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Introduction

Le terme ”Algebre” est derive du mot arabe al-jabr qui est tire du titre d’un ouvrage
du mathematicien persan Al-Khwarizmi, redige vers 825 (source wikipedia) et intitule

Kitab al-mukhtasar fi hisab al-jabr wa-l-muqabala

Abrege du calcul par la restauration et la comparaison.

L’ouvrage fournissait des procedures generales de calcul pour resoudre des problemes
pratiques lies aux actes legaux (partage lors d’un heritage, subdivision de terrains et calculs
d’aires) qui conduisaient a resoudre des equations lineaires ou quadratiques. Le nom ”Al-
Khwarizmi” a d’ailleurs donne naissance au mot ”Algorithme”.

De nos jours le terme ”Algebre” designe plutot l’etude et la classification de structures
mathematiques formelles liees aux operations. l’Algebre Lineaire se concentre plus partic-
ulierement sur l’etude des ”espaces vectoriels”. Cependant avant d’arriver a cette notion,
nous auront besoin d’introduire d’autre structures algebrique plus generales,

– Les ”groupes”,
– les ”anneaux”
– et les ”corps” (qui sont des anneaux particuliers) ainsi que
– les ”modules” sur les anneaux, les espaces vectoriels sont des modules sur des corps.

L’etude des premiers releve de la ”theorie des groupes” (qui sera developpee plus en
details dans le cours MATH-113) et celle des trois au tres releve de ”l’algebre commutative”
(qui sera discutee en deuxieme annee) cependant, comme on va le voir, tous ces sujets sont
intimement connectes et il est impossible de traiter l’un de ces sujets sans avoir recours aux
autres.

Avant cela nous aurons besoin d’ introduire le language des ensembles.
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CHAPITRE 1

Le language des ensembles

“Le langage est un ensemble de citations.”

1.1. La theorie des ensembles

La notion d’ensemble (et les operations qui y sont associees comme l’intersection ou
la reunion) est tellement naturelle qu’on peut legitimement s’interroger sur le bien-fonde
de construire une ”theorie des ensembles”. Cette necessite, bien reelle, n’est vraiment
apparue que dans le cours du 19eme siecle quand certains mathematiciens ont obtenus des
objets mathematiques (d’origine logique, analytique ou geometrique) semblant posseder des
proprietes paradoxales et en tout cas defiant l’intuition primaire. Dans certains cas on a
pu montrer qu’une re-interpretation convenable ou le developpement d’une theorie plus
rigoureuse permettait de donner un sens a ces objets; dans d’autres, on a realises que de
tels objets conduisait a une contradiction avec les theories existantes ce qui a conduit a une
remise en cause des fondements meme sur lequels le raisonnement mathematiques etaient
basees. La1 Theorie des Ensembles est l’un des fruits de ces reflexions.

Il est impossible, dans le cadre de ce cours, de presenter une definition rigoureuse de
la notion d’ensemble; nous preferons renvoyer le lecteur a un cours plus avance de ”logique
mathematique” (par exemple MATH-381) et en attendant nous en remettrons a l’intuition
du lecteur qui est souvent bien suffisante.

Cependant nous voulons insister que le developpement d’une theorie des ensemble ce
n’est pas du tout evident. Cela necessite au prealable d’introduire un concept de logique
appelle calcul des predicats du premier ordre: c’est un language forme de constituants et
muni d’une syntaxe permettant creer des phrases (appellees ”formules” ou ”predicats”)
qui s’organisent en proprietes ou en relations et qui permet de modeliser le raisonnement
mathematique usuel. Une fois cela defini, on peut construire une theorie des ensembles a
partir d’ axiomes convenables de sorte que la theorie soit consistante (ie. ne conduise pas a
des contradictions comme c’etait le cas avec des contruction moins precises). Il n’y a pas de
choix unique pour les axiomes mais la plupart du temps on utilise les axiomes ZF ou ZFC2)

Le calcul des predicats du premier ordre (egalitaire) est un language dont les phrases
sont composes de

– Divers alphabets: des ensembles de symboles (usuellement des lettres ou des en-
sembles de lettres) representant soit des variables, x, y, z · · · ou des constantes
a, b, c, · · · qui permettent d’identifier les divers objets sur lesquels on travaille et
egalement les predicats ou des fonctions

P (·), Q(·), f(·), cos(·)

1il y a en fait plusieurs theories possibles
2d’apres Zermelo et Fraenkel
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8 1. LE LANGUAGE DES ENSEMBLES

permettant de d’expliciter les relations existant entre les divers ensembles consid-
eres.

– Quantificateurs logiques:
– Le quantificateur universel ∀:

∀ x P (x) : ”pour tout x, la propriete P (x) est vraie” .

– Le quantificateur existentiel ∃:

∃ x P (x) (∃ x|P (x)) : ”il existe x tel que la propriete P (x) est vraie”

ou la variante

∃! x P (x) (ou ∃! x|P (x)) : ”il existe un unique x tel que la propriete P (x) est vraie”.

– Un symbole pour la relation d’egalite = permettant d’exprime le fait que deux
elements sont les memes et peuvent etre librement substitues dans toute formule
impliquant l’un ou l’autre.

– Connecteurs logiques reliant les predicats

∧ : ”et”, ∨ : ”ou”

=⇒: ”implique”; ⇐⇒: ”equivaut a, si et seulement si”

¬ : ”negation” ”contraposee”.

– Des regles syntaxiques de construction des formules (l’orthographe et la grammaire
du language en question).

– D’un systeme de deduction permettant de deriver des propositions (appellees con-
clusions) a partir de propositions existantes (appellees premices). Pour initier le
processus de deduction, on se donne un ensemble de proposition initiales appellees
axiomes.

Ce language est interprete dans le cadre d’un modele (dans notre cas, les ensembles; il
peut a priori y avoir plusieurs modeles associes a un language donne) et il sert a exprimer
diverses relations existantes entre les divers objets du modele. En particulier on peut deter-
miner si certaines de ces formules (celles qui sont ”closes”: une formule est close si toutes
les variables qui apparaissent dedant ont devant elles l’un des deux quantificateurs logiques
∀, ∃) sont ”vraies” ou ”fausses” quand on leur applique des elements du modele et le sys-
teme de deduction ci-dessus est construit de sorte qu’il preserve ces valeurs de verite: si
des formules ”premices” sont ”vraies” alors la formule ”conclusion” doit etre ”vraie” (les
axiomes initiaux qu’on a pu se donner en dapart doivent egalement etre vrais).

1.1.1. Ensembles. La categorie des Ensembles est une collection d’objets (les ensem-
bles) munies d’une relation d’ appartenance qui lie entre eux certains couples d’ensembles.
Soient e, E deux ensembles, si ces ensembles sont lies par cette relation, on le note

e ∈ E.

On dit alors que ”e est un element de E” ou que ”e appartient a E”.
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1.1.2. Sous-ensemble. A partir de cette relation d’appartenance, on forme la relation
d’inclusion: un ensemble A est contenu (ou inclu) dans un ensemble B

A ⊂ B

si tout element de A appartient a B:

∀a, a ∈ A =⇒ a ∈ B.

On dit egalement que A est un sous-ensemble de B et on le note

A ⊂ B.

Remarque 1.1.1. les relations d’appartenance ∈ et d’inclusion ⊂ sont distinctes. On
peut tres bien avoir A ∈ B (A est un element de B) sans que l’on ait A ⊂ B et on peut tres
bien avoir A ⊂ B sans que A ∈ B (A est inclus dans B).

1.1.3. Axiomes de la theorie des ensembles. Les ensembles verifient un certain
nombre d’axiomes (une dizaine) qui permettent la construction de nouveaux ensembles a
partir d’ensembles primitifs: on va donner quelques uns des ces axiomes:

1.1.3.1. Existence de l’ensemble vide. Il existe un ensemble ne contenant aucun autre
ensemble comme element et qui est inclut (⊂) dans tout ensemble (y compris dans lui-
meme): l’ensemble vide qu’on note

∅.

On a donc

∀E, E ∕∈ ∅ ∧ ∅ ⊂ E.

Remarque 1.1.2. Il est important ici de ne pas confondre ∈ et ⊂.

1.1.3.2. Axiome de la double-inclusion. Deux ensembles sont egaux si ils sont inclus l’un
dans l’autre (si ils possedent les meme elements):

A ⊂ B ∧ B ⊂ A =⇒ A = B.

1.1.3.3. Ensemble des parties d’un ensemble. Si A est un ensemble, il existe un ensemble
dont les elements sont les sous-ensembles de A ; cet ensemble (unique par l’axiome de la
double inclusion) est appelle l’ensemble des parties (ou des sous-ensembles) de A on le note
P(A):

P(A) = {B, B ⊂ A}.

En particulier on a toujours

∅, A ∈ P(A)

donc P(A) contient toujours au moins 1 element (et au moins 2 ssi A ∕= ∅).
1.1.3.4. Axiome de la reunion. Soit E un ensemble, il existe un ensemble, la reunion de

E, qu’on notera
󰁞

E

dont les elements sont exactement les elements des elements de E (on rappelle que les
element de E sont eux-meme des ensembles.
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1.1.3.5. Axiome de la paire. Soient A et B deux ensembles, si existe un ensemble (nec-
essairement unique par l’axiome de la double inclusion) dont les elements sont exactement
A et B, on le note

{A,B}.
En particulier, si A = B, on forme l’ensemble (a un element)

{A,A} = {A}
qu’on appelle le singleton {A}.

Remarque 1.1.3 (Reunion d’ensembles). Soient A et B deux ensembles, par l’axiome
de la paire il existe un ensemble E = {A,B} dont les elements sont les ensembles A et B.
Par l’axiome de la reunion, la reunion de E = {A,B} est un ensemble compose des elements
de A et des elements de B: on l’appelle reunion de A et B et on le note

󰁞

{A,B}
= A ∪B = {e|e ∈ A ∧ a ∈ B}.

Plus generalement on montre que si I est un ensemble non vide et (Ai)i∈I une famille
d’ensembles indexee par I (la donnee pour chaque element i ∈ I d’un ensemble Ai) alors il
existe un ensemble dont les elements sont exactement les elements appartenant a l’un des
Ai, on le note 󰁞

i∈I
Ai.

1.1.3.6. ...et 5 autres axiomes supplementaires dans la theorie ZFC. notamment ”l’Axiome
de l’infini” et l’Axiome du choix”.

Exemple 1.1.1. Quelques ensembles

– On a deja vu l’ensemble vide qu’on va noter egalement

∅ =: 0.

– L’ensemble des parties de l’ensemble vide P(∅) possede l’ensemble vide comme
seul element et on le note

P(∅) = {∅} =: 1.

– Par l’axiome de la paire l’ensemble suivant existe

{∅, 1} = {∅, {∅}} := 2,

puis en iterant (en appliquant la Remarque 1.1.3) on construit

3 :=
󰁞

2,{2}
= {∅, {∅}, 2} = {∅, {∅}, {∅, {∅}}} = {0, 1, 2}, 4 := {0, 1, 2, 3}, · · ·

– On ”arrive” alors a construire l’ensemble des entiers naturels:

N = {0, 1, 2, 3, · · · }
par un processus recursif: si l’entier n a ete construit on defini son successeur n+

comme etant l’ensemble obtenu comme reunion

n+1 =
󰁞

{n,{n}}
= n ∪ {n}

ie. l’ensemble (cet existe par l’axiome de la reunion) dont les elements sont les
elements de n et le singleton {n}; on construit alors le successeur de ce n+1, etc...le
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fait de pouvoir repeter cette construction une infinite de fois necessite l’axiome de
l’infini.

On defini sur N le relation ”inferieur ou egal” 󰃑 en posant pour m,n ∈ N

m 󰃑 n ⇐⇒ m ⊂ n

et on definit egalement 󰃍, < et >.
– Puis on peut a partir de cela construire l’ensemble des entiers relatifs:

Z = {· · · ,−2,−1, 0, 1, 2, · · · }
(cela necessite la notion de produit cartesien, cf. ci-dessous) et on peut alors
etendre la relation 󰃑.

– On construit ensuite l’ensemble des nombres rationnels:

Q = {p
q
, p, q ∈ Z, q ∕= 0},

auquel on etend la relation 󰃑
– et vous verrez en analyse la construction de l’ensemble des nombres reels R,
– et enfin a partir de R, on construira dans ce cours (en admettant l’existence de R)
l’ensemble des nombres complexes C et on a donc

∅ ⊂ N ⊂ Z ⊂ Q ⊂ R ⊂ C.

1.1.4. Notation. Comme on l’a vu dans les exemples, on designera un ensemble et les
elements qu’il contient par la notation ”crochets”:

E = {· · · }.
Entre ces crochets {· · · } on mettra soit

– La liste explicite des elements de l’ensemble (si c’est possible) separes par des
virgules: on enumere les elements de l’ensemble.

– une formule indiquant qu’on considere les elements d’un autre ensemble (disons F )
qui verifient une certaine propriete P codee par une formule logique:

– {0, 1, 2, 3} = {m ∈ N, m 󰃑 3}.
– N = Z󰃍0 = {m ∈ Z, m 󰃍 0}.
– P = Ensemble des nombres premiers = {p ∈ N, d|p =⇒ d = 1 ou p}.
– Soit E-EPFL l’ensemble des etudiants de l’EPFL.

A := {e ∈ E-EPFL, 3|SCIPER(e)},

B := {e ∈ E-EPFL, 3|SCIPER(e)− 1},
C := {e ∈ E-EPFL, 3|SCIPER(e)− 2}.

Remarque 1.1.4. (Paradoxe de Russell) L’ensemble ENS de tous les ensembles n’est
PAS un ensemble: en effet si c’etait le cas, on pourrait considerer, suivant Russell, l’ensemble
de tous les ensembles n’appartenant pas a eux-meme

Ncont = {E ensemble, E ∕∈ E}
et se poser la question de savoir si

Ncont ∈ Ncont ou bien Ncont ∕∈ Ncont.

Si on est dans le premier cas, on a Ncont ∈ Ncont ce qui par definition de Ncont implique
que Ncont ∕∈ Ncont. Contradiction.
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Si on est dans le second cas, on a Ncont ∕∈ Ncont ce qui par definition de Ncont implique
que Ncont ∈ Ncont. Contradiction!

Ce probleme qui etait present dans les versions initiales de la theorie des ensembles
(theories dites ”naives”) a ete resolu dans la theorie ZF ou ZFC par l’ajout d’ axiomes
convenables. Par ailleurs pour donner un sens a la notion ”d’ensemble de tous les ensembles”
(qui n’est PAS un ensemble), on a introduit des concepts plus ”souples” appelles categories
qui sont exemptes de paradoxe de type Russell; ainsi ”l’ensemble” de tous les ensembles
ENS forme ce qu’on appelle une categorie.

1.2. Operations sur les ensembles

1.2.1. Union, Intersection. Soient A,B ⊂ E des sous-ensembles d’un ensemble, on
a les operations suivantes

– la reunion de A et B,

A ∪B = {e ∈ E|e ∈ A ou e ∈ B}.

– l’intersection de A et B,

A ∩B = {e ∈ E|e ∈ A et e ∈ B}.

– la difference de A et B,

A−B = A\B = {a ∈ A|a ∕∈ B}.

En particulier la difference

E −A = {e ∈ E, e ∕∈ A} := Ac

s’appelle le complementaire de A dans E.
– la difference symetrique de A et B,

A∆B = A\B ∪B\A.
– Si A ∩B = ∅, on dit que A et B sont disjoints.

Plus generalement si on dispose de n 󰃍 2 sous-ensembles E1, · · · , En ⊂ E on note

n󰁞

i=1

Ei = E1 ∪ · · · ∪ En = E1 ∪ (E2 ∪ · · · ∪ En) = {e ∈ E| il existe i 󰃑 n, e ∈ Ei},

n󰁟

i=1

Ei = E1 ∩ · · · ∩ En = E1 ∩ (E2 ∩ · · · ∩ En) = {e ∈ E| pour tout i 󰃑 n, e ∈ Ei}.

Plus generalement si I est un ensemble et (Ei)i∈I est une famille de sous-ensembles de E
indexes par I on definit 󰁞

i∈I
Ei = {e ∈ E|∃i ∈ I, e ∈ Ei},

󰁟

i∈I
Ei = {e ∈ E|∀i ∈ I, e ∈ Ei}.

Exercice 1.1. Montrer que

A∆B = A ∪B −A ∩B.
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1.2.2. Produit cartesien.

Définition 1.1. Etant donne deux ensembles A,B et a ∈ A, b ∈ B des elements de A
et B respectivement. On definit la paire ordonnee (a, b) comme etant l’ensemble

(a, b) := {a, {a, b}}

obtenu a partir de l’axiome de la paire.

Remarque 1.2.1. Notons que si a ∕= b alors la paire ordonnee (a, b) = {a, {a, b}} est
distincte de la paire ordonnee (b, a) = {b, {b, a}} = {b, {a, b}}.

Définition 1.2. Le produit cartesien A×B est l’ensemble des paires ordonnees (a, b)
avec a un element de A et b un element de B:

A×B = {(a, b), a ∈ A, b ∈ B}.

Remarque 1.2.2. Si un des facteurs est l’ensemble vide, le produit cartesien est vide:

∅ ×B = A× ∅ = ∅.

Remarque 1.2.3. Les ensembles A× B et B × A sont distincts sauf si A = B ou si A
ou B est l’ensemble vide.

Si A = B ∕= ∅ on ecrit alors

A×A =: A2

On peut iterer cette construction: si on dispose de n 󰃍 1 ensembles A1, · · · , An le
produit

A1 × · · ·×An

est l’ensemble des n-uples (ordonnes)

(a1, · · · , an), a1 ∈ A1, · · · an ∈ An.

Si A1 = · · · = An = A on note ce produit An.
1.2.2.1. L’axiome du choix. On peut chercher a definir le produit cartesien pour un

ensemble arbitraire de facteurs: soit I un ensemble et (Ai)i∈I une famille d’ensembles
indexee par I; on veut construire un ensemble note

󰁜

i∈I
Ai

dont les elements sont formes de toutes les familles de la forme

(ai)i∈I , ∀i ∈ I, ai ∈ Ai.

Ainsi, exhiber un element de
󰁔

i∈I Ai implique de choisir pour chaque i ∈ I un element
ai ∈ Ai; cela ne pose pas de probleme si I est fini ou meme si I = N mais si I est general,
des problemes de logique peuvent apparaitre; pouvoir le faire en toute generalite (pour tout
ensemble I) implique d’admettre l’ axiome du choix.

Vous verrez plus tard (notamment en analyse) d’autres formulations et applications de
cet axiome.
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Figure 1. Les relations 󰃑 et | dans N× N.

1.2.2.2. Relation binaire. Une relation (binaire) R entre (les elements de) deux ensem-
bles A,B est un sous-ensemble

R ⊂ A×B.

Soient a ∈ A, b ∈ B, on dit que a et b sont lies par la relation R si

(a, b) ∈ R
ce que l’on ecrit

a ∼R b ou bien aRb.

Si a et b ne sont pas en relation (ie. (a, b) ∕∈ R) on le note

a ∕∼R b ou bien a ∕Rb.

Il se peut que le sous-ensemble R ⊂ A × B ai des proprietes supplementaires qui se
traduisent en des proprietes de la relation correspondante.

Exemple 1.2.1. Si A = B = N, on a la relation ”inferieur ou egal” m 󰃑 n (par exemple
2 󰃑 3 ). On a egalement la relation ”divise” m|n: m divise n si il existe k ∈ N tel que
n=m.k (ex. 2|8). Voir la figure 1.2.2.2 pour les representations graphiques de ces relations.

En pratique, le cas le plus important est quand A = B. Soit donc une relationR ⊂ A×A
de A sur lui-meme. On a les definitions suivantes:

– La relation R est reflexive si

∀a ∈ A, aRa

(cad (a, a) ∈ R). En d’autre termes ∆A ⊂ R ou ∆A = {(a, a), a ∈ A} est appellee
la diagonale de A×A. Par exemple pour N, les relations 󰃑 et | sont reflexives.

– La relation R est symetrique si

∀a, a′ ∈ A, aRa′ ⇐⇒ a′Ra.

En d’autre termes la relation R ⊂ A×A est invariante par la symetrie par rapport
a la diagonale

s∆ : (a, a′) ∈ A×A 󰀁→ (a′, a) ∈ A×A;

c’est a dire

s∆(R) = R.

Par exemple sur N, 󰃑 et | ne sont pas symetriques.
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– La relation R est antisymetrique si

∀a, a′ ∈ A, aRa′ et a′Ra ⇐⇒ a = a′.

Autrement dit la seule possibilite pour que l’on ai a la fois (a, a′) ∈ R et (a′, a) ∈ R
est que a = a′. Par exemple sur N, les relations 󰃑 et | sont antisymetriques.

– La relation R est transitive si

∀a, a′, a′′ ∈ A, aRa′ et a′Ra′′ =⇒ aRa′′.

Par exemple pour N, les relations 󰃑 et | sont transitives.

Définition 1.3. Une relation R est dite d’equivalence si elle est reflexive, symetrique
et transitive.

Par exemple sur N la relation ”de congruence modulo 3” definie par

m ≡ n (mod 3) ⇐⇒ 3|m− n

est d’equivalence.
Plus generalement pour tout entier q ∕= 0 la relation ”de congruence modulo q” definie

par
m ≡ n (mod q) ⇐⇒ q|m− n

est d’equivalence.

Définition 1.4. Une relation R est dite d’ordre si elle est reflexive, antisymetrique et
transitive.

Par exemple pour N, les relations 󰃑 et | sont des relations d’ordre.

1.3. Applications entre ensembles

Une autre classe tres importante de relation est donnee par les applications entre en-
sembles.

Définition 1.5. Soient X et Y des ensembles. Une application (appellee egalement
fonction) f de X (l’espace de depart) vers Y (l’espace d’arrivee) est la donnee pour tout
x ∈ X d’un unique element f(x) ∈ Y ; l’element f(x) est l’image de x par f . Si y ∈ Y est
de la forme y = f(x) pour un certain x ∈ X on dit que x est un antecedent de y par f .

Une application est notee
f : X 󰀁→ Y.

Exemple 1.3.1. – Application constante. Soit y ∈ Y fixe; l’application qui a tout
element x ∈ X associe y et l’application constante de valeur y et on la note

y : x ∈ X 󰀁→ y ∈ Y.

– Application Identite. Supposons que Y = X, l’application identite est celle qui a toute
element x ∈ X associe x:

IdX : x ∈ X 󰀁→ x ∈ X.

–Suites: si X = N = {0, 1, 2, · · · } (ou N>0 = {1, 2, · · · }) une application de N vers Y

f : n ∈ N 󰀁→ f(n) ∈ Y

s’appelle une suite de N a valeurs dans Y . On note souvent une suite sous la forme

(yn)n󰃍0, yn = f(n).
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L’element yn s’appelle le n-ieme element de la suite.
–Projection Soit A1, · · ·An des ensemble et

n󰁜

i=1

Ai

leur produit cartesien. Pour i = 1, · · · , n la projection sur le i-eme facteur est l’application

πi :

󰁔n
i=1Ai 󰀁→ Ai

(a1, · · · , an) 󰀁→ ai

qui a un n-uple associe la i-eme coordonnee.

1.3.1. Graphe d’une application. On peut donner a la notion d’application une def-
inition purement ensembliste a l’aide du produit cartesien et voir cela en terme de relations.
Se donner une application

f : X 󰀁→ Y

est equivalent a se donner un sous-ensemble

Γ ⊂ X × Y

qu’on appelle un graphe:

Définition 1.6. Un graphe Γ ⊂ X × Y est un sous-ensemble de X × Y tel que pour
tout x ∈ X, l’ensemble

Γx = {(x, y), y ∈ Y } ⊂ Γ

(l’ensemble des elements de Γ dont la premiere coordonnee vaut x) possede exactement un
element.

Remarque 1.3.1. Un graphe Γ definit donc une relation entre X et Y :

x ∼Γ y ⇐⇒ (x, y) ∈ Γ.

Si f : X 󰀁→ Y est une application, le graphe associe a f est le sous ensemble

Γf = {(x, f(x)), x ∈ X} ⊂ X × Y.

Reciproquement si Γ ⊂ X × Y est un graphe, on lui associe l’application fΓ : X 󰀁→ Y qui a
x ∈ X associe f(x) := y ou y est l’unique element de Y tel que

(x, y) ∈ Γ.

Notation 1.1. On note

HomENS(X,Y ) ou encore F(X,Y ) ou encore Y X

l’ensemble des applications de X vers Y (aussi les fonctions de X a valeurs dans Y ).

La realisation ci-dessus des applications entre ensembles en terme de graphes permet de
dire que l’ensemble HomEns(X,Y ) des applications entre X et Y est un ensemble et plus
precisement un sous-ensemble de P(X×Y ) (on l’identifie avec le sous-ensemble de tous les
graphes dans X × Y ).



1.3. APPLICATIONS ENTRE ENSEMBLES 17

Figure 2. Graphes de f1, f2, f3.

1.3.1.1. Exemples. Soit X = Y = {1, 2, 3, 4} et posont

f1 : 1 󰀁→ 3, 2 󰀁→ 2, 3 󰀁→ 2, 4 󰀁→ 1

f2 : 1 󰀁→ 3, 2 󰀁→ 2, 3 󰀁→ 4, 4 󰀁→ 1

f3 : 1 󰀁→ 2, 2 󰀁→ 3, 3 󰀁→ 4, 4 󰀁→ 1.

Les graphes de ces applications sont donnees par les dessins ci-dessus.
– Le graphe de l’application constante y : X 󰀁→ Y est

Γ(y) = {(x, y), x ∈ X} ⊂ X × Y.

– Quand X = Y , le graphe de l’identite IdX est donne par

Γ(IdX) = ∆(X) = {(x, x), x ∈ X} ⊂ X ×X

et s’appelle la diagonale de X ×X.

1.3.2. Image, preimage.

Définition 1.7. Soit une application

f : X 󰀁→ Y

et A ⊂ X. L’image de A par f est le sous-ensemble de Y

f∗(A) = f(A) = {f(x), x ∈ A} ⊂ Y.

On appellera egalement ”image de f”, l’image de l’ensemble de depart X tout entier

Im(f) := f(X).

Définition 1.8. Soit une application

f : X 󰀁→ Y

et B ⊂ X. La preimage de B par f est le sous-ensemble de X

f∗(B) = f (−1)(B) := {x ∈ X, f(x) ∈ B} ⊂ X.

Si B = {y} est un singleton

f (−1)({y}) = {x ∈ X | f(x) = y}
est l’ensemble des antecedents de y. On dit quelquefois que la preimage de B est l’ensemble
des antecedents des elements de B par f .
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Une application

f : X 󰀁→ Y

induit donc naturellement deux applications entre les ensembles des parties de X et Y :

– L’application ”image”

f(·), f∗, Im(f) : P(X) 󰀁→ P(Y )

qui a un sous-ensemble A ⊂ X associe son image:

f∗(A) = Im(f)(A) = {f(x), x ∈ A} ⊂ Y.

– L’application ”preimage”

f∗, f (−1) : P(Y ) 󰀁→ P(X)

qui a un sous-ensemble B ⊂ Y associe sa preimage:

f∗(B) = f (−1) = {x ∈ X, f(x) ∈ B} ⊂ X.

Remarque 1.3.2. Notons que l’application preimage est toujours defini : si B ⊂ Y ne
possede aucun antecedent dans X alors f (−1)(B) = ∅.

Exemple 1.3.2. Pour X = Y = {1, 2, 3, 4}
Im(f1) = {1, 2, 3}, Im(f2) = {1, 2, 3, 4}, Im(f3) = {1, 2, 3, 4}

f1({2, 3}) = {2}, f2({2, 3}) = {2, 4}, f3({2, 3}) = {3, 4}

f
(−1)
1 ({2, 4}) = {2, 3}, f

(−1)
2 ({2, 4}) = {2, 3}, f

(−1)
3 ({2, 4}) = {1, 3}.

Exercice 1.2. Montrer que pour A ⊂ X, on a

A ⊂ f (−1)(f(A)).

Montrer par un exemple qu’en general on n’a pas l’egalite

A = f (−1)(f(A)).

Soit B ⊂ Y , existe-t-il des relations d’inclusion entre B et f(f (−1)(B)) ?

1.3.3. Injectivite, surjectivite, application reciproque.

– Une application f : X 󰀁→ Y est injective (f est une injection) si pour tout y ∈
Y , f (−1)({y}) (l’ensemble des antecedents de y par f) ne possede pas plus d’un
element. On note l’injectivite par

f : X ↩→ Y.

– Une application f : X 󰀁→ Y est surjective (f est une surjection) si pour tout y ∈ Y ,

f (−1)({y}) (l’ensemble des antecedents de y par f) possede au moins un element.
On note la surjectivite par

f : X ↠ Y.

– Une application f : X 󰀁→ Y est bijective (f est une bijection) si elle est injective

et surjective : cad si pour tout y ∈ Y , f (−1)({y}) (l’ensemble des antecedents de y
par f) possede exactement un element. On note la bijectivite par

f : X
∼−→ Y ou f : X ≃ Y.
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Remarque 1.3.3. Notons qu’une application f : X 󰀁→ Y est tautologiquement surjec-
tive sur son image Im(f):

f : X ↠ Im(f) ⊂ Y.

En particulier une application injective f : X ↩→ Y defini une bijection

f : X ≃ Im(f).

On peut alors identifier les elements de X a certains elements de Y via cette derniere
bijection (on a ”injecte” X dans Y ).

Notation 1.2. On note

Inj(X,Y ), Surj(X,Y ), Bij(X,Y ) ⊂ HomENS(X,Y )

les ensemble d’applications, injective, surjectives et bijectives de X vers Y .

Exemple 1.3.3. On a:

(1) f1 n’est ni injective (f−1
1 ({2}) = {2, 3}) ni surjective (4 ∕∈ Im(f1)). f2 et f3 sont

bijectives.
(2) L’application n ∈ Z 󰀁→ 2n ∈ Z est injective mais pas surjective.
(3) L’application n ∈ N 󰀁→ [n/2] ∈ N est surjective mais pas injective ([x] designe la

partie entiere d’un nombre rationnel x, cad le plus grand entier 󰃑 x).
(4) L’application polynomiale

C : (m,n) 󰀁→ ((m+ n)2 +m+ 3n)/2

et une bijection entre N2 et N (Cantor).
(5) L’application

(m,n) 󰀁→ m+ (n+ [(m+ 1)/2])2

et une bijection entre N2 et N.

Exercice 1.3. Demontrer (4). Pour cela

(1) Commencer a verifier qu’on a bien une application de N2 vers N.
(2) Calculer les valeurs C(m,n) pour (m,n) 󰃑 5 et les reporter sur le plan (m,n).
(3) Pour montrer l’injectivite et la surjectivite on pourra etudier l’application (m,n) 󰀁→

C(m,n) quand on la restreint au sous-ensemble

Dk = {(m,n) ∈ N2, m+ n = k}
pour k 󰃍 0 un entier et regarder les valeurs que prend cette fonction sur ces
ensembles.

Dans le cas des ensembles finis dont on connait le nombre d’element on a les proprietes
suivantes liant injectivite, surjectivite, bijectivite au nombres d’elements, tres utilie pour
demontrer la bijectivite.

Proposition 1.1. Soient X et Y des ensembles finis possedant respectivement |X| et
|Y | elements et f : X 󰀁→ Y une application entre ces ensembles. On a les proprietes
suivantes

– Si f : X ↩→ Y est injective alors |X| 󰃑 |Y |.
– Si f : X ↠ Y est surjective alors |X| 󰃍 |Y |.
– Si f : X ↩→ Y est injective et |X| 󰃍 |Y | alors |X| = |Y | et f est bijective.
– Si f : X ↠ Y est surjective et |X| 󰃑 |Y | alors |X| = |Y | et f est bijective.
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1.3.3.1. Application reciproque d’une bijection. Soit f : X
∼−→ Y une bijection, alors

pour tout y ∈ Y , f (−1)({y}) ⊂ X est un ensemble a un seul element

f (−1)({y}) = {x},
a savoir l’unique element x de X tel que f(x) = y, ie. l’unique solution de l’equation

f(T ) = y

(dont l’inconnue ”T” est a valeur dans X).
On peut donc definir une application (l’application reciproque de f)

f−1 : Y → X

en posant
f−1(y) = x.

Remarque 1.3.4. On prendra garde que l’application reciproque d’une application bi-
jective f−1 : Y

∼−→ X n’existe que si f est bijective alors que l’application preimage existe
tout le temps.

f (−1) : P(Y ) 󰀁→ P(X).

Exemple 1.3.4. On a
Id−1

X = IdX .

1.3.3.2. Involutivite de la reciproque. On voit que si f : X
∼−→ Y est bijective, sa re-

ciproque f−1 : Y 󰀁→ X est bijective: pour tout x ∈ X, y ∈ Y on a par definition de la
reciproque

(1.3.1) f(x) = y ⇐⇒ x = f−1(y).

Ainsi pour tout x ∈ X il existe bien y ∈ Y tel que f−1(y) = x, c’est y = f(x) et f−1 est
surjective. Par ailleurs l’ensemble des antecedent de x par f−1 est l’ensemble des y tels que
f−1(y) = x, c’est a dire que y = f(x) et y est unique.

On peut alors se demander quelle est la reciproque de la reciproque: c’est l’application
f : on a

(f−1)−1 = f.

En effet pour x ∈ X, posons y := (f−1)−1(x). On a (appliquant (1.3.1) a f−1 au lieu de f
puis (1.3.1) )

(f−1)−1(x) = y ⇐⇒ f−1(y) = x ⇐⇒ f(x) = y

et ainsi pour tout x ∈ X
(f−1)−1(x) = y = f(x)

ce qui est precisement dire que (f−1)−1 = f.

1.3.4. Composition d’applications. Soit X,Y, Z des ensembles et f : X 󰀁→ Y et
g : Y 󰀁→ Z des applications; a f et g on associe la composee de f et g

g ◦ f : X 󰀁→ Z

est l’application qui va de X a Z en allant, de X a Y via f et de Y a Z via g:

Y

X Z

g

g◦f

f
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Elle est definie par

x ∈ X 󰀁→ g ◦ f(x) := g(f(x)) ∈ Z.

En d’autre termes on a une application (dite de composition)

(1.3.2) ◦ :
HomENS(Y, Z)×HomENS(X,Y ) 󰀁→ HomENS(X,Z)

(g, f) 󰀁→ g ◦ f
La composition a les proprietes suivantes:

– Associativite: soient f : X 󰀁→ Y , g : Y 󰀁→ Z, h : Z 󰀁→ W ,

h ◦ (g ◦ f) = (h ◦ g) ◦ f
de sorte que la composee des trois applications s’ecrit simplement

h ◦ g ◦ f.
– Neutralite de l’identite: soit f : X 󰀁→ Y alors

f ◦ IdX = f, IdY ◦ f = f.

– Simplification: soit f : X
∼−→ Y une bijection,

f−1 ◦ f = IdX , f ◦ f−1 = IdY .

En particulier

IdX ◦ IdX = IdX .

Lemme 1.1. Soient des applications f : X 󰀁→ Y et g : Y 󰀁→ Z. Si

(1) Si f et g sont injectives, g ◦ f est injective.
(2) Si f et g sont surjectives, g ◦ f est surjective.
(3) Si f et g sont bijectives, g ◦ f est bijective et

(g ◦ f)−1 = f−1 ◦ g−1.

Preuve: Pour le (1), il s’agit de montrer que pour tout z ∈ Z, l’image reciproque (g ◦
f)−1({z}) a au plus un element. On a

(g ◦ f)−1({z}) = {x ∈ X, g(f(x)) = z}
Si (g ◦ f)−1({z}) = ∅ on a fini. Sinon supposons que x ∈ (g ◦ f)−1({z}), on veut montrer
que x est unique. Comme g est injective g−1({z}) possede au plus un element et comme

z = g ◦ f(x) = g(f(x))

on voit que f(x) appartient a g−1({z}); en particulier g−1({z}) est non-vide et s’ecrit

g−1({z}) = {y}
pour un certain y ∈ Y (qui ne depend que de z); on a donc f(x) = y et donc x ∈ f−1({y}).
Comme f est injective, f−1({y}) possede au plus un element et x est celui-ci donc x est
l’unique element de f−1({y}) ou y est l’unique element de g−1({z}) et x est donc unique.

Pour (2): comme f est surjective on a f(X) = Y et comme g est surjective on a
g(Y ) = Z donc

g ◦ f(X) = g(f(X)) = g(Y ) = Z

et donc g ◦ f est surjective.
Pour (3), g ◦ f est injective et surjective par les point (1) et (2) (car f et g le sont) et

est donc bijective.
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Pour montrer que (g◦f)−1 = f−1◦g−1 (on parle cette fois-ci de reciproques d’applications
bijectives) il s’agit de montrer que pour tout z ∈ Z on a

x := (g ◦ f)−1(z) = f−1 ◦ g−1(z) = f−1(g−1(z)) =: x′.

Posons x := (g ◦ f)−1(z) et x′ := f−1(g−1(z)). On a

g ◦ f(x) = z

(par definition de la reciproque (g ◦ f)−1) et on a

g ◦ f(x′) = g(f(f−1(g−1(z))))

mais

g(f(f−1(g−1(z)))) = g(g−1(z)) = z

(car pour tout u ∈ X, f−1(f(u)) = u) et g(g−1(z)) = z) et donc

g ◦ f(x′) = z = g ◦ f(x)
et comme g ◦ f est injective cela implique que x′ = x (car ce sont deux antecedents de z
par g ◦ f). □

En particulier ce lemme dit que l’application de composition 1.3.2 se restreint aux
applications bijectives:

(1.3.3) ◦ :
Bij(Y, Z)× Bij(X,Y ) 󰀁→ Bij(X,Z)

(g, f) 󰀁→ g ◦ f .

Exercice 1.4. Soient des applications f : X 󰀁→ Y et g : Y 󰀁→ Z. Montrer que

(1) Si g ◦ f est injective alors f est injective.
(2) Si g ◦ f est surjective alors g est surjective.

Montrer par des exemples que dans le premier cas g n’est pas forcement injective et que
dans le second cas f n’est pas forcement surjective.

On suppose que g ◦ f est bijective, que peut on dire (ou ne pas dire) de f et de g ?

Exercice 1.5. Soit f : X 󰀁→ Y une application.

– On suppose qu’il existe g : Y 󰀁→ X telle que g ◦ f = IdX et f ◦ g = IdY . Montrer
qu’alors f est bijective et que g est sa reciproque.

– Montrer que ce n’est pas forcement vrai si on a seulement que g ◦ f = IdX .

1.4. Cardinal d’un ensemble

Définition 1.9. Soient X et Y deux ensembles. Si il existe une bijection f : X
∼−→ Y ,

on dit que X et Y ont le meme cardinal et on le note

|X| = |Y |.

Proposition 1.2. La relation ”avoir le meme cardinal” a la proprietes suivantes

(1) Reflexivite: |X| = |X|
(2) Symetrie: |X| = |Y | =⇒ |Y | = |X|,
(3) Transitivite: |X| = |Y | et |Y | = |Z| =⇒ |X| = |Z|.

Preuve: Pour la reflexivite, il suffit de prendre IdX . Pour la Symetrie, si f : X ≃ Y est une
bijection, sa reciproque f−1 : Y ≃ X est une bijection. Pour la Transitivite, si f : X ≃ Y
et g : Y ≃ Z sont des bijections alors g ◦ f : X 󰀁→ Z est encore une bijection. □
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Définition 1.10. Un ensemble X est fini si il est soit vide, soit en bijection avec un
ensemble de la forme {1, · · · , n} pour n ∈ N un entier 󰃍 1. On ecrit alors

|∅| = 0, |X| = n.

Un ensemble est infini sinon.

Définition 1.11. Un ensemble X est denombrable si il est fini ou a meme cardinal que
N. Un ensemble est indenombrable sinon.

Exemple 1.4.1. (1) Pour tout ensemble X, |P(X)| = |{0, 1}X |: en effet a un sous
ensemble A ⊂ X on associe sa fonction caracteristique

1A : x ∈ X →
󰀫
1 si x ∈ A

0 si x ∕∈ A

et on montre que l’application

A ∈ P(X) 󰀁→ 1A ∈ {0, 1}X

est une bijection.
(2) Si |X| = n ∈ N, |P(X)| = 2n.
(3) |Z| est denombrable.
(4) Q est denombrable.
(5) |X| = |Y | = |N| =⇒ |X|× |Y | = |N|.
(6) (Cantor) Si X est denombrable et infini alors P(X) n’est pas denombrable.
(7) R nest pas denombrable (c’est un corollaire du point precedent).

On va demontrer (6) qui est du a G. Cantor.

Preuve: Si X denombrable infini alors on a une identification X
∼−→ N et donc

P(X)
∼−→ P(N) ∼−→ {0, 1}N.

Il suffit donc de montrer que ce dernier ensemble n’est pas denombrable.
URemarquons d’abord qu’une application f : n ∈ N 󰀁→ f(n) ∈ {0, 1} est simplement

une suite a valeurs dans {0, 1}.
Supposons qu’ il existe une bijection

f• : n ∈ N ∼−→ fn(•) ∈ {0, 1}N.
Ainsi, a tout entier n on associe la suite a valeurs dans {0, 1},

fn = (fn(m))n󰃍0

et par hypothese, toute suite f = (f(m))m󰃍0 ∈ {0, 1}N est de la forme fn pour un certain
n (unique).

Considerons la suite (dite de Cantor) fC ∈ {0, 1}N definie par

fC(n) =

󰀫
0 si fn(n) = 1

1 si fn(n) = 0.

Cette suite vaut donc 0 si le n-ieme terme fn(n) de la n-ieme suite (fn(m))m󰃍0 vaut 1 et 1
si ce terme vaut 0.

Considerons le suite de Cantor fC : il existe n0 ∈ N telle que

fC = fn0 .
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Quelle est la valeur de
fC(n0) = fn0(n0)?

Il y a deux possibilites 0 ou 1:

– Si fC(n0) = 0 alors fn0(n0) = 1 par definition de fC mais alors 0 = fC(n0) =
fn0(n0) = 1, une contradiction.

– Si fC(n0) = 1 alors fC(n0) = 0 par definition de fC mais alors 1 = fC(n0) =
fn0(n0) = 0, une autre contradiction!

Ainsi la bijection f• n’existe pas et {0, 1}N n’est pas denombrable. Cet argument s’appelle
l’argument de la diagonale de Cantor (il vous rappellera certainement l’argument qui sous-
tend le paradoxe de Russell). □

Exercice 1.6. Deduire (7) de (6) (utiliser le developpement binaire d’un nombre reel
dans [0, 1[ mais faire attention que par convention un developpement binaire ne se termine
pas par une suite constante de 1. Heureusement l’ensemble des suites a valeurs dans {0, 1}
qui sont ultimement constantes egales a 1 est ”petit” mais il faudra dire ce qu’on entend
par ”petit”.

1.4.1. Le Theoreme de Cantor-Bernstein-Schroeder. On peut raffiner la notion
d’egalite des cardinaux:

Définition 1.12. Soient X et Y deux ensembles. Si il existe une application injective
entre X et Y , φ : X ↩→ Y , on dit que le cardinal de X est plus petit que celui de Y et on
note cette relation |X| 󰃑 |Y |. Si de plus |X| ∕= |Y |, on le note |X| < |Y |.

Bien evidemment si les ensembles sont finis cette definition correspond a la notion
habituelle de cardinal comme etant le nombre d’elements.

Exercice 1.7. Montrer la transitivite de cette relation:

|X| 󰃑 |Y | et |Y | 󰃑 |Z| =⇒ |X| 󰃑 |Z|.

En pensant au cas des ensembles finis il est tres tentant de penser que cette relation est
antisymetrique

|X| 󰃑 |Y | et |Y | 󰃑 |X| =⇒ |X| = |Y |.
Eh bien c’est vrai et c’est le theoreme suivant dont la preuve est donnee en exercice du
cours ”Structures Algebriques”:

Théorème (Cantor-Bernstein-Schroeder). Soit X et Y deux ensembles (pas necessaire-
ment finis). Si il existe une injection φ : X ↩→ Y et une injection ψ : Y ↩→ X alors il existe
une bijection ϕ : X ≃ Y . En d’autre termes

|X| 󰃑 |Y | et |Y | 󰃑 |X| ⇐⇒ |X| = |Y |.

1.4.2. Hypothese du continu. L’hypothese du continu est une question posee par
G. Cantor:

Question (Cantor). On sait que |N| < |R|. Existe-il un ensemble ℵ1 tel que

|N| < |ℵ1| < |R|.

L’hypothese du continu est que cet ensemble n’existe pas: en d’autre termes le plus
”petit” ensemble non-denombrable est R.

Cette question a motive en grande partie le developement de la logique mathematique
pendant le 20eme siecle.
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En 1938, K. Goedel a demontre que l’hypothese du continu ne pouvait etre refutee dans
la theorie ZFC: on ne peut pas montrer qu’elle est fausse.

En 1963, P. Cohen a demontre que l’hypothese du continu ne pouvait etre demontree
dans la theorie ZFC: on ne peut pas montrer qu’ell est vraie.

En fait l’hypothese du continu est indecidable dans la theorie ZFC et une grande partie
de la logique mathematique actuelle consiste a trouver un ou des axiomes supplementaires,
”naturels” et ”minimaux” pour rendre l’hypothese decidable.





CHAPITRE 2

Groupes

”The introduction of the digit 0 or the group concept was general nonsense too,
and mathematics was more or less stagnating for thousands of years

because nobody was around to take such childish steps...”

2.1. Groupes abstraits

Définition 2.1. Un groupe (G, 󰂏, eG, ·−1) est la donnee d’un quadruple forme de

– d’un ensemble G non-vide,
– d’une application (appelee loi de composition interne)

󰂏 :
G×G 󰀁→ G
(g, g′) 󰀁→ 󰂏(g, g′) =: g 󰂏 g′

– d’un element eG ∈ G (appele element neutre),
– d’une application (appele inversion)

•−1 :
G 󰀁→ G
g 󰀁→ g−1

ayant les proprietes suivantes:

– Associativite: ∀g, g′, g′′ ∈ G, (g 󰂏 g′) 󰂏 g′′ = g 󰂏 (g′ 󰂏 g′′).
– Neutralite de eG: ∀g ∈ G, g 󰂏 eG = eG 󰂏 g = g.
– Inversibilite: ∀g ∈ G, g−1 󰂏 g = g 󰂏 g−1 = eG.

Remarque 2.1.1. Par soucis de concision on omettra l’element neutre et l’inversion (voire de
la loi de groupe) dans les donnees: notera souvent un groupe par G ou (G, 󰂏).

Remarque 2.1.2. La propriete d’associativite est indispensable et par ailleurs extremement
utile: si l’on se donne 3 elements

g1, g2, g3 ∈ G

dont on veut former le produit (dans cet ordre): pour cela on calcule g12 = g1 󰂏 g2 puis le produit
g12 󰂏 g3 = (g1 󰂏 g2) 󰂏 g3 et l’associativite nous dit qu’au lieu de cela on aurait pu commencer par
calculer g23 = g2 󰂏 g3 et faire le produit

g1 󰂏 g23 = g1 󰂏 (g2 󰂏 g3)

et l’associativite nous dit que cela de depend pas de la maniere dont on s’y prend:

(g1 󰂏 g2) 󰂏 g3 = g1 󰂏 (g2 󰂏 g3)

et on peut ecrire sans ambiguite ce produit sans parantheses

g1 󰂏 g2 󰂏 g3 = g1 󰂏 (g2 󰂏 g3) = (g1 󰂏 g2) 󰂏 g3.

De meme si on dispose de n elements g1, · · · , gn ∈ G, on defini sans ambiguite leur produit

g1 󰂏 · · · 󰂏 gn = 󰂏ni=1gi.

27
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Proposition 2.1. (Proprietes de base de la loi de groupe) Soit G un groupe. On a

(1) Involutivite de l’inversion:

∀g, (g−1)−1 = g, g−1 󰂏 g = eG.

