fractions rationelles a coefficients dans K.

A.4. Division et factorisation

On suppose maintenant et dans toute la suite que A = K est un corps.
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A.4.1. Relation de divisibilite. comme tout anneau K[X] est muni d’une relation de divis-
ibilite: on dit que @ divise P et on le note

Q[P
si il existe S tel que
P=Q.5.
On dit alors que S est le quotient de P par ). Notons que la relation de divisibilite est

— Reflexive: VQ € K[X], on a Q|Q.
— Transitive: Q|P et P|L = Q|L.
— VP on a 1|P et P|0.

A.4.2. Division euclidienne. On sait que I’espace des polynome R[X] a coefficient reels ad-
met une division euclidienne; cette division se generalise a K[X] pour K un corps arbitraire:

THEOREME A.4. Soit Q € K[X] — {0} un polynome non-nul. Pour tout P € K[X] il existe des
polynomes S, R € K[X] uniques verifiant

deg R < deg @ et tels que P = Q.S + R.

DEFINITION A.7. Les polynomes R et S sont appeles respectivement “reste” et ”quotient” de la
division euclidienne de P par Q.

De plus R =0 si et seulement si Q|P.
Preuve: Soit ¢ = deg Q:

Q=0 X9+ +b1.X + by, by #0.
Ecrivons
P:ad.X‘i+~-~+a0.
Sid < g, onprend R= P et S=0. Sinon, on procede par recurrence sur d:
a a

P =P - b—dQ.Xd_q =aq. X% — b—dbq.Xd.Xd_q + polynome de degree < d — 1
q q

et comme a

ag. Xt — b—dbq.Xd.Xd’q =0

q
Le polynome P est de degree < d — 1. Par recurrence sur le degre il existe Ry, 57 tels que
P=Q.5+R
avec deg Ry < q et donc
pP= %Q.X‘i*q +Q.S + R =QS+R

q

avec

a
§=-2x"14 8 R=R.
by
On conclut par recurrence. Montrons 'unicite: supposons que

P=QS+R=Q.5 +R
avec deg R, deg R’ < q. Alors
QS-Q.5=Q(S-5)=R -R.
On a
deg(Q.(S—8")) = q+deg(S—8") =deg(R' — R) < ¢
et la seule possibilite est que S — S’ = 0 (de sorte que deg(S — S') = —0) et donc R — R=0. O

REMARQUE A.4.1. La division euclidienne se generalise a l'anneau A[X] pour A un anneau
commutatif quelconque de la maniere suivante:



216 A. L’ANNEAU DES POLYNOMES SUR UN CORPS

THEOREME A.5. Soit A un anneau commutatif et Q € A[X]—{0} un polynome dont le coefficient
dominant ageg o(Q) € A* (ie est inversible). Pour tout P € K[X] il existe des polynomes S, R €
K[X] uniques verifiant

deg R < deg @ et tels que P = Q.S + R.

A.4.3. Application aux racines d’un polynome. Un invariant important d’un polynome
est I’ensemble des valeurs ou sa fonction polynomiale s’annule:

DEFINITION A.8. Soit
P(X)=a4 X"+ ag_1. X"+ +a1.X +ap

un polynome a coefficient dans K. L’ensemble des racines de P dans K, Racp(K) est 'ensemble
des solution dans K de l’equation P(z) = 0:

Racp(K) ={z€ K, P(z) =0x}.

PROPOSITION A.9. Soit K un corps et P un polynome et z € K, les deux enonces suivants sont
equivalents:

(1) P(z) =0 (ie. z est une racine de P).
(2) Le polynome X — z divise P(X).

Preuve: Si P(X) = (X —2)Q(X) on a
P(z) = (z—2).5(2) = 0k.
Reciproquement si P(z) = 0, divisons P par X — z: on a
PX)=5X).(X-2)+R
avec R de degre < deg X — z =1 et donc R est constant (eventuellement nul). Mais
P(z)=0=5(2).(—2)+R=R

et donc R = 0 c’est a dire

On deduit de cette proposition le resultat fondamental suivant:

THEOREME A.6. Soit P € K[X] un polynome non nul alors P est divisible par le produit
I &x-2.
z€Racp (K)

En particulier
|Racp(K)| = deg H (X —2) < degP.
z€Racp (K)
Preuve: Par recurrence sur deg P: si P est constant non-nul c’est evident car P n’a pas de racines
et
|[Racp(K)| = 0 = deg P.