(2) Unicite de l’element neutre: soit e′G ∈ G tel qu’il existe g ∈ G verifiant g 󰂏 e′G = g alors
e′G = eG. On a la meme conclusion si il existe g′ tel que e′G 󰂏 g′ = e′G.

(3) Unicite de l’inverse: si g′ ∈ G verifie g 󰂏 g′ = eG alors g′ = g−1 et on a donc egalement
g′ 󰂏 g = eG. De meme si g′ ∈ G verifie g′ 󰂏 g = eG alors g′ = g−1 et on a donc egalement
g 󰂏 g′ = eG.

(4) Inverse d’un produit: on a

(g 󰂏 g′)−1 = g′
−1

󰂏 g−1.

Preuve: (2) Unicite de l’element neutre: dans l’equation

g 󰂏 e′G = g

on multiple a gauche par g−1 ce qui donne

g−1 󰂏 g 󰂏 e′G = eG 󰂏 e′G = e′G = g−1 󰂏 g = eG.

Pour le deuxieme cas, on multiplie a droite par g′
−1

.
(3) Unicite de l’inverse: en multipliant l’egalite g 󰂏 g′ = eG a gauche par g−1 et en utilisant

l’associativite on a

g 󰂏 g′ = eG =⇒ g−1 󰂏 g 󰂏 g′ = g−1 󰂏 eG

et g−1 󰂏 g 󰂏 g′ = g′ tandis que g−1 󰂏 eG = g−1.
On traite de la meme maniere le cas g′ 󰂏 g = eG.
(1) Involutivite de l’inversion: en particulier, appliquant ce raisonnement a g−1 avec g′ = g,

comme g 󰂏 g−1 = eG on obtient que (g−1)−1 = g.
(4) Inverse d’un produit:

(g′
−1

󰂏 g−1) 󰂏 (g 󰂏 g′) = g′
−1

󰂏 (g−1) 󰂏 g) 󰂏 g′ = g′
−1

󰂏 eG 󰂏 g′ = g′
−1

󰂏 g′ = eG

et donc (par unicite de l’inverse)

(g 󰂏 g′)−1 = g′
−1

󰂏 g−1.

2.1.1. Exemples de groupes.

– Le groupe additif des entiers relatifs. L’ensemble (Z,+, 0,−•) des entiers relatifs Z
muni de l’addition, du zero 0 et de l’oppose n 󰀁→ −n forme un groupe d’ordre infini.

– En revanche (Z− {0},+, 0,−•) forme des entiers non-nuls muni des memes structures ne
forme pas un groupe (il manque un element neutre et d’ailleurs il n’est pas stable par
addition).

– Le groupe additif des nombres rationels. L’ensemble (Q,+, 0,−•) des nombres ra-
tionels Z muni de l’addition, du zero 0 et de l’oppose n 󰀁→ −n forme un groupe.

– Le groupe multiplicatif des nombres rationels. L’ensemble (Q×,×, 1, 1/•) avec
Q× = Q− {0} est l’ensemble des nombres rationels non-nuls muni de la multiplication, de
l’unite 1 et de l’inversion λ 󰀁→ 1/λ forme un groupe,

– Le groupe multiplicatif des entiers relatifs. De meme le sous-ensemble Z× := {±1}
muni des memes structures est un groupe.

– Groupe produit. soient (G, 󰂏) et (H, ∗) deux groupes. Le groupe produit (G × H,⊠)
est le groupe associe au produit cartesien

G×H = {(g, h), g ∈ G, h ∈ H}
muni de la loi de composition interne ⊠ definie par

(g, h)⊠ (g′, h′) := (g 󰂏 g′, h ∗ h′).
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On peut le munir d’un element neutre et d’une inversion pour en faire un groupe (exercice).
– Groupe trivial. Soit G = {eG} un ensemble reduit a un seul element. Alors G × G
possede un seul element ((eG, eG)) et la seule application possible de G × G vers G est
donnee par

󰂏 : (eG, eG) ∈ G×G 󰀁→ eG ∈ G;

de meme la seule application possible de G vers G est

•−1 : eG ∈ G 󰀁→ eG ∈ G;

on verifie facilement que (G = {eG}, 󰂏, eG, •−1) est un groupe appele le groupe trivial.
– Groupe des classes de congruences: Soit q ∈ N − {0} un entier non-nul. Pour a ∈ Z, on
definit le sous-ensemble de Z

a (mod q) := {a+ qk, k ∈ Z} ∈ P(Z)

et qu’on appelle la classe de congruence de a modulo q. L’ensemble de ces sous-ensembles
est note

Z/qZ = {a (mod q), a ∈ Z} ⊂ P(Z);
cet ensemble est fini de cardinal q. En effet on montre en utilisant la division euclidienne
par q que

Z/qZ = {a (mod q), a ∈ {0, 1, · · · , q − 1}}
D’autre part, pour A,B ∈ P(Z) des sous-ensembles de Z, on a pose

A⊞B := {a+ b, a ∈ A, b ∈ B} ∈ P(Z),

et definit egalement

⊟A := {−a, a ∈ A} ∈ P(Z).
Alors (Z/qZ,⊞, 0 (mod q),⊟•) est un groupe commutatif appelle groupe additif des classes
des congruences modulo q.

2.1.1.1. Notation exponentielle. Soit g ∈ G un element d’un groupe. Pour tout entier n 󰃍 1, on
forme le produit de g avec lui-meme n fois et on le note

g 󰂏 g 󰂏 · · · 󰂏 g = gn.

On a donc

gn+1 = gn 󰂏 g = g 󰂏 gn.

On pose ensuite

(2.1.1) g0 = eG

et si n < 0 est un entier negatif, on pose

gn = (g−1)−n = g−1 󰂏 · · · 󰂏 g−1(−n = |n| fois).

cela defini gn pour n ∈ Z.
On a alors pour tout m,n ∈ Z

(2.1.2) gm+n = gm 󰂏 gn.

On a alors defini une fonction

(2.1.3) expg :
Z 󰀁→ G
n 󰀁→ expg(n) = gn

=: gZ

qu’on appelle exponentielle de n dans la base g. On dira alors que l’image

Im(expg) = expg(Z) = {gn, n ∈ Z}

est l’ensemble des puissances de g.
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2.1.2. Groupes commutatifs. Tous les groupes que nous avons vu possedent une propriete
supplementaire: la commutativite

Définition 2.2. Soit (G, 󰂏) un groupe. Deux elements g, g′ commutent si

g 󰂏 g′ = g′ 󰂏 g.

Un groupe G est abelien (ou commutatif) si toutes les paires d’elements de G commutent:

∀g, g′ ∈ G, g 󰂏 g′ = g′ 󰂏 g.

2.1.2.1. Notation additive. Si le groupe G est commutatif, sa loi de groupe sera souvent notee
(mais pas toujours) par une addition (par exemple +G), l’element neutre par le signe ”0” (par
exemple 0G) et l’inversion par −• : g 󰀁→ −g (par exemple −G).

L’inverse de g, −g sera alors appele l’oppose de g. De plus, on ecrira

g +G g′, g +G 0G = 0G +G g = g, g +G (−g) = 0G.

Enfin la notation exponentielle pour g+G · · ·+G g (nfois)) sera remplacee par la notation ”multiple”:
pour n 󰃍 1, on posera

n.g = g +G · · ·+G g (n fois), (−n).g = (−Gg) +G · · ·+G (−Gg)(n fois), 0.g = 0G,

de sorte que (2.1.2) devient

∀m,n ∈ Z, (m+ n).g = m.g +G n.g.

On dispose alors d’une application (de multiplication par g) de Z a valeurs dans G:

·.g :
Z 󰀁→ G
n 󰀁→ n.g

On dira alors que son image

Z.g = {n.g, n ∈ Z} ⊂ G

est l’ensemble des multiples de g.

2.1.3. Ordre d’un groupe.

Définition 2.3. Soit (G, 󰂏, eG, •−1) un groupe, le cardinal |G| de l’ensemble sous-jacent s’appelle
egalement l’ordre du groupe G.

Ainsi (Z,+) est un groupe d’ordre infini alors que (Z×,×) est un groupe d’ordre 2 et que Z/qZ
est d’ordre q.

2.2. Le cas du groupe symetrique

Soit X un ensemble, on note

Bij(X) = S(X) = AutENS(X) = Bij(X,X) ⊂ HomENS(X,X)

l’ensemble des bijections de X vers lui-meme.
Si X est fini non-vide (on peut alors supposer que X = {1, · · ·n}) pour n 󰃍 1 une telle bijection

s’appelle alors une permutation de X sur lui-meme.
Cet ensemble admet des structures supplementaires

(1) Bij(X) est non-vide: IdX ∈ Bij(X),

(2) Bij(X) est stable par composition des applications (1.3.2): soient f : X
∼−→ X, g : X

∼−→ X
des bijections alors l’application composee, f ◦ g : X → X est encore une bijection (la
composee d’applications injectives est injective et la composee d’applications surjectives
est surjective). On dispose donc d’une application (de composition):

◦ :
Bij(X)× Bij(X) 󰀁→ Bij(X)

(f, g) 󰀁→ f ◦ g .
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(3) La composition est associative:

∀f, g, h ∈ Bij(X), (f ◦ g) ◦ h = f ◦ (g ◦ h) =: f ◦ g ◦ h.
(4) L’identite IdX a la propriete de neutralite:

∀f ∈ Bij(X), f ◦ IdX = IdX ◦ f = f.

(5) L’application reciproque f 󰀁→ f−1 envoie Bij(X) sur Bij(X)

•−1 :
Bij(X) 󰀁→ Bij(X)

f 󰀁→ f−1

et elle verifie

∀f ∈ Bij(X), f ◦ f−1 = f−1 ◦ f = IdX .

Ces proprietes font de l’ensemble Bij(X) un groupe qu’on appelle le groupe symetrique de X.
Ce groupe est la plupart du temps hautement non commutatif:

Exercice 2.1. Montrer que si X possede 2 elements ou moins alors Bij(X) est commutatif.
Montrer que si X possede au moins 3 elements, il n’est pas commutatif : pour cela choisir trois
elements distincts x1, x2, x3 ∈ X et trouver des bijections σ, τ qui verifient

∀x ∈ X − {x1, x2, x3},σ(x) = x, τ(x) = x

et telles que σ ◦ τ ∕= τ ◦ σ.

2.2.1. Exemple: les permutations d’un ensemble fini. Considerons le cas ou X est un
ensemble fini, non-vide de cardinal n 󰃍 1; on peut alors supposer que X = {1, · · ·n}. On note
souvent ce groupe Σn ou Sn.

On rappelle qu’alors Bij(X) est fini de cardinal

|Bij(X)| = n!

avec

n! = 1.2. · · · .n, n 󰃍 1, 0! = 1.

Preuve: En effet pour definir une bijection σ : {1, · · ·n} ∼−→ {1, · · ·n}. On choist σ(1) parmi n
elements, puis σ(2) parmi les n− 1 element restants,... Le mieux est de demontrer cette egalite une
recurrence sur n. □

On peut representer une permutation par un tableau a deux lignes et n colonnes

σ =

󰀕
1 2 · · · n

σ(1) σ(2) · · · σ(n)

󰀖
.

Ainsi l’identite est ainsi codee par

IdX =

󰀕
1 2 · · · n
1 2 · · · n

󰀖
.

Par exemple, pour n = 4

σ =

󰀕
1 2 3 4
3 2 4 1

󰀖

est la permutation qui envoie

1 󰀁→ 3, 2 󰀁→ 2, 3 󰀁→ 4, 4 󰀁→ 1

et si on compose σ avec elle-meme on obtient

σ ◦ σ =

󰀕
1 2 3 4
4 2 1 3

󰀖
,

qui envoie

1 󰀁→ 3, 2 󰀁→ 2, 3 󰀁→ 4, 4 󰀁→ 1;



32 2. GROUPES

iterant une fois de plus, on a

σ ◦ σ ◦ σ =

󰀕
1 2 3 4
1 2 3 4

󰀖
= IdX .

2.2.1.1. Cycles. Un autre exemple est la permutation cyclique

σ+1 =

󰀕
1 2 · · · n− 1 n
2 3 · · · n 1

󰀖

qui envoie

1 󰀁→ 2, 2 󰀁→ 3, · · · , k 󰀁→ k + 1, · · · , n 󰀁→ 1.

Pour les permutations cycliques telle que celle ci-dessus, une autre notation (plus compacte) est tres
utile: pour 1 󰃑 k 󰃑 n, on se donne

{a1, · · · , ak} ⊂ {1, · · ·n}
des elements distincts et on pose

(a1a2 · · · ak)
la permutation qui envoie

a1 󰀁→ a2, a2 󰀁→ a3, · · · , ak 󰀁→ a1

et qui envoie chacun des n − k elements de {1, · · ·n} − {a1, · · · , ak} sur lui meme: la permutation
(a1a2 · · · ak) est appellee cycle de longueur k.

Par exemple

σ+1 =

󰀕
1 2 · · · n− 1 n
2 3 · · · n 1

󰀖
= (12 · · ·n)

est un cycle de longueur n et

σ =

󰀕
1 2 3 4
3 2 4 1

󰀖
= (134)

est un cycle de longueur 3.
Transpositions. Une classe particulierement importante de cycles est celle des cycles de longueur

2, (a1a2), a1 ∕= a2. On les appelle transpositions: explicitement (a1a2) echange a1 et a2 et envoie
tous les autres elements sur eux-meme.

Dans le cours MATH-113 vous demontrerez le Theoreme de decomposition suivant

Théorème 2.1. Soit Sn = Bij({1, · · · , n}) le groupe de permutations de n elements alors

(1) Toute permutation s’ecrit comme une composee de cycles,
(2) tout cycle s’ecrit comme compose de tranpositions,
(3) et donc toute permutation s’ecrit comme compose de tranpositions.

Par exemple

σ = (134) = (34) ◦ (14)
et (le demontrer)

(12 · · ·n) = (2n) ◦ (23) ◦ · · · ◦ (k − 1, k) ◦ · · · ◦ (n− 2, n− 1) ◦ (1n)

2.3. Sous-groupes

Avec la notion d’ensemble vient la notion de sous-ensemble. De meme avec la notion de groupe
vient la notion de sous-groupe d’un groupe G: un sous-groupe est un sous-ensemble de G qui herite
naturellement des structures additionelles 󰂏, eG, •−1 venant avec la structure de groupe de l’ensemble
G.

Définition 2.4. Soit (G, 󰂏, eG, •−1) un groupe. Un sous-groupe H ⊂ G est un sous-ensemble
de G tel que

(1) eG ∈ H.
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(2) H est stable pour la loi de composition interne 󰂏:

∀h, h′ ∈ H, h 󰂏 h′ ∈ H.

(3) H est stable par l’inversion:

∀h ∈ H, h−1 ∈ H.

Alors si on note 󰂏H et •−1
H les restrictions de la loi de composition 󰂏 et de l’inversion •−1 aux

sous-ensembles H ×H et H on a

󰂏H :
H ×H 󰀁→ H
(h, h′) 󰀁→ h 󰂏 h′, •−1

H :
H 󰀁→ H
h 󰀁→ h−1

et (H, 󰂏H , eG, •−1
H ) forme un groupe.

Remarque 2.3.1. Distinguer les restrictions a H de la loi de composition et de l’inversion est
formellement correct mais un peu pedant. La convention universelle est d’omettre cette restriction
dans les notations et d’ecrire (H, 󰂏, eH = eG, •−1) ou plus simplement (, 󰂏).

En fait il n’est pas necessaire de verifer les trois conditions de la definition d’un sous-groupe.

Proposition 2.2 (Critere de sous-groupe). Pour montrer qu’un sous-ensemble non-vide

∅ ∕= H ⊂ G

est un sous-groupe il suffit de verifier l’un ou l’autre des groupes de proprietes (1) ou (2) ci-dessous:

(1) (a) ∀h, h′ ∈ H, h 󰂏 h′ ∈ H,
(b) ∀h ∈ H, h−1 ∈ H.

(2) ∀h, h′ ∈ H, h 󰂏 h′−1 ∈ H.

Preuve: On va montrer que si (2) est verifiee alors H est un sous-groupe (le cas (1) est encore plus
simple):

– En prenant h′ = h, on a h 󰂏 h−1 = eG ∈ H donc H contient l’element neutre.

– En applicant h 󰂏 h′−1 ∈ H avec h = eG on a que si h′ ∈ H alors h′−1 ∈ H.

– En applicant h 󰂏 h′−1 ∈ H avec h ∈ H et h′′ = h′−1
et en utilisant que (h′−1

)−1 = h′, on
a que si h, h′ ∈ H alors h 󰂏 h′ ∈ H.

□

Exemple 2.3.1. Voici quelques exemples de sous-groupes:

– {eG} ⊂ G est un sous.-groupe: le sous-groupe trivial.
– G ⊂ G est egalement un sous-groupe.
– l’ensemble vide ∅ ⊂ G n’est pas un sous-groupe (il lui manque l’element neutre).
– 2Z ⊂ Z (l’ensemble des entiers pairs) est un sous-groupe.
– 1 + 2Z ⊂ Z (l’ensemble des entiers impairs) n’est pas un sous-groupe.
– On peut classifier tous les sous-groupes de Z:

Théorème 2.2. Les sous-groupes de Z sont exactement les sous-ensembles de la forme

qZ = {qk, k ∈ Z} = 0 (mod q) ⊂ Z

pour q ∈ Z un entier.

Preuve: Pour tout entier q ∈ Z, on verifie par la definition ou le critere de sous-groupe que
l’ensemble des multiples de q

q.Z = {q.n, n ∈ Z} ⊂ Z
est un sous-groupe.

Montrons que reciproquement, tout sous-groupe de Z est de la forme q.Z pour q ∈ Z. En effet,
soit H ⊂ Z un sous-groupe. Si H = {0} on a termine car H = 0.Z. Sinon soit q ∈ H − {0}; quitte a
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remplacer q par −q (qui est encore dans H car H est un sous-groupe) ops q > 0. On peut egalement
supposer que q est le plus petit entier > 0 contenu dans H. On va montrer qu’alors H = q.Z.

Comme q ∈ H on a Z.q ⊂ H
Soit h ∈ H alors par division euclidienne, h peut s’ecrire

h = q.k + r

avec k ∈ Z et 0 󰃑 r < q. Mais comme H est un sous-groupe et que h et q.k = ±(q + · · · + q) (|k|
fois) sont dans H,

r = h− q.k ∈ H.

Comme 0 󰃑 r < q on a necessairement r = 0 (par definition de q comme plus petit element positif
non-nul de H) et donc h = q.k ∈ q.Z. □

– Pour g ∈ G, l’ensemble des puissance de g

expg(Z) = gZ = {gn, n ∈ Z} ⊂ G

est un sous-groupe commutatif de G.
– Si G est commutatif et que la loi de groupe est notee additivement, l’ensemble des multiples
de g,

Z.g = {n.g, n ∈ Z} ⊂ G

est un sous-groupe commutatif de G.
– Soit X un ensemble G = Bij(X) et x ∈ X un element, alors le sous-ensemble

Bij(X)x = {σ ∈ Bij(X), σ(x) = x}

est un sous-groupe: on l’appelle le stabilisateur de x dans Bij(X).

Le resultat suivant qu’on demontrera plus tard nous dit que le cas du groupe symetrique est
fondamental (voir Exercice 2.6 pour la preuve) :

Théorème 2.3. Soit G un groupe alors G s’identifie canoniquement a un sous-groupe du groupe
symetrique SG = Bij(G) des permutations de G.

2.3.1. Le Theoreme de Lagrange.

Théorème 2.4. Soit G un groupe fini et H ⊂ G un sous-groupe alors l’ordre de H divise l’ordre
de G:

|H| | |G|.

Preuve: On consider l’ensemble des sous-ensembles de G la forme

TG(H) = {g.H ⊂ G, g ∈ G} ⊂ P(G)

avec

g.H = {g.h, h ∈ H}.
(l’ensemble des translates a gauche de H par les elements de G). On montre que

– les translates recouvrent G:

G =
󰁞

g∈G

g.H

– les translates sont disjoints:

g.H ∩ g′.H ∕= ∅ ⇐⇒ g.H = g′.H,

– les translates ont tous le meme cardinal:

∀g ∈ G, |g.H| = |H|.
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En particulier TG(H) forme une partition de G: il existe un sous-ensemble GH ⊂ G tel que

G =
󰁊

g∈GH

g.H

et donc

|G| =
󰁛

g∈GH

|g.H|
󰁛

g∈GH

|H| = |GH |.|H|.

□

Corollaire 2.1. Si |G| est un nombre premier, ses seuls sous-groupes sont {eG} et G.

2.3.1.1. Ordre d’un element. On a vu precedement que le cardinal d’un groupe etait aussi appelle
son ordre. L’ordre d’un element g ∈ G est definit par

Définition 2.5. Soit G un groupe et g ∈ G un element de G. L’ordre de g est l’ordre du
sous-groupe gZ ⊂ G (ou Z.g si la notation est additive). On le note

ord(g) = |gZ| (= |Z.g| en notation additive).

Corollaire 2.2. Soit G une groupe fini. Pour tout g ∈ G, l’ordre de g divise l’ordre de G:

ord(g)||G|

Corollaire 2.3. Si |G| est un nombre premier, pour tout g ∕= eG on a

gZ = G.

2.3.2. Groupe engendre par un ensemble.

Proposition 2.3. (Invariance par intersection) Soit G un groupe et H1, H2 ⊂ G deux sous-
groupes alors H1 ∩H2 est un sous-groupe. Plus generalement soit Hi, i ∈ I, Hi ∈ G une collection
de sous-groupes de G indexes par I alors

󰁟

i∈I

Hi ⊂ G

est un sous-groupe de G.

Preuve: On utilise le critere de sous-groupe: d’abord
󰁗

i∈I Hi est non-vide car il contient l’element

neutre eG. Soient h, h′ ∈
󰁗

i∈I Hi montrons que h 󰂏 h′−1 ∈
󰁗

i∈I Hi. Il s’agit de montrer que pour

tout i ∈ I, h 󰂏 h′−1 ∈ Hi mais c’est vrai car Hi est un sous-groupe de G. □

Définition 2.6. Soit

GA = {H ⊂ G sous-groupe |A ⊂ H}
l’ensemble de tous les sous-groupes de G contenant A (cet ensemble est non-vide car G est dedans).
Alors l’intersection de ses sous-groupes

󰁟

H∈GA

H ⊂ G

est un sous-groupe contenant A et c’est le plus petit (si H est un sous-groupe contenant A alors
〈A〉 ⊂ H.) Ce sous-groupe

〈A〉 :=
󰁟

H∈GA

H

s’ appelle le sous-groupe engendre par A.
Si 〈A〉 = G on dit que G est engendre par A (ou que A est un systeme de generateurs de G).

Voici une caracterisation plus constructive de 〈A〉 (qui justifie la terminologie):
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Théorème 2.5 (Caracterisation linguistique du groupe engendre par un ensemble). Soit A ⊂ G
un ensemble, si A = ∅ alors 〈A〉 = {eG}, sinon on pose

A−1 = {g−1, g ∈ A} ⊂ G

l’image de A par l’inversion, alors

〈A〉 = {g1 󰂏 · · · 󰂏 gn, n 󰃍 1, gi ∈ A ∪A−1}.

En d’autres termes, 〈A〉 est l’ensemble des elements de G qu’on peut former en multipliant ensemble
des elements de A et de son inverse A−1 de toutes les manieres possibles.

Preuve: Si A = ∅ , il est clair que le groupe trivial a les bonnes proprietes. Supposons A non-vide.
Il s’agit de montrer que l’ensemble

〈A〉′ = {g1 󰂏 · · · 󰂏 gn, n 󰃍 1, gi ∈ A ∪A−1}

est un sous-groupe contenant A et qu’il est contenu dans tout sous-groupe H ⊃ A.
Considerant les mots de longueur 1, g1, g1 ∈ A on voit que A ⊂ 〈A〉′. Soient

g1 󰂏 · · · 󰂏 gn, g′1 󰂏 · · · 󰂏 g′n′ ∈ 〈A〉′

deux tels mots alors

g1 󰂏 · · · 󰂏 gn 󰂏 (g′1 󰂏 · · · 󰂏 g′n′)−1 = g1 󰂏 · · · 󰂏 gn 󰂏 g
′−1
n′ 󰂏 · · · 󰂏 g

′−1
1 ∈ 〈A〉′.

ainsi 〈A〉′ est un sous-groupe de G contenant A par consequent

〈A〉 ⊂ 〈A〉′.

Enfin, si A ⊂ H est un autre sous-groupe alors A−1 ∈ H (car H est stable par inversion) et pour
tout n 󰃍 1 et tout g1, · · · , gn ∈ A ∪ A−1 ⊂ H on a g1 󰂏 · · · 󰂏 gn ∈ H car H est stable par 󰂏 et donc
〈A〉′ ⊂ H et donc

〈A〉′ ⊂
󰁟

H∈GA

H = 〈A〉 ⊂ 〈A〉′.

□
2.3.2.1. Groupes monogenes/cycliques. Soit g ∈ G alors le sous-groupe engendre par g, 〈{g}〉

vaut

〈{g}〉 = gZ = expg(Z).

Définition 2.7. Un groupe G est dit

– monogene si il est engendre par un seul element:

∃g ∈ G, G = 〈{g}〉 = gZ.

On dit que g est un generateur de G.
– cyclique si il est fini et monogene.

Exemple 2.3.2. – Le groupe Z est monogene : engendre par 1 ou −1.
– Le groupe Z/qZ est cyclique: il est engendre par 1 (mod q) et plus generalement par
a (mod q) pour tout a premier avec q.

2.4. Morphismes de groupes

Les sous-groupes d’un groupe sont les sous-ensembles qui preservent la structure de groupe;
les morphismes de groupes sont les applications entre deux groupes qui preservent les structures
respectives de groupes.
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Définition 2.8. Soient (G, 󰂏) et (H, ∗) deux groupes, un morphisme de groupes ϕ : G 󰀁→ H est
une application telle que

∀g, g′ ∈ G, ϕ(g 󰂏 g′) = ϕ(g) ∗ ϕ(g′).
On notera

HomGr(G,H)

l’ensemble des morphismes de G vers H.

Théorème 2.6 (Propriete fonctionnelle d’un morphisme). Soit ϕ : G 󰀁→ H un morphisme de
groupes alors

(1) ϕ(eG) = eH ,
(2) ∀g ∈ G, ϕ(g−1) = ϕ(g)−1,
(3) ∀g, g′ ∈ G, ϕ(g 󰂏 g′) = ϕ(g) ∗ ϕ(g′).

Preuve: La troisieme identite est juste une repetition de la definition.
Pour la premiere identite, on a

ϕ(g) = ϕ(g 󰂏 eG) = ϕ(g) ∗ ϕ(eG)
et donc ϕ(eG) = eH par unicite de l’element neutre dans H.

Pour la deuxieme on a pour tout g ∈ G

ϕ(g 󰂏 g−1) = ϕ(eG) = eH = ϕ(g) ∗ ϕ(g−1)

et donc ϕ(g−1) = ϕ(g)−1 par unicite de l’inverse dans H. □
Exemple 2.4.1. Les applications suivantes sont des morphismes de groupes

– Soit G un groupe (note multiplicativement) et g ∈ G. Montrer que l’application

g• = expg : n ∈ Z 󰀁→ gn ∈ G

est un morphisme de groupe.
– En particulier pour

q ∈ Z, [×q] :
Z 󰀁→ Z
n 󰀁→ qn

est un morphisme de groupes.
– Les fonctions exponentielles et logarithme sont des morphismes de groupes:

exp :
(R,+) 󰀁→ (R>0,×)

x 󰀁→ exp(x)
, log :

(R>0,×) 󰀁→ (R,+)
x 󰀁→ log(x)

.

– Soit q 󰃍 1 et

• (mod q) :
Z 󰀁→ Z/qZ
a 󰀁→ a (mod q)

l’application qui a un entier a associe sa classe de congruence modulo q alors • (mod q) est
un morphisme de (Z,+) vers (Z/qZ,⊞).

2.4.1. Noyau, Image. Les morphismes preservent la structure de sous-groupe:

Proposition 2.4. (Invariance des sous-groupes par morphismes) Soit ϕ ∈ HomGr(G,H) un
morphisme de groupes.

(1) Soit K ⊂ G un sous-groupe alors ϕ(K) ⊂ H est un sous-groupe. En particulier l’image de
ϕ,

Im(ϕ) = ϕ(G) ⊂ H

est un sous-groupe de H.
(2) Soit L ⊂ H un sous-groupe de H, alors la preimage

ϕ(−1)(L) = {g ∈ G, ϕ(g) ∈ L} ⊂ G

est un sous-groupe de G. En particulier ϕ(−1)({eH}) est un sous-groupe de G.
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Preuve: Soit h, h′ ∈ ϕ(K), on veut montrer que h ∗ h′−1 ∈ ϕ(K). Par definition il existe k, k′ ∈ K
tels que ϕ(k) = h,ϕ(k′) = h′ et

h ∗ h′−1
= ϕ(k) ∗ ϕ(k′)−1 = ϕ(k 󰂏 k′

−1
) ∈ ϕ(K)

car k 󰂏 k′
−1 ∈ K puisque K est un sous-groupe.

Soit g, g′ ∈ ϕ−1(L) alors montrons que ϕ(g 󰂏 g′
−1

) ∈ L. On a

ϕ(g 󰂏 g′
−1

) = ϕ(g) ∗ ϕ(g′)−1 ∈ L

car ϕ(g),ϕ(g′) ∈ L par definition et L est un sous-groupe. □

Définition 2.9. Le sous-groupe ϕ(−1)({eH}) s’appele le noyau de ϕ et est note

ker(ϕ) = ϕ(−1)({eH}) = {g ∈ G, ϕ(g) = eH}.

L’importance du noyau vient du fait qu’il permet de tester facilement si un morphisme est
injectif.

Théorème 2.7 (Critere d’injectivite). Soit ϕ ∈ HomGr(G,H) un morphisme de groupes alors
les proprietes suivantes sont equivalentes

(1) ϕ est injectif,
(2) ker(ϕ) = {eG}.

Preuve: Supposons ϕ injectif alors ker(ϕ) = {g ∈ G, ϕ(g) = eH} possede au plus un element. Mais
comme ϕ(eG) = eH on a ker(ϕ) = {eG}.

Supposons que ker(ϕ) = {eG}; on veut montrer que pour tout h ∈ H,

ϕ(−1)({h}) = {g ∈ G, ϕ(g) = h}
possede au plus un element. Soient g, g′ ∈ ϕ(−1)({h}) (si l’ensemble est vide on a fini) alors

ϕ(g) = ϕ(g′) = h

et
ϕ(g) ∗ ϕ(g′)−1 = h ∗ h−1 = eH

mais
eH = ϕ(g) ∗ ϕ(g′)−1 = ϕ(g 󰂏 g′

−1
)

donc g 󰂏 g′
−1 ∈ ker(ϕ) = {eG} et

g 󰂏 g′
−1

= eG =⇒ g = g′

et donc ϕ(−1)({h}) possede au plus un element. □
2.4.1.1. Propriete d’invariance du Noyau.

Théorème 2.8. Soit ϕ : G 󰀁→ H un morphisme de groupes et ker(ϕ) ⊂ G son noyau. Alors
pour tout g ∈ G on a l’ egalite suivante entre ensembles

g. ker(ϕ).g−1 = {g.k.g−1, k ∈ ker(ϕ)} = ker(ϕ).

Preuve: Montrons que pour tout g on a

g. ker(ϕ).g−1 ⊂ ker(ϕ).

Il s’agit de montrer que pour k ∈ ker(ϕ) on a g.k.g−1 ∈ ker(ϕ) c’est a dire ϕ(g.k.g−1) = eH

ϕ(g.k.g−1) = ϕ(g) ∗ ϕ(k) ∗ ϕ(g−1) = ϕ(g) ∗ eH ∗ ϕ(g)−1 = ϕ(g) ∗ ϕ(g)−1 = eH .

Montrons l’inclusion reciproque: comme g. ker(ϕ).g−1 ⊂ ker(ϕ), en multipliant cette inclusion a
gauche par g−1 et a droite par g on a

g−1g. ker(ϕ).g−1.g ⊂ g−1 ker(ϕ)g

et comme
g−1g. ker(ϕ).g−1.g = eg. ker(ϕ).eG = K
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on a pour tout g ∈ G

ker(ϕ) ⊂ g−1 ker(ϕ)g.

En particulier substituant g par g−1 on a

ker(ϕ) ⊂ g. ker(ϕ).g−1

et on a donc

g. ker(ϕ).g−1 = ker(ϕ).

□

Définition 2.10. Un sous-groupe K ⊂ G ayant la propriete que pour tout g ∈ G on a

g.K.g−1 = K

est dit normal ou distingue et on le note

K ⊳G.

Remarque 2.4.1. Ainsi un noyau est un sous-groupe distingue. Reciproquement on peut mon-
trer que tout sous-groupe distingue est un noyau mais cela necessite la notion de groupe quotient.

Exercice 2.2 (Equations dans les groupes). Soit G,H des groupes et ϕ : G 󰀁→ H un morphisme.
Etant donne h ∈ H, on cherche a resoudre l’equation d’inconnue g ∈ G:

Eq(ϕ, h) : ϕ(g) = h.

L’ensemble des solutions de cette equation n’est autre que la preimage ϕ(−1)({h})...
(1) Montrer que

ϕ(−1)({h})
est soit vide soit qu’il existe g0 ∈ G tel que

ϕ(−1)({h}) = g0 󰂏 ker(ϕ)

ou

g0 󰂏 ker(ϕ) = {g0 󰂏 k, k ∈ ker(ϕ)}.
(2) Montrer que

ϕ(−1)({h}) = ker(ϕ) 󰂏 g0

avec

ker(ϕ) 󰂏 g0 = {k 󰂏 g0, k ∈ ker(ϕ)}.
(3) Quel est l’ensemble de tous les g0 ∈ G ayant cette propriete ? Cela vous rappelle t il quelque

chose ? (pensez a ”equation avec” et ”sans second membre”, ”solution particuliere”,
”solution generale” ...)

2.4.2. Exemple: ordre d’un element. Soit g ∈ G un element d’un groupe. On rappelle que
l’ordre de g est egal a

ord(g) = |gZ| = | expg(Z)|,
le cardinal de l’image du morphisme ”puissances de g”

expg : n ∈ Z 󰀁→ gn ∈ G.

Son noyau, ker(expg) est un sous-groupe de Z et donc de la forme

ker(expg) = q.Z

avec q = q(g) ∈ N (car tous les sous-groupes de Z sont de cette forme). On a la caracterisation
suivante de l’ordre de g:

Théorème 2.9. Soit G un groupe, g ∈ G un element et q ∈ N un entier naturel tel que

qZ = ker(g•).
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– Si q = 0 alors ker(g•) = {0} et g• est injectif et ainsi on a un isomorphisme de groupes
(un morphisme de groupes bijectif)

Z ≃ gZ;

On a alors

ord(g) = |Z| = ∞.

– Si q > 0, alors q est le plus petit entier strictement positif verifiant

gq = eG

et on a

ord(g) = |gZ| = q.

– Si G est fini on a ord(g) | |G| et g|G| = eG

Preuve:

Exercice 2.3. Demontrer les affirmations precedentes et en particulier que si q > 0 alors

gZ = {g0 = eG, g, · · · , gq−1}

est fini de cardinal q

□

2.4.3. Groupe quotient. On a vu qu’un noyau d’un morphisme ϕ : G → H est un sous-
groupe distingue de G. On va voir que reciproquement tout sous-groupe distingue K ⊳ G est le
noyau d’un morphisme de groupe. Pour cela on commencera par definir l’image de ce morphisme:
le groupe quotient G/K.

Définition 2.11. Soit K ⊂ G un sous-groupe d’un groupe. Une classe a gauche (resp. a droite)
de G est un sous-ensemble de G de la forme

gK = {g.k, k ∈ K},

resp.

Kg = {k.g, k ∈ K}
pour g ∈ G.

– L’ensemble des classes a gauche de G est note

G/K := {gK, g ∈ G} ⊂ P(G).

On l’appelle egalement le quotient a droite de G par K.
– L’ensemble des classes a droite de G est note

K\G := {Kg, g ∈ G} ⊂ P(G).

On l’appelle egalement le quotient a gauche de G par K.

Lemme 2.1. les classes a gauche (resp. a droite) on les proprietes suivantes

– eGK = K.
– gK = g′K ⇐⇒ g′ = gk, k ∈ K
– gK ∩ g′K ∕= ∅ ⇐⇒ gK = g′K.

– KeG = K.
– Kg = Kg′ ⇐⇒ g′ = kg, k ∈ K
– Kg ∩Kg′ ∕= ∅ ⇐⇒ Kg = Kg′.

Si G est fini on a

|G/K| = |K\G| = |G|/|K|.
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Preuve: Exercice □

Supposons maintenant que K est distingue dans G. On a alors

Lemme 2.2. Si K est distingue dans G on a

∀g ∈ G, gK = Kg.

Ainsi

G/K = K\G.

Deplus, pour tout g, g′ ∈ G on a

gK.g′K := {gkg′k′, k, k′ ∈ K} = gg′K.

Preuve: Exercice □
On notera une classe a gauche (ou a droite, ) de la maniere suivante

g (modK) := gK = Kg

On definit sur l’ensemble G/K la loi de composition interne

·K : G/K ×G/K → G/K

en posant

g (modK) ·K g′ (modK) = gK ·K g′K := gK.g′K = gg′K.

Théorème 2.10 (Existence du groupe quotient). Si K est distingue dans G, l’ensemble (G/K, ·K)
a une structure de groupe dont l’element neutre est

eG/K = eGK = K

et l’inversion est donnee par

(gK)−1 = g−1K.

Preuve: Exercice. □

Définition 2.12. Si K est distingue dans G le groupe (G/K, ·K) est appele groupe quotient de
G par K.

Quotients et morphismes. Le groupe quotient a la propriete suivante par rapport aux mor-
phismes:

Théorème 2.11. Soit K ⊳G un sous-groupe distingue et G/K le groupe quotient.
L’application

• (modK) : g ∈ G 󰀁→ g (modK) = gK ∈ G/K

est un morphisme de groupes surjectif de noyau K.
Soit ϕ : G → H un morphisme de groupe tel que

K ⊂ ker(ϕ)

alors il existe un unique morphisme de groupe

ϕK : G/K → H

tel que

∀g ∈ G, ϕK(gK) = ϕ(g).

On a alors

ker(ϕK) = kerϕ (modK) = (kerϕ).K = {k′K, k′ ∈ kerϕ}.

Preuve: Exercice. □
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Théorème 2.12 (Theoreme Noyau-Image). Supposons que K est distingue dans G. Avec les
notations precedentes, on a

kerϕ = K ⇐⇒ ϕK est injectif

et on a alors un isomorphisme
ϕK : G/K ≃ ϕ(G) ⊂ H.

En particulier si G est fini on a
|G|/|K| = |ϕ(G)|.

Ainsi si ϕ est surjectif et si kerϕ = K on a un isomorphisme

G/K ≃ H.

2.4.4. Operations entre morphismes de groupes.

Notation/Terminologie. On notera

– HomGr(G,H) l’ensemble des morphismes de groupes de G vers H,
– InjGr(G,H) l’ensemble des morphisme injectifs (qu’on appelle egalement monomorphismes
de groupes ),

– SurjGr(G,H) l’ensemble des morphisme surjectifs (qu’on appelle egalement epimorphismes
de groupes ), et

– IsomGr(G,H), l’ensemble des morphisme de groupes bijectifs (qu’on appelle lgalement
isomorphismes de groupes ).

– Si H = G, on ecrit notera ces ensembles

HomGr(G), InjGr(G), SurjGr(G), IsomGr(G);

en particulier l’ensemble des morphismes de G sur lui-meme HomGr(G) est aussi appelle
ensemble des endomorphismes du groupe G et est egalement note

EndGr(G) := HomGr(G,G).

L’ensemble des endomorphismes bijectifs (isomorphismes) de G sur lui-meme est note

AutGr(G) := IsomGr(G,G)

est est appele l’ensemble des automorphismes de G.

Les lois de compositions s’appliquent egalement aux morphismes de groupes:

Proposition 2.5. (Invariance par composition et par reciproque) Soient (G, 󰂏), (H, ∗), (K,⊗)
des groupes et

ϕ : G 󰀁→ H et ψ : H 󰀁→ K

des morphismes de groupes alors la composee ψ ◦ ϕ : G 󰀁→ K est un morphisme de groupes.
Supposons que ϕ : G 󰀁→ H un morphisme de groupes bijectif alors l’application reciproque est un

morphisme de groupe bijectif:
ϕ−1 ∈ HomGr(H,G).

Preuve: Soit g, g′ ∈ G alors

ψ ◦ ϕ(g 󰂏 g′) = ψ(ϕ(g 󰂏 g′)) = ψ(ϕ(g) ∗ ϕ(g′)) = ψ(ϕ(g))⊗ ψ(ϕ(g′)) = ψ ◦ ϕ(g)⊗ ψ ◦ ϕ(g′).
Supposons que ϕ soit bijectif. Il faut montrer que pour h, h′ ∈ H

ϕ−1(h ∗ h′) = ϕ−1(h) 󰂏 ϕ−1(h′).

Soit g = ϕ−1(h), g′ = ϕ−1(h′) alors

ϕ(g 󰂏 g′) = ϕ(g) ∗ ϕ(g′) = ϕ(ϕ−1(h)) ∗ ϕ(ϕ−1(h′)) = h ∗ h′.

Ainsi g 󰂏 g′ ∈ ϕ−1({h ∗ h′}) mais comme ϕ est bijective ϕ−1({h ∗ h′}) ne possede qu’un seul element
et comme ϕ−1(h ∗ h′) en fait partie (puisque ϕ(ϕ−1(h ∗ h′)) = h ∗ h′) on a

ϕ−1(h) 󰂏 ϕ−1(h′) = g 󰂏 g′ = ϕ−1(h ∗ h′)
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□
On en deduit de la proposition precedente le

Corollaire 2.4. L’ensemble des automorphismes de G

AutGr(G) ⊂ Bij(G)

est un sous-groupe pour la composition ◦.

Preuve: En effet l’ensemble AutGr(G) ⊂ BijENS(G) est stable par composition et par reciproque.
On applique le critere de sous-groupe. □

2.4.5. Groupes isomorphes. Soient G,H deux groupes tels que IsoGr(G,H) ∕= ∅ et il existe
donc un isomorphisme de groupes

ϕ : G
∼−→ H.

On dit alors que G et H sont isomorphes et one le note

G ≃Gr H.

Si c’est le cas, – pour autant que l’on soit interesse par les structures de groupes – G et H ont
exactement les meme proprietes et peuvent etre identifies l’un a l’autre comme groupes via les
morphismes ϕ et ϕ−1.

Exercice 2.4. Montrer que la relation pour deux groupes d’etre isomorphes est une relation
d’equivalence dans la categorie des groupes (qui n’est pas un ensemble): elle est reflexive, symetrique
et transitive.

Exercice 2.5. Soient G etH deux groupes isomorphes (de sorte que IsoGr(G,H) ∕= ∅). Montrer
que pour tout ϕ ∈ IsoGr(G,H) on a,

(1)

IsoGr(G,H) = ϕ ◦AutGr(G) = AutGr(H) ◦ ϕ
avec

ϕ ◦AutGr(G) = {ϕ ◦ ψ, ψ ∈ AutGr(G)}
et

AutGr(H) ◦ ϕ = {ψ ◦ ϕ, φ ∈ AutGr(H)}.

2.5. Action d’un groupe sur un ensemble

l’exemple suivant de morphisme est fondamental en theorie des groupes et en mathematiques
en general

Définition 2.13. Soit (G, 󰂏) un groupe, X un ensemble et (Bij(X), ◦) le groupe symetrique
de X (des bijections de X sur lui-meme). Une action (a gauche) de G sur X est la donnee d’un
morphisme

ϕ : G 󰀁→ Bij(X).

On dit alors que G agit sur X (a gauche) a travers le morphisme ϕ et on le note G ↷ϕ X.

Proposition 2.6. La donnee d’une action G ↷ϕ X est equivalente a la donnee d’une application
(appellee loi de composition externe)

•⊙ • :
G×X 󰀁→ X
(g, x) 󰀁→ g ⊙ x

verifiant

(1) neutralite de l’element neutre:

∀x ∈ X, eG ⊙ x = x,
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(2) associativite: ∀x ∈ X, g, g′ ∈ G,

(g 󰂏 g′)⊙ x = g ⊙ (g′ ⊙ x).

(3) simplification: en combinant les deux proprietes precedentes on a ∀x ∈ X, g ∈ G,

g ⊙ (g−1 ⊙ x) = g−1 ⊙ (g ⊙ x) = x.

Preuve: (a completer) Dans une direction, on associe a un morphisme ϕ : G 󰀁→ X l’application

•⊙ϕ • :
G×X 󰀁→ X
(g, x) 󰀁→ g ⊙ϕ x

:= ϕ(g)(x).

Dans l’autre direction, etant donne une application •⊙•, on considere pour tout g ∈ G, l’application

ϕ(g) :
X 󰀁→ X
x 󰀁→ ϕ(g)(x) := g ⊙ x

.

On montre alors que ϕ(g) est une bijection de X sur X, de reciproque

ϕ(g)−1 = ϕ(g−1)

et que l’application

ϕ : g 󰀁→ ϕ(g) ∈ Bij(X)

est un morphisme de groupes. □

Exemple 2.5.1. Soit X un ensemble et σ ∈ Bij(X) une bijection de X sur X, on a vu que
l’application

σ• : n ∈ Z 󰀁→ σn ∈ Bij(X)

est un morphisme de groupes et on obtient donc une action du groupe (Z,+) sur X qu’on pourrait
noter par

Z ↷σ X : n⊙σ x := σn(x).

Notons que si on change σ on obtient un autre action Z ↷ X.

2.5.1. Action par translations dans un groupe. Soit (G, .) un groupe et g ∈ G, l’application
de translation a gauche par g est l’application

tg :
G 󰀁→ G
g′ 󰀁→ g.g′

.

Cette application n’est PAS un morphisme de groupe en general: elle ne l’est que si g = eG. En
effet si g = eG, on a tg(g

′) = eg.g
′ = g′ et teG = IdG. Sinon on a

tg(eG) = g.eG = g ∕= eG

donc tg, n’est PAS un morphisme de groupes.
En revanche tg ∈ Bij(G). En effet, tg admet tg−1 comme application reciproque:

tg−1 ◦ tg(g′) = g−1.g.g′ = g′

et donc tg−1 ◦ tg = IdG et de meme tg ◦ tg−1 = IdG.

Théorème 2.13. L’application translation a gauche

t• :
G 󰀁→ Bij(G)
g 󰀁→ tg : g′ 󰀁→ g.g′

est un morphisme de groupes de (G, .) vers (Bij(G), ◦). Le morphisme t• definit donc une action a
gauche de G sur G qu’on appellera action par translations a gauche et qu’on notera G ↷t G.
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Preuve: Pour tout g1, g2 ∈ G et tout g′ ∈ G on a

tg1 ◦ tg2(g′) = tg1(tg2(g
′)) = tg1(g2.g

′) = g1.(g2.g
′) = (g1.g2).g

′ = tg1,g2(g
′)

et donc

tg1 ◦ tg2 = tg1.g2 .

On a donc bien un morphisme de groupes. □

Remarque 2.5.1. La notation pour la definition equivalente d’une action a gauche dans la
Proposition 2.6 est faite pour copier l’action par translation a gauche sur le groupe.

Exercice 2.6. Soit G un groupe et

t• :
G 󰀁→ Bij(G)
g 󰀁→ tg : G 󰀁→ G

l’action par translation a gauche de G vers G.

(1) Montrer que t• est injective.

Remarque 2.5.2. L’image de ce morphisme tG ⊂ Bij(G) est donc un sous-groupe de G : le
groupe des translations a gauche sur G. Ainsi on a un isomorphisme de groupes

G
∼−→ tG.

Ainsi un groupe quelconque, G, est toujours isomorphe a un sous-groupe d’un groupe de permutation
d’un ensemble, Bij(G).

2.5.2. La conjugaison dans un groupe. Un autre exemple fondamental d’action de groupe
est la conjugaison d’une groupe sur lui-meme.

Soit (G, .) un groupe et g ∈ G un element. La conjugaison par g est l’application

Adg :
G 󰀁→ G
h 󰀁→ g.h.g−1.

Théorème 2.14. Pour tout g, l’application Adg : G 󰀁→ G est un isomorphisme de groupes (ie
Adg ∈ AutGr(G)) dont l’application reciproque vaut

Ad−1
g = Adg−1 : G

∼−→ G.

De plus l’application

Ad• :
G 󰀁→ Bij(G)
g 󰀁→ Adg

est un morphisme de groupes.

Preuve: Calculons (comme g.g−1 = eG)

Adg(h.h
′) = g.h.h′.g−1 = g.h.eG.h

′.g−1 = g.h.g.g−1.h′.g−1 = Adg(h).Adg(h
′).

Verifions que Adg est injective en calculant son noyau:

ker(Adg) = {h ∈ G, g.h.g−1 = eG}
mais

g.h.g−1 = eG =⇒ g.h = g =⇒ h = eG

(en multipliant a droite par g et a gauche par g−1. Notons ensuite que pour tout h′ ∈ G

Adg(g
−1.h′.g) = g.g−1.h′.g.g−1 = h′

donc h′ ∈ Im(Adg) et l’application est surjective. En fait on a pour tout h ∈ G

Adg−1(Adg(h)) = h, Adg(Adg−1(h)) = h

de sorte que Adg−1 est la reciproque de Adg. Ainsi Adg ∈ Bij(G).
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On a pour tout g, g′ ∈ G, h ∈ G

Adg ◦Adg′(h) = g.g′.h.g′
−1

.g−1 = Adg.g′(h)

de sorte que
Adg ◦Adg′ = Adg.g′

et l’application Ad : G 󰀁→ Bij(G) est bien un morphisme de groupes (dont l’image est contenue dans
AutGr(G)). □

Définition 2.14. L’application de conjugaison

Ad :
G 󰀁→ Bij(G)
g 󰀁→ Adg

etant un morphisme de groupes, elle defini une action a gauche de G sur G (par automorphismes
de groupes) qu’on appelle action par conjugaison et qu’on notera G ↷Ad G.

L’image de ce morphisme

AdG = {Adg, g ∈ G} ⊂ AutGr(G) ⊂ Bij(G)

(formee d’automorphismes de groupe) et est appellee groupe des automorphismes ”interieurs” de G
et est notee

AdG = IntGr(G) = InnGr(G).

(”Inn” pour ”Inner”).

Remarque 2.5.3. Le noyau de Ad est le sous-groupe

ker(Ad) = {g ∈ G, Adg = IdG} = {g ∈ G, ∀h ∈ G, g.h.g−1 = h}
= {g ∈ G, ∀h ∈ G, g.h = h.g}

est l’ensemble des elements de G qui commutent avec tous les elements de G, on appelle ce sous-
groupe le centre de G et on le note

Z(G) ⊂ G.

Exercice 2.7. (suite de l’exercice 2.5) Soient G et H deux groupes isomorphes (de sorte que
IsoGr(G,H) ∕= ∅). Montrer que pour tout ϕ ∈ IsoGr(G,H)

(1) L’application

Adϕ :
AutGr(G) 󰀁→ AutGr(H)

φ 󰀁→ ϕ ◦ φ ◦ ϕ−1

est un isomorphisme de groupes entre AutGr(G) et AutGr(H).

Remarque. Noter que cette application de conjugaison par ϕ n’est pas de AutGr(G) vers
AutGr(G) (sauf si G = H) mais de AutGr(G) vers AutGr(H) .

2.5.3. Action a droite d’un groupe sur un ensemble. On peut egalement definir la notion
d’action a droite. Pour cela la notion d’antimorphisme est tres utile:

Définition 2.15. Soient (G, 󰂏) et (H, ∗) deux groupes, un anti-morphisme de groupes ϕ : G 󰀁→
H est une application telle que

∀g, g′ ∈ G, ϕ(g 󰂏 g′) = ϕ(g′) ∗ ϕ(g).

Proposition 2.7. Une application entre groupes ϕ : G → H est un anti-morphisme de groupes
ssi

ϕ ◦ •−1 : g 󰀁→ ϕ(g−1)

est un morphisme de groupes ou bien ssi

•−1 ◦ ϕ : g 󰀁→ ϕ(g)−1

est un morphisme de groupes.
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Preuve: Exercice. □
Définition 2.16. Soit (G, 󰂏) un groupe, X un ensemble et (Bij(X), ◦) le groupe symetrique

de X (des bijections de X sur lui-meme). Une action a droite de G sur X est la donnee d’un
antimorphisme de groupes

ϕ : G 󰀁→ Bij(X).

On dit alors que G agit sur X a droite a travers ϕ et one le note X ↶ϕ G.

Proposition 2.8. La donnee d’une action a droite X ↶ϕ G est equivalente a la donnee d’une
application

•⊙ • :
X ×G 󰀁→ X
(x, g) 󰀁→ x⊙ g

verifiant

(1) neutralite de l’element neutre: ∀x ∈ X, x⊙ eG = x,
(2) associativite: ∀x ∈ X, g, g′ ∈ G, x⊙ (g 󰂏 g′) = (x⊙ g)⊙ g′.
(3) simplification: en combinant les deux proprietes precedentes on a ∀x ∈ X, g ∈ G,

(x⊙ g)⊙ g−1 = (x⊙ g−1)⊙ g = x.

Remarque 2.5.4. On voit ainsi que dans une action a droite pour calculer l’action de g 󰂏 g′ sur
x, on fait d’abord ”agir” g sur x et ensuite on fait ”agir” g′ sur le resultat alors que pour une action
a gauche c’est g′ qui agit en premier et ensuite g agit sur le resultat.

2.5.3.1. Action par translations a droite. Soit (G, .) un groupe et g ∈ G, l’application de trans-
lation a droite par g est l’application

tdg :
G 󰀁→ G
g′ 󰀁→ g′.g

.

Tout comme pour la translation a gauche, cette application n’est PAS un morphisme de groupes en
general (sauf si g = eG).

Par ailleurs tdg ∈ Bij(G). En effet, tdg admet tdg−1 comme application reciproque: pour tout
g′, on a

tdg−1 ◦ tdg(g′) = g′.g.g−1 = g′

et donc
tg−1 ◦ tg = IdG

et de meme
tg ◦ tg−1 = IdG.

Théorème 2.15. L’application de translation a droite

td• :
G 󰀁→ Bij(G)
g 󰀁→ tdg : g′ 󰀁→ g′.g

est un anti-morphisme de (G, .) vers (Bij(G), ◦) et definit donc une action a droite de G sur Gqu’on
appellera action par translations a droite et qu’on notera G ↶td G (le premier G est vu comme un
ensemble et le second comme le groupe qui agit).

Preuve: Exercice. □
Exercice 2.8. Soit X,Y des ensembles, F(X,Y ) l’espace des fonctions (ie. des applications)

de X a valeurs dans (ie. vers) Y et G ↷ X un groupe agissant sur X a gauche: (g, x) 󰀁→ g ⊙ x.

(1) Montrer que l’application

•|• :
(F(X,Y ), G) 󰀁→ F(X,Y )

(f, g) 󰀁→ f|g
: x 󰀁→ f|g(x) := f(g ⊙ x)

defini une action a droite de G sur F(X,Y ).
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(2) Reciproquement, construire a partir d’une action a droite

X ↶ G : (x, g) 󰀁→ x⊙′ g

de G sur X, une action a gauche G ↷ F(X,Y ).



CHAPITRE 3

Anneaux

”Un Anneau pour les gouverner tous,
Un Anneau pour les trouver,

Un Anneau pour les amener tous,
Et dans les ténèbres les lier”

3.1. Anneaux

Définition 3.1. Un anneau (A,+, ., 0A, 1A) est la donnee, d’un groupe commutatif (A,+) (note
additivement) d’element neutre note 0A, d’une loi de composition interne (dite de multiplication)

•.• :
A×A 󰀁→ A
(a, b) 󰀁→ a.b

et d’un element unite 1A ∈ A ayant les proprietes suivantes

(1) Associativite de la multiplication:

∀a, b, c ∈ A, (a.b).c = a.(b.c) = a.b.c.

(2) distributivite:

∀a, b, c ∈ A, (a+ b).c = a.c+ b.c, c.(a+ b) = c.a+ c.b.

(3) Neutralite de l’unite:

∀a ∈ A, a.1A = 1A.a = a.

Un anneau est dit commutatif si de plus la multiplication est commutative:

∀a, b ∈ A, a.b = b.a.

Lemme 3.1. Pour tout a, b ∈ A, on a

0A.a = a.0A = 0A,

(on dit que l’element neutre de l’addition 0A est absorbant). Pour l’oppose, on a

(−a).b = −(a.b) = a.(−b).

Preuve: Pour tout a on a

a = 1A.a = (1A + 0A).a = a+ 0A.a

et donc 0A.a = 0A. □

Exercice 3.1. Montrer que si 1′A a la propriete de neutralite: ∀a ∈ A, a.1′A = 1′A.a = a. alors
1′A = 1A.

Exemple 3.1.1. Quelques exemples important d’anneaux:

(1) Les ensembles Z,Q,R,C munis de leurs lois usuelles sont des anneaux commutatifs.

49
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(2) L’anneau nul: Soit Nul = {0} un ensemble non-vide forme d’un seul element. On muni
cet ensemble de l’addition et de la multiplication definies par

0+ 0 := 0, 0.0 := 0

alors

(Nul,+, .,0,0)

est un anneau commutatif qu’on appelle l’anneau nul.
(3) Produits d’anneaux: Soient A et B des anneaux alors le produit A×B muni de l’addition

et de la multiplication ”coordonnee par coordonnee”

(a, b) + (a′, b′) = (a+A a′, b+B b′), (a, b).(a′, b′) = (a.Aa
′, b.Bb

′)

est un anneau avec (0A, 0B) comme element neutre et (1A, 1B) comme element unite.
Plus generalement si A1, · · · , An sont des anneaux on peut munir le produit

A1 × · · ·×An

d’une structure d’anneau par addition et multiplication ”coordonnee par coordonnee” dont
le neutre et l’unite sont (0A1 , · · · , 0An) et (1A1 , · · · , 1An).

(4) Anneau de fonctions Soit X un ensemble et F(X;R) l’ensemble des fonctions sur X a
valeurs dans R: on definit l’addition et la multiplication de deux fonctions f, g ∈ F(X;R)
par

f + g : x 󰀁→ (f + g)(x) = f(x) + g(x), f.g : x 󰀁→ (f.g)(x) := f(x).g(x).

Alors si 0 et 1 sont les fonctions constantes egales a 0 et 1, (F(X;R),+, ., 0, 1) est un
anneau commutatif.

Plus generalement si (A,+, ·, 0A, 1A) est un anneau, et que

0A, 1A : X 󰀁→ A

designent les fonctions de X vers A qui sont constantes egales respectivement a 0A et 1A,
en posant pour f, g ∈ F(X,A)

f + g : x 󰀁→ (f + g)(x) = f(x) + g(x) ∈ A, f.g : x 󰀁→ (f.g)(x) := f(x).g(x) ∈ A,

on verifie que

(F(X;A),+, ., 0A, 1A)

est un anneau.
(5) Soit

R[X] = {P (X) = a0 + a1.X + a2X
2 + · · ·+ ad.X

d, d 󰃍 1, a0, a1, · · · , ad ∈ R}

l’ensemble des fonctions polynomiales a coefficients dans R. Alors R[X] muni de l’addition
des polynomes et de la multiplication des polynomes est un anneau dont le neutre est le
polynome constant nul 0 et l’element unite est le polynome constant 1.

(6) Plus generalement on verra plus tard que pour tout anneau commutatif A on peut former
l’anneau des polynomes a coefficients dans A, A[X]:

A[X] = {P (X) = a0 + a1.X + a2X
2 + · · ·+ ad.X

d, d 󰃍 1, a0, a1, · · · , ad ∈ A}

qui est un anneau commutatif muni des lois d’addition et de multiplication des polynomes
usuelles. Formellement, on ne definit PAS A[X] comme l’ensemble des fonctions polyno-
miales de A a valeurs dans A (ce dernier anneau est en general plus petit) mais comme
l’ensemble des symboles a0+a1.X+a2X

2+· · ·+ad.X
d munis des regles usuelles d’addition

et de multiplications des polynomes.
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(7) Soit A un anneau commutatif, l’ensemble

M2(A) = {
󰀕
a b
c d

󰀖
, a, b, c, d ∈ A}

des matrices 2×2 a coefficients dans A et muni des lois d’addition et de multiplication des
matrices󰀕

a b
c d

󰀖
+

󰀕
a′ b′

c′ d′

󰀖
=

󰀕
a+ a′ b+ b′

c+ c′ d+ d′

󰀖
,

󰀕
a b
c d

󰀖
.

󰀕
a′ b′

c′ d′

󰀖
=

󰀕
aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

󰀖

est un anneau (non-commutatif) d’element nul la matrice nulle

0M2(A) =

󰀕
0A 0A
0A 0A

󰀖

et d’unite la matrice identite

1M2(A) = Id2 =

󰀕
1A 0
0 1A

󰀖
.

Remarque 3.1.1. On peut definir egalement le produit (externe) d’un scalaire a′ ∈ A

et d’une matrice m =

󰀕
a b
c d

󰀖
en posant

a′ ·m = a′ ·
󰀕
a b
c d

󰀖
:=

󰀕
a′a a′b
a′c a′d

󰀖

(on multiplies toutes les coordonnees de la matrice par le scalaire a′.
Cette loi de multiplication externe a des proprietes d’associativite et de distributivite

relativement a l’addition et au produit dans A et M2(A): pour a′, a′′ ∈ A, m,m′ ∈ M2(A)
on a

(a′.a′′) ·m = a′ · (a′′.m) = a.a′ ·m
(a′ + a′′) ·m = a′ ·m+ a′′ ·m, a′ · (m+m′) = a′ ·m+ a′ ·m′.

Exemple: l’anneau des classes de congruences Z/qZ. Soit q 󰃍 1 un entier et

Z/qZ = {a (mod q), a ∈ Z}, a (mod q) = a+ qZ

l’ensemble des classes de congruence de module q. On rappelle que (Z/qZ,⊞, 0 (mod q),⊟) forme un
groupe commutatif qu’on note additivement: pour a, b ∈ Z on pose

a (mod q)⊞ b (mod q) := a+ b (mod q).

En particulier, on verifie que c’est bien defini: si a (mod q) = a′ (mod q) et b (mod q) = b′ (mod q)
alors

a+ b (mod q) = a′ + b′ (mod q).

Pour a (mod q), b (mod q) des classes de congruences, on pose1

a (mod q)⊠ b (mod q) := a.b (mod q).

On verifie a nouveau que c’est bien defini: si a (mod q) = a′ (mod q) et b (mod q) = b′ (mod q) alors

a (mod q)⊠ b (mod q) = a.b (mod q) = a′.b′ (mod q) = a′ (mod q)⊠ b′ (mod q).

L’ operation ⊠ nous fourni une application

•⊠ • :
Z/qZ× Z/qZ 󰀁→ Z/qZ

(a (mod q), b (mod q)) 󰀁→ a.b (mod q)

1Remarquer que ce n’est pas exactement la meme operation ⊠ que dans la serie 1.
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qui est bien definie: si a′, b′ ∈ Z sont tels que

a′ (mod q) = a (mod q), b′ (mod q) = b (mod q)

alors

a′.b′ (mod q) = a.b (mod q).

Ainsi pour tout entier q 󰃍 1, il existe un anneau commutatif fini de cardinal q.

Exemple: l’anneau des endomorphismes d’un groupe commutatif. Soit (M,+) un
groupe commutatif note additivement et End(M) := EndGr(M) l’ensemble des endomorphismes
de M (les morphismes de groupe de M vers M). Alors, on peut munir End(M) d’une structure
d’anneau (non-commutatif en general):

(1) L’addition est definie comme suit : soient ϕ,ψ ∈ End(M), on pose

ϕ+ ψ :
M 󰀁→ M
m 󰀁→ (ϕ+ ψ)(m) := ϕ(m) + ψ(m)

.

alors ϕ+ ψ ∈ End(M) est bien un morphisme de groupes;
(2) On definit l’oppose pour l’addition par

−ϕ :
M 󰀁→ M
m 󰀁→ (−ϕ)(m) := −ϕ(m)

et on verifie que −ϕ est encore un morphisme de groupes: cela utilise le fait que M est
commutatif.

(3) Ainsi on montre que (End(M),+) forme un groupe commutatif dont l’element neutre est
le morphisme nul:

0M : m ∈ M 󰀁→ 0M .

(4) La multiplication des endomorphismes est definie par la composition des applications:

ϕ ◦ ψ : m ∈ M 󰀁→ ϕ ◦ ψ(m) = ϕ(ψ(m)).

qui a la propriete d’associativite requise (cf. §1.3.4) et pour laquelle l’application identite

IdM : m ∈ M 󰀁→ M

(qui est bien un morphisme de groupes) a la propriete de neutralite par rapport a l’addition.
On verifie alors la distributivite de la composition par rapport a l’addition (on utilise a
nouveau les proprietes des morphismes de groupes)

∀ϕ,ϕ′,ψ ∈ End(M), (ϕ+ ϕ′) ◦ ψ = ϕ ◦ ψ + ϕ′ ◦ ψ, ψ ◦ (ϕ+ ϕ′) = ψ ◦ ϕ+ ψ ◦ ϕ′.

En effet ∀m ∈ M

(ϕ+ ϕ′) ◦ ψ(m) = (ϕ+ ϕ′)(ψ(m)) = ϕ(ψ(m)) + ϕ′(ψ(m)) = ϕ ◦ ψ(m) + ϕ′ ◦ ψ(m)

et

ψ ◦ (ϕ+ ϕ′)(m) = ψ((ϕ+ ϕ′)(m)) = ψ(ϕ(m) + ϕ′(m))

= ψ(ϕ(m)) + ψ(ϕ′(m)) = ψ ◦ ϕ(m) + ψ ◦ ϕ′(m)

On obtient ainsi que

(End(M),+, ◦, 0M , IdM )

forme un anneau.
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3.2. Elements inversibles

Définition 3.2. Soit A un anneau. Un element a ∈ A est inversible si il existe b ∈ A tel que

a.b = b.a = 1A.

On dit alors que b est un inverse (a gauche et a droite) de a (pour la multiplication).

Proposition 3.1. (Unicite de l’inverse) Soit A un anneau et a ∈ A un element inversible et
soit b tel que a.b = b.a = 1A.

Soit b′ verifiant

a.b′ = 1A

alors b′ = b; de meme si b′ verifie

b′.a = 1A

alors b′ = b

Preuve: Supposons que a est inversible avec a.b = b.a = 1A et soit b′ ∈ A tel que

a.b′ = 1A

alors

a.b′ = 1A =⇒ b.a.b′ = b = 1A.b
′ = b′.

□

Notation 3.1. Par la Proposition precedente si un element a ∈ A est inversible son inverse est
unique. On notera cet inverse

a−1.

Notons que a−1 est egalement inversible et on a

(a−1)−1 = a.

On deduit de cette discussion que

Proposition 3.2. Soit A× l’ensemble des elements inversibles d’un anneau A, alors

(A×, ., 1A, •−1)

forme un groupe: le groupe des elements inversibles de A.

Remarque 3.2.1. Rappelons que l’on utilise la notations additive pour le groupe commutatif
(A,+). En particulier pour tout a ∈ A, l’element −a (”l’inverse” de a pour la loi +) sera appele
l’oppose de a:

a+ (−a) = (−a) + a = 0A.

On reservera le terme ”inverse” a la multiplication.

Remarque 3.2.2. Par une perversite du vocabulaire, le groupe A× est egalement appele le
groupe des unites de A et ses elements sont des unites de A. Quelque fois quand on voudra parler
d’un element a inversible on parlera d’une ”unite” de A et on reservera le terme ”l’unite de A” a
l’element 1A.

Exemple 3.2.1. (1) On a

Z× = {+1,−1}, Q× = Q− {0},R× = R− {0},C× = C− {0}.

par exemple 2 n’est pas inversible dans Z car son inverse 1/2 n’est pas entier mais il est
inversible dans Q.

(2) On a

Nul(A)× = {0A}.
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(3) Les matrices inversibles de R sont celles dont le determinant est inversible:

M2(R)× = {
󰀕
a b
c d

󰀖
, a, b, c, d ∈ R, det

󰀕
a b
c d

󰀖
= ad− bc ∈ R× = R− {0}}.

(4) Si (M,+) est un groupe commutatif et End(M) = EndGr(M) est son anneau d’endomorphismes,
le groupe des unites de End(M) est

End(M)× = AutGr(M)

le groupe des automorphismes du groupe (M,+).
(5) Si A et B sont des anneaux, le groupe des elements inversibles du produit A×B est

(A×B)× = A× ×B×.

(6) Anneau des classes de congruences: les elements inversibles de Z/qZ sont les classes de
congruences premieres a q:

(Z/qZ)× = {a (mod q), (a, q) = 1}.

En effet si a (mod q) ∈ (Z/qZ)×, il existe d (mod q) tel que

a (mod q).d (mod q) = 1 (mod q)

et donc

a.d (mod q) = 1 (mod q).

Il existe donc b ∈ Z tel que

a.d = 1 + qb ⇐⇒ ad− qb = 1.

Cela implique que a et d sont premiersa entre eux. Cela nous donne l’inclusion ⊂.
Supposons (a, q) = 1 par Bezout il existe d, b ∈ Z tel que

ad− qb = 1

et donc

ad ≡ 1 (mod q)

ce qui nous donne l’inclusion ⊃.

Exercice 3.2. Soit A un anneau commutatif et M2(A) l’anneau des matrices a coefficients dans

A. Soit M =

󰀕
a b
c d

󰀖
∈ M2(A), la transposee de la matrice des cofacteurs de M est la matrice

definie par

tcof(M) :=

󰀕
d −b
−c a

󰀖
.

(1) Montrer que

M.tcof(M) = tcof(M).M = det(M).Id2 =

󰀕
det(M) 0

0 det(M)

󰀖

ou det(M) (le determinant de M) est defini par

det(M) := ad− bc ∈ A.

(2) En deduire que

M2(A)× =: GL2(A) = {
󰀕
a b
c d

󰀖
, a, b, c, d ∈ A, det

󰀕
a b
c d

󰀖
= ad− bc ∈ A×}.
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3.2.0.1. Divisibilite.

Définition 3.3. Soit (A,+, .) un anneau commutatif et a, c ∈ A, on dit que a divise c et on le
note

a|c
si il existe b ∈ A tel que

c = a.b.

On dit egalement que a est un diviseur de b.

Exercice 3.3. Soit A un anneau.

(1) Montrer que la relation de divisibilite est reflexive et transitive.
(2) Montrer que tout element du groupe des unites A× est un diviseur de tout element de A.
(3) Quels sont les diviseurs de 0a ? de 1A ?

3.3. Sous-anneau

Définition 3.4. Soit (A,+, .) un anneau. Un sous-anneau B ⊂ A est un sous-groupe de (A,+)
qui est

– soit le sous-groupe trivial {0A},
– soit qui contient l’unite 1A et qui est stable par multiplication:

∀b, b′ ∈ B, b.b′ ∈ B.

Ainsi (B,+, ., 0A, 1A) est un anneau.

Proposition 3.3. (Critere de sous-anneau) Soit (A,+, .) un anneau et B ⊂ A un sous-ensemble
non-vide; alors B est un sous-anneau ssi B = {0A}, ou bien 1A ∈ B et

(3.3.1) ∀b, b′, b′′ ∈ B, b.b′ − b′′ ∈ B

Preuve: Exercice. □

Exemple 3.3.1. (1) La chaine d’inclusions

Z ⊂ Q ⊂ R ⊂ C

est une chaine de sous-anneaux de C.
(2) Les seuls sous-anneaux de Z sont {0} et Z.
(3) Les seuls sous-anneaux de Z/qZ sont {0 (mod q)} et Z/qZ.
(4) La chaine d’inclusions

M2(Z) ⊂ M2(Q) ⊂ M2(R) ⊂ M2(C)

est une chaine de sous-anneaux.
(5) Pour tout anneau commutatif, l’ensemble des matrices scalaires

A.Id2 = {a.Id2 =

󰀕
a 0
0 a

󰀖
, a ∈ A} ⊂ M2(A),

l’ensemble des matrices diagonales

Diag2(A) = {
󰀕
a 0
0 d

󰀖
, a, d ∈ A} ⊂ M2(A),

et l’ensemble des matrices triangulaires superieures

Tsup,2(A) = {
󰀕
a b
0 d

󰀖
, a, b, d ∈ A} ⊂ M2(A)

sont des sous-anneaux emboites les uns dans les autres.
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l’ensemble des matrices triangulaires inferieures

Tinf,2(A) = {
󰀕
a 0
c d

󰀖
, a, c, d ∈ A} ⊂ M2(A)

est egalement un sous-anneau.
(6) Si B,C ⊂ A sont des sous-anneaux de A alors B ∩ C est un sous-anneau de A. Plus

generalement pour toute collection (Ai)i∈I de sous-anneaux Ai ⊂ A de A, l’intersection
󰁟

i∈I

Ai = {a ∈ A, ∀i ∈ I, a ∈ Ai}

est un sous-anneau de A. En particulier, pour tout ensemble X ⊂ A il existe un plus
petit sous-anneau de A contenant X (l’intersection de l’ensemble des sous-anneaux de A
contenant X): on l’appelle le sous-anneau engendre par X et on le note

〈X〉 ⊂ A.

3.4. Morphismes d’anneaux

Définition 3.5. Soient (A,+A, .A), (B,+B , .B) des anneaux. Un morphisme d’anneaux ϕ :
A 󰀁→ B est un morphisme de groupes commutatif ϕ : (A,+A) 󰀁→ (B,+B) tel que

ϕ(1A) = 1B ou bien ϕ(1A) = 0B ,

∀a, a′ ∈ A, ϕ(a.Aa
′) = ϕ(a).Bϕ(a

′).

Remarque 3.4.1. Si ϕ(1A) = 0B alors ϕ est l’application constante nulle 0B :

∀a ∈ A, ϕ(a) = ϕ(a).ϕ(1A) = 0B .

Le morphisme canonique. Le morphisme canonique associe a un anneau A est l’application

CanA :
Z 󰀁→ A
n 󰀁→ n.1A

ou

n.1A =

󰀻
󰁁󰀿

󰁁󰀽

0 si n = 0

1A + · · ·+ 1A(n fois) si n > 0

−(1A + · · ·+ 1A)(|n| fois) si n < 0.

On notera egalement pour n ∈ Z
nA := Cana(n).

Exercice 3.4. On a deja vu que CanA est un morphisme de groupes commutatifs (pour
l’addition). Verifier que c’est un morphisme d’anneaux.

3.4.1. Noyau, Image.

Proposition 3.4. (Stabilite par morphismes) Soient ϕ ∈ HomAnn(A,B) un morphisme alors
ϕ(A) ⊂ B est un sous-anneau. Par ailleurs le sous-groupe ker(ϕ) est un sous-groupe de (A,+) qui
est de plus stable par multiplication (a gauche et a droite) par A:

∀a ∈ A, k ∈ ker(ϕ), a.k, k.a ∈ ker(ϕ).

Preuve: On sait deja que ϕ(A) est un sous-groupe de (B,+). Si ϕ(A) n’est pas l’anneau nul alors
1B = ϕ(1A) ∈ ϕ(A) et pour tout b, b′ ∈ ϕ(A), on a b = ϕ(a), b′ = ϕ(a′) pour a, a′ ∈ A et

b.b′ = ϕ(a).ϕ(a′) = ϕ(a.a′) ∈ ϕ(A)

ainsi ϕ(A) est stable par produit.
On sait deja que ker(ϕ) est un sous-groupe de (A,+). De plus ∀a ∈ A, k ∈ ker(ϕ), on a

ϕ(a.k) = ϕ(a).ϕ(k) = ϕ(a).0B = 0B

donc a.k ∈ ker(ϕ). □
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Remarque 3.4.2. Notez que ker(ϕ) est PAS un sous-anneau en general : il ne contient pas 1A
sauf si 1B = 0B (c’est a dire sauf si B est l’anneau nul).

Exercice 3.5. Soit ϕ : A 󰀁→ B un morphisme d’anneaux et {0B} ∕= B′ ⊂ B un sous-anneau qui
n’est pas l’anneau nul. Montrer que l’image reciproque A′ = ϕ(−1)(B′) est un sous-anneau de A.

Comme ϕ est un morphisme de groupes additifs on a

Proposition 3.5. Un morphisme d’anneaux ϕ ∈ HomAnn(A,B) est injectif ssi ker(ϕ) = {0A}.

Proposition 3.6. Soient ϕ : A 󰀁→ B et ψ : B 󰀁→ C des morphismes d’anneaux alors

– ψ ◦ ϕ : A 󰀁→ C est un morphisme d’anneaux.
– Soit ϕ ∈ HomAnn(A,B) un morphisme d’anneaux bijectif, l’application reciproque ϕ−1 :
B 󰀁→ A est un morphisme d’anneaux. On dit que ϕ est un isomorphisme d’anneaux et on
dit que A et B sont des anneaux isomorphes.

Preuve: Exercice. □

Notation 3.2. Soient A,B des anneaux. On note

HomAnn(A,B),EndAnn(A) = HomAnn(A,A)

IsomAnn(A,B), AutAnn(A) = IsomAnn(A,A)

l’ensemble des morphismes d’anneaux entre A et B, des endomorphismes de l’anneau A, des iso-
morphismes d’anneaux entre A et B et des automorphismes de l’anneau A.

Exercice 3.6. L’ensemble des automorphismes AutAnn(A) muni de la composition forme un
sous-groupe de Bij(A).

3.5. Anneau quotient

Dans cette section on va donner une generalisation de la construction de l’anneau Z/qZ.

3.5.1. Ideal d’un anneau. On a vu que le noyau ker(ϕ) d’un morphisme d’anneaux ϕ : A → B
n’est pas un sous-anneau en general. C’est un sous-groupe du groupe additif (A,+) stable par
multiplications par les elements de A. On va donner un nom a ces objets.

Définition 3.6. Soit A un anneau pas forcement commutatif.

– Un ideal ( a gauche) de A est un sous-groupe additif (I,+) ⊂ (A,+) qui est stable par
multiplication (a gauche) par les elements de A:

∀a ∈ A, b ∈ I, a.b ∈ I.

– Un ideal ( a droite) de A est un sous-groupe additif (I,+) ⊂ (A,+) qui est stable par
multiplication (a droite) par les elements de A:

∀a ∈ A, b ∈ I, b.a ∈ I.

– Un ideal bilatere de A est un sous-groupe additif (I,+) ⊂ (A,+) qui est un ideal a gauche
et a droite:

∀a ∈ A, b ∈ I, a.b, b.a ∈ I.

En particulier si A est commutatif les notion d’ideal a gauche, a droite ou bilatere sont toutes les
memes.

Exemple 3.5.1. Soit ϕ : A 󰀁→ B un morphisme d’anneaux alors ker(ϕ) est un ideal bilatere de
A.
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Exercice 3.7. Soit I ⊂ A un ideal (a gauche) d’un anneau A. Montrer que si

I ∩A× ∕= ∅
alors

I = A

(on commencera par montrer que si A× ∩ I ∕= ∅ alors 1A ∈ I et on en deduira que I = A).

Exercice 3.8. Montrer que les ideaux de l’anneau Z sont les sous-groupes qZ pour q 󰃍 0.

3.5.2. Anneau quotient par un ideal. Soit (A,+, .) un anneau et I ⊂ A un ideal bilatere
(c’est automatique si A est commutatif). Pour a ∈ A, la classe de congruence de a modulo I est le
sous-ensemble

a (mod I) := a+ I = {a+ i, i ∈ I} ⊂ A.

Soient a, a′ ∈ A; on dit que a est congru a a′ modulo I ssi on a

a (mod I) = a′ (mod I);

on note cette relation

a ≡ a′ (mod I).

Exercice 3.9. Montrer que la relation de congruence modulo I, a ≡ a′ (mod I) est une rela-
tion d’equivalence sur A dont les classes d’equivalences sont precisement les classes de congruence
a (mod I). On pourra commencer par montrer l’equivalence

a ≡ a′ (mod I) ⇐⇒ a− a′ ∈ I.

L’ensemble des classes de congruences modulo I (c’est un sous-ensemble de P(A)) est note

A/I := {a+ I, a ∈ A}.
On peut munir cet ensemble A/I d’une structure d’anneau qu’on appelle l’anneau quotient de

A par l’ideal I.

Théorème 3.1. Soit (A,+, ·, 0A, 1A) un anneau et I ⊂ A un ideal bilatere et

A/I = {a (mod I) = a+ I, a ∈ A}
l’ensemble des classes de congruences modulo I. En particulier on a

0A (mod I) = I, 1A (mod I) = 1A + I.

(1) Il existe une (unique) structure d’anneau

(A/I,+I , ·I , 0A/I , 1A/I)

telle que l’application

πI := • (mod I) :
A 󰀁→ A/I
a 󰀁→ a (mod I)

soit un morphisme d’anneau surjectif de noyau

ker(πI) = I.

On appelle cet anneau l’anneau quotient de A par I et on appelle πI morphisme canonique
de A vers son quotient A/I.

(2) On a en particulier

(3.5.1) 0A/I = 0A (mod I) = I, 1A/I = 1A (mod I) = 1A + I

et pour tout a, b ∈ A

(3.5.2) a (mod I) +I b (mod I) = a+ b (mod I), a (mod I) ·I b (mod I) = a · b (mod I).
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(3) Soit ϕ : A → B un morphisme d’anneaux. On suppose que I ⊂ ker(ϕ). Alors il existe un
unique morphisme d’anneaux

ϕI : A/I → B

tel que

(3.5.3) ∀a ∈ A, ϕI(a (mod I)) = ϕ(a).

En d’autre termes on a

(3.5.4) ϕ = ϕI ◦ πI ;

On dit que le morphisme ϕ se factorise par le morphisme canonique et on le note avec le
diagramme suivant

A B

A/I

ϕ

πI ϕI

Preuve: Notons que A/I est reduit a un seul element ssi I = A. Alors le resultat est evident.
Si A/I n’est pas reduit a un element (ie. si I ⊊ A) on a necessairement

πI(0A) = 0 (mod I) = 0A/I , πI(1A) = 1 (mod I) = 1A/I

ce qui montre qu’on doit avoir (3.5.1). Le fait que πI doive etre un morphisme d’anneaux implique
(3.5.2): en effet on doit avoir

a+ b (mod I) = πI(a+ b) = πI(a) +I πI(a) = a (mod I) +I b (mod I)

et
a · b (mod I) = πI(a · b) = πI(a) ·I πI(a) = a (mod I) ·I b (mod I).

Ainsi la structure d’anneau si elle existe est unique (l’application πI est evidemment surjective:
tout element x de A/I s’ecrivant a+ I est l’image de a par πI)

Pour montrer l’existence, on voudrait poser

a (mod I) +I b (mod I) := a+ b (mod I), a (mod I) ·I b (mod I) := a · b (mod I).

Le probleme est que un classe a (mod I) peut aussi s’ecrire a′ (mod I) pour tout a′ ∈ a (mod I). On
veut que le resultat ne depende par du choix de l’element a′.

Il suffit donc de montrer que si

a (mod I) = a′ (mod I) et b (mod I) = b′ (mod I)

alors
a+ b (mod I) = a′ + b′ (mod I) et a · b (mod I) = a′ · b′ (mod I).

On doit donc montrer que

(a+ b)− (a′ + b′) ∈ I, a · b− a′ · b′ ∈ I.

On a
a− a′ ∈ I, b− b′ ∈ I

et donc
(a+ b)− (a′ + b′) = c+ d ∈ I + I ⊂ I

car I est un sous groupe de (A,+).
On a

a · b− a′ · b′ = a · b− a · b′ + a · b′ − a′ · b′

= a · (b− b′)− (a− a′) · b′ ∈ a · I + I · b′ ⊂ I + I ⊂ I

car I est un ideal (bilatere) de A et donc stable par addition et multiplication a gauche et a droite
par des elements quelconques de A (ici a et b′).
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Le fait que les lois +I et ·I soient associatives et distributives et que 0A (mod I) et 1A (mod I)
en soit les elements neutre provient des definitions de ces lois et des proprietes correspondantes pour
l’anneau (A,+, ·, 0A, 1A).

Soit ϕ : A → B un morphisme tel que I ⊂ kerϕ. On veut montrer l’existence de ϕI : A/I → B
verifiant (3.5.3). En particulier, comme πI est surjectif un tel morphisme si il existe est unique.

Pour montrer l’existence il suffit de montrer que si a (mod I) = a′ (mod I) alors

ϕ(a) = ϕ(a′).

Alors on pourra poser sans ambiguite

ϕI(a (mod I)) = ϕ(a′)

pour tout a′ ∈ a+ I (c’est a dire pour tout a′ tel que a′ + I = a+ I).
On a a′ = a+ i avec i ∈ I et donc

ϕ(a′) = ϕ(a) + ϕ(i) = ϕ(a) + 0B = ϕ(a)

car
ϕ(i) = 0B

puisque I ⊂ ker(ϕ). □



CHAPITRE 4

Corps

”Le corps conditionne le raisonnement.”

4.1. Corps

Définition 4.1. Un corps K est un anneau commutatif possedant au moins deux elements
0K ∕= 1K et tel que tout element non-nul est inversible:

K× = K − {0K}.

Remarque 4.1.1. Dans cette definition, on demande que K soit commutatif. Il existe des
anneaux non-commutatifs dont l’ensemble des elements inversibles sont exactement les elements
non-nuls. On les appelle corps gauche ou algebres a divisions.

Exemple 4.1.1. On aQ,R,C sont des corps; Z n’en est pas un (par exemple 2 n’est pas inversible
dans Z).

4.1.1. Exemples de corps finis. Un autre exemple fondamental est celui des corps finis.

Théorème 4.1. Soit q 󰃍 2 un nombre premier (les seuls diviseurs de q sont 1 et q) alors
l’anneau des classes de congruences modulo q (Z/qZ,+, .) est un corps (fini de cardinal q).

Preuve: Comme q > 1 (par definition un premier n’est pas egal a 1) on a 0 (mod q) ∕= 1 (mod q)
(car q ∕ |1− 0 = 1). Ainsi Z/qZ a au moins deux elements.

On a montre au chapitre precedent que pour tout entier q 󰃍 1

(Z/qZ)× = {a (mod q), (a, q) = 1}.
On va voir que si q est premier on a

(a, q) ∕= 1 ⇐⇒ q|a ⇐⇒ a (mod q) = 0 (mod q).

Cela nous donnera que
(Z/qZ)× = Z/qZ− 0 (mod q).

⇐=: si q|a alors q est un diviseur commun de a et q et donc q|(a, q) > 1 car q > 1 (un premier
n’est pas egal a 1).

Montrons =⇒: si (a, q) > 1 alors a et q admettent un diviseur commun non-trivial (le pgcd
(a, q)) et comme q est premier ses seuls diviseurs sont 1 et q et donc (a, q) = q et q|a.

□
Notation 4.1. Soit q 󰃍 2 un nombre premier, le corps fini a q elements (Z/qZ,+, .) est note

Fq.

Remarque 4.1.2. Reciproquement si (Z/qZ,+, .) est un corps alors q est premier: en effet si
q = q1.q2 est compose (avec 2 󰃑 q1, q2 < q) alors on a

q1 (mod q).q2 (mod q) = q1.q2 (mod q) = q (mod q) = 0 (mod q).

La classe q1 (mod q) est non-nulle (car q ne divise par q1) mais elle n’est pas inversible non-plus: si
on avait q′1 tel que q′1 (mod q).q1 (mod q) = 1 (mod q) on aurait

q′1 (mod q).q1 (mod q).q2 (mod q) = 0 (mod q) = 1 (mod q).q2 (mod q) = q2 (mod q)
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mais q ne divise pas q2 (car 1 < q2 < q).

Proposition 4.1. Soit q 󰃍 2 un nombre premier et Fq = Z/qZ le corps a q elements. Pour
tout x ∈ Fq on a

xq = x.

Remarque 4.1.3. En particulier les fonctions polynomiales sur Fq

X :
Fq 󰀁→ Fq

x 󰀁→ x
, Xq :

Fq 󰀁→ Fq

x 󰀁→ xq

sont identiques !

Preuve: Comme Fq est un corps, son groupe multiplicatif des elements inversible vaut

F×
q = (Z/qZ)× = Fq − {0Fq}

est d’ordre q − 1. Par le theoreme de Lagrange,

∀x ∈ F×
q = Fq − {0}, xq−1 = 1Fq

et donc multipliant encore par x

∀x ∈ F×
q = Fq − {0}, xq = x

et cette derniere egalite est aussi valable pour x = 0Fq
. □

4.1.2. Injectivite des morphismes depuis un corps. Comme on va le voir, le fait, dans
un corps, de pouvoir inverser tous les elements non-nuls simplifie considerablement la theorie. Par
exemple on a

Proposition 4.2. Soit K un corps, B un anneau et ϕ ∈ HomAnn(K,B) un morphisme
d’anneaux. Alors si ϕ n’est pas nul (ϕ ∕= 0B) ϕ est injectif:

ϕ : K ↩→ B.

Preuve: Supposons que ϕ n’est pas nul. Il s’agit de montrer que kerϕ = {0K}. Soit x ∈ K − {0},
alors x est inversible et soit x−1 son inverse. On a

ϕ(x.x−1) = ϕ(1K) = ϕ(x).ϕ(x−1)

et comme ϕ ∕≡ 0B , ϕ(1K) = 1B ∕= 0B et ϕ(x) ∕= 0 et donc x ∕∈ ker(ϕ). □
Remarque 4.1.4. On a meme mieux: si x ∈ K− {0} alors ϕ(x) est inversible dans B, d’inverse

ϕ(x)−1 = ϕ(x−1).

Une autre propriete caracteristique des corps est la suivante:

Proposition 4.3. Soit K un corps alors tout ideal I ⊂ K est soit I = {0K} ou bien I = K.
Reciproquement, soit A un anneau commutatif possedant au moins deux elements alors si ses

ideaux sont {0K} ou bien K alors K est un corps.

Preuve: Soit I ⊂ K un ideal non-nul et soit a ∈ I − {0} alors a est inversible et il existe a−1 ∈ K
tel que

a−1.a = 1.

Comme a ∈ I et que I est un ideal, on a a−1.a ∈ I et donc 1 ∈ I. Pour tout b ∈ A in a alors

b = b.1 ⊂ bI ⊂ I

et donc A = I.
Pour la reciproque, prendre a ∈ K − {0} et considerer l’ensemble

(a) = a.K = {ak, k ∈ K} ⊂ K

et montrer que c’est un ideal et conclure. □
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4.2. Construction de corp: corps des fractions

Etant donne un anneau A, sous certaines hypotheses, on peut construire un corps K (le plus
petit possible) dont A est peut etre considere comme un sous-anneau. En particulier si a ∈ A− {0}
alors il existe a−1 ∈ K tel que a.a−1 = 1A = 1K . Pour cela il faut que A satisfasse une propriete
particuliere: etre integre.

Lemme 4.1. Soit {0} ∕= A ⊂ K un sous anneau non-nul d’un corps K alors A est commutatif
et

(4.2.1) ∀a, b ∈ A, a.b = 0 ⇐⇒ a = 0 ou b = 0.

Preuve: A est commutatif car K est commutatif. Pour (4.2.1) seule la direction =⇒ est non
evidente: supposons que a, b ∕= 0 alors il existe a−1 ∈ K tel que a−1.a = 1K mais alors on a

a.b = 0 =⇒ a−1.a.b = 0K = b,

contradiction. □

Définition 4.2. Un anneau A non-nul, commutatif, tel que ∀a, b ∈ A on ait

a.b = 0 ⇐⇒ a = 0 ou b = 0

est dit integre.

Remarque 4.2.1. En particulier un corps est integre: appliquer le lemme precedent a A = K.

Exercice 4.1. Montrer que si q = q1.q2 avec q1, q2 ∕= 1, q (des diviseurs non-triviaux de q) alors
(Z/qZ,+, .) n’est pas integre et donc pas un corps (cf. Remarque 4.1.2)

Théorème 4.2. Soit A un anneau integre (en particulier commutatif) , alors il existe un corps
K et un morphisme d’anneau injectif

ι : A ↩→ K

(de sorte qu’on peut considerer A comme un sous-anneau de K en identifiant A a son image ι(A) ⊂
K) et tel que K a la propriete de minimalite suivante: pour tout corps K ′ et tout morphisme injectif

ι′ : A ↩→ K ′,

il existe un morphisme (necessairement injectif)

ι′K : K ↩→ K ′

prolongeant le morphisme ι′ (ainsi A et K peuvent etre vus comme des sous-anneaux de K ′ ).

Remarque 4.2.2. ”Prolonge” signifie que pour a ∈ A, on a

ι′K(ι(a)) = ι′(a).

Définition 4.3. Le corps K s’appelle le corps des fractions K et se note Frac(A).

Preuve: Soit A un anneau integre. On considere le produit cartesien

A× (A− {0}) = {(a, b), a, b ∈ A, b ∕= 0}.

On definit sur A× (A− {0}) une relation ∼ en posant

(a, b) ∼ (a′, b′) ⇐⇒ a.b′ = a′.b.

Cette relation est une relation d’equivalence (reflexive, symetrique, transitive). En effet

– reflexive: (a, b) ∼ (a, b) car ab = ab.
– symetrique: (a, b) ∼ (a′, b′) ⇐⇒ a′b = ab′ ⇐⇒ (a′, b′) ∼ (a, b)



64 4. CORPS

– transitive: si (a, b) ∼ (a′, b′) et (a′, b′) ∼ (a′′, b′′), alors on a

a.b′ = a′.b, a′.b′′ = a′′.b′

et comme A est commutatif

a.b′′.b′ = a.b′.b′′ = a′.b.b′′ = a′′.b′.b = a′′.b.b′.

On a donc

0A = a.b′′.b′ − a′′.b.b′ = (a.b′′ − a′′.b).b′

et comme A est integre et b′ ∕= 0 on a

a.b′′ − a′′.b = 0A ⇐⇒ a.b′′ = a′′.b ⇐⇒ (a, b) ∼ (a′′, b′′).

On note

K = Frac(A) = A× (A− {0})/ ∼
l’ensemble des classes d’equivalence et on note

a

b
∈ K

la classe d’equivalence de la paire (a, b). On l’appelle la fraction a
b de numerateur a et de denomi-

nateur b.
On munit Frac(A) d’une structure d’anneau en posant

a

b
+

c

d
:=

ad+ bc

bd
,
a

b
.
c

d
=

ac

bd
, −a

b
=

−a

b

0K =
0

1
, 1K =

1

1
.

Notons que comme A est integre, si b et d sont non-nuls et produit b.d est non-nul et

(a.d+ b.c, b.d), (a.c, b.d) ∈ A× (A− {0}).
On verifie premierement que ces definitions ne dependent pas du choix des representants de

chaque classe d’equivalence: si a
b = a′

b′ et c
d = c′

d′ cad si

(a, b) ∼ (a′, b′), (c, d) ∼ (c′, d′)

alors
a

b
+

c

d
=

ad+ bc

bd
=

a′d′ + b′c′

b′d′
=

a′

b′
+

c′

d′

et
a

b
.
c

d
=

a.c

b.d
=

a′.c′

b′.d′
=

a′

b′
.
c′

d′

c’est a dire que

(ad+ bc, bd) ∼ (a′d′ + b′c′, b′d′), (a.c, b.d) ∼ (a′.c′, b′.d′).

Par exemple pour la premiere relation on doit montrer que

(ad+ bc)b′d′ = (a′d′ + b′c′)bd.