Soit z € K une racine de P(X) (si il n’y en a pas on a fini: |Racp(K)| = 0) alors
P(X)=(X —2).5(X)
et (comme K est integre)
P(2')=0<+= 2 =z oubien Q(z') =0

donc
Racp(K) = {z} URacg(K).
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comme deg S = d — 1 on a par recurrence que
sx)= [ *x-2)7(X)
z'€Racg (K)
et
PX)=(X-2). [ &x-2)7(X).
z'€Racg (K)
0

COROLLAIRE A.2. Soit K un corps et |K| son cardinal (eventuellement infini) alors lapplication

lineaire
P(X) € K[X]aeg <|i| = P(0) € F(K; K)
est injective (tout polynome de degre < | K| peut etre identifie avec une unique fonction polynomiale).
En particulier si carK = 0 alors |K| > |Q| = oo lapplication
P(X) € K[X]+— P(e) € Z(K; K)

est injective.
Preuve: Soit P € K[X]4eg p<|k| dans le noyau: la fonction 2 € K +— P(z) € K est donc identique-

ment nulle et P possede | K| racines comme deg P < | K| ceci n’est possible que si P est le polynome
nul. O

A.4.4. Application: Structure des ideaux de K[X]. On rappelle qu'un ideal I C K[X]
de 'anneau K[X] est un sous K[X]-module contenu dans K[X]: un sous-groupe de (K[X],+) qui
stable par multiplication par les elements de K[X]. En d’autres termes, I verifie la condition de
stabilite suivante:

VP,Qel, Se K[X], P+S.Qc¢€l.

Un exemple simple d’ideal est le suivant: @ = Q(X) € K[X] un polynome, alors ’ensemble des

multiples de @

Q)= K[X].Q ={5.Q, S € K[X]}
est un ideal de K[X] (le verifier).

NoTATION A4. Soit Q = Q(X) € K[X] un polynome, l'ideal
(Q) = K[X].Q={5Q, S € K[X]}
est appelle ideal principal engendre par Q.

L’existence d’une division euclidienne permet une classification des ideaux de K[X] entierement
similaire a celle des sous-groupes de Z: tout ideal de K[X] est principal.

THEOREME A.7. Soit I C K[X] un ideal alors il existe Q € K[X] tel que I est I’ensemble des
multiples de Q:

I=(Q)={5Q, S e K[X]}.

De plus si on suppose Q unitaire alors ) est unique.
Preuve: Si I = {0} = 0.K[X] on a fini. Si I # {0} soit @ € I — {0} un polynome non-nul de degre
¢ minimal parmi les polynomes non-nuls de I. Soit P € I. Par division euclidienne on peut ecrire

P=QS+R
avec deg R < ¢. On a
R=P-QSel

(car P,Q € I et pour tout S € K[X], S.Q € I par definition d’un ideal) et donc R € I. Par
minimalite de ¢ la seule possibilite est que R = 0 et donc P = S.Q € K[X].Q. Si L est tel que
I = K[X].Q = K[X].L alors L est un multiple de @ (et @ est un multiple de L) et il n’existe qu'un
seul multiple de @ qui soit unitaire: aqeg(Q) ™ .Q 0U adeg (@) # 0 est le coefficient dominant de

Q. 0
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DEFINITION A.9. Soit I C K[X] un ideal non-nul alors l'unique polynome unitaire Qg tel que
I'=(Qr) =Qr-K[X]
est appelle polynome minimal de I. Si I = {0k} est 'ideal nul on posera
Qr = 0k.
Comme un noyau d’un morphisme d’anneau ¢ : K[X] — A est un ideal on a:

COROLLAIRE A.3. Soit B un anneau et ¢ : K[X]| — B un morphisme d’anneauz. Alors il existe
Q, € K[X] unitaire (ou nul) tel que

ker(p) = Qu K [X].
Le polynome Q. s’appelle le polynome minimal de .