On a

(ad+ bc)b′d′ = ab′dd′ + bb′cd′ = a′bdd′ + bb′c′d

en utilisant que

ab′ = a′b, cd′ = c′d

et donc mettant bd en facteur on obtient

(ad+ bc)b′d′ = (a′d′ + b′c′)bd.

On doit verifier ensuite que (K,+, ., 0K , 1K) forme un anneau (exercice)
Soit a

b ∕= 0K = 0
1 , cela signifie que

a.1 ∕= b.0 = 0
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et donc la paire (b, a) ∈ A× (A− {0}) et on a

a

b
.
b

a
=

a.b

a.b
=

1A
1A

= 1K

donc a
b est inversible dans K et K est un corps.

Soit

ι :
A 󰀁→ K
a 󰀁→ a

1

.

On verifie que ι est un morphisme d’anneau qui est de plus injectif: en effet

a

1
= 0K =

0

1
⇐⇒ a = a.1 = 0.1 = 0.

On peut donc identifier a a la fraction a
1 et voir A comme un sous-anneau de K.

Soit ι′ : A 󰀁→ K ′ un morphisme injectif dans un corps K ′. Comme ι′ est injectif, pour tout
b ∈ A− {0}, ι′(b) ∕= 0K′ et l’inverse ι′(b)−1 ∈ K ′ − {0K′} existe.

On defini alors pour toute fraction a
b ∈ Frac(A),

ι′K(
a

b
) := ι′(a).ι′(b)−1.

On verifie alors que l’application

ι′K :
Frac(A) 󰀁→ K ′

a
b 󰀁→ ι′(a).ι′(b)−1

est bien definie et est un morphisme non-nul de K vers K ′ et qu’il prolonge ι′ : A 󰀁→ K ′. □
Notation 4.2. Dasn la suite et pour alleger les notation on identifiera l’anneau A avec son

image ι(A) dans son corps des fraction: ainsi pour a ∈ A on ecrira simplement ”a” pour la fraction
a
1A

∈ Frac(A).

Remarque 4.2.3. La condition que ι′ soit injective est vraiment necessaire (merci a Estelle de
l’avoir remarque)

Exercice 4.2. Donner un exemple d’un anneau integre A et d’un morphisme d’anneau ι : A 󰀁→
K ′ non-nul et a valeurs dans un corps K ′ qui n’est pas injectif.

4.3. Construction de corps: corps quotient

Soit A un anneau commutatif. On a vu que etant donne un ideal I on peut fabriquer un autre
anneau commutatif, l’anneau quotient dont les elements sont les classes de congruence modulo I

A/I = {a (mod I) := a+ I, a ∈ A}
et les lois d’addition et de multiplications sont donnees par

a (mod I) + a′ (mod I) = a+ a′ (mod I), a (mod I).a′ (mod I) = a.a′ (mod I)

et de plus l’application

• (mod I) : a ∈ A 󰀁→ a (mod I) = a+ I ∈ A/I

est un morphisme d’anneaux.
On va donner une condition necessaire et suffisante pour que A/I soit un corps.

Définition 4.4. soit A un anneau commutatif. Un ideal I ⊂ A est maximal si I ∕= A et si I
est maximal pour l’inclusion parmi tous les ideaux de A distincts de A:

∀J ⊂ A, J ∕= A ideal de A, I ⊂ J =⇒ I = J.

Remarque 4.3.1. L’anneau nul A = {0A} n’admet pas d’ideal ∕= A et donc pas d’ideal maximal
au sens precedent. Si A n’est pas l’anneau nul alors A admet toujours un ideal maximal (pour des
anneaux generaux cela necessite l’axiome du choix).
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Théorème 4.3. L’anneau commutatif A/I est un corps ssi I est un ideal maximal.

Preuve: On va montrer que

I maximal =⇒ A/I est un corps.

Notons que comme I ∕= A on a que A/I n’est pas reduit a la seule classe I = 0A/I (si a ∈ A − I
alors a (mod I) = a+ I ∕= I) donc A/I contient au moins deux elements distincts:

0A (mod I) = I, 1A (mod I) = 1A + I

(repretons ce qu’on a dit ci-dessus : si on avait 1A + I = I alors 1A ∈ I et donc I ⊃ {a.1A, a ∈
A} = A).

Soit a (mod I) ∈ A/I − {0A/I}, on veut montrer que a (mod I) est inversible c’est a dire qu’il
existe b (mod I) tel que

a (mod I).b (mod I) = a.b (mod I) = 1A (mod I).

Cela equivaut a trouver b ∈ A tel que

a.b− 1A ∈ I.

Comme a (mod I) ∕= 0A (mod I) = I alors a ∕∈ I. Considerons l’ideal J ⊂ A engendre par a et I:

J = 〈a, I〉A = A.a+A.I = A.a+ I

(l’ensemble A.a + I contient a et I; on verifie que c’est un ideal de A et tout ideal de A contenant
a et I doit contenir cet ensemble).

Comme a ∕∈ I on a J ∕= I mais evidemment I ⊂ J . Comme I est maximal et que J ∕= I cela
implique que

J = A.a+ I = A.

En particulier 1A ∈ A.a+ I: il existe b ∈ A et i ∈ I tel que

1A = b.a+ i

et donc

a.b− 1A = −i ∈ I.

La reciproque est laissee en exercice. □

Remarque 4.3.2. Voyons directement que pZ ⊂ Z est maximal ssi p est premier. On a d’abord
que

pZ ∕= Z ⇐⇒ p = 0 oup > 1.

L’ideal nul (le cas p = 0) n’est pas maximal (car contenu dans 2Z ∕= Z).
Si p 󰃍 2 est compose, p = q1q2 avec q1, q2 > 1 alors pZ ⊂ q1Z ∕= Z et n’est donc pas maximal.
Si p est premier et si pZ ⊂ qZ avec q 󰃍 2 alors p est un multiple de q et comme p est premier

p = q donc pZ est maximal.

Définition 4.5. On dit qu’un ideal I ⊂ A est premier si I ∕= {0A}, A et si

∀a, b ∈ A, a.b ∈ I =⇒ a ∈ I ou b ∈ I.

Exercice 4.3. Montrer que

I est premier ⇐⇒ A/I est integre.

Comme un corps est integre ou a que

{0A} ∕= I maximal =⇒ I premier .
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4.4. Caracteristique d’un corps, Sous-corps premier

Soit K un corps alors on a vu qu’il existe un morphisme d’anneaux canonique

CanK :
Z 󰀁→ K
n 󰀁→ n.1K = ±(1K + ·+ 1K) |n| fois.

Notation 4.3. Soit K un corps et n ∈ Z un entier. On notera

nK = CanK(n) = n.1K

l’image de n par le morphisme canonique.

Le noyau de ce morphisme est de la forme

ker(CanK) = p.Z, p 󰃍 0.

Définition 4.6. L’entier p s’appelle la caracteristique du corps K et se note

p =: car(K).

4.4.0.1. Caracteristique nulle. Si car(K) = p = 0 alors CanK .Z ↩→ K est injectif et K contient
(un anneau isomorphe a) l’anneau Z et donc contient (un corps isomorphe au) le corps des fractions
de Z, le corps des nombres rationels Q: il existe une injection de corps

ιK : Q ↩→ K

obtenues en posant pour toute fraction rationelle a
b ∈ Q

ιK(
a

b
) = CanK(a).CanK(b)−1 ∈ K.

En effet comme b ∈ Z − {0} et que l’application CanK est injective on a CanK(b) ∈ K − {0K} est
donc inversible dans K.

Notation 4.4. Pour simplifier les notations on identifiera Q avec son image ιK(Q) dans le
corps K et on ecrira a

b ∈ K pour l’image de la fraction correspondante ιK(ab ).

4.4.0.2. Caracteristique strictement positive. On a alors

Lemme 4.2. Si car(K) > 0 alors car(K) = p est un nombre premier.

Preuve: Supposons que p n’est pas premier alors p > 1; sinon on aurait ker(CanK) = 1.Z = Z et
CanK serait le morphisme nul mais ce n’est pas possible car CanK(1) = 1K ∕= 0K).

On a alors p = q1.q2 avec 2 󰃑 q1, q2 < p et on a

pK = 0K = q1K .q2K

et donc ou bien q1K = 0 ou bien q2K = 0 (car un corps est integre). Cela signifie que q1 ou bien q2
appartient a ker(CanK) = p.Z mais cela contredit le fait que p est le plus petit entier strictement
positif contenu dans ker(CanK). □

Considerons alors l’image CanK(Z) = Z.1K , c’est un sous-anneau de K.

Lemme 4.3. L’anneau CanK(Z) = Z.1K est un corps fini de cardinal p isomorphe au corps
Fp = Z/pZ.

Preuve: Notons que pour tout n, k ∈ Z on a

CanK(n+ p.k) = CanK(n) + CanK(p.k) = CanK(n)

car p.k ∈ ker(CanK). Ainsi, la valeur de CanK(n) ne depend que de la classe de congruence
n (mod p). On peut donc definir une application

ιK :
Z/pZ 󰀁→ CanK(Z)

n (mod p) 󰀁→ CanK(n)
.
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Comme l’application

n ∈ Z 󰀁→ n (mod p) ∈ Z/pZ
est un morphisme d’anneaux d’image CanK(Z), on en deduit que ιK est un morphisme d’anneaux
non-nul et comme Z/pZ est un corps, ce morphisme est injectif: ιK est un isomorphisme de Z/pZ =
Fp sur son image CanK(Z).

□

Notation 4.5. Pour simplifier les notations on identifiera Fp = Z/pZ avec l’image CanK(Z) ⊂
K de Z dans K par le morphisme canonique. Ainsi on ecrira

CanK(Z) = Z.1K = Fp

et pour n ∈ Z on ecrira indifferemment

nK = n.1K = n (mod p)

qu’on verra comme un element de K.

Définition 4.7. Le corps Q ⊂ K (si car(K) = 0) ou bien Fp ⊂ K (si car(K) = p > 0) s’appelle
le sous-corps premier de K.

Remarque 4.4.1. On peut montrer (exercice) que si K contient un sous-corps K ′ isomorphe
soit a Q soit a Fp pour p premier alors K ′ est le sous-corps premier de K.

4.4.1. Arithmetique des corps de caracteristique positive: le Frobenius.

Proposition 4.4. Soit K un corps de caracteristique p > 0 alors l’application

•p :
K 󰀁→ K
x 󰀁→ xp

est un morphisme d’anneaux non-nul (donc necessairement injectif).

Preuve: Comme K est un anneau commutatif, on a pour tout x, y ∈ K

(x.y)p = (x.y). · · · .(x.y) = xp.yp.

Montrons que

(x+ y)p = xp + yp.

Par la formule du binome de Newton, on a (a nouveau parce que K est commutatif)

(x+ y)p =

p󰁛

k=0

Ck
px

k.yp−k = xp + yp +

p−1󰁛

k=1

Ck
px

k.yp−k

avec

Ck
p =

p!

k!(p− k)!
=

p.(p− 1). · · · .(p− k + 1)

k.(k − 1). · · · .2.1 ∈ N

(on rappelle que Ck
p est le nombre de sous-ensembles de k elements dans un ensemble de p elements).

Lemme 4.4. Soit p un nombre premier et 1 󰃑 k 󰃑 p − 1 alors Ck
p est divisible par p: il existe

cp,k ∈ N tel que Ck
p = p.cp,k. En particulier Ck

pK
= 0K .

Preuve: On a

Ck
p = p.

(p− 1). · · · .(p− k + 1)

k.(k − 1). · · · .2.1 = p.cp,k

avec cp,k a priori un nombre rationel. On sait que 1.2. · · · .k divise p.(p − 1). · · · .(p − k + 1) (car
Ck

p est un entier). Comme p est un nombre premier k! = k.(k − 1). · · · .2.1 est premier avec p (car
tout diviseur premier de k! est < p) et comme k! divise p.(p − 1). · · · .(p − k + 1), il doit diviser
(p− 1). · · · .(p− k + 1) et cp,k est premier. □
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On a alors

(x+ y)p = xp + yp +

p−1󰁛

k=1

Ck
p .1K .xk.yp−k = xp + yp

car pour 1 󰃑 k 󰃑 p− 1,
Ck

p .1K = cp,k.(p.1K) = 0K .

Ainsi x 󰀁→ xp est un morphisme d’anneau et comme 1pK = 1K ∕= 0K ce morphisme est non-nul.
□

Définition 4.8. Soit K un corps de caracteristique p, le morphisme d’anneau precedent s’appelle
le morphisme de Frobenius (ou simplement le Frobenius) de K se note

frobp : x ∈ K 󰀁→ xp ∈ K.

Théorème 4.4 (Petit Theoreme de Fermat). Soit K un corps de caracteristique positive p et
frobp : K 󰀁→ K le Frobenius. Pour tout x ∈ Fp = Z.1K on a

frobp(x) = xp = x.

Recapitulatif concernant la caracteristique d’un corps

Si K est un corps et 󰃍 0 sa caracteristique, ie.

ker(CanK) = {n ∈ Z, n.1K = 0K} = pZ.

Si p = 0. Alors CanK(Z) = {nK = n.1K , n ∈ Z} est un sous-anneau isomorphe a Z et K
contient le corps Q comme sous-corps via le morphisme

•K :
a

b
∈ Q 󰀁→ (

a

b
)K := aK .b−1

K ∈ K.

De plus tout sous-corps K ′ ⊂ K isomorphe a Q est egal a QK et K ne contient aucun sous-corps
isomorphe a Fp pour p premier.

On identifiera Q avec son image dans K et ecrira simplement a
b pour l’image de la fraction

(ab )K == aK .b−1
K .

Si p > 0. Alors p est premier et

CanK(Z) = {nK = n.1K , n ∈ Z} = Z.1K
est (isomorphe au) le corps Fp a p elements.

De plus siu K contient un sous-corps K ′ ⊂ K isomorphe a Fp alors

K ′ = CanK(Z).
Enfin K ne contient aucun sous-corps isomorphe a Q ou a Fq pour q ∕= p premier.

On identifiera Fp avec le sous-corps de K qui lui est isomorphe CanK(Z) = Z.1K et pour tout
n ∈ Z on ecrira indifferement

nK0n.1K = n (mod p).

On a alors
nK = n.1K = 0K ⇐⇒ n ∈ pZ

et plus generalement pour tout x ∈ K − {0K} on a

n.x = n.1K .x = nK .x = 0K ⇐⇒ n ∈ pZ.
De plus ou a pour tout x, y ∈ K

(x+ y)p = xp + yp.

Enfin (exercice) par le petit Theorem de Fermat pour tout x ∈ Fp ⊂ K, on a

xp = x

et reciproquement si x ∈ K verifie xp = x alors x ∈ Fp.





CHAPITRE 5

Modules et Espaces Vectoriels

“An attempt at visualizing the Fourth Dimension:
Take a point, stretch it into a line,

curl it into a circle, twist it into a sphere,
and punch through the sphere.”

5.1. Module sur un anneau

Définition 5.1. Soit (A,+, .) un anneau, un A-module (a gauche) est un groupe commutatif
(M,+) muni d’une loi de multiplication externe

• ∗ • :
A×M 󰀁→ M
(a,m) 󰀁→ a ∗m

(appellee multiplication par les scalaires) ayant les proprietes suivantes:

(1) Associativite: ∀a, a′ ∈ A, m ∈ M ,

(a.a′) ∗m = a ∗ (a′ ∗m).

(2) Distributivite: ∀a, a′ ∈ A, m,m′ ∈ M ,

(a+ a′) ∗m = a ∗m+ a′ ∗m, a ∗ (m+m′) = a ∗m+ a ∗m′.

(3) Neutralite de 1A: ∀m ∈ M ,

1A ∗m = m.

Remarque 5.1.1. On defini de maniere analogue la notion de A-module a droite a partir d’une
multiplication externe ”a droite”

• ∗d • :
M ×A 󰀁→ M
(m, a) 󰀁→ m ∗d a

verifiant des proprietes analogues notamment l’associativite

∀a, a′ ∈ A, m ∈ M, m ∗d (a.a′) = (m ∗d a) ∗d a′.

Exemple 5.1.1. Quelques exemples de modules sur des anneaux:

(1) Un anneau A est un A-module sur lui-meme pour la multiplication.
(2) Le singleton element neutre {0A} est un A-module: le module nul.
(3) Soit I ⊂ A un ideal d’un anneau A alors I est un A-module pour la multiplication de A.
(4) Soit d 󰃍 1, le produit cartesien

Ad = A× · · ·×A = {(a1, · · · , ad), ai ∈ A, i = 1, · · · d}
est un A-module avec la loi de groupes

(a1, · · · , ad) + (a′1, · · · , a′d) = (a1 + a′1, · · · , ad + a′d)

et la multiplication par les scalaires

a.(a1, · · · , ad) = (a.a1, · · · , a.ad).
On dit que Ad est un A-module libre de rang d.
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(5) Soit M un groupe abelien alors M est naturellement un Z-module pour la loi de multipli-
cation par les scalaires donnee par

n.m =

󰀻
󰁁󰀿

󰁁󰀽

0M si n = 0

m+m+ · · ·+m (n fois si n 󰃍 1),

(−m) + (−m) + · · ·+ (−m) (−n fois si n 󰃑 −1)

.

Exercice 5.1. Soit M un A-module, alors M est egalement un Z-module. Montrer
que pour tout n ∈ Z, on a

(nA) ∗m = n.m

(on rappelle qu’on a note nA := CanA(n)) En particulier

(−1A).m = −m.

(6) Soit ϕ : A 󰀁→ B un morphisme d’anneaux alors ker(ϕ) ⊂ A est un A-module pour la
multiplication dans A (car A. kerϕ ⊂ kerϕ). Par ailleurs l’anneau d’arrivee B a une
structure de A-module en definissant comme multiplication externe:

a.ϕb := ϕ(a).Bb.

(7) Soit A un anneau, X un ensemble et F(X;A) l’ensemble des fonction de X a valeurs
dans A . On a vu que F(X;A) a une structure d’anneau; il a egalement une structure
de A-module: on definit la multiplication externe d’un element a ∈ A et d’une fonction
f : X 󰀁→ A par

a.f : x 󰀁→ (a.f)(x) = a.(f(x)).

(8) Soit A un anneau commutatif et A[X] l ’anneau des polynomes alors A[X] est naturellement
un A-module pour la multiplications d’un polynome par un scalaire: si P (X) = a0 + · · ·+
ad.X

d alors la multiplication par les scalaires est donnee par

a.P (X) = a.a0 + a.a1.X + · · ·+ a.ad.X
d.

(9) Soit A un anneau commutatif et

A[X]󰃑d = {a0 + · · ·+ ad.X
d, a0, · · · , ad ∈ A}

l ’anneau des polynomes de degre 󰃑 d alors A[X]󰃑d est naturellement un A-module (par
contre ce n’est pas un anneau –sauf si d = 0 : les polynomes constants c’est a dire l’anneau
A– car A[X]󰃑d n’est pas stable par produit en general).

(10) Soit A un anneau commutatif et M2(A) l’anneau des matrice 2 × 2 a coefficients dans A
alors M2(A) a une structure de A-module en definissant la multiplication par les scalaires
par

a.

󰀕
a′ b′

c′ d′

󰀖
:=

󰀕
a.a′ a.b′

a.c′ a.d′

󰀖
.

Les exemples (7) (si A est commutatif), (8) et (10) sont des cas particuliers de ce qu’on appelle
une A-algebre:

Définition 5.2. Soit A un anneau commutatif. Une A-algebre est un anneau (B,+B , .B)
possedant une structure de A-module qui verifie la propriete d’associativite suivante pour les deux
multiplications:

∀a ∈ A, b, b′ ∈ B a ∗ (b.Bb′) = (a ∗ b).Bb′ = b.B(a ∗ b′).
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5.1.1. Sous-module.

Définition 5.3. Soit M un A-module. Un sous-module N ⊂ M d’un A-module M est un
sous-groupe de (M,+) qui est stable pour la multiplication par les scalaires:

∀a ∈ A, n ∈ N, a ∗ n ∈ N.

On a donc ∀n, n′ ∈ N , a, a′ ∈ A

a ∗ n+ a′ ∗ n′ ∈ N

On a le critere suivant

Proposition 5.1. (Critere de sous-module) Soit N ⊂ M un sous-ensemble d’un A-module M
alors N est un sous-module de M ssi

(5.1.1) ∀a ∈ A, n, n′ ∈ N, a ∗ n+ n′ ∈ N.

Preuve: Pour tout n, n′ ∈ N , et applicant la condition (5.1.1) a n, n′ et a = −1A on a

n+ (−1A) ∗ n′ = n− n′ ∈ N

donc N verifie le critere de sous-groupe et est donc un sous-groupe de (M,+). Il contient en
particulier 0M et alors pour tout a ∈ A, on a par (5.1.1)

a ∗ n+ 0M = a ∗ n ∈ N.

□

Exemple 5.1.2. Exemples de sous-modules

(1) L’element nul {0M} forme un sous-module de M : le sous-module nul.
(2) Soit m ∈ M , on note A.m = {a.m, a ∈ A} ⊂ M , alors A.m est un sous-module deA.

Soient m′ ∈ M , alors

A.m+A.m′ = {a.m+ a′.m′, a, a′ ∈ A}

est un sous-module de M .
(3) Par exemple, soit Ad le module libre de rank d et

∆A = {(a, a · · · , a) = a.(1, 1, · · · , 1), a ∈ A} ⊂ Ad

est un sous-module de Ad. Plus generalement pour tout 󰂓a = (a1, · · · , ad) ∈ Ad le sous-
ensemble des multiples de 󰂓a

A.󰂓a = {a.󰂓a = (a.a1, · · · , a.ad), a ∈ A}

est un sous-module de Ad.
(4) Soit 1 󰃑 d 󰃑 d′ alors

A[X]󰃑d ⊂ A[X]󰃑d′ ⊂ A[X]

est un chaine de sous A-modules.

5.1.2. Module engendre par un ensemble.

Proposition 5.2. Soit (M,+, ∗) un A-module et M1,M2 des sous-modules alors

M1 ∩M2 ⊂ M

est un sous-module et plus generalement soit (Mi)i∈I une collection de sous-modules alors
󰁟

i∈I

Mi ⊂ M

est un sous-module.
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Définition 5.4. Soit X ⊂ M un sous-ensemble d’un A-module, le module engendre par X est
le plus petit sous-module de M contenant X (l’intersection de tous les sous-modules contenant X):

〈X〉A :=
󰁟

X⊂N⊂M
N A-mod

N.

Remarque 5.1.2. Si (M,+) est un groupe commutatif alors on a vu que c’est naturellement
un Z-module et si X ⊂ M est un sous-ensemble, le sous-groupe engendre par X 〈X〉 ⊂ M est
exactement le Z-module 〈X〉Z engendre par X dans M . Il n’y a donc pas de collision au niveau des
notations1.

Proposition 5.3. Soit X ⊂ M un ensemble alors 〈X〉A est soit le module nul {0M} si X est
vide, soit l’ensemble des combinaisons lineaires d’elements de X a coefficients dans A:

〈X〉A = CLA(X) := {
n󰁛

i=1

ai ∗ xi, n 󰃍 1, a1, · · · , an ∈ A, x1, · · · , xn ∈ X}.

Preuve: On suppose X non-vide. Soit X ⊂ N un sous-module contenant X alors pour tout n 󰃍 1,
tous a1, · · · , an ∈ A et tout x1, · · · , xn ∈ X on a

a1 ∗ x1 + · · ·+ an ∗ xn ∈ N

par stabilite de N par + et ∗. Donc tout sous-module N contenant X contient CLA(X).
Il reste a montrer que CLA(X) est un sous-module: soient u et u′ des combinaison lineaires

d’elements de X:

u = a1 ∗ x1 + · · ·+ an ∗ xn, u′ = a′1 ∗ x′
1 + · · ·+ a′n′ ∗ x′

n′

alors
u+ u′ = a1 ∗ x1 + · · ·+ an ∗ xn + a′1 ∗ x′

1 + · · ·+ a′n′ ∗ x′
n′

est bien une combinaison lineaire. De plus CLA(X) est stable par multiplication par A: pour tout
a ∈ A on a par distributivite et associativite

a ∗ u = a ∗ (a1 ∗ x1 + · · ·+ an ∗ xn) = (a.a1) ∗ x1 + · · ·+ (a.an) ∗ xn

est bien une combinaison lineaire. □
Définition 5.5. Si 〈X〉A = M , on dit que X est une famille generatrice de M .

Définition 5.6. Un A-module M est de type fini si il possede une famille generatrice qui est
finie.

Exemple 5.1.3. (1) Soit Ad le A-module libre de rang d. La famille suivante est genera-
trice de Ad (on pose 1 = 1A, 0 = 0A)

B0 := {e01 = (1, 0, · · · , 0), e02 = (0, 1, 0, · · · , 0), · · · , e0d = (0, 0, · · · , 1)}
(e0i est le d-uple dont toutes les coordonnees sont nulles sauf la i-ieme qui vaut 1). En effet
si

m = (a1, · · · , ad) ∈ Ad

alors
m = a1.e

0
1 + · · ·+ ad.e

0
d.

On appelle la famille B0 la base canonique de Ad.
(2) La famille des monomes

{1, X, · · · , Xd, · · ·Xd+1, · · · }
est une famille generatrice (infinie) de A[X].

1Merci a l’etudiante qui a fait cette observation.
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(3) La famille des monomes de degre 󰃑 d

{1, X, · · · , Xd}

est une famille generatrice de A[X]󰃑d (qui est donc un module de type fini)

Exercice 5.2. Soient u1, · · · , ud ∈ A× des elements inversibles. Montrer que la famille suivante
est generatrice de Ad

B := {e1 = (u1, 0, · · · , 0), e2 = (0, u2, 0, · · · , 0), · · · , ed = (0, 0, · · · , ud)}.

Montrer que l’ecriture d’un eleemtn de Ad comme combinaison lineaire des elements de B est unique.

Exercice 5.3. Soient a, b, c, d ∈ Z tels que ad− bc = ±1. Montrer que {(a, b), (c, d)} engendre
le Z-module Z2. Pour cela on montrera que pour tout (m,n) ∈ Z2 le systeme lineaire

󰀫
ax+ cy = m

bx+ dy = n

admet une (unique) solution (x, y) ∈ Z2 et on montrera que (m,n) s’exprime en fonction de (a, b)
et (c, d).

5.1.3. Morphismes de modules.

Définition 5.7. Soit A un anneau et M,N des A-modules, un morphisme de A-modules entre
M et N est un morphisme de groupes

ϕ : M 󰀁→ N

qui est compatible avec les lois de multiplications externes ∗M et ∗N :

∀a ∈ A, m ∈ M, ϕ(a ∗M m) = a ∗N ϕ(m).

Remarque 5.1.3. Cette definition implique que pour tout a, a′ ∈ A, m,m′ ∈ M , on a

ϕ(a ∗M m+ a′ ∗M m′) = a ∗N ϕ(m) + a′ ∗N ϕ(m′).

Plus generalement pour I un emsemble fini, (ai)i∈I un I-uple de scalaires et (mi)− ∈ I un I-uple
d’elements de M on a

ϕ(
󰁛

i∈I

ai ∗M mi) =
󰁛

i∈I

ai ∗N ϕ(mi).

En d’autres termes, l’image par ϕ d’une combinaison lineaire est la combinaison lineaire des images.
On dit que ϕ est une application A-lineaire.

Lemme 5.1. (Critere d’application lineaire) Soit ϕ : M 󰀁→ N une application entre deux A-
modules alors ϕ est un morphisme (ie. est A-lineaire) si et seulement si

(5.1.2) ∀a ∈ A, m,m′ ∈ M, ϕ(a ∗M m+m′) = a ∗N ϕ(m) + ϕ(m′).

Preuve: On applique (5.1.2) avec a = 1A. On a donc

∀m,m′ ∈ M, ϕ(m+m′) = ϕ(m) + ϕ(m′)

donc ϕ est un morphisme de groupes. On a donc ϕ(0M ) = 0N et

ϕ(a ∗M m) = ϕ(a ∗M m+ 0M ) = a ∗N ϕ(m) + 0N = a ∗N ϕ(m).

□
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5.1.4. Noyau, Image.

Proposition 5.4. Soit ϕ : M 󰀁→ N un morphisme de A-modules et M ′ ⊂ M et N ′ ⊂ N des
sous-modules alors

ϕ(M ′) ⊂ N et ϕ(−1)(N ′) ⊂ M

sont des sous-modules de M et N respectivement. En particulier

ker(ϕ) = ϕ(−1)({0N}) ⊂ M et Im(ϕ) = ϕ(M) ⊂ N

sont des sous A-modules.

Preuve: Exercice. □
Comme un morphisme de A-module est un morphisme de groupes additifs on a

Corollaire 5.1. L’application A-lineaire ϕ : M 󰀁→ M ′ est injective ssi ker(ϕ) = {0M}.

5.1.5. Structure des espaces de morphismes. On a les proprietes de stabilite usuelles pour
la composition (similaires a celles pour les morphismes de groupes)

Proposition 5.5. Soient ϕ : L 󰀁→ M et ψ : M 󰀁→ N des morphismes de A-modules alors

– ψ ◦ ϕ : L 󰀁→ N est un morphisme de A-modules.
– Si ϕ : L 󰀁→ M est bijectif alors ϕ−1 : M 󰀁→ L est un morphisme de A-modules.

Preuve: Exercice. □
Notation 5.1. On note

HomA−mod(M,N), IsomA−mod(M,N),

EndA−mod(M) = HomA−mod(M,M),

AutA−mod(M) = IsomA−mod(M,M)

les ensembles de morphismes, morphismes bijectifs (ou isomorphismes), d’endomorphismes et
d’automorphismes des A-modules M et N . On note quelquefois

En particulier on a

Corollaire 5.2. L’ensemble des automorphisme de M , AutA−mod(M) ⊂ Bij(M) est un sous-
groupe de Bij(M). Plus precisement AutA−mod(M) est un sous-groupe de AutGr(M). On note
egalement ce groupe (surtout dans le cas ou A est un corps)

AutA−mod(M) = GL(M)

et on l’appelle le groupe lineaire du A-module M .

On a un propriete supplementaire de stabilite par somme:

Proposition 5.6. Soient M et N des A-modules alors HomA−mod(M,N) a une structure na-
turelle de groupe commutatif. Si de plus A est commutatif alors HomA−mod(M,N) a une structure
naturelle de A-module.

Preuve: Soient ϕ,ψ ∈ HomA−mod(M,N), on definit l’addition par

ϕ+ ψ : m 󰀁→ (ϕ+ ψ)(m) = ϕ(m) + ψ(m) ∈ N.

C’est un morphisme de A-module car N est un A-module:

(ϕ+ ψ)(a ∗m+m′) = ϕ(a ∗m+m′) + ψ(a ∗m+m′)

= a ∗ ϕ(m) + ϕ(m′) + a ∗ ψ(m) + ψ(m′) = a ∗ (ϕ+ ψ)(m) + (ϕ+ ψ)(m′).

et on definit l’oppose −ϕ en posant

−ϕ(m) = −(ϕ(m)) ∈ N



5.1. MODULE SUR UN ANNEAU 77

et on verifie a nouveau que −ϕ est A-lineaire. L’element neutre est le morphisme nul:

0N : m ∈ M 󰀁→ 0N

et c’est une application A-lineaire:

∀a ∈ a,m ∈ M, 0N (a ∗m) = 0N = (a ∗ 0N )(m).

Supposons que A soit commutatif: on definit la multiplication par les scalaires en posant pour
a ∈ A

a ∗ ϕ : m 󰀁→ (a ∗ ϕ)(m) := a ∗N ϕ(m).

L’application a ∗ϕ est bien un morphisme de A-modules: pour a′ ∈ A, on a (par linearite, distribu-
tivite et associativite)

(a ∗ ϕ)(a′ ∗M m+m′) = a ∗N (ϕ(a′ ∗M m+m′)) = a ∗N (a′ ∗N ϕ(m) + ϕ(m′))

= (a.a′) ∗N ϕ(m) + a ∗N ϕ(m′) = (a′.a) ∗N ϕ(m) + a ∗N ϕ(m′) = a′ ∗N a ∗N ϕ(m) + (a ∗ ϕ)(m′).

= a′ ∗N (a ∗ ϕ)(m) + (a ∗ ϕ)(m′).

Ici on a utilise de maniere cruciale le fait que A est commutatif et donc a.a′ = a′.a. □

5.1.6. L’algebre des endomorphismes d’un module. On a vu que l’ensemble des endo-
morphisme du groupe additif EndGr(M) muni de la composition et de l’addition est un anneau.
Pour les morphismes de A-modules, on a un peu plus. Pour cela nous auront besoin de la definition
de A-algebre:

Définition 5.8. soit A un anneau commutatif. Une A-algebre associative est un anneau
(B,+, .B) muni d’une structure de A-module, note ∗ : A × B 󰀁→ B verifiant en plus des axiomes
habituels

– Distributivite par rapport a la multiplication:

∀a ∈ A, b, b′ ∈ B, a ∗ (b.Bb′) = (a ∗ b).Bb′ = b.B(a ∗ b′).

Remarque 5.1.4. Il existe une version plus generale d’algebre qui ne necessite pas que B soit
un anneau (en particulier qui ne necessite pas que la multiplication dans B soit associative ni qu’elle
possede une unite unite) mais nous n’en auront pas besoin ici.

Exemple 5.1.4. (1) Les exemples (7) (si A est commutatif), (8) et (10) sont des exemples
de A algebres.

(2) Soit B est un anneau et A ⊂ B est un sous-anneau dont les elements commutent mul-
tiplicativement avec tous les elements de B (∀a ∈ A, b ∈ B, a.b = b.a) alors B est une
A-algebre pour la multiplication dans B.

Théorème 5.1. Soit M un A-module. L’ensemble EndA−mod(M) des endomorphismes de M
comme A-module est un sous-anneau de (EndGr(M),+, ◦) dont le groupe des unites est le groupe
des automorphismes

End×A−mod(M) = AutA−mod(M) = GLA−mod(M).

EndA−mod(M) est l’anneau des endomorphismes de (du A-module) M .
De plus, si A est commutatif, EndA−mod(M) possede une structure naturelle de A-module qui

en fait une A-algebre et EndA−mod(M) est appellee

Algebre des endomorphismes de (du A-module) M .

Preuve: D’abord IdM et l’application constante nulle 0M qui sont des morphismes de groupes sont
egalement des morphismes de A-modules:

∀a ∈ a,m ∈ M, IdM (a ∗m) = a ∗m = a ∗ IdM (m), 0M (a ∗m) = 0M = a ∗ 0M (m).
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On a vu que EndA−mod(M) est stable par composition et on a vu que la somme de deux endomor-
phismes est encore un endomorphisme de A-module. Ainsi EndA−mod(M) est un sous-anneau de
EndGr(M).

Si A est commutatif on a vu que EndA−mod(M) = HomA−mod(M,M) possede une multiplication
par les scalaires qui en fait un A-module ce qui fait de cet anneau une A-algebre: en effet pour tout
ϕ,ψ ∈ EndA−mod(M) et a ∈ A, on a pour m ∈ M

a ∗M (ϕ ◦ ψ)(m) = a ∗M ϕ(ψ(m)) = (a ∗ ϕ)(ψ(m)) = ((a ∗ ϕ) ◦ ψ)(m).

De plus on a (par A-linearite de ϕ)

a ∗M (ϕ ◦ ψ)(m) = a ∗M ϕ(ψ(m)) = ϕ(a ∗M ψ(m)) = ϕ((a ∗ ψ)(m)) = ϕ ◦ (a ∗ ψ)(m)

de sorte que
a ∗ (ϕ ◦ ψ) = (a ∗ ϕ) ◦ ψ = ϕ ◦ (a ∗ ψ).

□

5.2. Espaces vectoriel

Tout comme les corps sont des cas particuliers d’anneaux, les espaces vectoriels sont des cas
particuliers de modules: ce sont les modules dont l’anneau associe est un corps. Comme on va le voir
les proprietes d’un module sur un corps sont tellement particuliere que cela justifie un changement
de terminologie.

Définition 5.9. Soit K un corps, un K-espace vectoriel (K-ev) V est simplement un K-module.
Les elements de V sont appeles vecteurs de V . Les elements de K sont appeles les scalaires.

Exemple 5.2.1. Exemples d’espaces vectoriels:

(1) L’espace vectoriel nul {0K}.
(2) K est un espace vectoriel sur lui-meme.
(3) Si V et W sont des K-ev leur produit

V ×W = {(v, w), v ∈ V, w ∈ W}
muni de l’addition (composante par composante)

(v, w) + (v′, w′) := (v +V v′, w +W w′)

et de la mutliplication externe (composante par composante)

x.(v, w) := (x.v, x.w)

a une structure d’EV dont le vecteur nul est

0V×W = (0V , 0W ).

(4) En particulier, pour d 󰃍 1, en iterant la construction precedente pour W = K on forme le
K-module libre de rank d,

Kd = {(x1, · · · , xd), xi ∈ K}
dont l’element neutre est le vecteur nul

0d = (0, · · · , 0).
(5) Si X est un ensemble,

F(X;K) = KX = {f : X 󰀁→ K}
a une structure de K-espace vectoriel.

(6) Plus generalement si V est un K-espace vectoriel et X est un ensemble,

F(X;V ) = V X = {f : X 󰀁→ V }
a une structure de K-espace vectoriel.
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Notation 5.2. Pour alleger les notation on notera la multiplication par les scalaires sous la
forme d’un point . (le meme point . que pour la multiplication dans le corps K) : pour λ ∈ K, 󰂓v ∈ V
on ecrira λ.󰂓v.

Les differentes structures associees aux modules sur un anneau ont un nouveau nom quand
l’anneau est un corps.

5.2.1. Sous-espace vectoriel.

Définition 5.10. Soit V un K-espace vectoriel, un sous-espace vectoriel (SEV) de V est un
sous-K module W ⊂ V .

Proposition 5.7 (Critere de SEV). Un sous-ensemble U ⊂ V d’un K-ev est un SEV ssi

∀λ ∈ K, v, v′ ∈ U, λ.v + v′ ∈ U.

Preuve: C’est un cas particulier du critere de sous-module. □

Exemple 5.2.2. Exemples de SEV:

– {0V }, V ⊂ V .
– Pour e ∈ V , K.e = {x.e, x ∈ K}.
– Si V ′ ⊂ V et W ′ ⊂ W sont des SEV, V ′ ×W ′ en est un.
– {(x1, · · · , xd) ∈ Kd, x1 + · · ·+ xd = 0} ⊂ Kd.
– {(x1, · · · , xd) ∈ Kd, x1 + · · ·+ xd = 1} ⊂ Kd n’est pas un SEV.
– Soit x0 ∈ X, dans F(X,V ) le sous-espaces des fonctions f telles que f(x0) = 0V .
– Dans F(R,R) l’ensemble des fonctions paires (resp. impaires).

f : R 󰀁→ R, ∀x ∈ R, f(x) = f(−x) (resp. f(x) = −f(−x))

sont des SEVs.

5.2.2. Applications lineaires.

Définition 5.11. Soient V et W deux K-espaces vectoriels; un morphisme ϕ : V 󰀁→ W de
K-modules est appele une application K-lineaire.

Proposition 5.8 (Critere d’application lineaire). Une application entre espaces vectoriels ϕ :
V 󰀁→ W est lineaire ssi

∀λ ∈ K, v, v′ ∈ V, ϕ(λ.v + v′) = λ.ϕ(v) + ϕ(v′).

Preuve: C’est un cas particulier du critere de morphisme de modules. □

Proposition 5.9. Si ϕ : V 󰀁→ W est une application lineaire, le noyau

kerϕ = {v ∈ V, ϕ(v) = 0W } ⊂ V

et l’image

Imϕ := {ϕ(v), v ∈ V } ⊂ W

sont des sous-espaces vectoriels de V et de W respectivement.

Preuve: C’est un cas particulier du cas des morphismes de modules sur un anneau. □

Proposition 5.10. Soit ϕ : V 󰀁→ W est une application lineaire, alors ϕ est injective ssi

kerϕ = {0V }.

Exemple 5.2.3. Dans Kd:

e∗i :
Kd 󰀁→ K

(x1, · · · , xd) 󰀁→ xi
.

ker(e∗i ) = {(x1, · · · , 0, · · · , xd), xj ∈ K, j ∕= i}, Im(e∗i ) = K.
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S :
Kd 󰀁→ K

(x1, · · · , xd) 󰀁→ x1 + · · ·+ xd
.

ker(S) = {(x1, · · · , xd) ∈ Kd, x1 + · · ·+ xd = 0}, Im(S) = K.

ϕ :
K2 󰀁→ K2

(x1, x2) 󰀁→ (2x1 + x2, x1 + x2)

ker(ϕ) = {02}, Im(ϕ) = K2.

Notation 5.3. On notera

HomK−ev(V,W ), IsomK−ev(V,W ),

EndK−ev(V ) = HomK−ev(V, V ), AutK−ev(V ) = IsomK−ev(V, V )

les ensembles des applications lineaires, applications lineaires bijectives (ou isomorphismes), d’ en-
domorphismes et d’automorphismes des K-espaces vectoriels V et W .

Pour simplifier on ecrira souvent

HomK(V,W ), IsomK(V,W ),EndK(V ), AutK(V )

On rappelle egalement que

Proposition 5.11. L’ensemble des automorphismes du K-ev V ,

AutK−ev(V ) = IsomK−ev(V, V )

est un groupe pour la composition. On l’appelle egalement le groupe lineaire de V et on le note

AutK(V ) =: GL(V ).

On rappelle que (les applications lineaires etant des applications lineaires entre K-modules) et
que K est par definition commutatif on a

Proposition 5.12. La composee de deux applications K-lineaires est K-lineaire : pour ϕ ∈
HomK(U, V ) et ϕ ∈ HomK(V,W ) lineaires, alors ψ ◦ ϕ : U 󰀁→ W est K-lineaire et si ϕ est bijective
alors ϕ−1 : V 󰀁→ U est encore lineaire.

Une combinaison lineaire de deux applications lineaires est lineaire: ∀ϕ,φ : U 󰀁→ V et ∀λ ∈ K,
l’application

λ.ϕ+ φ : u ∈ U 󰀁→ λϕ(u) + φ(u) ∈ V

est K-lineaire.

On en deduit:

Théorème 5.2. L’ensemble des application lineaires HomK(V,W ) a une structure naturelle de
K-ev.

L’ensemble des endomorphismes de V , EndK(V ) muni de l’addition et de la composition a une
structure naturelle de K-algebre. Son groupe des unites est le groupe

EndK−ev(V )× = AutK−ev(V ) = GL(V )

des applications K-lineaires bijectives. C’est un sous-groupe de Bij(V ).

5.2.2.1. Dual d’un espace vectoriel. Le cas W = K est important et admet un nom et une
notation particuliere:

Définition 5.12. Une application lineaire de ℓ : V 󰀁→ K est egalement appellee une forme
lineaire. L’espace des formes lineaires HomK(V,K) est egalement note

HomK(V,K) = V ∗.

On appelle egalement cet espace le dual de V .



5.2. ESPACES VECTORIEL 81

5.2.3. Sous-espace engendre par un sous-ensemble. On rappelle egalement que

Proposition 5.13 (Les SEV sont stables par intersection). Soit Wi, i ∈ I une famille de SEV
de V indexes par un ensemble I alors leur intersection

󰁟

i∈I

Wi ⊂ V

est un SEV de V .

Définition 5.13. Soit F ⊂ V un sous-ensemble, on note

〈F 〉K = Vect(F ) ⊂ V

le sous-espace vectoriel (le sous-K module) engendre par F .
On rappelle qu’il s’agit de maniere equivalente

– de l’intersection de tous les SEV contenant F ,
– de l’ensemble des combinaisons lineaires d’elements de F a coefficients dans K

〈F 〉K = {
n󰁛

i=1

λi.xi, n 󰃍 1, λ1, · · · ,λn ∈ K, x1, · · · , xn ∈ F}.

Cette notion admet des cas particuliers.
5.2.3.1. Sommes de SEVs, sommes directes.

Définition 5.14. Soient X,Y ⊂ V des sous-espaces d’un espace vectoriel.
Leur somme

X + Y = 〈X ∪ Y 〉 ⊂ V

est par definition le sous-espace vectoriel engendre par les vecteurs de X et de Y .

Lemme 5.2. On a
X + Y = {x+ y, x ∈ X, y ∈ Y }.

Preuve: Soit W ⊂ V un SEV contenant X et Y alors W contient X + Y car W est stable par
somme. Il reste a montrer que X + Y est un SEV car ce sera necessairement le plus petit contenant
X et Y .

Soit λ ∈ K,x, x′ ∈ X, y, y′ ∈ Y alors

λ(x+ y) + (x′ + y′) = (λ.x+ x′) + (λ.y + y′) ∈ X + Y

car X et Y sont des SEV. □
Notation 5.4. Si X ∩ Y = {0V }, on dit que X et Y sont en somme directe et on ecrit

X ⊕ Y ⊂ V

pour leur somme.
Si de plus

X ⊕ Y = V

on dit que V est somme directe de X et Y . On dit alors que X et Y sont des espaces supplementaires
(dans V ).

Proposition 5.14. Soit V = X ⊕ Y la somme directe de deux sous-espaces supplementaires X
et Y alors l’ecriture de tout vecteur v ∈ V ∈ X ⊕ Y sous la forme

v = x+ y, x ∈ X, y ∈ Y

est unique.

Preuve: Si x+ y = x′ + y′ alors x− x′ = y′ − y et donc x− x′ ∈ X ∩ Y = {0V } cad que

x = x′, et y = y′.

□
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Exercice 5.4. soit V un K-ev qui est une somme directe de deux SEV V = X ⊕ Y . Comme
on l’a vu tout v ∈ V = X ⊕ Y s’ecrit de maniere unique

v = x+ y, x ∈ X, y ∈ Y.

Montrer que

(1) Les applications

πX :
V 󰀁→ X
v 󰀁→ x

, πX :
V 󰀁→ Y
v 󰀁→ y

sont lineaires.
(2) l’EV V est isomorphe a l’espace vectoriel produit X × Y .

5.3. Famille generatrice, libre, base

5.3.1. Famille generatrice. On rappelle la definition qu’on a vu pour les modules:

Définition 5.15. Soit V un K-e.v. Un sous-ensemble G ⊂ V est une famille generatrice si

Vect(G ) = 〈G 〉K = V,

ie. tout element v ∈ V peut s’ecrire sous la forme d’une combinaison lineaire (finie) a coefficients
dans K d’elements de G : pour tout v ∈ V il existe n 󰃍 1, x1, · · · , xn ∈ K, e1, · · · , en ∈ F tels que

(5.3.1) v =

n󰁛

i=1

xiei.

Si V admet une famille generatrice finie, on dit que V est un K-module ou un K-ev de type
fini.

Définition 5.16. Soit V un K-ev de type fini. Si V est non-nul, sa dimension est le cardinal
minimum d’une famille generatrice finie de V :

dim(V ) := min
G generatrice

|G |.

Par convention, la dimension de l’espace vectoriel nul {0V } est

dim({0V }) = 0

(on peut prendre la famille vide comme famille generatrice).
On dira egalement ”K-ev de dimension finie” a la place de ” K-ev de type fini”.
Un espace vectoriel qui n’est pas de type fini est dit de ”dimension infinie”.

On va maintenant se restreindre au cas des espaces vectoriels de dimension finie. A la fin du
chapitre, on decrira ce qui ce passe pour les espaces vectoriel qui ne sont pas de dimension finie.

Le resultat principal de cette section est le theoreme suivant:

Théorème 5.3. Tout K-espace vectoriel de dimension finie d = dimV est isomorphe (comme
K-ev) a l’espace vectoriel Kd (avec la convention que {0K} = K0). En d’autres termes V est
isomorphe au K-module libre de rang d = dim(V ), Kd.