DEFINITION A.10. Un anneau A tel que tout ideal I C A est de la forme I = q.A pour ¢ € A
est dit principal. Un anneau de polynomes sur un corps est donc principal.

On notera le lien suivant entre inclusion d’ideaux et divisibilite
PROPOSITION A.10. Soient
I=(P)=PK[X] et J=(Q) =Q.K[X]
des ideauzr de K[X] engendres par des polynomes P et Q alors on a
IcJ< Q|P.
Preuve: En effet si I C J alors P C J = Q.K[X] et donc
P=Q.R, Re K[X].
Reciproquement si P = ).R alors pour tout L € I on a pour S € K[X]
L=PS=QRSecQK[X]=J

et donc I C J. (]

A.4.5. Decomposition en polynomes irreductibles.

DEFINITION A.11. Un polynome P(X) € K[X] non constant est irreductible (ou premier) si les
seuls diviseurs de P sont les multiples de 1 ou de P:

QP=Q=XouQ=\P, Ne K*.
De maniere equivalente: P est irreductible si et seulement si
Q|P < deg@Q =0 ou P.

On notera & C K[X] l'ensemble de tous les polynomes irreductibles et &, C & l'ensemble de ceux
qui sont unitaires.

PROPOSITION A.11. (Lemme de Gauss) Soit P irreductible, si P|Q1.Q2 alors P|Q1 ou P|Q2.
Preuve: Ecrivons Q1.Q2 = P.S. Supposons que P [Q et soit I'ideal
I = K[X].P+ K[X].Q: € K[X].

I'ideal engendre par P et Q1. On va montrer que I = K[X]. On a I = D(X).K[X] pour D un
polynome. Comme P € I on a D|P mais cela implique que D est soit un scalaire non nul soit un
multiple de P. Dans ce dernier cas I = P.K[X] et comme Q1 € I on a P|Q; ce qu'on a exclut. Si
D est un scalaire non-nul alors I = K[X] > 1 : il existe A(X), B(X) tels que

AX)P(X)+ B(X)Q:1(X) =1.
On a alors
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THEOREME A.8. Soient Q un polynome non constant alors Q se factorise de maniere unique
sous la forme
Q=\P. - P
ou les P; sont des polynomes irreductibles unitaires et A € K*. De plus cette factorisation est
unique: Si on a deuz telles factorisation en irreductibles (unitaires)

Q:)\Pl Ps:,URl R,
alors s =1, A\ = p et il existe une permutation o : {1,--- r} — {1,--- s =r} telle que
R,‘:Pg(i).

Preuve: On va montrer la factorisation par recurrence sur deg @. Si deg@ = 1 on a fini car @ est
forcement irreductible et si Q(X) = a.X + b,a,b € K, a # 0 et on a l'ecriture unique

Q=a(X+0b/a).
Supposons deg @ = ¢+ 1 et qu’on a le resultat pour tous les polynomes de degree < g. Si @) possede
un diviseur 1 non-constant et non multiple de Q on a alors 1 < deg@1 < ¢+ 1 et
Q=Q1.Q2
avec deg QQ1,deg Q2 < ¢+ 1. Sinon @ est irreductible et on a la factorisation
Q = adegQ-le Ql = a(;eng-Q-
Dans le cas precedent, on a par recurrence
Q1 =A.Pr.--- Py, Q2=2X2.Ps 41. Py, s,

avec les P; irreductibles unitaires et
Q=MXo.P.-- Pg, . Ps11.-+ .Ps 4s,.