Avant de demontrer ce theoreme qui nous prendra un peu de temps, examinons sa signification
concrete: supposons que G = {e1, · · · , ed} ⊂ V soit une famille generatrice finie de V de cardinal
d 󰃍 dimV . Tout element v ∈ V peut donc se representer sous la forme d’une combinaison lineaire
des ei

v =

d󰁛

i=1

xi.ei, xi ∈ K.

En d’autre termes, on dispose d’une application ”combinaison lineaire” qui est surjective:

CLG :
Kd 󰀁→ V

(x1, · · · , xd) 󰀁→ CLG (x1, · · · , xd) = x1.e1 + · · ·+ xd.ed
.
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Remarque 5.3.1. Cette application depend de l’ordre dans lequel on enumere les elements de
la famille G : en general

x1.e1 + x2.e2 ∕= x1.e2 + x2.e1.

Lemme 5.3. L’application CLG est lineaire.

Preuve: Soient

x = (x1, · · · , xd), y = (y1, · · · , yd) ∈ Kd

et λ ∈ K alors on veut verifier que

CLG (λ.x+ y) = λ.CLG (x) + CLG (y).

C’est une consequence de la commutativite et de l’associativite des lois d’addition et de multiplica-
tion: on a

CLG (λ.x+ y) = CLG (λ.x1 + y1, · · · ,λ.xd + yd) = (λ.x1 + y1)e1 + · · ·+ (λ.xd + yd)ed

= λ.x1.e1 + y1.e1 + · · ·+ λ.xd.ed + yd.ed

= λ.(x1.e1 + · · ·+ xd.ed) + (y1.e1 + · · ·+ yd.ed)

= λ.CLG (x) + CLG (y).

□
On a donc la definition suivante equivalente d’une famille generatrice:

Définition. Soit V un K-e.v. Un sous-ensemble fini

G = {e1, · · · , ed} ⊂ V

est une famille generatrice (du K-ev V ) ssi les conditions equivalentes suivantes sont satisfaites:

(1) On a

Vect(G ) = V.

(2) pour tous v ∈ V , il existe x1, · · · , xd ∈ K tels que

v = x1.e1 + · · ·+ xd.ed.

(3) L’application lineaire

CLG :
Kd 󰀁→ V

(x1, · · · , xd) 󰀁→ x1.e1 + · · ·+ xd.ed

est surjective.

Si V admet une famille generatrice finie ou dit que V est un K-ev de type fini ou est de dimension
finie. On a alors

dimK V 󰃑 d.

Le Theoreme 5.3 sera alors consequence du

Théorème. Soit G ⊂ V une famille generatrice de V de cardinal d = dimV alors l’application
CLG est injective et defini donc un isomorphisme

CLG : Kd ≃ V.

Preuve: Soit G = {e1, · · · , ed} ⊂ V une famille generatrice de cardinal la dimension d = dimV .
Par definition de la dimension, une famille de cardinal < d ne peut etre generatrice. Supposons que
CLG ne soit pas injective: il existe donc (u1, · · · , ud) ∕= 0d tel que

u1.e1 + · · ·+ ud.ed = 0V .

comme (u1, · · · , ud) est non-nul il existe i tel que ui ∕= 0K . Supposons (quitte a permuter les
indiuces) que i = d. On a alors

ud.ed = −(u1.e1 + · · ·+ ud−1.ed−1)
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et donc comme ud est inversible (car non-nul)

ed = y1.e1 + · · ·+ yd−1.ed−1

avec

yi = −ui.u
−1
d .

Je dis que la famille {e1, · · · , ed−1} engendre V ce qui donnera une contradiction par minimalite de
d.

Soit v ∈ V , il existe x1, · · · , xd ∈ K tel que

v = x1.e1 + · · ·+ xd−1.ed−1 + xd.ed

= x1.e1 + · · ·+ xd−1.ed−1 + xd.(y1.e1 + · · ·+ yd−1.ed−1)

= x′
1.e1 + · · ·+ x′

d−1.ed−1

avec

x′
i = xi + xdyi = xi − xdui.u

−1
d .

Ainsi l’application CLG est injective et comme elle est surjective (car G est generatrice) et sa
reciproque est egalement lineaire: c’est un isomorphisme de K-espaces vectoriels de Kd vers V

□
Le corollaire suivant montre que la dimension determine completement la classe d’isomorphisme

des K-ev de dimension finie.

Corollaire 5.3 (Critere dimensionel d’isomorphisme). Soient V,W des K-ev de dimensions
finie dV et dW alors V et W sont isomorphes ssi ils ont meme dimension:

V ≃ W ⇐⇒ dV = dW .

Preuve: Si dV = dW = d alors il existe des isomorphismes

ϕ : Kd ≃ V, ψ : Kd ≃ W

et alors ψ ◦ ϕ−1 : V 󰀁→ W est un isomorphisme entre V et W .
Reciproquement soit ϕ : V ≃ W un isomorphisme, on veut mq dV = dW . Soit G = {e1, · · · , edV

}
une famille generatrice de V alors

ϕ(G ) = {ϕ(e1), · · · ,ϕ(edV
)}

est generatrice de W : pour tout w ∈ W il existe v ∈ V tel que ϕ(v) = w. Ecrivons

v = x1e1 + · · ·+ xvev

alors

w = ϕ(v) = x1ϕ(e1) + · · ·+ xvϕ(ev)

donc w est bien CL des elements de {ϕ(e1), · · · ,ϕ(edV
)}.

Par definition de la dimension on a donc

dW 󰃑 |ϕ(G )| 󰃑 |G | = dV .

Echangeant V et W (en remplacant ϕ par ϕ−1) on a dV 󰃑 dW et donc

dV = dW .

□
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5.3.2. Famille libre. La discussion precedente nous conduit naturellement vers le point suivant
Soit F = {e1, · · · , ef} ⊂ V une famille de f vecteurs: on dispose alors d’une application lineaire

”Combinaison lineaire”:

CLF :
Kf 󰀁→ V

(x1, · · · , xf ) 󰀁→ CLF (x1, · · · , xf ) = x1.e1 + · · ·+ xf .ef
dont l’image est

CLF (Kf ) = Vect(F ) := W ⊂ V

est le SEV engendre par F ; on s’est pose (dans le cas ou G etait une famille generatrice de taille
minimale) la question de l’injectivite de cette application.

Soit w ∈ W , alors w est combinaison lineaire d’elements de F et s’ecrit

w = x1.e1 + · · ·+ xfef

pour (xi, · · · , xd) ∈ Kd et par definition de l’injectivite, la representation de w sous cette forme est
unique:

w = x1.e1 + · · ·+ xfef = x′
1.e1 + · · ·+ x′

def =⇒ x1 = x′
1, · · · , xf = x′

f .

D’autre part (par le critere d’injectivite des applications lineaires), l’injectivite est equivalente au
fait que

ker(CLF ) = {x ∈ Kf , x1.e1 + · · ·+ xf .ef = 0V } = {0Kf = (0, · · · , 0)}
ce qui s’interprete en disant que le vecteur nul 0V (qui appartient a W ) admet une unique represen-
tation sous forme de combinaison lineaire des ei, i 󰃑 d: la combinaision triviale ou nulle:

x1.e1 + · · ·+ xf .ef = 0V ⇐⇒ x1 = · · · = xf = 0K .

Cela nous conduit a la definition generale suivante:

Définition 5.17. Un sous-ensemble fini F = {e1, · · · , ef} ⊂ V d’un espace vectoriel est une
famille libre de V si et seulement si l’une des trois conditions equivalentes suivante est satisfaite:

(1) L’application lineaire

CLF :
Kf 󰀁→ V

(x1, · · · , xf ) 󰀁→ x1.e1 + · · ·+ xf .ef

est injective.
(2) pour tous x1, · · · , xf , x′

1, · · · , x′
f ∈ K

x1.e1 + · · ·+ xf .ef = x′
1.e1 + · · ·+ x′

f .ef =⇒ x1 − x′
1 = · · · = xf − x′

f = 0K .

(3) pour tous x1, · · · , xf ∈ K

x1.e1 + · · ·+ xf .ef = 0V =⇒ x1 = · · · = xf = 0K .

Une famille F qui n’est pas libre est dit liee.

Exemple 5.3.1. Soit e ∈ V − {0V } un vecteur non-nul alors {e} est libre: supposons que

x.e = 0V

pour x ∈ K; si x ∕= 0K alors x est inversible et

x−1.x.e = e = 0V

qui est une contradiction donc x = 0K .

Exemple 5.3.2. Dans Kd, la base canonique

B0 := {e0i , i = 1, · · · , d}
qui est generatrice est egalement libre; on rappelle que e0i est le vecteur dont toutes les coordonnes
sont nulles sauf la i-eme qui vaut 1,

e01 = (1, 0, · · · , 0), · · · , e0d = (0, 0, · · · , 1).
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En effet, pour tout x1, · · ·xd ∈ K on a

d󰁛

i=1

xi.e
0
i = (x1, x2, · · · , xd)

et donc si

=

d󰁛

i=1

xi.e
0
i = 0d = (0, · · · , 0)

on a

x1 = · · · = xd = 0.

Exemple 5.3.3. Dans R3, la famille

(1, 1, 0), (0, 1, 1), (1, 0, 1)

est libre.
En revanche si car(K) = 2 alors la famille est liee:

(1, 1, 0) + (0, 1, 1) + (1, 0, 1) = (2, 2, 2) = 03.

En fait, cette famille est libre dans K3 ou K est de caracteristique ∕= 2.

Exemple 5.3.4. Dans la preuve du Theorem 5.3 on a montre que

Proposition 5.15. Soit V un K-ev de dimension d et G = {e1, · · · , ed} une famille generatrice
de cardinal d alors G est libre.

On va donner un critere pour qu’une famille soit liee.

Proposition 5.16. Une famille a l elements F = {e1, · · · , el} ⊂ V est liee ssi il existe i ∈
{1, · · · , l} tel que ei peut s’exprimer comme combinaison lineaire des autres elements de F :

∃i 󰃑 l, ei ∈ Vect(F − {ei}) = Vect({ej , j ∕= i}).
On a alors

W = Vect(F ) = Vect(F − {ei}).

Preuve: Si F est liee, il existe x1, · · · , xl ∈ K non-tous nuls tels que

0V = x1.e1 + · · ·+ xl.el.

Supposons (quitte a renumeroter) que xl ∕= 0 alors

−xl.el = x1.e1 + · · ·+ xl−1.el−1

et comme −xl est inversible

el = (x1/− xl).e1 + · · ·+ (xl−1/− xl).el−1 ∈ Vect(F − {el}).
Reciproquement si el ∈ Vect(F − {el}) alors

el = y1.e1 + · · ·+ yl−1el−1

et

0V = y1.e1 + · · ·+ yl−1el−1 + (−1).el

avec −1 ∕= 0K .
On a donc

F = {e1, · · · , ei, · · · , el} ⊂ Vect(F − {ei})
et donc

W = Vect(F ) = Vect(F − {ei}).
□

On va maintenant montrer que les familles libres ne peuvent pas etre trop grandes.
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Théorème 5.4 (Majoration du cardinal d’une famille libre). Soit V un espace vectoriel non-nul
de dimension d et F = {v1, · · · , vf} ⊂ V une famille finie et libre; alors f 󰃑 d.

Preuve: Notons que les vecteurs v1, · · · , vf sont tous distincts: si on avait v1 = v2 alors v1 serait
combinaison lineaire de v2, · · · , vf .

On procede par recurrence sur d.
Si d = 1 alors V = K.e avec e ∕= 0V ; soit F = {v1, · · · , vf} une famille libre a f elements.

Montrons que f = 1.
Notons que v1 ∕= 0V : sinon on aurait

0V = 1.v1 + 0.v2 + · · ·+ 0.vf

et la famille ne serait pas libre. On a pour i = 1, · · · , f
vi = xi.e

avec xi ∈ K et x1 ∕= 0 (sinon v1 serait nul). On a alors si f 󰃍 2

e = x−1
1 .v1, v2 = x2.e = (x2/x1).v1

Ainsi v2 est combinaison lineaire de v1 contredisant le fait que la famille est libre.
Supposons qu’on a demontre le resultat pour tout espace vectoriel de dimension 󰃑 d− 1.
Soit V de dimension d 󰃍 1, G = {e1, · · · , ed} une famille qui engendre V et

F = {v1, · · · , vf} ⊂ V

une famille libre a f elements. Montrons que f 󰃑 d.
Par definition chaque element de F est combinaison lineaire des elements de G : pour i =

1, · · · , f , il existe (xi,j)j󰃑d tel que

vi = xi,1e1 + · · ·+ xi,ded, i = 1, · · · , f.
Le fait que F est libre implique que les vi sont tous non-nuls (cf. ci-dessus). En particulier, il existe
un indice j0 ∈ {1, · · · , d} tel que

xf,j0 ∕= 0.

Supposons (quitte a renumeroter les ej) que j0 = d; on a donc xf,d ∕= 0 qui est donc inversible.
Posons

(5.3.2) v′i = vi − (xi,d/xf,d).vf , i = 1, · · · , f.
On a

v′f = vf − (xf,d/xf,d).vf = 0V

et en general

v′i = x′
i,1e1 + · · ·+ x′

i,d−1ed−1 + (xi,d − (xi,d/xf,d).xf,d)ed = x′
i,1e1 + · · ·+ x′

i,d−1ed−1.

ainsi la famille
F ′ = {v′i, i 󰃑 f − 1} ⊂ V ′ = Vect({e1, · · · , ed−1}) ⊂ V

possede f − 1 elements et est contenue dans un sous-espace vectoriel V ′ engendre par d− 1 elements
donc de dimension 󰃑 d− 1. De plus cette famille est libre: supposons que

x1.v
′
1 + · · ·+ xf−1.v

′
f−1 = 0V ;

utilisant (5.3.2) on voit que

x1.v1 + · · ·+ xf−1.vf−1 + yf .vf = 0V

pour un certain yf ∈ K et comme la famille F est libre on a

x1 = · · · = xf−1 = 0K .

On a alors par recurrence que

f − 1 󰃑 dimV ′ 󰃑 d− 1
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et donc f 󰃑 d. □

5.3.3. Base.

Définition 5.18. Soit V un espace vectoriel de dimension finie. Une famille B = {e1, · · · , ed}
est une base de V si l’une des conditions equivalentes suivantes est verifiee:

(1) B est generatrice et libre,
(2) L’application combinaison lineaire de B,

CLB : Kd 󰀁→ V

est un isomorphisme,
(3) Pour tout v ∈ V il existe un unique uplet (x1, · · · , xd) ∈ Kd tel que v s’ecrit sous la forme

v = x1.e1 + · · ·+ xd.ed.

Exemple 5.3.5. Pour V = Kd, la base canonique

B0 = {e01, · · · , e0d}
forme (tautologiquement) une base.

On a

Théorème 5.5. Soit V un K-ev de dimension d alors V possede une base et toute base B de
V verifie

(5.3.3) |B| = dim(V ).

Remarque 5.3.2. En particulier

dim(Kd) = d.

Preuve: On a vu d’une famille generatrice G de cardinal minimal dimV est libre et donc forme
une base de V .

Si B est un base de V alors comme elle est generatrice on a

|B| 󰃍 dimV

et comme B est libre on a par le Theoreme 5.4

|B| 󰃑 dimV.

□
Le Theoreme d’existence d’une base admet la variante suivante concernant les familles libres et

generatrices

Théorème 5.6 (Extraction et Completion). Soit V un K-ev non nul de dimension d. On a

(1) Une famille generatrice G de cardinal d est une base.
(2) Une famille libre L de cardinal d est une base.
(3) (Extraction) Soit G ⊂ V une famille generatrice alors il existe une base B de V contenue

dans G .
(4) (Completion) Soit L ⊂ V une famille libre alors il existe une base B de V contenant L .

Preuve: Soit G une famille generatrice (pas forcement finie); par definition de la dimension |G | 󰃍 d.
Montrons que G contient une base. L’ensemble G contient au moins un vecteur non-nul (sinon

V = Vect(G ) = {0V } ce qui est exclut) et la famille reduite a un element {e} est libre. Soit B ⊂ G
une sous-famille libre dont le cardinal |B| est maximal parmi les sous-familles libres de G . Montrons
que B est generatrice et est donc une base.

On sait deja que cette famille est finie:

B = {e1, · · · , e|B|}
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avec

|B| 󰃑 d.

On a les deux cas suivants:

(1) Si |B| = |G | alors B = G est generatrice et B est une base.
(2) Si |B| < |G |. Supposons que B n’est pas generatrice c’est a dire

Vect({e1, · · · , e|B|}) ∕= Vect(G ) = V,

alors il existe e ∈ G tel que

e ∕∈ Vect(B)

c’est a dire que pour tout x1, · · · , x|B| ∈ K on a toujours

e ∕= x1.e1 + · · ·+ x|B|e|B|.

Montrons qu’alors la famille B ∪ {e} est encore libre ce qui contredira la maximalite de
|B|: supposons que pour x1, · · · , x|B|, x ∈ K on ait

x1.e1 + · · ·+ x|B|e|B| + x.e = 0V

alors
(a) si x = 0 on a

x1.e1 + · · ·+ x|B|e|B| = 0V

et comme B est libre on a x1 = · · · = x|B| = x = 0.
(b) Si x ∕= 0 alors x est inversible et on a

e = −(x1/x).e1 − · · ·− (x|B|/x)e|B|

une contradiction: ainsi la famille est libre.
On obtient alors une contradiction avec la maximalite de |B| ce qui implique que B

est generatrice.

Soit L = {e1, · · · , e|L |} une famille libre non-vide (on sait que |L | 󰃑 d).
Montrons que L est contenue dans une base. Il existe une famille generatrice finie contenant

L : il suffit de prendre la reunion L ∪G de L et d’une famille generatrice finie G de V (par exemple
une base).

Soit B ⊃ L une famille generatrice finie de V contenant L et dont le cardinal |B| est minimal
parmi toutes les familles generatrices finies de V contenant L . Montrons que B est libre et est donc
une base.

(1) Si |B| = |L | alors B = L est generatrice et libre et c’est une base.
(2) Si |B| > |L | ecrivons

B = {e1, · · · , e|L |, · · · , e|B|}
et supposons que B ne soit pas libre: il existe x1, · · · , x|B| ∈ K non tous nuls tels que

x1.e1 + · · ·+ x|L |e|L | + · · ·+ x|B|e|B| = 0V .

si x|L |+1 = · · · = x|B| = 0 alors on a

x1.e1 + · · ·+ x|L |e|L | = 0V

et comme L est libre on a

x1 = · · · = x|L | = x|L |+1 = · · · = x|B| = 0.

Sinon il existe i > |L | tel que xi ∕= 0 disons que c’est x|B|: on a alors

e|B| = −(x1/x|B|).e1 − · · ·− (x|B|−1/x|B|)e|B|−1

et alors comme e|B| est combinaison lineaire des e1, · · · , e|B|−1, la famille {e1, · · · , e|B|−1}
contient L et est generatrice ce qui contredit la minimalite de |B|. Ainsi B est libre.
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□
On a demontre dans la deuxieme partie un resultat un peu plus fort:

Théorème 5.7 (de la base incomplete). Etant donne L une famille libre de V et B ⊂ V une
base, on peut extraire de B une sous-famille L ′ ⊂ B de sorte que L ⊔ L ′ forme une base de V .

Exercice 5.5. Montrer que si X et Y sont de dimension finie on a

dim(X × Y ) = dim(X) + dim(Y ).

Montrer que si V = X ⊕ Y , alors

dim(V ) = dim(X) + dim(Y ).

5.3.4. Sous-espaces vectoriels et dimension.

Théorème 5.8 (Bases et SEV). Soit V un espace vectoriel de dimension finie, et W ⊂ V un
sous-espace vectoriel alors W est de dimension finie et

(1) on a dim(W ) 󰃑 dim(V ).
(2) Si dim(W ) = dim(V ) alors W = V .
(3) Si BW est une base de W alors il existe une base BV de V contenant BW .

Preuve: Soit L ⊂ W une famille libre et finie de W alors L est libre dans V et de cardinal
l = |L | 󰃑 dimV . On peut donc supposer que L = {e1, · · · , el} est de cardinal maximal (parmi les
familles libres et finies de W ). On suppose alors qu’il existe e ∈ W tel que

e ∕∈ Vect({e1, · · · , el})
et on en deduit comme dans le Theoreme d’Extraction/Completion que {e1, · · · , el, e} est libre ce
qui contredit la maximalite de l. Ainsi

Vect({e1, · · · , el}) = W

et W est de dimension finie egale a l 󰃑 dimV .
Les deux derniers points resultent du Theoreme d’ extraction/completion.

□
– Un sous-espace vectoriel de dimension 1 est appelle droite vectorielle .
– Un sous-espace vectoriel de dimension 2 est appelle plan vectoriel.
– Un sous-espace vectoriel de dimension dim(V )− 1 est appelle hyperplan vectoriel.

5.4. Espaces vectoriels de dimension infinie

Définition 5.19. Un K-ev qui ne possede pas de famille generatrice finie est dit de dimension
infinie.

Repetons la definition de famille generatrice:

Définition 5.20. Soit V un K-e.v. Un sous-ensemble G ⊂ V est une famille generatrice si

Vect(G ) = V,

ie. tout element v ∈ V peut s’ecrire sous la forme d’une combinaison lineaire (finie) d’elements de
G : il existe d 󰃍 1, e1, · · · , ed ∈ G , x1, · · · , xd ∈ K,, tels que

(5.4.1) v = x1e1 + · · ·+ xded.

Donnons une definition generale d’une famille libre (pas forcement finie):

Définition 5.21. Soit V un K-e.v., un sous-ensemble L ⊂ V est une famille libre si tout
sous-ensemble fini L ′ ⊂ L est libre: si L ′ = {e1, · · · , ed} (les elements tous distincts), on a

(5.4.2) x1e1 + · · ·+ xded = 0V ⇐⇒ x1 = · · · = xd = 0K .
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On defini alors ce qu’est une base:

Définition 5.22. Une base algebrique B ⊂ V est une famille libre et generatrice.

Proposition 5.17. Soit B ⊂ V une base algebrique. Alors tout element v de V est representable
comme combinaison lineaire finie d’elements de B et une telle representation est unique.

Preuve: L’existence est simplement le fait que B est generatrice.
Pour l’unicite supposons que

v = x1e1 + · · ·+ xded = x′
1e

′
1 + · · ·+ x′

d′e′d′

pour
B′ = {e1, · · · , ed}, B′′ = {e′1, · · · , e′d′} ⊂ B.

Quitte a remplacer B et B′ par la reunion B∪B′ on peut (en ajoutant des coefficients nuls) supposer
que B′ = B′′: on a

v = x1e1 + · · ·+ xded = x′
1e1 + · · ·+ x′

ded

et donc
0V = (x1 − x′

1)e1 + · · ·+ (xd − x′
d)ed

et comme B est libre on a
x1 − x′

1 = · · · = xd − x′
d = 0K

c’est a dire
x1 = x′

1, · · · , xd = x′
d.

□
Exercice 5.6. Soit F(N,R) l’espace des fonctions de N a valeurs reelles (ie. les suites a valeurs

reelles). Soit f : N 󰀁→ R une telle fonction; son support est par definition l’ensemble des des point
ou f ne s’annulle PAS:

supp(f) = f (−1)(R− {0}) = {n ∈ N, f(n) ∕= 0}.
Soit Ff (N,R) ⊂ F(N,R) le sous-ensemble des fonctions a support fini.

Pour m ∈ N un element, on note 1{m} la fonction indicatrice de m:

1{m}(n) =

󰀫
1 si n = m

0 si n ∕= m.
.

(1) Montrer que Ff (N,R) est un SEV de F(N,R).
(2) Montrer que la famille

{1{m}, m 󰃍 0}
est une base de Ff (N,R).

Il est beaucoup plus difficile d’imaginer une base de l’espace F(N,R). Pourtant on a le resultat
suivant necessite de travailler dans une theorie des ensembles qui contient l’ axiome du choix (par
exemple ZFC).

Théorème 5.9 (Existence de bases sous l’axiome du choix). Dans une theorie des ensembles
contenant l’axiome du choix, tout espace vectoriel sur un corps K possede une base et toutes les
bases de V ont meme cardinal: pour toutes bases B,B′ il existe une bijection

B ≃ B′.

La dimension de V est de cardinal d’une base:

dim(V ) = |B|.

Remarque 5.4.1. Le Theoreme de la base incomplete est vrai (sous l’axiome du choix): soit
L ⊂ une famille libre et G un famille generatrice. Il existe une famille libre L ′ ⊂ G telle que
L ⊔ L ′ = B forme une base de V .
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Preuve: (idee) Pour demontrer ce theoreme, on utilise l’axiome du choix sous la forme equivalente
suivante qu’on appelle

Lemme de Zorn. Soit E un ensemble ordonne tel que tout sous-ensemble A ⊂ E totalement
ordonne possede une majorant alors E possede un element maximal.

On applique le Lemme de Zorn a l’ensemble des familles libres de V ordonne par l’inclusion et
on montre qu’une famille libre maximale pour l’inclusion est une base. □

Remarque 5.4.2. En fait on peut montrer que le Lemme de Zorn et donc l’axiome du choix
sont equivalent a l’existence d’une base pour tout espace vectoriel.



CHAPITRE 6

Applications lineaires

6.1. Le Theoreme Noyau-Image

6.1.1. Rang d’une application lineaire.

Proposition 6.1. Soit ϕ : V 󰀁→ W une application lineaire avec V de dimension finie. Soit
G = {e1, · · · , eg} ⊂ V une famille generatrice alors ϕ est completement determinee par l’ensemble
de images des elements de G :

ϕ(G ) = {ϕ(e1), · · · ,ϕ(eg)} ⊂ W.

En particulier, ϕ(G ) est une famille generatrice de Im(ϕ) = ϕ(V ) et on a

dim(Imϕ) 󰃑 dim(V ).

Preuve: Soit v ∈ V , comme G est generatrice il existe x1, · · · , xg ∈ K tels que

x1.e1 + · · ·+ xgeg = v

et alors
ϕ(v) = x1.ϕ(e1) + · · ·+ xgϕ(eg).

Ainsi pour connaitre l’image d’un vecteur v il suffit de connaitre les vecteurs

ϕ(e1), · · · ,ϕ(eg)
et une decomposition de v en combinaison lineaire d’elements de G .

En particulier pour w ∈ Im(ϕ), il existe v ∈ V tel que ϕ(v) = w; ecrivant

x1.e1 + · · ·+ xgeg = v

on a
w = ϕ(v) = x1.ϕ(e1) + · · ·+ xgϕ(eg)

Ainsi ϕ(G ) est generatrice de Imϕ. En particulier Imϕ est de dimension finie et

dim(Imϕ) 󰃑 |ϕ(G )|.
Ainsi en prenant pour G une base de V , on aura

dim(Imϕ) 󰃑 |ϕ(G )| 󰃑 |G | = dim(V ).

□
Définition 6.1. Soit ϕ : V 󰀁→ W une application lineaire. Le rang de ϕ est la dimension de

Imϕ:
rg(ϕ) = dim(Imϕ).

Proposition 6.2 (Inegalite du rang). Soit V de dimension finie. On a

rg(ϕ) 󰃑 min(dimV, dimW ).

Preuve: On vient de voir que rg(ϕ) 󰃑 dimV et que rg(ϕ) = dim Imϕ comme Imϕ est un sev de
W on a

rg(ϕ) 󰃑 dimW.

□
93
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Remarque 6.1.1. Cette inegalite reste vraie si V ou W sont de dimension infinie.

Exercice 6.1. Soient V,W deux espaces vectoriels de dimension finie et ϕ : V 󰀁→ W une
application lineaire. Montrer que

(1) Si ϕ est injective alors l’image par ϕ d’une famille libre est libre et

dim(V ) 󰃑 dim(W )

(2) Si ϕ est surjective alors l’image par ϕ d’une famille generatrice est generatrice et

dim(V ) 󰃍 dim(W ).

(3) Si ϕ est bijective, l’image d’une base de V est une base de W et dim(V ) = dim(W ).

Exercice 6.2. montrer qu’une application lineaire envoyant une base sur une base est un
isomorphisme.

6.1.2. Le Theoreme Noyau-Image.

Théorème 6.1 (Noyau-Image). Soit ϕ : V 󰀁→ W une application lineaire avec V de dimension
finie. On a

dimV = dim(kerϕ) + dim(Imϕ).

Preuve: Notons que si B est une base alors ϕ(B) est une partie generatrice de Imϕ qui est donc
de dimension finie de dimension

dim Imϕ 󰃑 |ϕ(B)| 󰃑 |B| = dim(V ).

Soit {ϕ(e′1), · · · ,ϕ(e′r)} une base de Imϕ et {e1, · · · , ek} une base de kerϕ. Montrons que

{e1, · · · , ek, e′1, · · · , e′r}
est une base de V . Supposons que

x1e1 + · · ·+ xkek + x′
1e

′
1 + · · ·+ x′

r.e
′
r = 0V

alors
0W = x′

1ϕ(e
′
1) + · · ·+ x′

r.ϕ(e
′
r)

et donc x′
1 = · · · = x′

r = 0. On a alors

x1e1 + · · ·+ xkek = 0V

et donc x1 = · · · = xk = 0.
Soit v ∈ V alors

ϕ(v) = x′
1ϕ(e

′
1) + · · ·+ x′

r.ϕ(e
′
r) = ϕ(x′

1e
′
1 + · · ·+ x′

r.e
′
r) = ϕ(v′).

On a
ϕ(v − v′) = 0V =⇒ v − v′ ∈ kerϕ

et donc
v − v′ = x1e1 + · · ·+ xk.ek

et
v = x1e1 + · · ·+ xk.ek + x′

1e
′
1 + · · ·+ x′

r.e
′
r.

□
Corollaire 6.1 (Critere de bijectivite). Soit ϕ : V 󰀁→ W une application lineaire entre espaces

de dimension finie. Si
dim(V ) = dim(W )

alors est conditions suivantes sont equivalentes

(1) ϕ est injective.
(2) ϕ est surjective
(3) ϕ est bijective.
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Preuve: Si ϕ est injective on a dim(kerϕ) = 0 et

dim(W ) = dim(V ) = dim(Imϕ) + 0

et donc dim(Imϕ) = dim(W ) ce qui implique que W = Imϕ et la surjectivite et la bijectivite.
Evidemment la bijectivite implique l’injectivite. □

6.1.3. Exemple: les formes lineaires. On rappelle la definition d’un forme lineaire (cf Def-
inition 5.12):

Définition 6.2. Une forme lineaire sur V est une application lineaire de V a valeurs dans le
corps K (vu comme K-ev sur lui-meme)

ℓ : V 󰀁→ K.

On a la proposition suivante:

Proposition 6.3. Soit ℓ une forme lineaire. Si elle est non-nulle, i.e. ℓ ∕= 0K , alors

Im(ℓ) = K, dim(ker l) = dim(V )− 1.

Preuve: Soit ℓ ∕= 0K . Soit v ∈ V tel que ℓ(v) = λ ∕= 0; λ est donc inversible, alors pour tout x ∈ K,
on a

ℓ((x/λ).v) = (x/λ).λ = x

donc ℓ est surjective. Ainsi Im ℓ = K est de dimension 1 et ker ℓ est de diemsnion dimV − 1. □

Définition 6.3. Soit V de dimension finie. Un sous-espace vectoriel de dimension dimV − 1
est appelle un hyperplan vectoriel.

Proposition 6.4. Soit V de dimension finie et H ⊂ V un hyperplan vectoriel. Il existe une
forme lineaire ℓH telle que

ker ℓH = H.

Preuve: Soit {e1, · · · , ed−1} une base de H. C’est une famille libre et on peut la completer en une
base de V : il existe ed ∈ V tel que

{e1, · · · , ed−1, ed}
forme une base de V . Considerons la forme lineaire d-ieme coordonnee:

e∗d : v = x1e1 + · · ·+ xd−1ed−1ed−1 + xded ∈ V 󰀁→ xd ∈ K.

Alors

H = {v ∈ V, e∗d(v) = 0}.
□

Remarque 6.1.2. ℓH n’est pas unique: elle depend du choix de ed.

6.2. Structure et dimension des espaces d’applications lineaires

On rappelle que (HomK−ev(V,W ),+, .) a une structure naturelle de K-espace vectoriel, ou
l’addition est donnee par

ϕ+ ψ : v 󰀁→ ϕ(v) + ψ(v)

l’element neutre etant l’application identiquement nulle 0W et la multiplication externe, est donnee,
pour pour λ ∈ K and ϕ ∈ HomK−ev(V,W ), par

λ.ϕ : v 󰀁→ λ.ϕ(v).

Rappelons que le fait que λ.ϕ ∈ HomK−ev(V,W ) provient du fait que K est commutatif: pour x ∈ K

λ.ϕ(x.v + v′) = λ(ϕ(x.v + v′)) = λ(x.ϕ(v) + ϕ(v′)) = x.λ.ϕ(v) + λ.ϕ(v′) = x.(λ.ϕ)(v) + (λ.ϕ)(v′).
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Théorème 6.2 (Dimension de l’espace des applications lineaires). Si V et W sont de dimensions
finies, alors HomK(V,W ) est de dimension finie

dim(HomK(V,W )) = dimV. dimW.

Preuve: Soit B = {e1, · · · , ed} une base de V . Soit ϕ une application lineaire, alors ϕ est entiere-
ment determinee des que l’on connait les valeurs des elements de B

ϕ(e1), · · · ,ϕ(ed) ∈ W.

En effet si v = x1.e1 + · · ·+ xd.ed alors

ϕ(v) = x1.ϕ(e1) + · · ·+ xd.ϕ(ed).

En d’autres termes on dispose d’une application injective

evalB : ϕ ∈ HomK(V,W ) ↩→ (ϕ(e1), · · · ,ϕ(ed)) ∈ W d.

L’application evalB est lineaire puisque pour tout j 󰃑 d

(λϕ+ ψ)(ej) = λ.ϕ(ej) + ψ(ej)

Par ailleurs, cette application est surjective: soit un uplet

(f1, · · · , fd) ∈ W d

alors on associe a (f1, · · · , fd) l’application lineaire definie par

ϕ(x1.e1 + · · ·+ xd.ed) = x1.f1 + · · ·+ xd.fd.

Ainsi on a un isomorphisme
evalB : HomK(V,W ) ≃ W d

et (comme la dimension d’un produit d’EVs est la somme des dimensions)

dim(HomK−ev(V,W )) = dim(W d) = d. dim(W ).

□
On va maintenant decrire une base de HomK(V,W ).

6.2.1. Formes lineaires, dualite et base duale.
On commence par l’espace des formes lineaires et on rappelle que

Définition 6.4. Une application lineaire, ℓ : V 󰀁→ K, de V vers le corps K est appelee ”forme
lineaire”. On note l’espace des formes lineaires par

V ∗ := HomK−ev(V,K)

et on l’appelle le dual de V .

Comme dimK = 1, on a

dim(V ∗) = dimHomK(V,K) = dim(V )× 1 = dim(V ).

En particulier un espace vectoriel V et son dual V ∗ sont isomorphes. Pour trouver un tel isomor-
phisme, on va exhiber une base de V ∗.

Définition 6.5. Soit B = {e1, · · · , ed} une base de V , si v ∈ V s’ecrit

v = x1.e1 + · · ·+ xd.ed,

pour i 󰃑 d, le scalaire xi est la i-eme coordonnee de v dans la base B. On note ce scalaire

xi = e∗i (v).

Proposition 6.5. Pour i 󰃑 d, l’application

e∗i : v = x1.e1 + · · ·+ xd.ed ∈ V 󰀁→ e∗i (v) = xi ∈ K

est une forme lineaire . On l’appelle la i-ieme forme lineaire coordonnee relative a la base B de V .
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Preuve: En effet, soit on dit que c’est la composee de deux application lineaires:

CL−1
B :

V 󰀁→ Kd

v = x1.e1 + · · ·+ xd.ed 󰀁→ (x1, · · · , xd)

et

•i :
Kd 󰀁→ K

(x1, · · · , xd) 󰀁→ xi
.

Soit on utilise directement le fait que la decomposition en combinaison lineaire est unique:

v = x1.e1 + · · ·+ xd.ed, v′ = x′
1.e1 + · · ·+ x′

d.ed

alors

λ.v + v′ = λ.x1.e1 + · · ·+ .λ.xd.ed + x′
1.e1 + · · ·+ x′

d.ed

= (λ.x1 + x′
1).e1 + · · ·+ .(λ.xd + x′

d).ed

de sorte que par unicite la i-eme coordonnee de λ.v + v′ est λ.xi + x′
i □

Plus precisement, soit

B = {e1, · · · , ed}
une base de V , on a associe a chaque element ei de cette base la forme lineaire ”i-ieme coordonnee
dans la base B:

e∗i : v = x1e1 + · · ·+ xi.ei + · · ·+ xd.ed ∈ V 󰀁→ xi ∈ K.

Théorème 6.3. Soit B une base de V , la famille

B∗ := {e∗1, · · · , e∗d} ⊂ V ∗

est une base de V ∗. On a

∀i, j 󰃑 d, e∗i (ej) = δi=j =

󰀫
1 si i = j

0 si i ∕= j
.

Définition 6.6. La base

B∗ := {e∗1, · · · , e∗d} ⊂ V ∗

s’appelle la base duale de la base B.

Preuve: Pour i 󰃑 d on a

ei = 1.ei +
󰁛

j ∕=i

0.ej

de sorte que

e∗i (ei) = 1, e∗j (ei) = 0.

Montrons que la famille B∗ est libre (comme dim(V ∗) = dim(V ) = d cela montrera qu’elle est
generatrice). Supposons que

ℓ := x1.e
∗
1 + · · ·+ xd.e

∗
d =

d󰁛

i=1

xie
∗
i = 0K .

On a pour j 󰃑 d

0K = ℓ(ej) =

d󰁛

i=1

xie
∗
i (ej) =

d󰁛

i=1

xiδi=j = xj .

□
On a montre que B∗ est une base pour des raisons de cardinal et de dimension. En particulier

c’est une famille generatrice et toute forme lineaire est combinaison lineaire des elements de B∗:
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Corollaire 6.2. Soit ℓ : V 󰀁→ K une forme lineaire. On a

ℓ =

d󰁛

i=1

ℓ(ei)e
∗
i .

Autrement dit, les coordonnees de ℓ dans la base B∗ sont donnees par les (ℓ(ei))i󰃑d (ie. les valeurs
de ℓ en chacun des ei, i 󰃑 d).

Preuve: On sait qu’il existe li ∈ K, i 󰃑 d tel que

ℓ =
󰁛

i󰃑d

lie
∗
i .

Calculant ℓ(ei) on trouve

ℓ(ei) =
󰁛

j󰃑d

lje
∗
j (ei) =

󰁛

j󰃑d

ljδj=i = li.

□

Remarque 6.2.1. Comment avoir l’idee de cette base duale: on a vu que l’application d’
”evaluation le long de la base B”:

evalB :
V ∗ 󰀁→ Kd

ℓ 󰀁→ (ℓ(e1), · · · , ℓ(ed))
est un isomorphisme lineaire.

On rappelle que dans l’espace d’arrivee Kd, on dispose d’une base preferee appellee la base
canonique de Kd

B0
d = {e0i , i 󰃑 d} ⊂ Kd;

avec e0i le vecteur dont la i-ieme coordonnee vaut 1 et les autres sont nulles:

e01 = (1, 0, · · · , 0), · · · , e0d = (0, · · · , 0, 1).

La base duale B∗ est alors l’image reciproque par evalB de la base canonique B0
d de Kd.

Notons egalement que l’isomorphisme ”combinaison lineaire dans la base B∗”

CLB∗ :
Kd 󰀁→ V ∗

(l1, · · · , ld) 󰀁→ l1e
∗
1 + · · ·+ ld.e

∗
d

est l’isomorphisme reciproque de l’isomorphisme evalB.

Remarque 6.2.2. On a deux isomorphismes

evalB : V ∗ ≃ Kd, CLB : Kd ≃ V

et donc un isomorphisme ”explicite”

CLB ◦ evalB : V ∗ ≃ V

entre le dual V ∗ et V . Il faut noter que cet isomorphisme depend du choix de la base B.

Exercice 6.3. Soit V ∗∗ = (V ∗)∗ le bi-dual de V (le dual du dual V ∗ de V ). On considere
l’application:

eval• :
V 󰀁→ V ∗∗ = (V ∗)∗

v 󰀁→ evalv
ou

evalv : ℓ 󰀁→ ℓ(v) ∈ K

est l’application qui a une forme lineaire ℓ associe sa valeur au vecteur v.

(1) Montrer que evalv est bien une forme lineaire sur V ∗.
(2) Montrer que eval• est un isomorphisme.
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(3) Montrer que si on identifie V ∗∗ a V par l’isomorphisme ci-dessus et que B = {ei, i 󰃑 d}
est une base de V , la base duale de la base duale

B∗∗ = {(e∗i )∗, i = 1, · · · , d}
vaut B.

Remarque 6.2.3. A la difference de l’isomorphisme CLB ◦ evalB : V ∗ ≃ V qui depend du
choix d’une base. L’isomorphisme eval• : V ≃ V ∗∗ n’en depend pas. On dit que le bidual de V est
canoniquement isomorphe a V .

Remarque 6.2.4. L’application

〈•, •〉can,V : (ℓ, v) ∈ V ∗ × V 󰀁→ ℓ(v) ∈ K

est une forme lineaire1 sur V ∗ × V appelee accouplement canonique entre V ∗ et V . Le fait qu’il
permette de definir un isomorphisme entre V ∗ et V fait dire que c’est un accouplement parfait.

6.2.2. Representation parametrique et cartesienne d’un SEV. Soit W ⊂ V un SEV
d’un espace vectoriel de dimension finie dV = dimV alors W est de dimension finie dW = dimW .

Soit GW = {e1, · · · , eg}, g 󰃍 dW une famille generatrice de W : W est l’ensemble des vecteurs
de v de la forme

W = {w ∈ V, w = x1.e1 + · · ·+ xg.eg, x1, · · · , xg ∈ K}
Une telle presentation de W s’appelle une representation parametrique de W : chaque vecteur w ∈ W
est obtenu comme somme de vecteurs de la forme

x1.e1 + · · ·+ xg.eg

pour un choix approprie (pas unique en general) de parametres scalaires x1, · · · , xg ∈ K. En
particulier si GW = BW est une base de W le nombre de vecteurs {ei, i 󰃑 g} impliques dans cette
representation est minimal et vaut dW ; la representation precedente est alors unique.

Par ailleurs un SEV W peut egalement etre represente comme l’ensemble des solutions d’un
systeme d’equations lineaires (de second membre nul):

Proposition 6.6 (Representation cartesienne d’un SEV). Soit W ⊂ V un SEV (distinct de
V ). Il existe un entier d′ 󰃍 1 et une famille de d′ formes lineaires

L = {ℓ1, · · · , ℓd′} ⊂ V ∗

telles que
W = {w ∈ V tels que ℓ1(w) = 0, ℓ2(w) = 0, · · · , ℓd′(w) = 0}.

De maniere equivalente, W = kerϕL avec

ϕL : w ∈ V 󰀁→ (ℓ1(w), · · · , ℓd′(w)) ∈ Kd′
.

En fait on peut prendre d′ = dV − dW et la famille

L = {ℓ1, · · · , ℓdV −dW
} ⊂ V ∗

forment une famille libre de V ∗ (ie. les ℓi, i 󰃑 dV − dW sont lineairement independantes).

Preuve: Soit BW = {e1, · · · , edW
} une base de W et

B = {e1, · · · , edW
, edW+1, · · · , edV

}
une base de V contenant la base precedente. Soit

B∗ = {e∗1, · · · , e∗dW
, e∗dW+1, · · · , e∗dV

}
la base duale. Alors

W = {v ∈ V, e∗dW+1(v) = · · · = e∗dV
(v) = 0}

□
1en fait elle est meme bi-lineaire
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La representation

W = {v ∈ V, ℓ1(v) = · · · = ℓdV −dW
(v) = 0}

est appellee representation cartesienne de W d’equations

ℓ1(v) = 0, · · · , ℓdV −dW
(v) = 0.

Remarque 6.2.5. Le nombre d′ d’equations d’une representation cartesienne est toujours au
moins egal a dV − dW . En effet si L = {ℓ1, · · · , ℓd′} verifie

W = {v ∈ V, ℓ1(v) = · · · = ℓd′(v)}
cela signifie que W est le noyau de l’application lineaire

evalL : v ∈ V 󰀁→ (ℓ1(v), · · · , ℓd′(v)) ∈ Kd′
.

On a donc

dimV − dimW = dimV − dimker(evalL) = dim(evalL(V ))) 󰃑 dim(Kd′
) = d′

Exercice 6.4. Dans Q3, soit W = 〈(1, 1, 0), (1, 0, 3)〉. Donner une equation cartesienne de W .

Exercice 6.5. Dans Q3, soit W = {(x, y, z) ∈ Q3, x + y − z = 0, x − 2y + 3z = 0}. Donner
une representation parametrique de W .

6.2.3. Une base de Hom(V,W ). Soient V et W des EVs de dimensions finies d et d′.
On a vu que

dimHom(V,W ) = dim(W d) = dimV dimW.

on va donner une base explicite de cet espace.
Etant donne B = {e1, · · · , ed} et B′ = {f1, · · · , fd′} des bases de V et W , on va construire une

base de Hom(V,W ): soit

B∗ = {e∗1, · · · , e∗d}
la base duale de B, et definissons pour i ∈ {1, · · · , d′}, j ∈ {1, · · · , d} l’application

Eij :
V 󰀁→ W
v 󰀁→ e∗j (v).fi

.

En d’autre termes, si

v = x1.e1 + · · ·+ xd.ed,

Eij(v) est egal a xj .fi, cad le produit de la j-eme coordonnee de v, xj dans la base B et du i-ieme
vecteur de la base B′.

En particulier on a pour k = 1, · · · , d

Eij(ek) =
󰀫
fi si k = j

0W si k ∕= j
.

Lemme 6.1. L’application Eij : V 󰀁→ W est lineaire, de rang 1, d’image K.fi et de noyau

ker Eij = 〈B − {ej}〉 = K.e1 + · · ·+K.ej−1 +K.ej+1 + · · ·+K.ed

l’hyperplan vectoriel engendre par les vecteurs de la base B moins le vecteur ej.

Preuve: Comme e∗j est lineaire on a

Eij(λ.v + v′) = e∗j (λ.v + v′).fi = (λ.xj + x′
j).fj = λ.xj .fi + x′

j .fi = λEij(v) + Eij(v′).

Il est clair que Im Eij ⊂ K.fi et comme Eij(ej) = fi on a egalite. Ainsi rg(Eij) = 1 (fi ∕= 0W , ce
vecteur etant dans une base).

Par ailleurs (fi ∕= 0W ) il est clair que Eij(v) = xj .fi = 0W si et seulement si la j-eme coordonnee
xj de v dans la base B est nulle. □
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Définition 6.7. Soit V,W des K-EV de dimensions finies d, d′ et

B = {e1, · · · , ed} et B′ = {f1, · · · , fd′}
des bases de V et W et B∗ = {e∗1, · · · , e∗d} ⊂ V ∗ la base duale de B.

Pour i 󰃑 d′, j 󰃑 d les applications lineaires definies par

Ei,j : v ∈ V 󰀁→ e∗j (v).fi ∈ W

sont appellees applications lineaires elementaires associees aux bases B et B′.

Théorème 6.4 (Une base de l’espace des applications lineaires). La famille des applications
lineaires elementaires

BB′,B := {Eij , i 󰃑 d′, j 󰃑 d} ⊂ HomK−ev(V,W )

forme une base de HomK−ev(V,W ).

Preuve: Comme le cardinal de cette famille vaut dim(V ) dim(W ) = dimHomK−ev(V,W ) il suffit
de montrer qu’elle est libre: soit mij ∈ K, i 󰃑 d′, j 󰃑 d des scalaires tels que

󰁛󰁛

i,j

mijEij = 0W .

On a donc pour chaque k 󰃑 d

(
󰁛󰁛

i,j

mijEij)(ek) =
󰁛

i

mikfi = 0W .