Montrons 'unicite par recurrence sur deg @. Si deg@ = 1 c’est immediat.
Dans le cas general soit
Q:)\Pl -Ps :,U,Rl ~Rr
alors Pg|u.Ry.--- .R, et par le lemme de Gauss P; divise un des R;. Ops que c’est R,.. Comme R,
est irreductible, unitaire et P, est non constant unitaire on a P; = R, et

Q=AP.--- . Ps=pRy. - .R-_1.P;
et
0=A\P. -+ .Ps_y —p.Ry.--- .\Rp_1)Ps
et comme K[X] est integre
AP, Poy=puRy. - R

et on applique la recurrence. O
A.4.5.1. Valuation. Soit Q(X) = a,X? + a,—1 X9 " + -+ + ap un polynome de degre ¢ > 0
(aq # 0) alors la decomposition de @ en irreductibles peut se reecrire de maniere compacte

Q:aq H P”P(Q)
ou

— P parcourt 'ensemble infini des polynome irreductibles unitaires,
— les vp(Q) > 0 sont des entiers nuls pour tous les P sauf un nombre fini,
— Quand vp(Q) = 0 on a pose

por@ = p0.—1.

Ainsi, V'entier vp(Q) est 'exposant de la plus grande puissance du polynome irreductible P
divisant Q.
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DEFINITION A.12. L’entier vp(Q) est appelle la valuation de Q en P ou la valuation P-adique
de Q. Pour Q =0 on pose vp(Q) = +oo pour tout P irreductible.

Ces valuations ont les proprietes suivantes

THEOREME A.9. Soient Q, R € K[X]— {0} de degres respectif q et r et de coefficient dominant
aq et by on a

(1) Pour tout P € &, on a
vp(Q.R) = vp(Q) + vp(R)

et plus precisement
Q.R=a,.b, H prr(@+vp(R).
Pe2,
(2) On a
Q|R <~ VP e f@u, UP(Q) < UP(R)
(3) Pour tout P on a
vp(Q + R) =2 min(vp(Q), vp(R))
avec egalite si vp(Q) # vp(R).
A.4.6. PGDC et PPMC. Soient P,Q € K[X] — {0}. On a alors les deux ideaux:
(P):= K[X].P, (Q) = K[X].Q
et on peut alors former deux autres ideaux: leur intersection et leur somme
(P)N(Q) C (P),(Q) C (P)+(Q) =(P,Q) C K[X].
A.4.6.1. Le PGCD. L’ideal engendre par P et @ est de la forme
(P,Q) = (P)+(Q) = K[X].P + K[X].Q = R.K[X]
avec R unitaire. Alors comme P,Q € (P,Q), R divise et P et Q: on a
R|P & R|Q.
D’autre part si un polynome S divise a la fois P et @ alors
K[X].P+ K[X].Q = R.K[X] C S.K[X]

et donc S|R. Ainsi R est le Plus Grand Diviseur Commun (unitaire) de P et @ au sens ou tout
diviseur commun de P et (Q doit diviser R.

DEFINITION A.13. Soient P,Q € K[X] — {0}, note
(P,Q):=R

le generateur unitaire de l'ideal (P)+(Q) = (P, Q) et on lappelle le PGCD de P et Q. En particulier
st (P,Q) =1 (cad (P,Q) = K[X]) on dit que P et Q sont premiers entre eut.

REMARQUE A.4.2. Si Q = 0 alors (P,0) = P, est I'unique polynome unitaire qui est multiple
de P.

PROPOSITION A.12. (Bezout) Soient P,Q des polynomes. Il existe A, B € K[X] tels que
(P,Q)=A.P+ B.Q.
En particulier, deuz polynomes P et Q sont premiers entre euz ssi il existe A, B € K[X] tels que

1= AP+ B.Q.
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Preuve: On a
(P)+(Q) = (P,Q).K[X] = PK[X]+Q.K[X].
En particulier (P, Q) est de la forme

Supposons qu'il existe A, B tels que 1 = A.P+ B.Q alors (P)+(Q) contient 1 et donc 1.K[X] =
K[X] de sorte que (P) + (Q) = K[X].
O
A.4.6.2. Algorithme d’Fuclide. L’algorithme d’Euclide qui permet de calculer le PGDC de deux
entier permet de calculer le PGCD de deux polynomes: Si P et @ sont deux polynome dont on
souhaite calculer (P, Q) on applique la methode suivante:

(1) On suppose que deg P > deg @ et on effectue la division euclidienne de P par Q:
P=5Q+ R, deg R < deg P.