Comme B′ est une base de W on a pour tout i 󰃑 d′,

mik = 0

et donc pour tout i, j on a mij = 0. □
6.2.3.1. Preuve directe que (Ei,j)i,j est generatrice. On peut en fait montrer directement (sans

utiliser la dimension) que BB′,B est generatrice: soit ϕ : V 󰀁→ W une application lineaire, on cherche
a trouver d.d′ scalaires (mi,j)i󰃑d′,j󰃑d tels que

ϕ =
󰁛󰁛

i,j

mi,jEij =
󰁛󰁛

i,j

mi,je
∗
j .fi.

Supposons qu’on dispose d’une telle de composition et calculons pour k 󰃑 d

ϕ(ek) =
󰁛󰁛

i,j

mi,je
∗
j (ek).fi =

󰁛

i

mi,kfi

et donc pour i 󰃑 d′, mi,k est la i-ieme coordonnee de ϕ(ek) dans la base B′:

mi,k = f∗i (ϕ(ek)).

Considerons alors la combinaison lineaire d’applications elementaires

ϕ′ =
󰁛󰁛

i,j

f∗i (ϕ(ej))Eij .

La raisonnement precedent montre que pour tout ek ∈ B on a

ϕ(ek) = ϕ′(ek).

Comme les deux applications lineaires prennent les memes valeurs sur une famille generatrice, elles
sont egales: on a donc

(6.2.1) ϕ =
󰁛󰁛

i,j

f∗i (ϕ(ej))Eij =
󰁛󰁛

i,j

mi,jEij

avec

mi,j = f∗i (ϕ(ej)).
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Remarque 6.2.6. Comme la notation l’indique BB′,B depend du choix d’une base de B et
d’une base de B′. Les applications Eij sont appellees applications elementaires associees aux bases
B et B′.

Exemple 6.2.1. Soit V = R3, W = R2 et prenons les bases canoniques

B = B0
3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, B′ = B0

2 = {(1, 0), (0, 1)}.
On dispose de 6 applications lineaires elementaires

E11, E12, E13, E21, E22, E23
et par exemple

E12(x, y, z) = y(1, 0) = (y, 0), E23(x, y, z) = z(0, 1) = (0, z).

Soit l’application lineaire de ϕ : R3 → R2 donnee par

ϕ(x, y, z) = (2x+ 4y, y + 3z)

alors
ϕ = 2E11 + 4E12 + E22 + 3E23.

Définition 6.8. L’ensemble des d.d′ scalaires (mi,j)i󰃑d′,j󰃑d donnes par

(6.2.2) mi,j = f∗i (ϕ(ej)).

sont les coefficients de ϕ dans la base BB′,B ou encore la matrice de ϕ relative aux bases B, B′.

6.3. Proprietes fonctionelles des coefficients d’une application lineaire

Dans cette section on va voir comment la donnee des coefficients (relative a des bases choisies)
d’une application lineaire permet de faire des calculs effectifs.

6.3.1. Image d’un vecteur. Soient V,W de dimensions d, d′ finies et de bases

B = {ej , j 󰃑 d},B′ = {fi, i 󰃑 d′}.
Soit

BB′,B = {Eij = e∗j .fi, i 󰃑 d′, j 󰃑 d} ⊂ HomK−ev(V,W )

la base de l’espace des application lineaires formee des applications elementaires.

Proposition 6.7. Soit ϕ : V 󰀁→ W une application lineaire et (mij)i󰃑d′,j󰃑d les coordonnees de
ϕ dans la base BB′,B. Alors pour k = 1, · · · , d le d′-uplet

(mi,k)i󰃑d′

sont les coordonnees de ϕ(ek) dans la base B′:

(6.3.1) ϕ(ek) =
󰁛

i󰃑d′

mikfi.

Preuve: On a

ϕ(ek) = (
󰁛󰁛

i,j

mijEij)(ek) =
󰁛󰁛

i,j

mijEij(ek) =
󰁛

i󰃑d′

mikfi.

□
Soit v ∈ V un vecteur de coordonnees (xj)j󰃑d dans la base B. Calculons les coordonnees (yi)i󰃑d′

de ϕ(v) ∈ W dans la base B′:

Proposition 6.8. Avec les notations precedentes, si v =
󰁓d

j=1 xjej , on a

ϕ(v) =

d′󰁛

i=1

yifi avec yi =

d󰁛

j=1

mij .xj .
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Preuve: on a

v =
󰁛

j󰃑d

xjej , ϕ(v) =
󰁛

i󰃑d′

yifi

et

ϕ(ej) =
󰁛

i󰃑d′

mijfi.

Ainsi on a

ϕ(v) =
󰁛

j󰃑d

xjϕ(ej) =
󰁛

j󰃑d

xj(
󰁛

i󰃑d′

mijfi) =
󰁛

i󰃑d′

(
󰁛

j󰃑d

mij .xj).fi

On a donc

yi =
󰁛

j󰃑d

mij .xj .

□

6.3.2. Combinaison lineaire d’applications lineaires.

Proposition 6.9. Soit

ϕ,ψ : V 󰀁→ W

deux applications lineaires et (mij)i󰃑d′,j󰃑d, (nij)i󰃑d′,j󰃑d leurs coordonnees dans la base BB′,B. Pour
tout λ ∈ K, λ.ϕ+ ψ est lineaire et ses coordonnees dans la base BB′,B sont donnees par

(λ.mij + nij)i󰃑d′,j󰃑d.

Preuve: En effet pour tout EV E et toute base BE de E et tout vecteur g ∈ BE de cette base, la
fonction coordonnee g∗ : E 󰀁→ K qui a un element associe sa coordonne suivant le vecteur g est une
forme lineaire. On applique cela a Hom(V,W ) et aux vecteurs de la base BB′,B.

Alternativement on a la formule

mij(ϕ) = f∗i (ϕ(ej))

et l’application

ϕ 󰀁→ f∗i (ϕ(ej)) ∈ K

est lineaire:

mij(λϕ+ ψ) = f∗i ((λϕ+ ψ)(ej)) = f∗i (λϕ(ej) + ψ(ej)) =

λf∗i (ϕ(ej)) + f∗i (ψ(ej)) = λmij(ϕ) +mij(ψ).

□

6.3.3. Composition d’ applications lineaires. Soient U, V,W trois espaces vectoriels. Soient
deux applications lineaires

ϕ : U 󰀁→ V, ψ : V 󰀁→ W et ψ ◦ ϕ : U 󰀁→ W

leur composee. Soient

B = {ek, k 󰃑 d},B′ = {fj , j 󰃑 d′},B′′ = {gi, i 󰃑 d′′}

des bases de U, V et W , on dispose alors de bases

BB′,B = {e∗k.fj}, BB′′,B′ = {f∗j .gi}, BB′′,B = {e∗k.gi}

pour

Hom(U, V ), Hom(V,W ), Hom(U,W ),
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Théorème 6.5. Soient (njk)j󰃑d′,k󰃑d les coordonnees de ϕ dans la base BB′,B et (mij)i󰃑d′′,j󰃑d′

les coordonnees de ψ dans la base BB′′,B′ . Alors les coordonnees (lik)i󰃑d′′,k󰃑d de ψ ◦ ϕ dans la base
BB′′,B sont donnees par

lik =

d′󰁛

j=1

mij .njk.

Preuve: Ecrivons

ϕ =
󰁛󰁛

j󰃑d′,k󰃑d

njke
∗
k.fj , ψ =

󰁛󰁛

j󰃑d′,i󰃑d′′

mijf
∗
j .gi.

On a pour tout k 󰃑 d et j 󰃑 d′

ϕ(ek) =
󰁛

j󰃑d′

njkfj , ψ(fj) =
󰁛

i󰃑d′′

mijgi

et

ψ(ϕ(ek)) =
󰁛

j󰃑d′

njkψ(fj) =
󰁛

j󰃑d′

njk

󰁛

i󰃑d′′

mijgi =
󰁛

i󰃑d′′

(
󰁛

j󰃑d′

mijnjk).gi =
󰁛

i󰃑d′′

lik.gi

Ainsi

lik =
󰁛

j󰃑d′

mijnjk.

□

6.3.4. Application lineaire duale. Soit ϕ : V 󰀁→ W une application lineaire et ℓ′ : W → K
une forme lineaire. Alors la composee

ℓ′ ◦ ϕ : v ∈ V → ℓ(ϕ(v)) ∈ K

est une forme lineaire sur V . On la note

ϕ∗(ℓ′) := ℓ′ ◦ ϕ.
En effet ϕ∗(ℓ′) est a valeurs dans K et est lineaire comme composee de deux applications lineaires.

Remarque 6.3.1. Avec nos notations, on a la formule dite d’ adjonction : pour tout v ∈ V, ℓ′ ∈
W ∗ on a

(6.3.2) ℓ′(ϕ(v)) = ϕ∗(ℓ′)(v).

Ainsi a toute forme lineaire ℓ′ ∈ W ∗ on a associe une forme lineaire ϕ∗(ℓ′) ∈ V ∗ a l’aide de ϕ.

Définition 6.9. Soit ϕ : V 󰀁→ W une application lineaire. L’application duale ϕ∗ de ϕ est
l’application

ϕ∗ : W ∗ 󰀁→ V ∗

qui associe a une forme lineaire ℓ′ : w ∈ W 󰀁→ ℓ′(w) ∈ K, la forme lineaire sur V obtenue par
pre-composition par ϕ:

ϕ∗(ℓ′) := ℓ′ ◦ ϕ :
V 󰀁→ K
v 󰀁→ ℓ(ϕ(v))

.

Exemple 6.3.1. Soit U ⊂ V un SEV d’un EV V alors l’injection

ιU : u ∈ U ↩→ u ∈ V

est lineaire et son application lineaire duale

ι∗U = ℓ|U : ℓ ∈ V ∗ 󰀁→ ℓ|U ∈ U∗

est simplement la restriction de ℓ a U :

ι∗U (ℓ)(u) = ℓ(ιU (u)) = ℓ(u).
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Proposition 6.10. L’application duale

ϕ∗ : ℓ′ ∈ W ∗ 󰀁→ ℓ ◦ ϕ ∈ V ∗

est lineaire:

ϕ∗ ∈ HomK(W ∗, V ∗).

Preuve: Soit ℓ′1, ℓ
′
2 ∈ W ∗ et λ ∈ K, on veut montrer que

ϕ∗(λ.ℓ′1 + ℓ′2) = λϕ∗(ℓ′1) + ϕ∗(ℓ′2).

Pour tout v ∈ V on a

ϕ∗(λ.ℓ′1 + ℓ′2)(v) = (λ.ℓ′1 + ℓ′2)(ϕ(v)) = λ.ℓ′1(ϕ(v)) + ℓ′2(ϕ(v)) = λϕ∗(ℓ′1)(v) + ϕ∗(ℓ′2)(v).

□
On laisse en exercice la preuve des proprietes fonctionnelles de l’application duale.

Exercice 6.6. Soit ϕ : V 󰀁→ W une application lineaire entre deux espaces de dimensions finies.

(1) (Linearite) Montrer que l’application

•∗ : ϕ ∈ Hom(V,W ) 󰀁→ ϕ∗ ∈ Hom(W ∗, V ∗)

qui a une application lineaire associe l’application lineaire duale est elle meme lineaire:

(λϕ+ ϕ′)∗ = λϕ∗ + ϕ′∗

En d’autres termes

•∗ ∈ Hom(Hom(V,W ),Hom(W ∗, V ∗)).

(2) (Anti-morphisme) Soit ψ : W 󰀁→ Z. Montrer que

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

(3) (Involutivite) Montrer que si le bi-dual V ∗∗ est identifie (canoniquement) a V via l’isomorphisme

eval• : v ∈ V 󰀁→ (ℓ 󰀁→ ℓ(v)) ∈ V ∗∗

alors la duale de la duale qu’une application est l’application elle-meme:

(ϕ∗)∗ = ϕ.

Remarque 6.3.2. La propriete d’adjonction s’ecrit de la maniere suivante en termes des accou-
plements canoniques de V et W : rappelons les notations

〈•, •〉can,V : (ℓ, v) 󰀁→ 〈ℓ, v〉can,V = ℓ(v) ∈ K.

〈•, •〉can,W : (ℓ′, w) 󰀁→ 〈ℓ′, w〉can,W = ℓ′(w) ∈ K.

On a pour v ∈ V, ℓ′ ∈ W ∗

〈ℓ′,ϕ(v)〉can,W = 〈ϕ∗(ℓ′), v〉can,V

Le resultat suivant calcule les coefficient de l’application duale.

Théorème 6.6. Soit ϕ : V 󰀁→ W une application lineaire et ϕ∗ : W ∗ → V ∗ l’application lineaire
duale; soient B et B′ des bases de V et V ′ et (mij)i󰃑d′,j󰃑d les coefficients de ϕ dans la base BB′,B;
soient (m∗

ji)j󰃑d,i󰃑d′ les coefficients de ϕ∗ dans la base

BB∗,B′∗ ⊂ Hom(W ∗, V ∗)

associee aux bases duales B∗ ⊂ V ∗ et B′∗ ⊂ W ∗. On a

m∗
ji = mij , i 󰃑 d′, j 󰃑 d.
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Preuve: Soient (m∗
ji)j󰃑d,i󰃑d′ les coefficients de ϕ∗ relatifs aux bases B∗, B′∗. Par la formule

generale (6.3.1) appliquees a ϕ∗, on a pour i = 1, · · · , d′

ϕ∗(f∗i ) =

d󰁛

j=1

m∗
jie

∗
j .

On va calculer les m∗
ji en evaluant cette forme lineaire ϕ∗(f∗i ) sur les vecteurs ej′ , j

′ 󰃑 d: on a d’une
part (par definition de l’application duale)

ϕ∗(f∗i )(ej′) = f∗i (ϕ(ej′)) = f∗i (

d′󰁛

i′=1

mi′j′fi′) =

d′󰁛

i′=1

mi′j′f
∗
i (fi′) = mij′

car f∗i (fi′) = δi=i′ et donc un seul terme survit dans la somme precedente. D’autre part, on a

ϕ∗(f∗i )(ej′) =

d󰁛

j=1

m∗
jie

∗
j (ej′) = m∗

j′i

car e∗j (ej′) = δj=j′ et donc un seul terme survit dans la somme precedente. Ainsi pour tout i 󰃑
d′, j′ 󰃑 d on a

m∗
j′i = mij′ .

□

Remarque 6.3.3. Voici une autre presentation de la meme preuve si on est a l’aise avec le
bidual. On a vu que si on identifie V ∗∗ a V via l’isomorphisme

eval• : v 󰀁→ evalv : ℓ 󰀁→ ℓ(v),

alors la base duale de la base duale est la base elle-meme:

B∗∗ = B, B′∗∗ = B′.

On a vu egalement que

m∗
j,i = e∗∗j (ϕ∗(f∗i )).

Par definition de e∗∗j , puis de ϕ∗ on a

e∗∗j (ϕ∗(f∗i )) = ϕ∗(f∗i )(ej) = f∗i (ϕ(ej)) = mi,j .

Théorème 6.7 (Rang de l’application duale). Soit ϕ : V 󰀁→ W une application lineaire et
ϕ∗ : W ∗ 󰀁→ V ∗ sa duale, alors on a

rg(ϕ) = dim(Imϕ) = dim(Imϕ∗) = rg(ϕ∗).

Preuve: Soit r = dim(Imϕ) et

{f1 = ϕ(e1), · · · , fr = ϕ(er)} ⊂ W

une base de Imϕ. On complete cette base en une base de W

B′ = {fi, i 󰃑 d′} ⊂ W.

D’autre part on a vu dans la preuve du Thm Noyau-Image que si

{er+1, · · · , ed−r} ⊂ ker(ϕ)

est une base du noyau de ϕ alors

B = {e1, · · · , er, er+1, · · · , ed}
est une base de V .

On a

rg(ϕ∗) = dim{Vect{ϕ∗(f∗1 ), · · · ,ϕ∗(f∗d′)}.
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Ecrivons pour i = 1, · · · , d′

ϕ∗(f∗i ) =

d󰁛

j=1

m∗
jie

∗
j .

Par le Theoreme 6.6, on a

ϕ∗(f∗i ) =

d󰁛

j=1

mije
∗
j

avec mij defini par (cf. (6.3.1))

ϕ(ej) =

d′󰁛

i=1

mijfi.

Si j > r alors ej ∈ ker(ϕ) et ϕ(ej) = 0W : ∀i 󰃑 d′, mij = 0 et donc

∀i 󰃑 d′, ϕ∗(f∗i ) =

r󰁛

j=1

mije
∗
j .

Ainsi
Vect{ϕ∗(f∗1 ), · · · ,ϕ∗(f∗d′)} ⊂ Vect{e∗1, · · · , e∗r}.

De plus, on a pour i 󰃑 r

ϕ∗(f∗i ) =

r󰁛

j=1

mije
∗
j

avec
mij = f∗i (ϕ(ej)) = f∗i (fj) = δi=j .

Ainsi si i 󰃑 r, on a
ϕ∗(f∗i ) = e∗i

et
Im(ϕ∗) = Vect{e∗i , i 󰃑 r}.

Comme la famille {e∗i , i 󰃑 r} est libre l’espace engendre est de dimension r. □





CHAPITRE 7

Matrices

- M: Do you know what I’m talking about ?
- N: The Matrix ?
- M: Do you want to know what IT is ?

The Matrix is everywhere. It is all around us.
Even now, in this very room.

7.1. Matrices et applications lineaires

Soient V , W des EVs de dimensions finies munis de bases

B = {ej , j 󰃑 d},B′ = {fi, i 󰃑 d′}.

Alors on a des isomorphismes d’espaces vectoriels

CLB : Kd ≃ V, CLB′ : Kd′
≃ W

qui permettent d’identifier V et W aux espaces produits Kd et Kd′
et d’identifier des vecteurs v ∈ V

et w ∈ W avec des uplets

(xj)j󰃑d = (x1, · · · , xd) ∈ Kd, (yi)i󰃑d′ = (y1, · · · , yd′) ∈ Kd′
.

On dispose egalement d’une base

BB′,B = {Eij = e∗j .fi, i 󰃑 d′, j 󰃑 d}

de HomK(V,W ) de sorte que l’application

(7.1.1) CLBB′,B : (mij)i󰃑d′,j󰃑d ∈ (Kd′
)d 󰀁→ ϕ =

󰁛󰁛

i󰃑d′,j󰃑d

mijEij ∈ HomK(V,W )

est un isomorphisme d’espaces vectoriels entre (Kd′
)d et HomK(V,W ); cet isomorphisme permet

d’identifier toute application lineaire ϕ avec un d′ × d uplet (mij)i󰃑d′,j󰃑d.

Définition 7.1. L’espace vectoriel (Kd′
)d s’appelle l’espace des matrices de dimension d′ × d a

coefficients dans K et est note

Md′×d(K) = {(mij)i󰃑d′,j󰃑d, mij ∈ K}.

Un element de Md′×d(K) est appelle matrice de dimensions d′ × d ou juste une matrice d′ × d.

On a coutume de representer une matrice (mij)i󰃑d′,j󰃑d comme un ”tableau” de dimension 2
possedant d′ lignes et d colonnes: ainsimij est le coefficient de ce tableau qui se trouve a l’intersection
de la i-ieme ligne et de la j-ieme colonne compte a partir du coin superieur gauche.

M = (mij)i󰃑d′,j󰃑d =

󰀳

󰁅󰁅󰁅󰁃

m11 m12 · · · m1d

m21 m22 · · · m2d

...
... · · ·

...
md′1 md′2 · · · md′d

󰀴

󰁆󰁆󰁆󰁄
.

109
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Remarque 7.1.1. Habituellement quand on repere un point dans le plan, la premiere coordonnee
i donne la ”position horizontale” et la seconde j la ”position verticale”. On prend ici la convention
symetrique et il y a de bonnes rasions pour cela notamment lies au sens de l’ecriture gauche-droite.

Définition 7.2. Soient B ⊂ V, B′ ⊂ W des bases comme ci-dessous et BB′,B ⊂ Hom(V,W )

la base de Hom(V,W ) associee. L’application reciproque CL−1
BB′,B

sera egalement notee

matB′,B : Hom(V,W ) 󰀁→ Md′×d(K).

Explicitement, si on la la decomposition ϕ =
󰁓󰁓

i󰃑d′,j󰃑d

mij(ϕ)Eij alors on a

matB′,B(ϕ) = (mij(ϕ))i󰃑d′,j󰃑d =

󰀳

󰁅󰁅󰁅󰁃

m11 m12 · · · m1d

m21 m22 · · · m2d

... · · ·
...

md′1 md′2 · · · md′d

󰀴

󰁆󰁆󰁆󰁄
.

La matrice matB′,B(ϕ) est appellee matrice associee a ϕ dans les bases B,B′. Rappelons que pour
tout 1 󰃑 j 󰃑 d, (mi,j(ϕ))i󰃑d′ est l’ensemble des coordonnees de l’image ϕ(ej) de ej ∈ B dans la
base B′: ie.

ϕ(ej) =
󰁛

1󰃑i󰃑d′

mij(ϕ)fi.

Exemple 7.1.1. Soit V = R3, W = R2 et prenons les bases canoniques

B = B0
3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, B′ = B0

2 = {(1, 0), (0, 1)}.

On dispose de 6 applications lineaires elementaires

E11, E12, E13, E21, E22, E23

et par exemple

E12(x, y, z) = y(1, 0) = (y, 0), E23(x, y, z) = z(0, 1) = (0, z).

Soit l’application lineaire de ϕ : R3 → R2 donnee par

ϕ(x, y, z) = (2x+ 4y, y + 3z)

alors

ϕ = 2E11 + 0E21 + 4E12 + E22 + 0E13 + 3E23

et la matrice associee a ϕ vaut

matB0
2,B0

3
(ϕ) =

󰀕
2 4 0
0 1 3

󰀖
.

7.1.0.1. Matrice nulle. Si ϕ = 0W alors

matB′,B(0W ) = (0K)i,j =

󰀳

󰁅󰁅󰁅󰁃

0 0 · · · 0
0 0 · · · 0
... · · ·

...
0 0 · · · 0

󰀴

󰁆󰁆󰁆󰁄
= 0d′×d

est la matrice nulle.



7.1. MATRICES ET APPLICATIONS LINEAIRES 111

7.1.0.2. Matrices elementaires. Une base de Md′×d(K) est obtenue en transportant une base de
HomK(V,W ) via cet isomorphisme, en particulier la base des applications elementaires

Eij = e∗j .fi.

On note Eij = matB,B′(Eij) la matrice correspondante qu’on appelle matrice elementaire. Ainsi,
Eij est la matrice dont le coefficient a l’intersection de la i-ieme ligne et de la j-ieme colonne vaut
1 et tous les autres coefficients sont nuls: pour k 󰃑 d′, l 󰃑 d, on a

Eij,kl = δk=i.δl=j .

L’ ensemble des matrices elementaires

B0
d′×d := {Eij , i 󰃑 d′, j 󰃑 d}

est forme une base de Md′×d(K) qu’on appelle la base canonique de Md′×d(K).
La base duale de la base canonique dans l’espace des formes lineaires

Md′×d(K)∗ = Hom(Md′×d(K),K)

est notees
B0,∗
d′×d := {E∗

ij , i 󰃑 d′, j 󰃑 d}.
Pour i 󰃑 d′, j 󰃑 d et m ∈ Md′×d(K) une matrice,

E∗
ij(m) = mij ,

est le (i, j)-ieme coefficient de m.
7.1.0.3. Matrices carrees. Si d′ = d on dit que la matrice est carree et notera l’espaces des

matrices carrees de taille d par
Md(K) = Md×d(K).

Ces matrices codent les applications lineaires de Hom(V,W ) si dimV = dimW . En particulier si
V = W les elements de l’algebre des endomorphismes End(V ) sont codes par des matrices carrees.

7.1.0.4. Matrice Identite. Si V = W , B = B′ et ϕ = IdV est l’identite alors

(7.1.2) matB,B(IdV ) =

󰀳

󰁅󰁅󰁅󰁃

1 0 · · · 0
0 1 · · · 0
... · · ·

...
0 0 · · · 1

󰀴

󰁆󰁆󰁆󰁄
= (δi=j)i,j =: Idd ∈ Md×d(K).

est appelee matrice identite de rang d et est notee Idd.

Remarque 7.1.2. En revanche si B′ ∕= B la matrice matB′,B(IdV ) n’est pas egale a la matrice
identite Idd.

7.1.0.5. Matrices scalaires. Plus generalement notons pour λ ∈ K

[×λ] :
V 󰀁→ V
v 󰀁→ λ.v

l’application lineaire de multiplication par le scalaire λ.
Sa matrice associee matB,B([×λ]) vaut

λ.Idd = λ.

󰀳

󰁅󰁅󰁅󰁃

1 0 · · · 0
0 1 · · · 0
... · · ·

...
0 0 · · · 1

󰀴

󰁆󰁆󰁆󰁄
=

󰀳

󰁅󰁅󰁅󰁃

λ 0 · · · 0
0 λ · · · 0
... · · ·

...
0 0 · · · λ

󰀴

󰁆󰁆󰁆󰁄
.

Elle est appellee matrice scalaire associee a λ. On note

K.Idd = {λ.Id, λ ∈ K} ⊂ Md(K)

l’ensemble des matrices scalaires. C’est un SEV de dimension 1 isomorphe a K et de base la matrice
identite{Idd}.
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7.1.0.6. Matrices colonnes.

Md′×1(K) =: Cold′(K)

sont des matrices ”colonnes” de hauteur d′. on posera

Col((xi)i󰃑d′) =

󰀳

󰁅󰁅󰁅󰁃

x1

x2

...
xd′

󰀴

󰁆󰁆󰁆󰁄
.

7.1.0.7. Matrices lignes. Les element de

M1×d(K) =: Ligd(K)

sont des matrices ”lignes” de longueur d: on posera

Lig((xj)j󰃑d) =
󰀃
x1, · · · , xd

󰀄

qui n’est autre que l’application identite de l’espace des matrices lignes.

Définition 7.3. Soient B ⊂ V une base. Soit

v = x1.e1 + · · ·+ xd.ed ∈ V

un vecteur decompose dans la base B. Alors la matrices

ColB(v) =

󰀳

󰁅󰁅󰁅󰁃

x1

x2

...
xd

󰀴

󰁆󰁆󰁆󰁄
, LigB(v) =

󰀃
x1 · · · xd

󰀄

sont appellees respectivement

– la matrice colonne associee a v dans la base B,
– La matrice ligne associee a v dans la base B,

Ces applications sont des isomorphisme entre V et Cold(K) et Ligd(K).

7.1.0.8. Colonnes et lignes extraites d’une matrice.

Définition 7.4. Soit une matrice

M =

󰀳

󰁅󰁅󰁅󰁃

m11 m12 · · · m1d

m21 m22 · · · m2d

... · · ·
...

md′1 md′2 · · · md′d

󰀴

󰁆󰁆󰁆󰁄
∈ Md′×d(K).

Pour j 󰃑 d (resp. i 󰃑 d′), la j-ieme colonne de M (resp. la i-ieme ligne de M) est la matrice
colonne (resp. ligne)

Colj(M) =

󰀳

󰁅󰁅󰁅󰁃

m1j

m2j

...
md′j

󰀴

󰁆󰁆󰁆󰁄
∈ Cold′(K), resp. Ligi(M) =

󰀃
mi1 mi2 · · · mid

󰀄
∈ Ligd(K)

Exemple 7.1.2. Si

M = (mij)i󰃑d′,j󰃑d = matB′B(ϕ)
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alors on a vu que pour j 󰃑 d les coordonnees de ϕ(ej) dans la base B′ sont donnees par le vecteur
ligne (mij)i󰃑d′ dont le vecteur colonne associe est la j-ieme colonne de la matrice M :

Colj(M) =

󰀳

󰁅󰁅󰁅󰁃

m1j

m2j

...
md′j

󰀴

󰁆󰁆󰁆󰁄
.

7.2. Structure des espaces de matrices

7.2.1. Addition et multiplication par les scalaires. Les espaces de matrices Md′,d(K) sont
naturellement des K-ev pour les lois d’addition et de multiplication par les scalaires evidentes: si

M =

󰀳

󰁅󰁅󰁅󰁃

m11 m12 · · · m1d

m21 m22 · · · m2d

...
... · · ·

...
md′1 md′2 · · · md′d

󰀴

󰁆󰁆󰁆󰁄
, M ′ =

󰀳

󰁅󰁅󰁅󰁃

m′
11 m′

12 · · · m′
1d

m21 m22 · · · m2d

...
... · · ·

...
m′

d′1 m′
d′2 · · · m′

d′d

󰀴

󰁆󰁆󰁆󰁄
∈ Md′×d(K)

λ.M +M ′ = (λ.mij +m′
ij)ij =

󰀳

󰁅󰁅󰁅󰁃

λ.m11 +m′
11 λ.m12 +m′

12 · · · λ.m1d +m′
1d

λ.m21 +m′
21 λ.m22 +m′

22 · · · λ.m2d +m′
2d

...
... · · ·

...
λ.md′1 +m′

d′1 λ.md′2 +m′
d′2 · · · λ.md′d +m′

d′d

󰀴

󰁆󰁆󰁆󰁄

de sorte que l’application

matB′,B : ϕ ∈ Hom(V,W ) 󰀁→ matB′,B(ϕ) ∈ Md′×d(K)

est un isomorphisme de K-ev.
Il est facile de verifier que les applications lignes et colonnes

Coli : Md′×d(K) 󰀁→ Cold′(K), Ligj : Md′×d(K) 󰀁→ Ligd(K)

sont lineaires.

7.2.2. Multiplication de matrices. Soient U, V,W trois espaces vectoriels munis de bases

B = {ek, k 󰃑 d},B′ = {fj , j 󰃑 d′},B′′ = {gi, i 󰃑 d′′}.

On dispose alors de bases

BB′,B = {e∗k.fj}, BB′′,B′ = {f∗j .gi}, BB′′,B = {e∗k.gi}

pour

HomK−ev(U, V ), HomK−ev(V,W ), HomK−ev(U,W ).

Soient

ϕ : U 󰀁→ V, ψ : V 󰀁→ W

deux applications lineaires et

ψ ◦ ϕ : U 󰀁→ W

leur composee.
Soient alors

N := matB′,B(ϕ) = (njk)j󰃑d′,k󰃑d ∈ Md′×d(K)

et

M := matB′′,B′(ψ) = (mij)i󰃑d′′,j󰃑d′ ∈ Md′′×d′(K)

et

L := matB′′,B(ψ ◦ ϕ) = (lik)i󰃑d′′,k󰃑d ∈ Md′′×d(K)
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Figure 1. Calcul des coordonnees du produit de deux matrices

On a vu (Thm 6.5) que les (lik)i󰃑d′′,k󰃑d pouvaient s’exprimer en fonction des (mij)i󰃑d′′,j󰃑d′ et
des (njk)j󰃑d′,k󰃑d. Plus precisement, on a

lik =

d′󰁛

j=1

mij .njk.

On definit ainsi une loi de multiplication (externe) sur les espaces de matrices en posant:

Définition 7.5. Soient d, d′, d′′ 󰃍 1 et M ∈ Md′′×d′(K), N ∈ Md′×d(K), on defini le produit
des matrices M et N comme etant la matrice

L := M.N ∈ Md′′×d(K)

avec

L = (lik)i󰃑d′′,k󰃑d ∈ Md′′×d(K) et lik :=

d′󰁛

j=1

mij .njk.

Soient d, d′, d′′ 󰃍 1, on a donc defini une application ”produit de matrices”

(7.2.1) • .• :
Md′′×d′(K)×Md′×d(K) 󰀁→ Md′′×d(K)

(M,N) 󰀁→ L = M.N
.

Remarque 7.2.1. Notons que ce produit est entre deux espaces de matrices de tailles qui peuvent
etre differentes d′′ × d′ et d′ × d(!) et a valeurs dans un troisieme espace de matrices dont les tailles
peuvent encore etre differente (ie d′′ × d). La contrainte la plus importantw est que la deuxieme
dimension (d′) du premier espace de matrices soit egale a la premiere dimension du premier espace
de matrices . La resultat est a valeurs dans l’espace des matrices de tailles les deux dimensions
”extremes” (ie d′′ × d).

Exemple 7.2.1. Quelques cas particuliers importants:

– Si d = 1: on dispose d’une multiplication ”externe” (a gauche) a valeurs dans les matrices
colonnes: on a Md′×1(K) = Cold′(K) et donc

•.• : Md′′×d′(K)× Cold′(K) 󰀁→ Cold′′(K).

– Si d′′ = d′ = d : les matrices sont toutes carrees et on dispose d’une multiplication ”interne”
sur l’espace des matrices carrees de taille d:

•× • : Md(K)×Md(K) 󰀁→ Md(K).
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Théorème 7.1 (Proprietes fonctionelles du produit de matrices). Soient d, d′, d′′ 󰃍 1 et Md′′×d′(K),
Md′×d(K), Md′′×d(K) les espaces de matrices correspondants.

L’application ”produit de matrices”

Md′′×d′(K)×Md′×d(K) 󰀁→ Md′′×d(K)
(M,N) 󰀁→ M.N

a les proprietes suivantes

(1) Distributive a gauche: pour λ ∈ K, M,M ′ ∈ Md′′×d′(K), N ∈ Md′×d(K),

(λ.M +M ′).N = λ.M.N +M ′.N.

(2) Distributive a droite: pour λ ∈ K, M ∈ Md′′×d′(K), N,N ′ ∈ Md′×d(K),

M.(λ.N +N ′) = λ.M.N +M.N ′.

(3) Neutralite de l’identite: pour M ∈ Md′′×d′(K),

Idd′′ .M = M, M.Idd′ = M

(4) La matrice nulle est absorbante: pour M ∈ Md′′×d′(K),

0d′′′d′′ .M = 0d′′′d′ , M.0d′d = 0d′′d.

(5) Associativite: Soit d′′′ 󰃍 1 et L ∈ Md′′′×d′′(K), M ∈ Md′′×d′(K), N ∈ Md′×d(K) alors

(L.M).N = L.(M.N) ∈ Md′′′×d(K)

Preuve: On demontre ces enonces soit par un calcul direct, soit sans faire de calcul mais en
interpretant la produit de matrices en terme de composition d’applications lineaires. On utilise le
Theoreme 7.2 ci-dessous et les proprietes d’associativite et de distributivite des applications lineaires
par rapport a la composition et l’addition (qu’on a plus ou moins vu precedement) et qu’on liste
dans le Theoreme 7.2.2 . □

Le Theorem ci-dessous est une tautologie puisqu’on a defini le produit des deux matrices pre-
cisement pour etre compatible avec la composition d’applications lineaires.

Théorème 7.2. Soit U, V,W des espaces vectoriels de dimensions d, d′, d′′ et B,B′,B′′ des
bases. Soient des applications lineaires

ϕ : U 󰀁→ V, ψ : V 󰀁→ W.

On note les coefficients des matrices de ϕ,ψ et ψ ◦ ϕ dans les bases adequates par

matB′,B(ϕ) = (njk)jk, matB′′,B′(ψ) = (mij)ij

matB′′,B(ψ ◦ ϕ) = (lik)ik

alors on a

(7.2.2) matB′′,B(ψ ◦ ϕ) = matB′′,B′(ψ).matB′,B(ϕ)

Autrement dit on a
󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

l11 · · · l1d
l21 · · · l2d
... · · ·

...
... · · ·

...
ld′′1 · · · ld′′d

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
=

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

m11 m12 · · · m1d′

m21 m22 · · · m2d′

...
... · · ·

...
...

... · · ·
...

md′′1 md′′2 · · · md′′d′

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
.

󰀳

󰁅󰁅󰁅󰁃

n11 · · · n1d

n21 · · · n2d

... · · ·
...

nd′1 · · · nd′d

󰀴

󰁆󰁆󰁆󰁄

Le resultat suivant est obtenu en demontrant l’egalite de diverses applications lineaires en veri-
fiant que deux application prennent la meme valeurs pour tout vecteur de l’espace de depart.
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Théorème (Proprietes fonctionelles de la composition des applications lineaires). Soient U, V,W,Z
des espaces vectoriels de dimensions finies.

L’application ”composition”

• ◦ • :
HomK(V,W )×HomK(U, V ) 󰀁→ HomK(U,W )

(ψ,ϕ) 󰀁→ ψ ◦ ϕ

a les proprietes suivantes

(1) Distributive a gauche: pour λ ∈ K, ψ,ψ′ ∈ HomK(V,W ), ϕ ∈ HomK(U, V ),

(λ.ψ + ψ′) ◦ ϕ = λ.ψ ◦ ϕ+ ψ′ ◦ ϕ.

(2) Distributive a droite: pour λ ∈ K, ψ ∈ HomK(V,W ), ϕ,ϕ′ ∈ HomK(U, V ),

ψ ◦ (λ.ϕ+ ϕ′) = λ.ψ ◦ ϕ+ ψ ◦ ϕ′.

(3) Neutralite de l’identite: pour ψ ∈ HomK(V,W ),

IdW ◦ ψ = ψ, ψ ◦ IdV = ψ.

(4) L’application lineaire nulle est absorbante: soit Z un K-ev et

0Z : W 󰀁→ Z, 0′Z : V 󰀁→ Z, 0W : V 󰀁→ W, 0′W : U 󰀁→ W, 0V : U 󰀁→ V

les applications constantes nulles; on a pour ψ ∈ HomK(V,W ),

0Z ◦ ψ = 0′Z , ψ ◦ 0V = 0W .

(5) Associativite: Soit θ ∈ HomK(W,Z), ψ ∈ HomK(V,W ), ϕ ∈ HomK(U, V ) alors

(θ ◦ ψ) ◦ ϕ = θ ◦ (ψ ◦ ϕ) ∈ HomK(U,Z)

7.2.2.1. Image de vecteurs. La multiplication matricielle permet egalement de calculer l’image
d’un vecteur par une application lineaire:

Proposition 7.1. Soit B ⊂ V, B′ ⊂ W des bases, v ∈ V un vecteur de coordonnees (xj)j󰃑d

dans la base B (ie. v = x1.e1 + · · ·+ xd.ed) et (yi)i󰃑d′ les coordonnees de ϕ(v) dans la base B′ (ie.
ϕ(v) = y1.f1 + · · ·+ yd′ .fd′). On associe a v et ϕ(v) leurs matrices colonnes (de hauteurs d et d′=

ColB(v) =

󰀳

󰁅󰁅󰁅󰁃

x1

x2

...
xd

󰀴

󰁆󰁆󰁆󰁄
, ColB′(ϕ(v)) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

y1
y2
...
...
yd′

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄

alors on a la relation

ColB′(ϕ(v)) = matB′,B(ϕ).ColB(v).

Autrement dit si matB′,B(ϕ) = (mij)i󰃑d′,j󰃑d, on a

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

y1
y2
...
...
yd′

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
=

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

m11 m12 · · · m1d

m21 m22 · · · m2d

...
... · · ·

...
...

... · · ·
...

md′1 md′2 · · · md′d

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
.

󰀳

󰁅󰁅󰁅󰁃

x1

x2

...
xd

󰀴

󰁆󰁆󰁆󰁄
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7.2.2.2. Produit de matrices elementaires.

Proposition 7.2. Soit Eij ∈ Md′′×d′ et Ej′k ∈ Md′×d alors

Eij .Ej′k = δj=j′Eik.

Preuve: On raisonne en terme d’applications lineaires elementaires Eij , Ej′k: on a

Eij ◦ Ej′k(ek′) = Eij(δk′=kfj′) = δk′=kδj=j′gi = δj=j′Eik(ek′).

□
7.2.2.3. Le cas des isomorphis mes. On considere le cas ou ϕ : U 󰀁→ V est un isomorphisme et

ψ = ϕ−1 : V 󰀁→ W = U est l’application reciproque. En particulier U et V sont de meme dimension:
d = d′ = d′′.

Proposition 7.3. soit ϕ : V ≃ W un isomorphisme lineaire et ϕ−1 : W 󰀁→ V la reciproque. On
a les relations

matB,B′(ϕ−1).matB′,B(ϕ) = Idd,

matB′,B(ϕ).matB,B′(ϕ−1) = Idd.

En particulier si V = W et ϕ = IdV est l’identite on a

(7.2.3) matB′,B(IdV ).matB,B′(IdV ) = Idd.

Preuve: On applique la relation (7.2.2) a la suite de K-EVs V,W, V , B,B′,B′′ = B et ψ = ϕ−1.
On a donc

ψ ◦ ϕ = IdV , ϕ ◦ ψ = IdW .

On a donc par (7.2.2)

matB,B(IdV ) = matB,B′(ϕ−1).matB′,B(ϕ)

Comme
matB,B(IdV ) = Idd

on obtient
matB,B′(ϕ−1).matB′,B(ϕ) = Idd.

L’autre relation se demontre de la meme maniere. □

7.2.3. Rang d’une matrice. On a defini le rang d’une application lineaire ϕ : V 󰀁→ W comme
etant la dimension de l’image

rg(ϕ) = dimϕ(V ).

Soit M = matB′,B(ϕ) la matrice associee. Comme l’image ϕ(V ) est le SEV engendre par

{ϕ(ej), j 󰃑 d} ⊂ W,

l’image ϕ(V ) s’identifie avec le SEV de l’espace vectoriel des matrices colonnes Cold′(K) engendre
par les j-colonnes de M ,

{Colj(M) = ColB′(ϕ(ej)), j 󰃑 d}.
La dimension de l’ espace engendre par ces matrices colonnes est donc de dimension r = rg(ϕ):

Définition 7.6. Soit M ∈ Md′×d(K), le rang d’une matrice M est la dimension de l’espace
engendre par les d colonnes de M dans Cold′(K):

rg(M) = dimVect({Colj(M), j 󰃑 d}).
Autrement dit rg(M) est la taille maximale d’une sous-famille libre de la famille {Colj(M), j 󰃑 d}
des colonnes de M .

Compte-tenu de la discussion precedente on a

(7.2.4) rg(matB′,B(ϕ)) = rg(ϕ).
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Remarque 7.2.2. On a rg(M) 󰃑 d (puisque d vecteurs engendrent un espace de dimension au
plus d) et

rg(M) 󰃑 d′ = dimCold′(K).

Ainsi

rg(M) 󰃑 min(d, d′).

7.2.3.1. Exemple d’une matrice de rang donne. Soit ϕ : V 󰀁→ W telle que rg(ϕ) = r. Soit

I := {fi = ϕ(ei), i = 1, · · · , r}

une base de Im(ϕ); completons I en une base de W

B′ = I ⊔ {fr+1, · · · , fd′} = {f1, · · · , fd′}

et soit

K = {er+1, · · · , ed} ⊂ ker(ϕ)

une base de ker(ϕ), on a vu que

B = {e1, · · · , er} ⊔ K ⊂ V

est une base de V . On a alors

ϕ(ei) =

󰀫
fi i = 1, · · · , r
0W ı 󰃍 r + 1

et donc

(7.2.5) matB′,B(ϕ) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

1 0 0 · · · · · · 0
0 1 0 · · · 0
0 0 1 0 0

0 · · · · · · 1
...

... · · · · · · · · · 0
0 · · · · · · · · · 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

=

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0
...

Idr
...
...

0 · · · · · · · · · 0
0 · · · · · · · · · 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

=: Id′×d(r)

Il est clair que les r premieres colonnes de la matrice Id′×d(r) forment une famille libre et la matrice
est bien de rang r.

Exercice 7.1. Determiner le rang de la matrice
󰀳

󰁃
1 2 3 4
2 3 4 1
3 4 1 2

󰀴

󰁄

en fonction de la caracteristique du corps K.

7.2.4. Transposition. La transposition est l’application qui transforme une matrice par syme-
trie par rapport a la premiere diagonale i = j:

Définition 7.7. La transposition est l’application des matrices d′ × d vers les matrice d × d′

definie par

t• :
Md′×d(K) 󰀁→ Md×d′(K)

M = (mij)i󰃑d′,j󰃑d 󰀁→ tM = (m∗
ji)j󰃑d,i󰃑d′

,

avec

m∗
ji = mij , j 󰃑 d, i 󰃑 d′.

Autrement dit si

M = (mij)i󰃑d′,j󰃑d,
tM = (m∗

ji)j󰃑d,i󰃑d′ = (mij)j󰃑d,i󰃑d′
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M =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

m11 m12 · · · m1d

m21 m22 · · · m2d

...
... · · ·

...
...

... · · ·
...

md′1 md′2 · · · md′d

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄
, tM =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

m11 m21 · · · · · · md′1

m12 m22 · · · · · · md′2

· · · · ·
...

...
...

...
...

m1d m2d · · · · · · md′d

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄

La transposition est l’operation matricielle qui correspond a prendre la duale d’une application
lineaire.

Rappelons que si V et W sont des K-EV de dimensions finies, a toute application lineaire
ϕ ∈ Hom(V,W ) on associe une application lineaire duale ϕ∗ ∈ Hom(W ∗, V ∗) donnes par

ℓ′ ∈ W ∗ 󰀁→ ϕ∗(ℓ′) = ℓ′ ◦ ϕ : v 󰀁→ ℓ′(ϕ(v)).

Munissons V et W de bases B = {ej , j 󰃑 d} et B′ = {fi, i 󰃑 d′}; les espaces duaux V ∗ et W ∗

sont munis des bases duales B∗ = {e∗j , j 󰃑 d} et B′∗ = {f∗i , i 󰃑 d′}. On rappelle qu’on a demontre
le

Théorème (Matrice de l’application duale). Soit ϕ : V 󰀁→ W une application lineaire et ϕ∗ :
W ∗ → V ∗ sa duale; B et B′ des bases de V et V ′ et

matB′,B(ϕ) = (mij)i󰃑d′,j󰃑d

la matrice de ϕ dans les bases B et B′ et soit

matB∗,B′∗(ϕ∗) = (m∗
ji)j󰃑d,i󰃑d′

la matrice de ϕ∗ dans les bases duales B′∗ ⊂ W ∗ et B∗ ⊂ V ∗ alors on a

m∗
ji = mij , i 󰃑 d′, j 󰃑 d

En d’autres termes

matB∗,B′∗(ϕ∗) = tmatB′,B(ϕ).

Théorème 7.3. (Proprietes fonctionelles de la transposition) La transposition a les proprietes
suivantes:

(1) Linearite:
t
(λ.M +M ′) = λtM + tM ′.

(2) Involutivite:
t
(tM) = M .

(3) Anti-multiplicativite: pour M ∈ Md′′,d′(K), N ∈ Md′,d(K), M.N ∈ Md′′,d(K) et

t
(M.N) = tN.tM.

Preuve: Seul le dernier point est un peu plus difficile: on peut le verifier par un calcul explicite sur
les produits de matrices ou l’obtenir de maniere abstraite. Pour cela on note que si on a

ϕ : U 󰀁→ V, ψ : V 󰀁→ W, ψ ◦ ϕ : U 󰀁→ W

alors on a les applications duales

ϕ∗ : V ∗ 󰀁→ U∗, ψ∗ : W ∗ 󰀁→ V ∗, (ψ ◦ ϕ)∗ : W ∗ 󰀁→ U∗

On a d’autre part la composee

ϕ∗ ◦ ψ∗ : W ∗ 󰀁→ U∗

et il suffira de montrer que

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗

(et de passer aux matrices). On a par definition, pour ℓ′′ ∈ W ∗ et par associativite

(ψ ◦ ϕ)∗(ℓ′′) = ℓ′′ ◦ (ψ ◦ ϕ) = (ℓ′′ ◦ ψ) ◦ ϕ = ϕ∗(ℓ′′ ◦ ψ) = ϕ∗(ψ∗(ℓ′′)) = ϕ∗ ◦ ψ∗(ℓ′′)

□
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Compte tenu de l’interpretation du rang d’une matrice comme rang d’une application lineaire
(cf. (7.2.4)), on deduit du Theoreme 6.7 qui dit que

rg(ϕ) = rg(ϕ∗),

le

Théorème 7.4 (Invariance du rang par transposition). Soit M ∈ Md′×d(K) on a

rg(M) = rg(tM).