Si R = 0 cela signifie et Q|P et donc

(P,Q)=Q.
Sinon, cette relation implique que l'ideal engendre par P et @) est egal a 'ideal engendre
par Q et R
(P,Q) = (Q, R).
(2) On recommence ’etape precedente avec Py = R et Q1 = Q.

(3) -+
(4) Comme le degre du reste diminue d’au moins 1 a chaque etape strictement le processus
s’arrete apres au plus max(deg P, deg Q) etapes.

A.4.6.3. Le PPCM. Soit 'intersection (P)N(Q) C K[X]. C’est un ideal non-nul car il contient
le produit P.Q. Il est donc de la forme (P) N (Q) = K[X].S avec S unitaire. On a donc

P|S&Q|S
et S est un multiple commun a P et a Q. De plus si P|T et Q|T alors
T € K[X].PNK[X].Q = K[X].S
et S|T. Ainsi S est le Plus Petit Multiple Commun (unitaire) de P et Q.
DEFINITION A.14. Soient P,Q € K[X] — {0}, note
P.Ql =R
le generateur unitaire de l'ideal (P) N (Q) et on lappelle le PPCM de P et Q.
PROPOSITION A.13. (Formule du produit) Soient P,Q € K[X] — {0} et unitaires. On a
PQ =P.QI(P,Q).
Preuve: Voir I'exercice concernant la formule du produit
m.n = (m,n)[m,n|

pour m,n € Z. (Il
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A.4.6.4. Generalisation a un nombre arbitraire de polynomes.
DEFINITION A.15. Soient Py,--- , P, des polynomes alors leur PGCD et leur PPCM notes
(Pr,o, Pp) et [Py, By
sont respectivement les generateurs unitaires des ideaux
(Pr) + -+ (Pr) et (Pr) N0 (P).
En particulier si
(P, ,Py) =1, ie(Py, -+, Py) = K[X]

on dit que Py,--- , P, sont premiers dans leur ensemble.

REMARQUE A.4.3. On a

(P, Pr)|(Pr, Po)
car
(P1) + (P2) € (P1) + -+ + (P).
A.4.6.5. PGDC, PPMC et decomposition en irreductibles.

THEOREME A.10. Soient Q, R des polynomes non-nuls de degres q et r et
Q=a, H pr@ R=yp,. H prr(R)
Pez, Pez,
leur decompositions en polynomes irreductible unitaires alors
(Q,R) = H Pmin(vP(Q)an(R))7 [Q,R] = H pmax(vp(Q).vp(R)).
Pez, Pez,

Preuve: Exercice. O

A.5. Application a la construction de corps

Soit M une K-algebre (pas forcement commutative, par exemple End(V) ou My(K)) d’unite
1p et M € M un element. On associe a M une application (dite d’evaluation en M)

K[X] » M
YMp(X) — P(M)

ou
P(M)=ag.M°+ay. M+ +a,M" + -+ aqg. M
On a pose MY =1, et
M™=M.M--- .M(n fois).
PrOPOSITION A.14. Cette application est un morphisme d’algebres: on a
(AP +Q)(M) = X\.P(M) +Q(M), (P.Q)(M) = P(M).Q(M).
On notera limage de cette aplication par
K[M] =evy(K[X]) ={P(M), P e K[X]}.

C’est une sous-algebre (un sous-anneau et un SEV) commutative de M : ’algebre des polynomes
en M.
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Preuve: On ne fait que la multiplication:
P(M).Q(M) = (ag.M° + a1.M + - + aqg.M?).(bg.M® 4+ by. X + - + bg. M%) =
> ap MPh M =Y apby MPYI =" (> apb)M™ = (P.Q)(M)
p,g<d p,q<d n<d+d’ ptg=n

ici on a utilise les proprietes des lois de composition de M (associativite, distributivite) et le fait
(valable meme si M n’est pas commutative) que

ap.MP by M? = a,.by. MP.M? = a,.b,. MP1I.
L’algebre K[M)] est commutative car K[X] Dest:
P(M).Q(M) = (P.Q)(M) = (Q.P)(M) = Q(M).P(M).
(I

EXERCICE A.l. Montrer que K[M] est la plus petite sous-algebre de M contenant M: c’est
lalgebre engendree par M. On dit que K[M] est monogene car elle est engendre par un seul element.