Comme la transposee d’une matrice transforme les colonnes en lignes on obtient:

Corollaire 7.1. La rang d’une matrice est egal a la dimension de l’espace Kd engendre par
les vecteurs lignes de M

rg(M) = dimK Vect(Ligj(M), j = 1, · · · , d′).

7.3. L’algebre des matrices carrees

Si d′ = d, on obtient l’espace vectoriel des matrices carres

Md×d(K) = Md(K)

qui est de dimension dimMd(K) = d2.

7.3.1. Structure d’anneau. Comme on l’a vu, la multiplication des matrices

(M,M ′) ∈ Md(K)×Md(K) 󰀁→ M.M ′ ∈ Md(K)

est alors une loi de composition interne et par le Theoreme 7.1, on a

Théorème 7.5. L’espace Md(K) muni de l’addition des matrices et de la multiplication est un
anneau (non-commutatif en general) dont l’element neutre est la matrice carree nulle 0d = 0d×d et
dont l’unite est la matrice identite Idd. De plus la structure de K-EV de Md(K) fait de l’anneau
(Md(K),+, .) une K-algebre (de dimension d2).

On l’appelle l’algebre des matrices carres de dimension d (ou de rang d) sur le corps K (ou a
coefficient dans K).

Remarque 7.3.1. Ici ”dimension d” designe a la taille des matrice, pas a la dimension de l’espace
des matrices Md(K) (qui est d2).

7.3.2. Lien avec l’algebre des endomorphismes. Soit V de dimension d. On rappelle
que l’ensemble des endomorphismes de V , End(V ) = Hom(V, V ) est non seulement un K-espace
vectoriel (pour l’addition des applications lineaires) mais egalement possede une structure d’anneau
(et donc de K-algebre) ou la ”multiplication” est donnee par la composition des endomorphismes:
pour ϕ,ψ ∈ End(V )

ϕ ◦ ψ : V
ψ−→ V

ϕ−→ V.

L’element neutre est l’endomorphisme nul 0V et l’element unite est l’application identite IdV .
Soit B une base de V , on dispose alors d’un isomorphisme d’espaces vectoriels

matB,B : ϕ ∈ End(V ) 󰀁→ matB,B(ϕ) ∈ Md(K).

Pour simplifier les notations on ecrira cet isomorphisme matB (ou juste mat si la base B est implicite)
et la matrice associee a un endomorphisme ϕ sera notee

matB(ϕ) := matB,B(ϕ).

Théorème 7.6. Soit V de dimension finie d et B une base de V , l’application

matB : End(V ) 󰀁→ Md(K)

est un isomorphisme d’anneaux (et donc de K-algebres) pour les lois d’addition et de multiplication
decrites precedemment.
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Preuve: On sait deja que matB est un isomorphisme d’espace vectoriel (et est donc bijectif). Pour
montrer qu’on a un isomorphisme d’anneaux, il suffit de verifier que c’est morphisme d’anneaux
non-nul: on doit verifier que

matB(IdV ) = Idd

ce qu’on a deja vu et que pour ϕ,ψ ∈ End(V )

matB(ϕ ◦ ψ) = matB(ϕ).matB(ψ).

Mais c’est –aux notations pres– un cas particulier pour U = V = W du Theorem 7.2: si matB(ϕ) =
M = (mij)i,j󰃑d et matB(ψ) = N = (nij)i,j󰃑d alors

M.N = L = (lik)i,k󰃑d

avec

lik =
󰁛

j=1···d
mij .njk

et

L = (lik)i,k󰃑d = matB(ϕ ◦ ψ)
par le Thm 6.5. □

Remarque 7.3.2. Comme on a vu, etant donne un endomorphisme ϕ : V 󰀁→ V , on aurait pu
prendre deux bases B,B′ ⊂ V et associer la matrice matB′,B(ϕ) a ϕ. Un des avantages de choisir
B′ = B est que l’identite IdV est alors representee par la matrice identite Idd, mais l’avantage
principal de choisir B′ = B est le Theoreme 7.6.

7.3.2.1. La transposition est un antimorphisme. Si une matrice M est carree d×d sa transposee
tM est encore carree d× d. Compte tenu des proprietes generales de la transposition (cf. Prop 7.3),
on a

Proposition 7.4. La transposition

t• : Md(K) 󰀁→ Md(K)

est un endomorphisme de Md(K) qui est

(1) Involutif:
t
(tM) = M.

(2) En particulier t• est inversible et son inverse est lui-meme:

t
(t•) = IdMd(K), (t•)−1 = t•.

(3) Anti-multiplicatif:
t
(M.N) = tN.tM .

Remarque 7.3.3. On dit que la transposition est un anti-automorphisme d’algebres.

7.3.3. Le groupe lineaire.

Définition 7.8. Soit V un K-EV de dimension finie. Le groupe lineaire de V est le groupe
(pour la composition dans End(V )) des elements inversibles de l’algebre EndK(V ); son element
neutre est l’identite IdV et on note ce groupe

GL(V ) = EndK(V )× = {ϕ : V 󰀁→ V, ϕ est bijectif}.
Soit d 󰃍 1. Le groupe lineaire de rang d sur K est le groupe des matrices carrees inversibles

dans l’algebre Md(K) pour la multiplication des matrices; son element neutre est la matrice identite
Idd et on note ce groupe

GLd(K) = Md(K)× = {M ∈ Md(K), ∃M ′ ∈ Md(K), M.M ′ = M ′.M = Idd}.

On a alors
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Proposition 7.5. L’application matB : End(V ) 󰀁→ Md(K) induit un isomorphisme de groupes

matB : GL(V ) 󰀁→ GLd(K)

et en particulier
matB(ϕ−1) = matB(ϕ)−1.

7.3.3.1. Critere d’inversibilite. Dans EndK(V ), on a le critere d’inversibilite suivant

Théorème 7.7 (Critere d’inversibilite des endomorphismes). Soit ϕ : V 󰀁→ V alors les condi-
tions suivantes son equivalentes:

(1) ϕ est inversible (ie. bijective),
(2) ϕ est injective,
(3) ϕ est surjective,
(4) rg(ϕ) = d,
(5) ϕ transforme une base de V en une famille libre,
(6) ϕ transforme une base de V en une famille generatrice

On en deduit de ce critere et de l’isomorphisme matB : End(V ) ≃ Md(K) le critere d’inversibilite
suivant

Théorème 7.8 (Critere d’inversibilite pour les matrices (via les colonnes)). Soit une matrice
carree M = (mij)i,j󰃑d ∈ Md(K), les conditions suivantes sont equivalentes

(1) M est inversible, ie. M ∈ GLd(V ),
(2) rg(M) = d,
(3) {Coli(M), i = 1, · · · d} forme une famille libre de Cold(K),
(4) {Coli(M), i = 1, · · · d} forme une famille generatrice de Cold(K).

Preuve: On prend V = Kd. La matrice M est la matrice matB0
d
(ϕ) de l’endomorphisme ϕ = ϕM

de Kd qui a un vecteur e0j , j 󰃑 d de la base canonique, associe le vecteur ϕM (ej), j 󰃑 d dont les

coordonnees dans B0
d sont les (mij)i󰃑d.

La matrice M est inversible si et seulement si ϕ est inversible et on applique le critere precedent.
□

Remarque 7.3.4. Notons qu’alors l’inverse de M est la matrice

M−1 = M ′ = matB0
d
(ϕ−1) :

en effet
M.M ′ = matB0

d
(ϕ).matB0

d
(ϕ−1) = matB0

d
(ϕ.ϕ−1) = matB0

d
(IdKd) = Idd

et de meme M ′.M = Idd. Ainsi M ′ est l’inverse de M .

7.3.3.2. Transposition. soit ϕ ∈ End(V ) et ϕ∗ ∈ End(V ∗) sa duale alors

rg(ϕ) = rg(ϕ∗)

et
ϕ ∈ GL(V ) ⇐⇒ ϕ∗ ∈ GL(V ∗).

Cela ce traduit en terme de matrices.
Soit M ∈ Md(K) on a vu que

rg(M) = rg(tM)

et donc M est inversible (de rang d) ssi tM est inversible.
Comme la transposition echange lignes et colonnes on obtient

Théorème 7.9 (Critere d’inversibilite pour les matrices (via les lignes)). Soit une matrice carree
M = (mij)i,j󰃑d ∈ Md(K), les conditions suivantes sont equivalentes

(1) M est inversible, ie. M ∈ GLd(V ),
(2) tM est inversible, ie. tM ∈ GLd(V ),
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(3) rg(tM) = d,
(4) {Ligi(M), i = 1, · · · d} forme une famille libre de Ligd(K),
(5) {Ligi(M), i = 1, · · · d} forme une famille generatrice de Ligd(K).

La transposition appliquee au groupe lineaire a les proprietes suivantes:

Proposition 7.6. La transposition est une bijection de GLd(K) sur lui-meme qui verifie:

∀M,N ∈ GLd(K), (tM)−1 =
t
(M−1),

t
(M.N) = tN.tM.

Preuve: Si M est inversible on a

M.M−1 = M−1.M = Idd

et donc
t
(M.M−1) =

t
(M−1).tM =

t
(M−1.M) =

t
(M−1).

t
(M) =

t
(Idd) = Idd.

Ainsi tM est inversible d’inverse
t
(M−1). □

Exercice 7.2. Soit

M =

󰀕
a b
c d

󰀖

une matrice carree de taille 2.

(1) Calculer M2 et montrer qu’il existe t,∆ ∈ K (qui dependent de M et qu’on calculera) tels
que

M2 − t.M +∆.Id2 = 02.

(2) Montrer que M 󰀁→ t(M) est lineaire: pour λ ∈ K, M,N ∈ M2(K)

t(λ.M +N) = λ.t(M) + t(N).

(3) Montrer que M 󰀁→ ∆(M) est multiplicative:

∆(M.N) = ∆(M).∆(N).

(4) Montrer que M est inversible ssi ∆(M) ∕= 0K et qu’alors

M−1 =
1

∆(M)
(t(M)Id2 −M).

7.4. Changement de base

La question est la suivante: soit matB′,B(ϕ) la matrice associee a ϕ : V 󰀁→ W dans des bases
B ⊂ V et B′ ⊂ W ; soit

Bn = {enj , j 󰃑 d} ⊂ V, B′
n = {fni, i 󰃑 d} ⊂ W

de nouvelles bases, quelle est la relation entre la matrice de ϕ dans les bases B,B′ , matB′,B(ϕ)
et la matrice de ϕ dans les bases Bn,B′

n, matB′
n,Bn(ϕ) ? La proposition suivante repond a cette

question.

Théorème 7.10 (Formule de changement de base). Soient B,Bn ⊂ V et B′,B′
n ⊂ W des

bases de V et W . On a la relation

matB′
n,Bn(ϕ) = matB′

n,B
′(IdW ).matB′,B(ϕ).matB,Bn(IdV ).

Preuve: On a evidemment

ϕ = IdW ◦ ϕ ◦ IdV .
Il suffit alors d’appliquer deux fois la relation (7.2.2) avec des bases convenables: une fois pour
ϕ ◦ IdV = ϕ et l’autre pour IdW ◦ ϕ = ϕ. □
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Définition 7.9. La matrice carree de taille d = dimV ,

matB,Bn
:= matB,Bn

(IdV )

est appelle matrice de changement de base, de la base B a la base Bn ou encore la matrice de passage
de B a Bn.

Sa j-ieme colonne est formee par les coordonnees du j-ieme vecteur enj exprime comme combi-
naison lineaire dans la base B.

La formule de changement de base se reecrit alors

matB′
n,Bn(ϕ) = matB′

n,B
′ .matB′,B(ϕ).matB,Bn .

Remarque 7.4.1. On utilise la terminologie (par forcement standard) ”matrice de passage de
B a Bn” car cette matrice permet de calculer la matrice d’une application lineaire ϕ quand la base
de depart est la base Bn a partir d’une matrice de la meme application quand la base de depart est
la base B et elle permet donc de ”passer” d’une matrice d’une application exprimee dans la base B
a sa matrice exprimee dans la base Bn.

Notons que la matrice de passage matB,Bn est inversible par le critere d’inversibilite. On va
calculer son inverse:

Proposition 7.7. Soit trois bases B,B1,B2 ⊂ V on a

(1) Formule d’inversion:

matB,B1
.matB1,B = Idd.

En particulier une matrice de passage est inversible (dans Md(K)) et son inverse est la
matrice de passage de la base initiale a la nouvelle base:

mat−1
B,B1

= matB1,B.

(2) Formule de transitivite:

matB,B2
= matB,B1

.matB1,B2
.

Preuve: Cela resulte de (7.2.3) et de (7.2.2) appliques a ϕ = ψ = IdV et a des bases convenables. □

7.4.0.1. Cas des endomorphismes. Si V = W et qu’on prend B′ = B et qu’on se donne une
nouvelle base Bn = B′

n, la formule de changement de base devient alors

matBn
(ϕ) = matBn,B.matB(ϕ).matB,Bn

= mat−1
B,Bn

.matB(ϕ)matB,Bn
.

Exemple 7.4.1. Prenons V = K2 et B = {(1, 0), (0, 1)} la base canonique. Soit Bn =
{(1, 3), (1, 2)}, c’est une base de K2 (quelque soit la carateristique) et la matrice de passage de
B a Bn vaut

matB,Bn
=

󰀕
1 1
3 2

󰀖

et la matrice de passage de Bn a B est l’inverse

matBn,B = −
󰀕

2 −1
−3 1

󰀖
=

󰀕
−2 1
3 −1

󰀖
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7.4.1. Matrices equivalentes. Soit ϕ : V 󰀁→ W et B,Bn,B′,B′
n des paires de bases de V

et W alors les matrices representant ϕ dans ces bases

M = matB′B(ϕ), N = matB′
nBn

(ϕ)

sont liees par la relation

N = A.M.B

avec

A = matB′
nB′ , B = matBBn

les matrices de changement de bases qui sont inversibles. Comme M et N representent la meme
application lineaire on peut die qu’elles sont d’une certaine maniere equivalente. Cela induit la
definition purement matricielle suivante:

Définition 7.10. Deux matrices M,N ∈ Md′×d(K) sont dites equivalentes si il existe des
matrices inversibles A ∈ GLd′(K), B ∈ GLd(K) telles que

N = A.M.B.

Par la formule de changement de bases on a:

Proposition 7.8. Deux matrices M,N ∈ Md′×d(K) sont equivalentes ssi il existe V de di-
mension d et W de dimension d′, des bases B,Bn ⊂ V et B′,B′

n ⊂ W et une application lineaire
ϕ : V 󰀁→ W telle que

M = matB′B(ϕ), N = matB′
nBn(ϕ)

Preuve: Le fait que des matrices M et N qui sont les matrices d’un meme endomorphisme ϕ dans
differentes bases, verifient la relation

N = A.M.B

avec A et B inversibles resulte de la formule de changement de base en prenant A et B des matrices
de passage convenable.

Reciproquement, supposons que l’on ait la relation

N = A.M.B

avec A et B inversibles. Soit V = Kd, W = Kd′
et B ⊂ V,B′ ⊂ W les bases canoniques et

ϕd
K 󰀁→ Kd′

l’unique application lineaire qui envoie le j-ieme vecteur de la base canonique B vers le
vecteur de W dont les corrdonnees dans la base canonique B′ soient donnees par la j-ieme colonne
de M : on a donc

M = matB′,B(ϕ).

Soit Bn la base formee des vecteurs de Kd dont le j-ieme vecteur a pour coordonnees (dans la
base canonique B) la j-ieme colonne de B; en effet ces vecteurs forment une base cas comme B est
inversible, donc de rang d, les vecteurs colonnes de B forment une famille generatrice de l’espace des
vecteurs colonnes de taille d qui est donc libre. On a donc

B = matBBn .

Soit B′
n la base formee des vecteurs de Kd′

dont le i-ieme vecteur a pour coordonnees (dans la base
canonique B′) la j-ieme colonne de A−1: on a donc

A−1 = matB′B′
n
et donc A = matB′

nB′ .

Alors la formule de changement de base nous dit que

N = A.M.B = matB′
nB′ .matB′,B(ϕ).matBBn = matB′

n,Bn(ϕ)

C’est a dire

N = matB′
n,Bn(ϕ).

□
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Proposition. La relation ”etre equivalente” est une relation d’equivalence (reflexive, symetrique,
transitive) sur Md′×d(K).

Preuve: Ecrivons la relation M ∼ N . Reflexive: on a M = Idd′M Idd donc M ≃ M .
Symetrique: si M ≃ N on a N = AMB, A ∈ GLd′(K), B ∈ GLd(K) et

A−1NB−1 = A−1AMBB−1 = M

et N ∼ M .
Transitive: si M ∼ N et N ∼ P alors

P = ANB, N = A′MB′ =⇒ P = AA′MB′B

et AA′ ∈ GLd′(K), B′B ∈ GLd(K) ainsi M ∼ P . □
On en deduit le resultat suivant

Théorème 7.11. Soient M,N ∈ Md′×d(K). Les conditions suivantes sont equivalentes

(1) M et N sont equivalentes,
(2) rg(M) = rg(N),
(3) M et N sont equivalentes a Id′×d(r).

Preuve: Par la proposition precedente, deux matrices sont equivalentes ssi elle representent la meme
application lineaire ϕ dans des bases differentes. En particulier, elles ont dont le meme rang (celui
de ϕ).

Si M et N ont meme rang elles sont les matrices d’applications lineaires ϕ,ϕ′ de meme rang.
On a vu qu’une application lineaire ϕ de rang r admettait pour matrice

Id′×d(r) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0

Idr
...

...
...

...
0 · · · · · · 0 0
0 · · · · · · · · · 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄

dans des bases convenables (cf. §7.2.3.1) et donc, par la proposition precedente, toute matrice
equivalente a Id′×d(r) est la matrice de ϕ dans des bases convenables. Ainsi les matrices de M et
N sont equivalentes a Id′×d(r).

Finalement si les matrices de M et N sont equivalentes a Id′×d(r) alors elles sont equivalentes
(par transitivite de la relation d’equivalence). □

Remarque 7.4.2. La proposition precedente nous dit que toute matrice d′ × d est equivalente
a une des matrices de la forme

{Id′×d(r), 0 󰃑 r 󰃑 min(d, d′)}

et comme ces matrices sont de rang distincts elle ne sont pas equivalentes: ces matrices forment un
ensemble de representants des differentes classes d’equivalence de la relation equivalence de matrices
sur Md′×d(K). Ainsi l’ensemble des classes d’equivalences

Md′×d(K)/ ∼≃ {Id′×d(r), 0 󰃑 r 󰃑 min(d, d′)}

est un ensemble fini de min(d, d′) + 1 elements.

7.4.2. Matrices semblables/conjuguees. Supposons maintenant que

ϕ : V 󰀁→ V

soit un endomorphisme et soit B,Bn des bases de V . Posons encore

M = matBB, N = matBnBn ∈ Md(K).
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On a alors par changement de base

N = C.M.D

avec

C = matBnB, D = matBBn
= (matBnB)−1 = C−1

ou encore

N = C.M.C−1.

Ainsi, la formule de changement de base met en evidence une autre relation sur Md(K):

Définition 7.11. On dit que deux matrices M,N sont semblables ou conjuguees si il existe
C ∈ GLd(K) tel que

N = C.M.C−1.

La relation ”etre semblables” ou ”etre conjuguees” est une relation d’equivalence.
Une classe d’equivalence pour cette relation, l’ensemble des matrices de la forme

M 󰂑 := Ad(GLd(K))(M) = {C.M.C−1, C ∈ GLd(K)}

est appellee classe de conjugaison (de M) et on note

Md(K)󰂑 = {M 󰂑} = Md(K)/ ∼

l’ensemble des classes de conjugaison.

Exercice 7.3. Verifier directement a partir de la definition que l’on a bien une relation d’equivalence
(reflexive, symetrique, transitive).

Remarque 7.4.3. On a vu que deux matrices representant le meme endomorphisme sont con-
juguees. La reciproque est vraie:

Proposition 7.9. Deux matrices M,N ∈ GLd(K) sont semblables ssi M et N sont les matrices
d’un meme endomorphisme dans des bases convenables: il existe un espace vectoriel de dimension
d, V , deux bases B,Bn ⊂ V et une application lineaire ϕ : V 󰀁→ V telle que

M = matB(ϕ), N = matBn(ϕ).

Exercice 7.4. Completer la preuve et montrer que si M = matB(ϕ) est la matrice representant
un endomorphisme ϕ ∈ End(V ) dans une base B ⊂ V alorsM 󰂑 est l’ensemble des matrices matB′(ϕ)
quand B′ parcourt toutes les bases de V .

Remarque 7.4.4. Deux matrices M,N ∈ Md(K) carrees de meme taille qui sont semblables
sont equivalentes (prendre A = C,B = C−1) et en particulier ont meme rang. La reciproque n’est
pas vraie.

Remarque 7.4.5. On a vu que pour la relation ”equivalence de matrices” dans Md′×d(K)
l’espace quotient des classes d’equivalences etait tres simple: c’est un ensemble fini de min(d, d′)+ 1
elements representes par les matrices standard de rang 0 󰃑 r 󰃑 min(d, d′)

Id′×d(r), r = 0, · · · ,min(d, d′).

Il est beaucoup plus difficile de decrire Md(K)󰂑, l’ensemble des differentes classes de conjugaisons
de matrices dans Md(K). Si le corps K est algebriquement clos (par exemple K = C) cette classi-
fication est donnee par la decomposition de Jordan qui releve du semestre prochain. Et avant cela
vous aurez besoin de la notion de polynome caracteristique et du Theoreme de Cayley-Hamilton.



128 7. MATRICES

7.4.3. Action par conjugaison.

Définition 7.12. Soit C ∈ GLd(K) une matrice inversible. Note note Ad(C) l’application dite
de conjugaison par C:

Ad(C) :
Md(K) 󰀁→ Md(K)

M 󰀁→ C.M.C−1.

Ainsi deux matrices sont semblables si et seulement si elles sont image l’une de l’autre par
conjugaison par une matrice inversible.

Exemple 7.4.2. Si C = matB1,B est une matrice de changement de base (de la base B a la
base B1) alors la formule de changement de base pour les matrices carrees s’ecrit

matB1(ϕ) = Ad(matB1,B)(matB(ϕ)).

Proprietes fonctionelles de la conjugaison.

Proposition 7.10. La conjugaison Ad(C) est un automorphisme de l’algebre Md(K):

(1) Linearite: On a Ad(C)(λ.M +N) = λAd(C)(M) + Ad(C)(N).
(2) Multiplicativite: Ad(C)(M.N) = Ad(C)(M).Ad(C)(N).
(3) Inversibilite: Ad(C) est bijective et Ad(C)−1 = Ad(C−1).

Preuve: On a

Ad(C)(λ.M +N) = C.(λ.M +N).C−1 = (λ.C.M + C.N).C−1

= λ.C.M.C−1 + C.N.C−1 = λAd(C)(M) + Ad(C)(N).

On a

Ad(C)(M.N) = C.M.N.C−1 = C.M.Idd.N.C−1 = C.M.C−1.C.N.C−1 = Ad(C)(M).Ad(C)(N).

Par ailleurs
Ad(C−1)(Ad(C)(M))) = C−1.c.M.C−1.C = M

et donc
Ad(C−1) ◦Ad(C) = IdMd(K)

□
Proposition 7.11. On dispose donc d’une application

Ad(•) : C ∈ GLd(K) 󰀁→ Ad(C) ∈ Aut(Md(K)) ≃ GLd2(K)

appellee application adjointe.
L’application adjointe Ad(•) est un morphisme de groupes et definit donc une action a gauche

GLd(K) ↷ Md(K). Son noyau est forme par les matrices scalaires:

kerAd = K×Id.

Preuve: On a deja vu que Ad(C)−1 = Ad(C−1). Reste a voir que

Ad(B.C) = Ad(B) ◦Ad(C).

On a
Ad(B.C)(M) = B.C.M.(B.C)−1 = B.C.M.C−1.B−1 = Ad(B)(Ad(C)(M)).

Soit C = (ckl)k,l󰃑d une matrice inversible telle que pour tout M on ait

C.M.C−1 = M.

On a donc pour tout M
C.M = M.C.

En particulier ∀i, j 󰃑 d
C.Eij = Eij .C.
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On a par la proposition 7.2

(
󰁛

k,l

cklEkl).Eij =
󰁛

k,l

cklEkl.Eij =
󰁛

k,l

cklδl=iEkj =
󰁛

k

ckiEkj

et
Eij .(

󰁛

k,l

cklEkl) =
󰁛

k,l

cklEij .Ekl =
󰁛

k,l

cklδk=jEil =
󰁛

l

cjlEil

On a donc necessairement dans les sommes ci-dessus cki = 0 si k ∕= j et comme c’est valable pour
tout j on voit que cij = 0 sauf si i = j. on a donc

C.Eij = ciiEij = Eij .C = cjjEij

ce qui force les cii a etre tous egaux et donc C = c11.Idd est une matrice scalaire. □
Définition 7.13. L’ image Ad(GLd(K)) ⊂ Aut(Md(K)) est appellee groupe des automor-

phismes interieurs de Md(K) et est notee

Int(Md(K)) ⊂ AutK(Md(K)).

La relation ”etre semblable” est une relation d’equivalence. On peut soit le verifier directement
a l’aide des proprietes fonctionelles de la conjugaison soit en notant que celle relation est definie via
l’action par conjugaison GLd(K) ↷ Md(K): on a vu en exercice que etant donne une action d’un
groupe sur un ensemble

G ↷ X

la relation sur X donnee par
x ∼G x′ ⇐⇒ ∃g ∈ G, x′ = g 󰂏 x

est une relation d’equivalence (la relation d’appartenance a la meme G-orbite: x′ ∈ G 󰂏 x).
En effet une telle relation est

– Symetrique: x = eG 󰂏 x
– Reflexive:

x′ = g 󰂏 x =⇒ x = g−1 󰂏 x′.

– Transitive:

x′′ = g′ 󰂏 x′, x′ = g 󰂏 x =⇒ x′′ = g′ 󰂏 (g 󰂏 x) = (g′.g) 󰂏 x

Ici l’action est
C 󰂏M = C.M.C−1.

7.4.4. Conjugaison des endomorphismes. On peut egalement definir une notion de conju-
gaison pour l’algebre (abstraite) End(V ) des endomorphismes d’un espace V en disant que ϕ,φ ∈
End(V ) sont conjugues si il existe ψ ∈ Aut(V ) tel que

φ = ψ ◦ ϕ ◦ ψ−1.

Si on choisit une base B de V et qu’on l’utilise pour identifier End(V ) avec Md(K) on obtient
exactement la meme notion (C = matB(ψ)).

Exercice 7.5. Soit V et W des espaces vectoriels de dimension finie de meme dimension alors
End(V ) et End(W ) sont des K-EV isomorphes car de meme dimension d2). Montrer qu’ils sont
isomorphes en tant que K-algebres; pour cela construire un isomorphisme de K-algebres

End(W ) ≃ End(V )

a partir d’un isomorphisme ψ : V ≃ W .





CHAPITRE 8

Interlude: le corps des nombres complexes

”... eine feine und wunderbare Zuflucht des menschlichen Geistes,
beinahe ein Zwitterwesen zwischen Sein und Nichtsein.”

”Even better than the real thing.”

8.1. Origine des nombres complexes

Le nombres complexes sont nés pendant la renaissance italienne dans le but de resoudre des
equations polynomiales: etant donne a0, · · · , ad−1, ad ∈ Z, on cherchait a trouver les nombres z
verifiant

adz
d + ad−1z

d−1 + · · ·+ a1.z + a0 = 0.

En particulier pour d = 2, on savait que les solutions d’une equation quadratique

az2 + bz + c = 0

etaient de la forme

z± =
−b±

√
∆

2
a

avec

∆ = b2 − 4ac

pour peu que ∆ soit positif ou nul. On n’avait pas de probleme a travailler avec les nombres tels
que

√
∆, meme si ∆ n’est pas le carre d’un entier car on definissait ce nombre comme le cote d’un

carre d’aire ∆. En revanche on evitait soigneusement les cas ou ∆ < 0.
Les mathematiciens se sont egalement interesses aux equations cubiques et quartiques (de degre

3 ou 4), notamment les mathematiciens de la renaissance italienne (Del Ferro, Tartaglia, Cardano,
Ferrari, Bombelli)

az3 + bz2 + cz + d = 0, az4 + bz3 + cz2 + dz + e = 0, a, b, c, d, e ∈ Z.

Dans son ouvrage Ars Magna (1545), Cardano (suivant del Ferro) a donne une methode algo-
rithmique pour trouver les solutions de nombreuses familles d’equations cubiques.

L’une d’elle etait soigneusement evitee

(8.1.1) z3 = 15z + 4.

Bien qu’elle admette, 4 comme solution (tout a fait naturelle), la methode suivie par Cardano le
conduisait a resoudre l’equation

x2 + 121 = 0.

Cardano s’est refuse a introduire la solution formelle
√
−121 = 11

√
−1

131
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dans ses formules generales. C’est Bombelli1 qui, 30 ans plus tard, sautant le pas introduisit les
regles de calcul impliquant des nombres imaginaires tels que

√
−121 et il retrouvera ainsi la solution

4 de (8.1.1) a partir des formules generales de del Ferro et Cardano2.
Dans ce chapitre, on va construire concretement le corps des nombres complexes comme une

sous-algebre de l’algebre des matrices reelles 2 × 2, M2(R). C’est en fait un cas particulier d’une
construction generale basee sur l’anneau des polynomes a coefficients dans un corps K,

K[X] = {a0 + a1.X + · · ·+ ad.X
d, d 󰃍 0, a0, · · · , ad ∈ K}

qu’on verra au chapitre sur les anneaux de polynomes.

8.2. Construction matricielle d’extensions quadratiques

On commence par une construction generale (la solution d’un exercices d’une des series prece-
dentes).

On rappelle que pour toute matrice

M =

󰀕
a b
c d

󰀖
∈ M2(K)

son determinant est le scalaire

det(M) = det

󰀕
a b
c d

󰀖
= ad− bc.

Ce dernier verifie (par calcul direct)

det(M.N) = det(M). det(N)

et on a

M ∈ GL2(K) (M est inversible) ssi det(M) ∕= 0

et on a alors

M−1 =
1

detM

󰀕
d −b
−c a

󰀖
.

Théorème 8.1. Soit K un corps et M2(K) l’algebre des matrices 2× 2 a coefficients dans K.
Soit d ∈ K −K2 un element de K qui n’est pas un carre: ∀x ∈ K, x2 − d ∕= 0 et

Id :=

󰀕
0 d
1 0

󰀖
.

Alors la matrice Id verifie

I2d = d.Id2.

Soit

K[Id] = K.Id2 +K.Id =

󰀝
Z = x.Id2 + y.Id =

󰀕
x dy
y x

󰀖
, x, y ∈ K

󰀞
⊂ M2(K)

le SEV de M2(K) engendre par Id2 et Id. Alors K[Id] a les proprietes suivantes:

(1) {Id2, Id} est une base de K[Id] et donc dimK(K[Id]) = 2.
(2) K[Id] muni du produit de matrices est un sous-anneau commutatif de M2(K) et c’est meme

un corps : toute matrice non-nulle de K[Id] est inversible dans K[Id].

1un cratere de la lune porte son nom.
2on renvoie a https://www.youtube.com/watch?v=cUzklzVXJwo&t=1072s pour une video passionnante

expliquant cette histoire

https://www.youtube.com/watch?v=cUzklzVXJwo&t=1072s
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(3) Plus precisemment soit

Z = xId2 + y.Id =

󰀕
x dy
y x

󰀖

alors

det(Z) = x2 − dy2

et si det(Z) ∕= 0 (alors Z est inversible) on a

Z−1 =
1

x2 − dy2
(x.Id2 − yId) =

󰀣
x

x2−dy2 d −y
x2−dy2

−y
x2−dy2

x
x2−dy2

󰀤
∈ K[Id].

Preuve: On a

Z = xId2 + y.Id =

󰀕
x dy
y x

󰀖
= 02 ⇐⇒ x = y = 0

donc {Id2, Id} est libre et elle est generatrice de K[Id] par definition.
Montrons que c’est un sous-anneau de M2K(K): on a evidemment Id2 ∈ K[Id] et il reste a

montrer que K[Id] est stable par produit: soient

Z = xId2 + y.Id =

󰀕
x dy
y x

󰀖
, Z ′ = x′Id2 + y′.Id =

󰀕
x′ dy′

y′ x′

󰀖
∈ K[Id]

on veut montrer que

Z.Z ′ ∈ K[Id].

On peut prendre brutalement le produit de matrices et on trouve

Z.Z ′ =

󰀕
xx′ + dyy′ (xy′ + yx′)d
xy′ + yx′ xx′ + dyy′

󰀖
= (xx′ + dyy′)Id2 + (xy′ + yx′)Id ∈ K[Id].

On peut egalement faire le calcul de maniere plus conceptuelle a partir de l’equation

I2d = Id.Id =

󰀕
0 d
1 0

󰀖
.

󰀕
0 d
1 0

󰀖
=

󰀕
0.0 + d.1 0.d+ d.0
1.0 + 0.1 01.d+ 0.0

󰀖
=

󰀕
d 0
0 d

󰀖
= d.Id2;

comme Id22 = Id2 et I2d = d.Id2, on a par distributivite et associativite

Z.Z ′ = (xId2 + y.Id).(x
′Id2 + y′.Id) = xx′.Id2 + (xy′ + yx′)Id + yy′dId2

= (xx′ + dyy′)Id2 + (xy′ + yx′)Id ∈ K[Id].

Comme (K est commutatif)

xx′ + dyy′ = x′x+ dy′y, xy′ + yx′ = x′y + y′x

on a donc

Z.Z ′ = Z ′.Z

et donc l’anneau K[Id] est commutatif.
Montrons que tout element non-nul est inversible (et que son inverse est contenu dans K[Id]):

soit

Z = Z = xId2 + y.Id =

󰀕
x dy
y x

󰀖

alors

detZ = x2 − dy2.

Supposons que detZ = 0 alors

x2 = dy2;

si y = 0 alors x = 0 et Z = 02. Si y ∕= 0 alors

d = (x/y)2 ∈ K2
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ce qui contredit l’hypothese que d n’est pas un carre. Ainsi

Z ∕= 02 ⇐= detZ = x2 − dy2 ∕= 0 ⇐⇒ Z ∈ GL2(K).

Ainsi

Z−1 =
1

detZ

󰀕
x −dy
−y x

󰀖
=

1

x2 − dy2
(x.Id2 − y.Id) ∈ K[Id]

□
8.2.0.1. Conjugaison algebrique. Etant donne Z = xId2 + yId ∈ K[Id], on pose

Z = xId2 − yId ∈ K[Id]

qu’on appelle le conjugue algebrique de Z. La conjugaison algebrique Z 󰀁→ Z a les proprietes
suivantes:

Proposition 8.1. L’application

• :
K[Id] 󰀁→ K[Id]
Z 󰀁→ Z

verifie

(1) Est lineaire: ∀λ ∈ K,Z,Z ′ ∈ K[Id],

λ.Z + Z ′ = λZ + Z
′
.

(2) Est involutive (en particulier bijective)

Z = Z.

(3) Est un morphisme de corps: en particulier en on a

Z.Z ′ = Z.Z
′
.

(4) On a
Z.Z = (x2 − dy2)Id2.

En particulier si Z ∕= 02, on a

Z−1 =
1

x2 − dy2
Z.

Preuve: On peut demontrer cela par un calcul direct. □
Remarque 8.2.1. Notons que dans M2(K), on peut trouver un grand nombre de matrices I ′d

verifiant
I ′d

2
= d.Id,

en effet pour tout C ∈ GL2(K) la matrice conjuguee

Ad(C)(Id) = C.Id.C
−1

a cette propriete.

8.2.1. Notation algebrique. L’application

λ ∈ K 󰀁→ λ.Id2 =

󰀕
λ 0
0 λ

󰀖
∈ K.Id2 ⊂ M2(K)

identifie K avec l’ensemble des matrices scalaires qui forme un sous-corps de M2(K). Comme K[Id]
contient K.Id2, on peut de cette maniere voir K comme un sous-corps de K[Id]. Comme Id verifie

I2d = d.Id2.

Si on identifie K au corps des matrices scalaires, d est identifie a d.Id2 et la matrice Id est une
”racine carree” de d, une autre racine carree etant −Id.

Si on a juste besoin de travailler avec le corps K[Id], plutot que d’ecrire ses elements sous forme
de matrices, on ecrira
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– 1 pour Id2, x pour la matrice scalaire x.Id2,
–
√
d pour la matrice Id, et y

√
d pour la matrice y.Id

– et a la place de

Z = x.Id2 + yId =

󰀕
x dy
y x

󰀖
on ecrira z = x+ y

√
d.

– On ecrira egalementK[
√
d] pourK[Id]. Cette ecriture permet de representer naturellement

K comme sous-corps de K[
√
d]:

K = {x+ 0.
√
d, x ∈ K} ⊂ K[

√
d].

Ainsi les sommes, produits et conjugue algebrique s’ecrivent Z + Z ′ et Z.Z ′, Z s’ecrivent sous la
forme

z + z′ = x+ x′ + (y + y′)
√
d, z.z′ = xx′ + dyy′ + (xy′ + yx′)

√
d, z = x− y

√
d.

Remarque 8.2.2. Notons egalement qu’on peut ecrire

y
√
d =

√
dy

( car y.Id = y.Id2.Id = Id.y.Id2).

Avec cette ecriture la relation (4) devient

(8.2.1) z.z = x2 − dy2,

et si z ∕= 0 on a

(8.2.2) z−1 =
1

x2 − dy2
z =

x

x2 − dy2
− y

x2 − dy2

√
d.

Définition 8.1. Le scalaire x2 − dy2 ∈ K (le determinant de la matrice Z) est appelle norme
algebrique de z et est note

NrK(z) = NrK(x+ y
√
d) = zz = x2 − dy2.

Comme le determinant est multiplicatif (det(Z.Z ′) = det(Z). det(Z ′)), la norme algebrique est
multiplicative

(8.2.3) NrK(z.z′) = NrK(z)NrK(z′),

et on rappelle que

NrK(z) = 0 ⇐⇒ z = 0.

Comme K[
√
d] est un K-ev de dimension 2, on dit que le corps K[

√
d] est une extension quadra-

tique du corps K.

Remarque 8.2.3. LK’algebre M2(K) contient beaucoup de ”racines carrees” de d: pour tout
C ∈ GL2(K)

I ′d = Ad(C)(Id) = C.Id.C
−1

verifie

I ′d
2
= Id2.
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8.3. Le corps des nombres complexes; proprietes de base

Prenons K = R alors d = −1 n’est pas un carre car −1 est negatif. La matrice I−1 vaut alors

I−1 = I =

󰀕
0 −1
1 0

󰀖

Définition 8.2. Le sous-corps de M2(R)

R[I] = R.Id2 + R.I =

󰀝
Z = x.

󰀕
1 0
0 1

󰀖
+ y

󰀕
0 −1
1 0

󰀖
=

󰀕
x −y
y x

󰀖
, x, y ∈ R

󰀞

est appele corps des nombres complexes et est note C. La conjugaison algebrique

Z = xId2 + yI 󰀁→ xId2 − yI

s’appelle conjuguaison complexe.
Comme precedement, on note les nombres complexes de maniere condensee en ecrivant

i =
√
−1

a la place de I et

z = x+ iy = x+ yi a la place de Z = x.Id2 + yI =

󰀕
x −y
y x

󰀖
.

On a alors

z + z′ = x+ x′ + (y + y′)i, z.z′ = xx′ − yy′ + (xy′ + yx′)i, z = x− yi

et

NrR(z) = z.z = x2 + y2

et (8.2.3) devient

NrR(z)NrR(z
′) = (x2 + y2)(x′2 + y′

2
) = NrR(z.z

′) = (xx′ − yy′)2 + (xy′ + yx′)2.

Remarque 8.3.1. On a

i3 = −i, i4 = 1, i5 = i, · · ·
et donc

in = ±1 ou bien ± i

suivant la classe de congruence n (mod 4).

Définition 8.3. Le reel x est appele ”partie reelle” de z et le reel y est la ”partie imaginaire”
de z

x = Rez, y = Im z.

Dans la notation matricielle, la conjugaison algebrique est donnee par la transposition:

Z = x.Id2 + y.I 󰀁→ tZ = x.Id2 − y.I.

Avec la notation simplifiee la conjugaison algebrique

z = x+ iy 󰀁→ z = x− yi

s’appelle la conjugaison complexe. On a alors

z.z = NrR(z) = x2 + y2 󰃍 0.

Comme ce reel est positif ou nul, il admet deux racine carrees dans R, on note |z| celle qui est
positive ou nulle:

|z| = (z.z)1/2 = (x2 + y2)1/2 󰃍 0;

on l’appelle le module de z.
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Proposition 8.2. On a la proprietes suivantes:

(1) Les applications ”partie reelle” et ”imaginaire”

Re, Im : C 󰀁→ R

sont lineaires:

λ ∈ R,Re(λ.z + z′) = λ.Rez +Rez′, Im(λ.z + z′) = λ. Im z + Im z′.

Les noyaux valent ker(Im) = R et ker(Re) = R.i est l’ensemble des nombres complexes
imaginaires purs.

(2) La conjugaison complexe

• : z ∈ C 󰀁→ z ∈ C
est un automorphisme du corps C: in particulier

λ ∈ R,λ.z + z′ = λ.z + z′, z.z′ = z.z′.

De plus • est involutif

z = z

et on a

z = z ⇐⇒ z = x ∈ R.
(3) L’application module

z 󰀁→ |z| = (z.z)1/2

est multiplicative:

|z.z′| = |z|.|z′|
et on a

z = 0 ⇐⇒ |z| = 0

et pour tout x ∈ R ⊂ C on a

(8.3.1) |x| = |x|R = max(x,−x)

Autrement dit, le module d’un nombre reel est egal a la ”valeur absolue” usuelle de ce
nombre reel.

Preuve: (1) Les applications Re : C 󰀁→ R et Im : C 󰀁→ R sont lineaires car ce sont les formes lineaires
” premiere et seconde coordonnee” de la base {Id2, I} et on peut egalement le verifier directement.

Ces formes lineaires sont non-nulles donc surjectives sur R. On a

ker(Re) = {0 + iy, y ∈ R} = R.i, ker(Im) = {x+ 0i, x ∈ R} = R.

(2) La conjugaison algebrique est un cas particulier de conjugaison algebrique et a les meme
proprietes de lineairite, multiplicativite et involutivite.

–On a

z = z ⇐⇒ z = x− iy = x+ iy = z ⇐⇒ 2iy = 0 ⇐⇒ y = 0 ⇐⇒ z = x ∈ R.

(en effet 2.i est non nul donc inversible dans C).
(3) La multiplicativite du module provient de la multiplicativite de la conjugaison complexe (et

le fait que C est commutatif.)
– On a de plus

z = 0 ⇐⇒ x+ iy = 0 ⇐⇒ (x, y) = (0, 0) ⇐⇒ x2 + y2 = 0 ⇐⇒ |z| = 0.

(en effet comme x2, y2 󰃍 0 on ne peut avoir x2 + y2 = 0 que si x = y = 0).
– Soit z = x ∈ R alors

|z| = |x+ i.0| = (x2 + 02)1/2 = (x2)1/2 = max(x,−x) = |x|R.
□
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Remarque 8.3.2. On notera egalement la formule d’inversion suivante qui est une cas particulier
de la formule d’inversion dans K[

√
d] (8.2.2):

(8.3.2) ∀z ∈ C×, z−1 =
z

|z|2 =
x− iy

x2 + y2
=

x

x2 + y2
− i

y

x2 + y2
.

Pour retrouver cette formule il suffit de ce souvenir que

z.z = |z|2 = (x2 + y2)

et si |z|2 = x2 + y2 ∕= 0 on a

z.
z

|z|2 = 1.

8.3.1. Nombres complexes de module 1; decomposition polaire. Considerons le module
mais restreint au groupe multiplicatif C× = C− {0}:

| • | : C
× 󰀁→ R>0

z 󰀁→ |z| = (x2 + y2)1/2
.

Comme le module | • | est multiplicatif, sa restriction a C× est un morphisme de groupe (mul-
tiplicatif) a valeurs dans R>0; ce morphisme est surjectif (car pour x ∈ R>0, |x| = x) et son noyau
est

ker | • | = C(1) = {z ∈ C, |z| = 1},
l’ensemble des nombres complexes de module 1.

En particulier C(1) est un sous-groupe de C× (pour la multiplication).

Proposition 8.3. On a un isomorphisme de groupes

pol : C× ≃ R>0 × C(1)

donne par

z ∈ C× 󰀁→ pol(z) = (|z|, z/|z|)

Preuve: Soit z ∈ C×. On a |z| > 0 et comme ||z|| = |z| (|z| est un nombre reel positif de sorte que
sont module est egal a sa valeur absolue et donc a |z|), on a

|z/|z|| = |z|/||z|| = |z|/|z| = 1.

Ainsi

pol(z) ∈ R>0 × C(1).

De plus on a

|z.z′| = |z|.|z′| et z.z′/|z.z′| = (z/|z|).(z′/|z′|).
Ce morphisme de groupe pol est injectif:

(|z|, z/|z|) = (1, 1) =⇒ |z| = 1 = z/|z| =⇒ z = 1.

Il est egalement surjectif : pour tout ρ > 0 et z(1) ∈ C1, on a

pol(ρ.z(1)) = (|ρ.z(1)|, ρ.z(1)/|ρ.z(1)|) = (ρ, z(1));

en effet

|ρ.z(1)| = |ρ|.|z(1)| = ρ.1 = ρ

car ρ ∈ R>0. □

Définition 8.4. Soit z ∈ C×, pol(z) = (|z|, z/|z|) s’appelle la decomposition polaire de z.

(1) Le premier terme |z| est le module et se note aussi ρ(z) = r(z) > 0,
(2) le second terme z/|z| ∈ C(1) est appelle argument complexe de z et on le note

z/|z| = eiθ(z).
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(3) Si on decompose l’argument complexe en partie reelle et imaginaire,

z/|z| = eiθ(z) = Re(z/|z|) + i. Im(z/|z|) = c(z) + s(z).i

on a donc

c(z)2 + s(z)2 = 1

– le reel c(z) ∈ [−1, 1] s’appelle le cosinus de z,
– le nombre s(z) ∈ [−1, 1] s’appelle le sinus de z.

On a donc

z = x+ iy = ρ(z).eiθ(z) = ρ(z)(c(z) + is(z)), x = ρ(z)c(z), y = ρ(z)s(z).

Remarque 8.3.3. Compte tenu des definitions, on a

ρ(z) = |z| = (x2 + y2)1/2,

c(z) =
x

(x2 + y2)1/2
, s(z) =

y

(x2 + y2)1/2

8.3.2. Formules de trigonometrie. On retrouve les formules habituelles de trigonometrie:
8.3.2.1. Formules de produit. Pour z, z′ ∈ C×

ρ(z.z′) = |z.z′| = |z|.|z′| = ρ(z).ρ(z′), eiθ(z.z
′) = eiθ(z).eiθ(z

′)(8.3.3)

c(z.z′) = c(z).c(z′)− s(z).s(z′), s(z.z′) = s(z).c(z′) + s(z′).c(z).

Preuve: Les premieres identites resultent du fait que pol(•) est un morphisme de groupes. Ecrivant

eiθ(z.z
′) = c(z.z′) + is(z.z′) =

eiθ(z).eiθ(z
′) = (c(z) + is(z)).(c(z′) + is(z′))

on obtient en developpant (suivant la regle de produit des complexes)

c(z.z′) + is(z.z′) = c(z)c(z′) + is(z)c(z′) + ic(z)s(z′) + i2s(z)s(z′)

= c(z)c(z′)− s(z)s(z′) + i(s(z)c(z′) + c(z)s(z′)).

□
8.3.2.2. Formule d’inversion. Pour z ∈ C×, on a

ρ(z−1) = |z−1| = ρ(z)−1 = |z|−1

eiθ(z
−1) = c(z−1) + is(z−1) = (eiθ(z))−1 = eiθ(z) = c(z)− is(z).