A.5.1. Polynome minimal de M. Comme evy; : K[X] — M est un morphisme d’anneau
son noyau ker(ev,y) est un K[X] ideal et donc de la forme

ker(evar) = Qov,, - K[X]
pour Qey,, un polynome nul ou unitaire.

DEFINITION A.16. Soit M un K-algebre et M € M et
evy : P(X) e K[X]— P(M)eM
le morphisme d’evaluation en M dont le noyau est
ker(evar) = {P, P(M) =0m} = Qev,, -K[X]
avec Qev,, nul ou unitaire. Le polynome

Qev

est appele polynome minimal de M et est note
Pmin,M = QevM'
A.5.2. Un critere pour que K[M] soit un corps.

THEOREME A.11. Soit B un anneau et ¢ : K[X] — B un morphisme d’anneaux non-nul et
ecrivons ker p = Q.K[X]. Alors on a

Q est irreductible <= @(K[X]) est un corps.

Preuve: Soit b = ¢(P) € ¢(K[X]) — {0}. Supposons P irreductible; on veut montrer que b est
inversible dans ¢(K[X]). Considerons l'ideal I = (P, Q) = K[X].P + K[X].Q alors I = K[X]: en
effet ecrivons I = K[X].R; comme P,Q € I = K[X].R et on doit avoir R|P et R|Q. Comme P
est irreductible et R|P, R est constant non-nul ou de la forme A.P. Dans le second cas on aurait
I = K[X].P = ker ¢ ce qui contredit le fait que b = ¢(P) # 0. On a donc I = K[X] et il existe
U,V € K[X] tels que
UP+V.Q=1g
et alors
lp = p(UP +V.Q) = p(U).p(P) + ¢(V).p(Q) = p(U).¢(P) = ¢(V).b

et b est inversible et son inverse ¢(V') € ¢(K[X]).

Reciproquement supposons que @(K[X]) est un corps; alors @ # 0 car sinon ¢ sera un isomor-
phisme de K[X] vers son image et K[X] est pas un corps. @ n’est pas non-plus constant non nul
car ¢ sera le morphisme nul.
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Supposons que @ ne soit pas irreductible: Q = RS avec 0 < deg R,deg S < deg@. On a

p(Q) =05 = p(R).0(5)
et donc p(R) ou ¢(S) = 0p mais R et S ne peuvent appartenir a ker(y) (car ils seraient divisible

par Q). a
Appliquant ce resultat, on obtient

COROLLAIRE A.4. Soit M un K-algebre et M € M et
evy : P(X) € K[X]— P(M)eM
le morphsime d’evaluation en M. Alors K[M] est un corps si et seulement si Ppin ar(X) est irre-
ductible (en particulier Ppin a(X) #0).
Voici un critere d’irreductibilite

PROPOSITION A.15. Soit P(X) € K[X] un polynome de degre 2,3 alors P(X) est irreductible
sst il n’a pas de racine dans K.

Preuve: On peut supposer P unitaire de degre > 2. Si P est irreductible il n’a pas de factorisation
de la forme
P(X)=(X—-2)5(X), z€ K, S € K[X]
et donc il n’a pas de racine dans K.
Supposons deg P = 2,3. Si P est reductible il aura une factorisation

P(X) = Q(X)S(X)
avec (), S unitaires tels que
deg @ + degS =deg P =2o0u 3, deg@Q,degS > 1

et donc @ ou S doit avoir degre 1: ie est de la forme X — z, z € K et donc P admet une racine dans
K. |

EXERCICE A.2. (a faire apres le chapitre sur les applications lineaires) Soit M un K-algebre de
dimension finie et M € M. Soit K[X]<q le sous-espace vectoriel des polynomes de degree < d.

(1) Montrer que si d > dim M, il existe un polynome P non-nul de degree < d tel que
P(M) = 04.

(2) Montrer que Pin a7 0 et Pryin, v < dim M.

(3) Montrer que si P(0) = ag # 0 alors M est inversible dans M et en fait M ~! = Q(M) avec
Q € K[X]<q—1 et donc M~ € K[M].