En particulier on a

c(z) = c(z−1), s(z) = −s(z−1).

Preuve: Cela resulte a nouveau du fait que pol(•) est un morphisme de groupes. De plus, on a vu
que (8.3.2)

(eiθ(z))−1 =
eiθ(z)

|eiθ(z)|2
= eiθ(z) = c(z)− is(z)

car |eiθ(z)| = 1. □
8.3.2.3. Formule de l’angle double. On a

|z2| = |z|2, c(z2) = c(z)2 − s(z)2, s(z2) = 2s(z)c(z).

Preuve: Appliquer la formule du produit a z′ = z. □
Plus generalement on a les
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8.3.2.4. Formules de de Moivre. Pour tout entier n 󰃍 0, on a3

|zn| = |z|n, eiθ(z
n) = (eiθ(z))n

c(zn) =
󰁛

0󰃑k󰃑n/2

C2k
n (−1)kc(z)n−2ks(z)2k,(8.3.4)

s(zn) =
󰁛

0󰃑k󰃑n−1
2

C2k+1
n (−1)kc(z)n−2k−1s(z)2k+1.

Preuve: Les premieres identites resultent a nouveau du fait que pol(•) est un morphisme de groupes.
Pour les deux autres on ecrit

eiθ(z
n) = c(zn) + is(zn) = (eiθ(z))n = (c(z) + is(z))n.

Par la formule du binome de Newton cela vaut
󰁛

0󰃑k󰃑n

Ck
nc(z)

n−kiks(z)k.

On a

ik =

󰀫
(−1)k/2 k pair

(−1)(k−1)/2i k impair

et on decompose la somme precedente suivant ces deux possibilites: la somme precedente s’ecrit

c(zn) + is(zn) =
󰁛

0󰃑k󰃑n
n≡0 (mod 2)

Ck
nc(z)

n−k(−1)k/2s(z)k +
󰁛

0󰃑k󰃑n
n≡1 (mod 2)

Ck
nc(z)

n−ki.(−1)
k−1
2 s(z)k.

On met i en facteur dans le second terme et on identifie les parties reelles et imaginaires des complexes
de part et d’autre ce cette identite: remplacant k par 2k 󰃑 n dans la premiere somme et k par
2k + 1 󰃑 n dans la seconde, on obtient les identites annoncees. □

Exemple 8.3.1. Par exemple pour n = 2, on obtient

c(z2) = c(z)2 − s(z)2, s(z2) = 2c(z)s(z).

Pour k = 3, on obtient

c(z3) = c(z)3 − 3c(z)s(z)2, s(z3) = 3c(z)2s(z)− s(z)3.

Pour n = 4, on obtient

c(z4) = c(z)4 − 6c(z)2s(z)2 + s(z)4, s(z4) = 4c(z)3s(z)− 4c(z)s(z)3.

8.3.3. Argument (reel) d’un nombre complexe. Dans ce cours qui est de nature alge-
brique, on a resiste jusqu’a present a parler d’ argument d’un nombre complexe. La raison est la def-
inition precise necessite des notions elaborees d’analyse (notamment la definition de l’exponentielle
sur les complexes). On peut parler d’argument reel d’un nombre complexe une fois qu’on a demontrer
(ou admis) le resultat suivant:

Théorème 8.2 (Existence de l’exponentielle complexe). Il existe un unique morphisme de groupe

ei• :
(R,+) 󰀁→ (C(1),×)

θ 󰀁→ exp(iθ)

qui est derivable (comme fonction de R a valeurs dans C ≃ R2) et qui verifie

ei•
′
(0) = i.

Ce morphisme est surjectif et son noyau est de la forme

ker ei• = 2π.Z
3d’apres Abraham de Moivre (1667-1754)
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ou π est un nombre reel dont le developpement decimal commence par π = 3.14159 · · · .

Remarque 8.3.4. On dit qu’une fonction a valeurs complexes

f : θ ∈ R 󰀁→ f(θ) ∈ C
est derivable sur R si les fonctions associees ”partie reelle” et ”partie imaginaire” sont derivables:
on ecrit

f(θ) = Ref(θ) + i. Im f(θ)

et on demande que les deux fonctions

Ref, Im f : θ ∈ R 󰀁→ Ref(θ), Im f(θ) ∈ R
soient derivables sur R.

Remarque 8.3.5. On peut montrer que si un morphisme de groupes

ϕ : R 󰀁→ C×

est continu (ie. ses parties reeles et imaginaires sont continuees) alors il est automatiquement
derivable et meme infiniment derivable.

Admettant ce Theoreme, on obtient par surjectivite que pour tout z ∈ C(1) il existe θ ∈ R tel
que

z = eiθ.

D’autre part, comme ei• est un morphisme de groupes, l’ensemble des θ′ verifiant z = eiθ
′
(l’ensemble

des antecedents de z, (ei•)−1({z})) est egale a la classe de θ modulo 2π (cf. Exercice 2.2)

(ei•)−1({z}) = θ + ker(ei•) = θ + 2π.Z = {θ + 2π.k, k ∈ Z}.
On obtient alors un isomorphisme de groupe (qu’on notera encore ei•)

ei• :
R/2πZ ≃ C(1)

θ + 2πZ 󰀁→ z = eiθ
.

La reciproque de cette bijection s’appelle l’argument (reel):

Définition 8.5. Soit z un nombre complexe de module 1 L’argument reel (encore appelle ”an-
gle”) de z,

arg(z) := θ (mod 2π) = θ + 2πZ ∈ R/2πZ
est l’unique classe θ (mod 2π) ∈ R/2πZ telle que eiθ = z.

Plus generalement, pour z ∈ C×, on defini son argument par

arg(z) := arg(z/|z|) ∈ R/2πZ.

Notons que l’application
arg : C× 󰀁→ R/2πZ

est un morphisme de groupes: ∀z, z′ ∈ C× on a

arg(1) = 0, arg(z.z′) = arg(z) + arg(z′), arg(1/z) = − arg(z).

et la decomposition polaire se reecrit sous la form de l’isomorphisme

pol :
C× ≃ R>0 × R/2πZ
z 󰀁→ (|z|, arg(z)) .

Définition 8.6. Soit θ ∈ R, le cosinus et le sinus de θ sont defini par

cos(θ) = Re(eiθ), sin(θ) = Im(eiθ).

On a donc
eiθ = cos(θ) + i sin(θ).

En particulier on a
1 = ei0 = cos(0) + i sin(0)
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et donc

cos(0) = 1, sin(0) = 0.

8.3.4. Formules de trigonometrie classiques. On ”retrouve” les formules de trigonometrie
sous leur forme usuelle:

8.3.4.1. Formule des sommes. On a

cos(θ + θ′) = Re(ei(θ+θ′)) = Re(eiθ.eiθ
′
) = cos(θ) cos(θ′)− sin(θ). sin(θ′)

et

sin(θ + θ′) = Im(ei(θ+θ′)) = Im(eiθ.eiθ
′
) = sin(θ) cos(θ′) + cos(θ). sin(θ′).

Preuve: On a

eiθ+θ′
= cos(θ + θ′) + i sin(θ + θ′) = eiθ.eiθ

′
= (cos(θ) + i sin(θ)).(cos(θ′) + i sin(θ′))

et on obtient le result en developpant et en isolant les parties reeles et imaginaires. □
8.3.4.2. Formule de l’angle oppose. On a

cos(−θ) = cos(θ), sin(−θ) = − sin(θ).

Preuve: En effet comme on a un morphisme de groupes

e−iθ = cos(−θ) + i sin(−θ) = 1/eiθ = eiθ = cos(θ)− i sin(θ).

□
8.3.4.3. Formule de l’angle double. En prenant θ′ = θ on obtient

cos(2θ) = cos(θ)2 − sin(θ)2, sin(2θ) = 2 sin(θ) cos(θ)

et plus generalement
8.3.4.4. Formules de de Moivre.

einθ = cos(nθ) + i sin(nθ) = (eiθ)n = (cos(θ) + i sin(θ))n

et en developpant par le binome de Newton et identifiant parties reelles et imaginaires, on obtient

cos(nθ) =
󰁛

0󰃑k󰃑n/2

C2k
n (−1)k cos(θ)n−2k sin(θ)2k.

sin(nθ) =
󰁛

0󰃑k󰃑(n−1)/2

C2k+1
n (−1)k cos(θ)n−2k−1 sin(θ)2k+1.

8.4. Le plan complexe

Comme C est un R-ev de dimension 2, on peut identifier C a R2 en choisissant une base. Ainsi
si on prend pour base {Id, I} l’isomorphisme est donne par les parties reele et imaginaire:

(Re, Im) :
C 󰀁→ R2

z = x.Id + y.I 󰀁→ (x, y)
.

On parle alors du plan complexe et on represente un nombre complexe par un point dans le plan
reel R2. Le groupe des nombres complexes de module 1 est alors identifie avec le cercle unite

S1 = {(x, y) ∈ R2, x2 + y2 = 1}.
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Figure 1. Le plan complexe et le cercle unite.

8.4.1. Le plan euclidien. L’espace R2 est muni d’une distance appellee distance euclidienne:

d2((x, y), (x
′, y′)) = 󰀂(x− x′, y − y′)󰀂2 := ((x− x′)2 + (y − y′)2)1/2.

Rappellons qu’une distance sur un ensemble X est une application

d :
X ×X 󰀁→ R󰃍0

(v, w) 󰀁→ d(v, w)

verifiant

(1) Separation: d(v, w) = 0 ⇐⇒ v = w.
(2) Symetrie: d(v, w) = d(w, v).
(3) Inegalite du triangle: d(u,w) 󰃑 d(u, v) + d(v, w).

Définition 8.7. Une isometrie (euclidienne) de R2 est une application ϕ : R2 󰀁→ R2 preservant
la distance euclidienne:

d2(ϕ(v),ϕ(w)) = d2(v, w).

Exemple 8.4.1. La translation de vecteur v0 ∈ R2:

tv0
: v ∈ R2 󰀁→ v + v0.

Théorème 8.3. Une isometrie est bijective et sa reciproque est encore une isometrie. L’ensemble
des isometrie Isom(R2) ⊂ Bij(R2) est un sous-groupe du groupe des bijections de R2.

Grace a l’isomorphisme de R-ev C ≃ R2 ci-dessus on peut realiser les isometries en terme de trans-
formations simples sur le corps des nombres complexes (on admettra le resultat suivante)

Théorème 8.4. Quand on identifie (x, y) ∈ R2 avec le nombre complexe z = x + iy toute
isometrie de R2 est de la forme suivante

– Rotation: il existe α ∈ C(1) et z0 ∈ C tels que

rα,z0 : z 󰀁→ α.z + z0.

– Symetrie: il existe α ∈ C(1) et z0 ∈ C tels que

sα,z0 : z 󰀁→ α.z + z0.
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On a la classification suivante plus fine des rotations et des translations. Rappellons que si
ϕ : X 󰀁→ X est une application, un point fixe de ϕ est un elementx ∈ X tel que

ϕ(x) = x.

Théorème 8.5. La rotation rα,z0 peut etre de deux types

– Si α = 1, alors r1,z0 : z 󰀁→ z + z0 est une translation (par z0). On dit egalement que c’est
une rotation triviale ou d’angle nul. Si z0 = 0 alors c’est l’identite et tous les points de C
sont fixes. Si z0 ∕= 0 alors la translation n’a aucun point fixe.

– Si α ∕= 1, alors rα,z0 possede un unique point fixe: un point zf verifiant

rα,z0(zf ) = zf

donne par

zf =
z0

(1− α)
.

Si θ (mod 2π) = arg(α) est l’argument de α on dit que rα,z0 est une rotation d’angle θ.

La symetrie sα,z0 peut etre de deux types

– L’ensemble des points fixes de sα,z0 est une droite et la symetrie est appelle symetrie
orthogonale par rapport a cette droite de points fixes.

– L’ensemble des points fixes de sα,z0 est vide; il existe alors une unique droite de C telle
que sα,z0 est la composee d’une symetrie orthogonale par rapport a cette droite et d’une
translation par un complexe parallele a cette droite. On dit alors que sα,z0 est une symetrie
glissee (par rapport a cette droite).

Exemple 8.4.2. Par exemple
z 󰀁→ i.z

est la rotation d’angle π/2 (dans le sens inverse des aiguillles d’une montre) et de centre l’origine et

z 󰀁→ z

est la symetrie orthogonale par rapport a l’axe des x. Par contre

z 󰀁→ z + 1

est une symetrie glissee par rapport a l’axe des x.

L’interet de representer les isometries sous forme de transformations sur les nombres complexes
c’est qu’il est plus facile de calculer leur composees ou leurs espaces de points fixes: par exemple
sα,z0 est la composee de la symetrie z 󰀁→ z, de la rotation z′ 󰀁→ αz′ et de la translation z′′ 󰀁→ z′′+z0.

8.5. Equations polynomiales complexes

Comme on l’a explique, le corps des nombres complexes C a ete introduit (pas sous forme de
matrices) dans la renaissance italienne dans l’etude des equations polynomiales: l’etude des solutions
z des equations de la forme

(8.5.1) P (z) = ad.z
d + ad−1.z

d−1 + · · ·+ a1.z + a0 = 0,

avec a0, · · · , ad ∈ R des nombres reels4.

Définition 8.8. Soit

P (X) = ad.X
d + ad−1.X

d−1 + · · ·+ a1.X + a0

un polynome a coefficient dans C. L’ensemble des racines de P dans C, RacP (C) est l’ensemble des
solution dans Cc de l’equation P (z) = 0:

RacP (C) = {z ∈ C, P (z) = 0}.
4en fait c’etait plutot les nombres rationels car le corps des reels n’existait pas encore mais on s’autorisait

a extraire des racines n-iemes de nombres rationnels positifs ou nuls
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On rappelle (cf. Thm A.6 dans le chapitre sur les polynomes) que

|RacP (C)| 󰃑 degP 󰃑 d.

En particulier pour d = 2 (les equations quadratiques) on obtient

(8.5.2) az2 + bz + c = 0, a, b, c ∈ R, a ∕= 0

Rappelons d’abord la methode permettant de trouver la forme generale des solutions qui consiste a
”completer le carre”: on a

az2 + bz + c = a(z2 +
b

a
z +

c

a
) = a(z2 + 2

b

2a
z +

c

a
)

on reconnait dans z2 + 2 b
2az le debut d’un carre:

z2 + 2
b

2a
z = z2 + 2

b

2a
z + (

b

2a
)2 − (

b

2a
)2 = (z +

b

2a
)2 − (

b

2a
)2

et l’equation devient

a((z +
b

2a
)2 − (

b

2a
)2 +

c

a
) = 0 ⇐⇒ Z2 − (

b

2a
)2 +

c

a
⇐⇒ Z2 =

∆

4a2

en posant Z = z + b
2a . Si ∆ 󰃍 0 on obtient comme solutions de cette equation

Z± = ±
√
∆

2a

dont on deduit les formules bien connues

z± =
−b±

√
∆

2a
.

Si ∆ < 0 les equations precedentes n’ont pas de solutions dans R; en particulier c’est le cas de
l’equation

z2 + 1 = 0

dont le discriminant vaut −4 < 0. On5 a alors introduit ”formellement” une solution i verifiant

i2 = −1

qu’on a appelle nombre ”imaginaire” et on a ainsi obtenu le corps abstrait des nombres complexes
C. On a alors trouve dans C des solutions de toutes les equations quadratiques a coefficients reels :
elles sont donnees par la formule usuelle

z± =
−b±

√
∆

2a

ou
√
∆ est l’une des racines carrees de ∆ si ∆ 󰃍 0 et si ∆ < 0 on prend

√
∆ :=

󰁳
|∆|.i

8.5.1. Equations quadratiques a coefficients complexes. Considerons maintenant la meme
equation

(8.5.3) az2 + bz + c = 0

mais avec a, b, c ∈ C. Les meme manipulations algebriques nous disent que les solutions de cette
equation devraient etre de la forme

z± =
−b±

√
∆

2a
, ∆ = b2 − 4ac ∈ C.

Ce qui nous reduit a trouver les solutions de l’equation quadratique ”monomiale”

Z2 = ∆

5Bombelli le premier
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pour ∆ ∈ C. Pour cela on ecrit ∆ = A+ IB et Z = X + iY et on a donc

Z2 = X2 − Y 2 + 2XY.i = A+ iB

ce qui nous amene a un systeme de deux equations polynomiales a coefficients dans R en deux
inconnues X,Y dans R:

X2 − Y 2 = A, 2XY = B.

On peut supposer que B ∕= 0 car sinon on a ∆ = A ∈ R et on sait resoudre l’equation (meme si
A < 0). On a donc X,Y ∕= 0 et on peut ecrire Y = B/2X et substituer:

X2 −B2/(4X2) = A ⇐⇒ 4X4 − 4AX2 −B2 = 0, X ∕= 0

Posant U = 2X2 on doit resoudre l’equation quadratique

U2 − 2AU −B2 = 0

dont le discriminant vaut
∆′ = 4(A2 +B2) > 0.

On trouve donc deux racines reelles

U± = A±
󰁳
A2 +B2.

Comme
√
A2 +B2 > A, l’une de ses solution est positive et l’autre negative mais comme U = X2

et que X ∈ R on doit avoir U 󰃍 0 et on prend

U+ = A+
󰁳
A2 +B2

et on prend

X± = ±
󰁳
U+.

On trouve alors Y± = ±B/(2
󰁳
U+) et on obtient deux solutions

Z± = ±(
󰁳
U+ + iB/(2

󰁳
U+)).

8.5.2. Equations monomiales. Les equation monomiales sont celles de la forme

Xd − w = 0

pour d 󰃍 1 et w ∈ C. Si w = 0 alors z = 0 est la seule racine.
Si w ∕= 0 alors l’existence de l’exponentielle complexe garantit l’existence de n solutions dis-

tinctes: soit z ∈ RacXd−w(C) alors on a

|z|d = |w|
et donc

|z| = |w|1/d.
Pour l’argument on a

d arg(z) = arg(w) (mod 2π).

On reecrit cela sous la forme

d arg(z) = arg(w) + 2πZ ⇐⇒ arg(z) =
arg(w)

d
+ 2π

1

d
Z

Ainsi arg(z) prend d valeurs distinctes modulo 2π:

arg(z) =
arg(w)

d
+ 2π

k

d
, 0 󰃑 k 󰃑 d− 1

et
RacXd−w(C) = {|w|1/dei

arg(w)
d +i2π k

d , 0 󰃑 k 󰃑 d− 1}
notons que

ei
arg(w)

d +i2π k
d = ei

arg(w)
d ωk

d , avec ωd := ei
2π
d .

Ainsi on a

(8.5.4) RacXd−w(C) = {|w|1/dei
arg(w)

d ωk
d , 0 󰃑 k 󰃑 d− 1}
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8.5.3. Racines de l’unite. En particulier si w = 1 on obtient

Définition 8.9. Pour d 󰃍 1 l’ensemble des racines de l’equation

zd = 1,

µd := RacXd−1(C) = {ωk
d , 0 󰃑 k 󰃑 d− 1}

est appele ensemble des racines d-iemes de l’unite

On a donc
RacXd−w(C) = |w|1/dei

arg(w)
d .µd

Notons que µd est un sous-groupe du groupe multiplicatif C×: en effet c’est un noyau

µd = ker(•d :
C× 󰀁→ C×

z 󰀁→ zd
).

Remarque 8.5.1. Pour une equation monomiale generale, l’ensemble des solutions (8.5.4) s’ecrit
donc

RacXd−w(C) = z0.µd, z0 = ei
arg(w)

d .

C’est un cas particulier de resolution d’equations dans les groupes, cf. Exo 2.2 (pour le groupe
(C×,×)).

Notons egalement que
µd = ωZ

d ;

ce groupe est donc cyclique de generateur ωd = ei
2π
d . En fait c’est un cas particulier d’un resultat

general purement algebrique:

Théorème 8.6. Soit K un corps et µ ⊂ K× un sous-groupe fini du groupe multiplicatif (K×,×).
Alors µ est cyclique et si on note d = |µ| son cardinal alors

µ = µd(K) = RacXd−1(K) = {ω ∈ K, ωd = 1}
est le groupe des racines d-iemes de l’unite de K.

On rappelle que de part la theorie des groupes cycliques le groupe µd(K) possede

ϕ(d) = |{0 󰃑 k 󰃑 d− 1, (k, d) = 1}|
generateurs donnes pour tout generateur ω0 de µd par

µ∗
d = {ωk

0 , 0 󰃑 k 󰃑 d− 1, (k, d) = 1}.
Ce sont egalement les elements du groupe µd(K) d’ordre d exactement:

µ∗
d = {ω ∈ K, ωd = 1, ∀d′|d, ωd′

∕= 1}.
On appelle µ∗

d des racines primitives d-iemes de l’unite de K.

8.5.4. Racines complexes de l’unite ayant des arguments particuliers. Il y a extreme-
ment peu de nombres complexes de module 1 pour lesquel on dispose d’une formule simple pour leur
argument reel et il y a de bonnes raisons a cela. Pour d 󰃍 1 un entier on pose

ωd = ei2π/d.

On va calculer quelques ωd.
Pour cela on remarque que comme ker(ei•) = 2πZ et que ei• est surjective sur C(1), ei• induit

une bijection
ei• : [0, 2π[≃ C(1).

On peut commencer:
8.5.4.1. d = 1. On a

ω1 = ei0 = 1

car un morphisme de groupe envoie l’element neutre sur l’element neutre.
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8.5.4.2. d = 2. On a (formule d’Euler)

ω2 = eiπ = −1.

En effet on a
(ω2)

2 = ei2π = 1

donc ω2 est une racine carree de 1 et donc vaut ±1. Comme on sait que ei0 = 1 et que eiπ ∕= ei0

c’est que ω2 = −1.
8.5.4.3. d = 4. On a

ω4 = eiπ/2 = i.

Preuve: Exercice. □
8.5.4.4. d = 8. On a

ω8 =

√
2

2
+ i

√
2

2
.

Preuve: Exercice. □
8.5.4.5. d = 3. On a

ω3 =
−1 + i

√
3

2
.

Preuve: Exercice. □
8.5.4.6. d = 5. On a

ω5 = cos(2π/5) + i sin(2π/5)

avec

cos(2π/5) = −1 +
√
5

4
, sin(2π/5) =

󰁶

1− (
1 +

√
5

4
)2.

Preuve: Exercice. □
8.5.4.7. Formule de l’angle moitie. Le calcul de ω2,ω4,ω8 proviennent d’un principe general:

si on connait ωd = ei2π/d alors on saura exprimer simplement ω2d = ei2π/2d des parties reelles et
imaginaires de ωd. En effet

ω2
2d = ωd

et ω2d est solution de l’equation
X2 = ωd

que l’on sait resoudre sur les complexes. On obtient ainsi

ω6 =

√
3 + i

2
.

On voit que les parties reelles et imaginaires de tous ces nombres complexes s’expriment par
extractions successives de racines carrees. Une condition geometrique equivalente de cette propriete
est la suivante:

Définition 8.10 (Constructibilite a la regle et au compas). Soit P0 = (0, 0) et P1 = (1, 0).
Un point P du plan est constructible à la regle et au compas a partir d’un ensemble fini de points
Pn = {P0, P1, · · · , Pn} contenant P0 et P1 si P est obtenu soit

– comme l’intersection de deux droites passant par des points distincts de {P0, P1, · · · , Pn}
– de l’intersection d’une droite passant par deux points distincts de {P0, · · · , Pn} et d’un
cercle dont le centre est contenu dans {P0, P1, · · · , Pn} et le rayon est egal a la distance
|PiPj | pour 0 󰃑 i, j 󰃑 n.

– de l’intersection de deux cercles centres en des elements de Pn et de rayons |PiPj | et |PkPl|.
Un point P est constructible a la regle et au compas si il existe un ensemble de points

{P0, P1, · · · , Pn, Pn+1}
avec Pn+1 = P tel que pour tout i 󰃍 2, Pi soit constructible à la regle et au compas a partir de
{P0, P1, · · · , Pi−1}.
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Figure 2. Construction a la regle et au compas d’un pentagone regulier (ω5).

Figure 3. Construction (fausse !) a la regle et au compas d’un heptagone
regulier (ω7).

En fait il n’y a pas beaucoup d’autre cas de racine de l’unite constructibles:

Théorème 8.7 (Gauss-Wantzel). On peut exprimer les parties reelles et imaginaires du nombre
complexe ωd = ei2π/d par extraction successive de racines carrees (ou de maniere equivalente, est
constructible a la regle et au compas) si et seulement si

d = 2k ou bien d = 2k
󰁜

i

pi

ou
󰁔

i pi est un produit (non-vide) de nombres premiers tous distincts et ”de Fermat”: on dit qu’un

nombre premier pi est de Fermat si pi = Ffi := 22
fi
+ 1 avec fi 󰃍 0 un entier.

Remarque 8.5.2. Les nombres premiers F0 = 3, F1 = 5, F2 = 17 sont de Fermat et Gauss est
devenu celebre quand a 19 ans il a montre que la condition etait suffisante et a exprimer ω17 sous
cette forme; un peu plus tard Wantzel a montre qu’elle etait necessaire. Les autres premiers de
Fermat connus sont F3 = 257 et F4 = 65537; les entiers F5, · · · , F32 ne sont pas premiers et on ne
sait pas si F33 ou les entiers de Fermat suivant sont premiers ou pas.

8.5.5. Equations de degre superieur. On a egalement pu resoudre dans C de nombreuses
autres equations polynomiales a coefficient reels. En particulier pour les equations de degre 2, 3
ou 4, on (les italiens) a pu obtenir des expressions algebriques explicites pour les solutions des
equations polynomiales en fonction des coefficients du polynome (formules de Cardan) ainsi que
pour des polynomes de degre superieur mais speciaux cela en extrayant des racines carrees, cubiques
ou quartiques ou d’ordre superieur: on parle d’equation resolubles par radicaux.

Le resultat le plus general est du a Gauss qui a demontre le
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Théorème (fondamental de l’algebre). Soit P (X) ∈ R[X] = ad.z
d+ad−1.z

d−1+ · · ·+a1.z+a0
un polynome reel non-constant alors l’equation (8.5.1) admet au moins une solution dans C: il
existe z ∈ C tel que P (z) = 0. En fait c’est egalement vrai si P (X) ∈ C[X] c’est a dire si l’equation
polynomiale est a coefficient dans C. On dit que C est algebriquement clos.

Remarque 8.5.3. Ce theoreme n’est pas constructif : il demontre l’existence de solutions mais
ne donne pas d’expression des solutions en fonctions des coefficients de P (comme c’est le cas pour
les equations quadratiques ou cubiques ou quartiques). Ce probleme a ete analyse en details par
Abel et Galois. En particulier Abel a donne un polynome explicite

X5 −X − 1

dont les racines ne peuvent s’exprimer par l’extractino de racines carrees, cubiques, quartique,
quintiques (ou de tout ordre) de nombres rationnels (cette equation n’est pas resoluble par radicaux).
Galois a ensuite donne une condition necessaire et suffisante (en terme d’un certain groupe associe
au polynome) pour decider si l’equation est resoluble par radicaux ou pas. C’est l’objet de ce qu’on
appelle la Theorie de Galois.

Exercice 8.1. Demontrer la partie facile du Theoreme de Gauss: si tout polynome a coefficient
reel admet une racine alors tout polynome a coefficient complexes admet une racine.

Pour cela considerer

P (X) = ad.z
d + ad−1.z

d−1 + · · ·+ a1.z + a0 ∈ C[X]

et
P (X) = ad.z

d + ad−1.z
d−1 + · · ·+ a1.z + a0

et montrer que Q(X) = P (X).P (X) ∈ R[X] et conclure.

On n’a pas encore les moyens de demontre ce resultat fondamental. On peut le faire soit

(1) Avec de l’analyse reele classique (theoreme des valeurs intermediaires) et de la Theorie de
Galois.

(2) Ou bien avec de l’analyse complexe: soit

z ∈ C 󰀁→ P (z) ∈ C
un polynome non-constant qui ne s’annule pas sur C alors la fonction

z 󰀁→ 1/P (z)

est holomorphe sur C et bornee; cela implique necessairement qu’elle est constante et donc
que P (z) est constant.



CHAPITRE 9

Operations elementaires sur les matrices

The first matrix I designed was quite naturally perfect.
It was a work of art. Flawless. Sublime.
A triumph only equaled by its monumental failure.

9.1. Operation elementaires sur les lignes

Soit M = (mij) ∈ Md′×d(K) une matrice. Pour simplifier les notations on ecrira sa i-ieme ligne
(i 󰃑 d′)

Li = Li(M) = Ligi(M) = (mij)j󰃑d

Définition 9.1. Les operations elementaires sur les lignes d’une matrice sont les applications
suivantes de Md′×d(K) vers Md′×d(K): pour i, j ∈ {1, · · · , d′} et λ ∈ K× et µ ∈ K

(I) Transposition: Echanger deux lignes i ∕= j 󰃑 d′ de M :

Li ←→ Lj

(II) Dilatation: Multiplier la i-eme ligne par un scalaire λ ∕= 0:

Li → λ.Li.

(III) Combinaison Lineaire: Additionner a la ligne i un multiple scalaire de la la j-ieme ligne pour
i ∕= j: µ ∈ K

Li → Li + µLj

Ces transformations sont appellees transformations elementaires.

Exemple 9.1.1. Considerons la matrice

(9.1.1) M =

󰀳

󰁃
0 1 1
2 2 2
2 1 2

󰀴

󰁄 .

On lui applique la transposition L1 ↔ L2 et on obtient

M1 =

󰀳

󰁃
2 2 2
0 1 1
2 1 2

󰀴

󰁄 .

On applique L1 → (1/2).L1 et on obtient

M2 =

󰀳

󰁃
1 1 1
0 1 1
2 1 2

󰀴

󰁄 .

On applique L3 → L3 − 2.L1 et on obtient

M3 =

󰀳

󰁃
1 1 1
0 1 1
0 −1 0

󰀴

󰁄 .
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On applique L3 → L3 + L2 et on obtient

M4 =

󰀳

󰁃
1 1 1
0 1 1
0 0 1

󰀴

󰁄 .

On applique L1 → L1 − L2 et on obtient

M5 =

󰀳

󰁃
1 0 0
0 1 1
0 0 1

󰀴

󰁄 .

On applique L2 → L2 − L3 et on obtient

M6 =

󰀳

󰁃
1 0 0
0 1 0
0 0 1

󰀴

󰁄 = Id3.

Proposition 9.1. Ces trois operations sont des applications lineaires bijectives

(I), (II), (III) : Md′×d(K) 󰀁→ Md′×d(K).

Preuve: La linearite vient du fait que les applications

Ligi(•), Ligj(•) : M ∈ Md′×d(K) 󰀁→ Mi ∈ Ligd(K)

sont lineaires et que l’application

(Ligi + µLigj)(•) : M ∈ Md′×d(K) 󰀁→ Li + µ.Lj ∈ Ligd(K)

est lineaire. Elle sont bijectives car elle admettent des applications reciproques:

(I) Echanger les deux memes lignes i, j 󰃑 d′ de M :

Li ←→ Lj

(II) Multiplier la i-eme ligne par le scalaire λ−1:

Li → λ−1.Li.

(III) Soustraire a la ligne i un multiple scalaire de la j-ieme ligne: µ ∈ K

Li → Li − µLj

□

Remarque 9.1.1. On peut etendre les transformations (I) et (II) au cas i = j:

– On a Tii = IdMd′×d(K).
– On Clii,µ = Di,1+µ et pour que ces transformation soit inversible il faut que µ ∕= −1

Proposition 9.2. Les trois operations elementaires sont obtenues par multiplication a gauche
de M par des matrices convenables: pour 1 󰃑 i ∕= j 󰃑 d′

(I) Tij .• : M 󰀁→ Tij .M
(II) Di,λ.• : M 󰀁→ Di,λ.M
(III) Clij,µ.• : M 󰀁→ Clij,µ.M .

ou les matrices carrees Tij , Di,λ, Clij,µ ∈ Md′(K) sont definies par:

Tij = Idd′ − Eii − Ejj + Eij + Eji.

Di,λ = Idd′ + (λ− 1).Eii, λ ∕= 0

Clij,µ = Idd′ + µ.Eij , i ∕= j ou µ ∕= −1 si i = j.



9.1. OPERATION ELEMENTAIRES SUR LES LIGNES 153

Preuve: Notons Eij = (eij,kl)k,j󰃑d′ la matrice elementaire sous forme de coefficients: on a

eij,kl = δk=i.δl=j

On a donc pour 1 󰃑 k, l 󰃑 d′

(Eij .M)kl =
󰁛

u󰃑d′

eij,ku.mul =
󰁛

u󰃑d′

δk=iδu=j .mul = δk=imjl.

Ainsi le produit Eij .M est la matrice dont la i-ieme ligne est la j-ieme ligne Lj = (mjl)l󰃑d′ et dont
toutes les autres coordonnees sont nulles.

– Ainsi (Idd′ + µ.Eij).M est la matrice formee a partir de M et ou la i-ligne Li est remplacee
par Li + µ.Lj .

– En particulier, si i = j, (Idd′ +µ.Eii).M est la matrice forme a partir de M et ou la i-ligne Li

est remplacee par Li + µ.Li = (1 + µ).Li. Ainsi en prenant λ = 1 + µ, on multiplie la i-ieme ligne
de M par λ.

– De meme (Idd′ − Eii − Ejj).M est la matrice M ou les lignes i et j sont remplacees par la
ligne nulle (0)l󰃑d′ et

(Idd′ − Eii − Ejj).M + (Eij + Eji).M

est la matrice precedente ou la ligne Lj est ajoutee a la i-ieme ligne et ou la ligne Lj est ajoutee a
la j-ieme ligne de M et c’est donc la matrice M ou les ligne i et j ont ete echangees. □

Remarque 9.1.2. En particulier, le fait que ces applications sont lineaires provient du fait que
pour toute matrice D ∈ Md′(K) la multiplication a gauche par D

D.• : M ∈ Md′×d(K) 󰀁→ D.M ∈ Md′×d(K)

est lineaire (par distributivite de la multiplication a gauche, Thm. 7.1).
De plus si D est inversible: D ∈ GLd′(K) alors D.• est inversible d’inverse D−1.•: en effet

D−1.(D.M) = (D−1.D).M = Idd′ .M = M, D.(D−1.M) = (D.D−1).M = Idd′ .M = M.

Notons que les matrices Tij , Di,λ, Clij,µ sont inversibles (si λ ∕= 0 ou i ∕= j pour Clij,µ) et on a

T−1
ij = Tij , D−1

i,λ = Di,λ−1 , Cl−1
ij,µ = Clij,−µ.

Remarque 9.1.3. On peut verifier directement que

Tij .Tij = Idd′ , Di,λ.Di,λ−1 = Idd′ , Clij,µ.Clij,−µ = Idd′

en utilisant que

Eij .Ekl = δj=kEil

Définition 9.2. Les matrices

Tij , Di,λ, λ ∕= 0, Clij,µ

pour i, j 󰃑 d′, λ ∕= 0, et si i = j, µ ∕= −1 sont appellees matrices de transformations elementaires.

Remarque 9.1.4. On ne confondra pas les matrices de transformations elementaires avec les
matrices elementaires qui sont les matrices Eij .

Définition 9.3. On dit que N est ligne-equivalente a M ssi il existe une suite de transformations
elementaires qui transforme M en N .

– De maniere equivalente, N est ligne-equivalente a M ssi il existe une suite finie de matrices
des transformations elementaires telle que N est obtenue a partir de M par multiplications a gauche
par cette suite de matrices.

Exemple 9.1.2. La matrice M de (9.1.1) est ligne equivalente a la matrice identite Id3: on a

Id3 = Cl23,−1Cl12,−1Cl32,1Cl31,−2D1,1/2T12M
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Proposition 9.3. La relation etre ”ligne-equivalente” est une relation d’equivalence sur Md′×d(K).
– De plus deux matrices M,N ligne-equivalentes sont equivalentes au sens de la notion d’equivalence

de deux matrices de la Definition 7.10.

Preuve: Comme toutes les transfomations elementaires sont inversibles et que leur inverse sont des
transformations elementaires, cette relation est reflexive, symetrique et transitive.

Si M et N sont lignes-equivalentes, alors

N = A.M = A.M.Idd

ou ou A le produit des matrices de transformations elementaires qui permettrent de passer de M a
N et M et N sont donc equivalentes. □

Corollaire. Si M et N sont lignes equivalentes alors

rg(M) = rg(N).

Preuve: En effet si elles sont lignes-equivalentes elles sont equivalentes et donc ont meme rang. □
Proposition 9.4. Si N ∈ Md′×d(K) est ligne-equivalente a M alors toute ligne de N est

combinaison lineaire des lignes de M :

∀i 󰃑 d′, Ligi(N) ∈ 〈Lig1(M), · · · ,Ligd′(M)〉 ⊂ Kd

et inversement les lignes de M sont combinaisons lineaires des lignes de N . En particulier les SEV
engendres par les lignes de M et de N sont les memes

〈Lig1(M), · · · ,Ligd′(M)〉 = 〈Lig1(N), · · · ,Ligd′(N)〉 ⊂ Kd

Preuve: Par definition des transformations elementaires, les lignes de N sont des combinaisons
lineaires des lignes de M . Mais comme la relation ”ligne-equivalente” est une relation d’equivalence
les lignes de M sont CL des lignes de N . □

9.2. Echelonnage

Définition 9.4. Une matrice M = (mij) ∈ Md′×d(K) est echelonnee si elle est nulle ou bien si

(1) Il existe 1 󰃑 r 󰃑 d et 1 󰃑 j1 < · · · < jr 󰃑 d tels que
– Pour la ligne L1, le premier terme non-nul est le j1-ieme: on a m1j = 0 pour tout
j < j1 et m1j1 ∕= 0,

– Pour la ligne L2, le premier terme non-nul est le j2-ieme: on a m2j = 0 pour tout
j < j2 et m2j2 ∕= 0,

–
...

– Pour la ligne Lr, le premier terme non-nul est le jr-ieme: on a mrj = 0 pour tout
j < jr et mrjr ∕= 0

(2) Si r < d les lignes Lr+1, · · · , Ld′ sont toutes nulles.

Si M est non-nulle les j1 < · · · < jr sont appeles les echelons de M et les miji , 1 󰃑 i 󰃑 r sont les
pivots de M .

La matrice ci-dessous a r = 3 echelons: j1 = 2, j2 = 4, j3 = 5
󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 m12 m13 m14 · · · · · · m1d

0 0 0 m24 · · · · · · m2d

0 0 0 0 m35 · · · · · · · · ·
0 0 0 0 0 0 0
...

...
...

...
...

...
...

0 0 0 0 0 0 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

Définition 9.5. Une matrice est echelonnee reduite si le seul coefficient non-nul d’une colonne
contenant un pivot est le pivot lui-meme et il vaut 1:
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– pour tout i = 1, · · · , r
miji = 1.

– Pour tout i = 1, · · · , r et tout 1 󰃑 i′ ∕= i 󰃑 d′, on a

mi′ji = 0.

La matrice ci-dessous a r = 3 echelons: j1 = 2, j2 = 4, j3 = 5 et est echelonnee reduite.
󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 1 m13 0 0 · · · m1d

0 0 0 1 0 · · · m2d

0 0 0 0 1 · · · · · ·
0 0 0 0 0 0 0
...

...
...

...
...

...
...

0 0 0 0 0 0 0

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

Théorème 9.1 (Gauss). Toute matrice est ligne-equivalente a une matrice echelonnee reduite.

Preuve: Si M = 0d′×d on a termine. Si M ∕= 0d′×d, soit j1 le plus petit indice d’une colonne
non-nulle. Soit mij1 ∕= 0. Quitte a remplacer M par T1i.M ops i = 1.

On peut remplacer la premiere ligne L1 par m−1
ij1

.L1 et supposons que m1,j1 = 1. En remplacant
les Li, i > 1 par Li −mij1L1 annule les autres coefficients de la colonne j1 et on obtient une matrice
ligne-equivalente de la forme (ici j1 = 3)

M ′ =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0 1 ∗ ∗ · · · ∗
0 0 0 m′

2,j1+1 ∗ · · · ∗
0 0 0 ∗ ∗ · · · · · ·
0 0 0 ∗ ∗ ∗ ∗
...

...
...

...
...

...
...

0 0 0 m′
d′,j1+1 ∗ ∗ ∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

On repete la procedure avec la matrice extraite de M ′ a partir de la deuxieme ligne et de la j1 + 1-
ieme colonne. On effectue des operations sur les lignes a partir de la deuxieme et donc sans changer
la premiere. La matrice M est remplacee par une matrice de la forme

M ′′ =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0 1 ∗ m′′
1j2

∗ ∗ · · · ∗
0 0 0 0 1 ∗ ∗ · · · ∗
0 0 0 0 0 ∗ ∗ · · · · · ·
0 0 0 0 0 ∗ ∗ ∗ ∗
...

...
... 0

...
...

...
...

0 0 0 0 0 ∗ ∗ ∗ ∗

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

et on peut alors remplacer la premiere ligne L′′
1 par L′′

1 −m′′
1j2

L′′
2 pour forcer le coefficient au dessus

du deuxieme pivot a etre egal a 0. Notons que cette transformation ne modifie par les coefficients
de la ligne L1 qui sont en position < j2 car les coefficent de L′′

2 dans ces positions sont nuls.
On repete l’operation ad nauseam.

□
Exemple 9.2.1. L’exemple 9.1.1 est l’echelonnage de la matrice

M =

󰀳

󰁃
0 1 1
2 2 2
2 1 2

󰀴

󰁄

en la matrice echelonnee reduite Id3.

Théorème 9.2 (Gauss). Deux matrices ligne-equivalentes et echelonnees reduites sont egales.

Preuve. (due a Yinghan).
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Exercice 9.1. (󰂏󰂏) Soient R,R′ ∈ Md′×d(K) deux matrices echelonnees reduites et qui sont
lignes equivalentes. On veut montrer que

R = R′.

Pour L = (l1, l2 · · · , ld) ∈ Kd un vecteur ligne et 1 󰃑 j 󰃑 d, on note

e∗j (L) = lj

la j-ieme coordonnee (dans la base canonique) de L.
Soient L1, · · · , Lr, L

′
1, · · · , L′

r ⊂ Kd les lignes non-nulles de R et R′ (comme R et R′ sont lignes
equivalentes elles ont meme rang donc r = r′), et soit

1 󰃑 j1 < · · · < jr 󰃑 d, 1 󰃑 j′1 < · · · < j′r 󰃑 d

les positions des pivots de R et R′ et

W (R) = Vect({L1, · · · , Lr}), W (R′) = Vect({L′
1, · · · , L′

r}) ⊂ Kd

les espaces vectoriels engendres par les lignes (non-nulles) de R et R′. On notera egalement pour
1 󰃑 i 󰃑 r

Wi(R) = Vect({Li, Li+1, · · · , Lr}), Wi(R
′) = Vect({L′

i, L
′
i+1, · · · , L′

r})
les SEV engendres par les lignes Lj , j 󰃍 i et L′

j , j 󰃍 i. En particulier W1(R) = W (R), Wr(R) =
K.Lr et Wi+1(R) ⊂ Wi(R).

(1) Pourquoi a t’on W (R) = W (R′) ?
(2) Montrer que pour 1 󰃑 i, k 󰃑 r, on a

e∗ji(Lk) = δk=i

et en deduire que pour tout L ∈ W (R) on a

L =

r󰁛

i=1

e∗ji(L)Li

(pour la deuxiemem partie, on ecrira L comme CL des Li, i 󰃑 r) et on identifiera les
coefficients en applicant les formes lineaires e∗ji .

(3) Montrer que pour L ∈ Kd, on a

L ∈ W (R) =⇒ ∀j < j1, e∗j (L) = 0.

(4) En deduire que j′1 󰃍 j1 puis que j′1 = j1 (en observant que R et R′ ont des roles
symetriques).

(5) Montrer que pour L ∈ W (R), on a

L ∈ Wi(R) ⇐⇒ ∀j < ji, e∗j (L) = 0.

(6) Montrer que pour tout 1 󰃑 i 󰃑 r et tout j < j′i on a e∗j (L
′
i) = 0.

(7) Montrer que L′
2 ∈ W2(R) (utiliser que que j′2 > j′1 = j1), puis que j′2 󰃍 j2 et enfin que

j′2 = j2.
(8) Montrer (par recurrence) que pour i = 1, · · · , r, ji = j′i.
(9) En deduire que pour i = 1, · · · , r L′

i = Li puis que R = R′ (on appliquera la premiere
partie de la Question 2 aux L′

k en utilisant que j′i = ji).

□

Remarque 9.2.1. Les matrices suivantes ne sont pas lignes equivalentes (quelque soit la carac-
teristique): elles sont echelonnees reduites et distinctes;

󰀳

󰁃
1 0 1
0 1 1
0 0 0

󰀴

󰁄 ,

󰀳

󰁃
1 0 2
0 1 1
0 0 0

󰀴

󰁄 ,

󰀳

󰁃
1 0 2
0 1 0
0 0 0

󰀴

󰁄 .
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Corollaire 9.1. (Unicite de la forme echelonne reduite) Soit M ∈ Md′×d(K) une matrice alors
M est ligne-equivalente a une unique matrice echelonnee reduite (qu’on appelle la forme echelonnee
reduite de M).

Preuve: Si M est ligne-equivalente a deux matrices echelonnees reduites R,R′ alors R et R′ sont
ligne-equivalentes (car c’est une relation d’equivalence) et donc R = R′. □

9.3. Applications

9.3.1. Calcul du rang. Comme on a observe si M et N sont lignes-equivalentes elles sont
equivalentes; on a donc

Proposition 9.5. Si M et N sont lignes equivalentes

rg(M) = rg(N).

Ensuite on a

Proposition 9.6. Si R est echelonnee avec r echelons alors

rg(R) = r.

Preuve: Il s’agit de voir que R possede exactement r lignes lineairement independantes (cf. Corol-
laire 7.1). Comme R est echelonnee, elle possede d′ − r ligne nulles et r lignes de la forme

Li = (0, · · · ,miji , ∗, · · · , ∗), i 󰃑 r

ou miji ∕= 0 est en position ji, i 󰃑 r sur la ligne Li. Si

x1.L1 + · · ·+ xr.Lr = 0d

la coordonnee j1 de cette expression donne

x1m1j1 = 0

et donc x1 = 0 (car miji ∕= 0), ensuite (sachant que x1 = 0) la coordonnee j2 devient x2m2j2 =
0 =⇒ x2 = 0,..., et enfin xrmrjr = 0 =⇒ xr = 0. □

9.3.2. Application aux matrices inversibles.

Proposition 9.7 (Critere d’inversibilite par operations elementaires). Soit M ∈ Md(K) une
matrice carree alors M est inversible ssi M est ligne equivalente a la matrice identite Idd.

Preuve: La matrice M est inversible ssi elle est de rang d. Une matrice echelonne reduite carree
de taille d et de rang d possede d echelons et est donc triangulaire superieure avec des 1 sur la
diagonale; comme elle est reduite, on dessu de chaque 1 on n’a que des 0 et la matrice ne peut etre
que l’identite. □

9.3.2.1. Engendrement du groupe lineaire par les matrices de transformations elementaires.

Théorème 9.3. Le groupe lineaire GLd(K) est engendre par les matrices des transformations
elementaires

Tij , Di,λ, Clij,µ, i, j 󰃑 d, λ, µ ∈ K, λ ∕= 0, et si i = j, µ ∕= −1.

En d’autres termes (puisque l’ensemble des matrices de transformations elementaires est stable par
inverse) tout matrice M ∈ GLd(K) s’ecrit comme un produit fini de ces matrices.

Preuve: Si M est inversible elle est ligne equivalente a l’identite ce qui signifie qu’on peut multiplier
a gauche M par un produit Π de n 󰃍 1 matrices de transformations elementaires et obtenir Idd:

Π.M = Idd.

On a donc
M = Π−1

est un produit d’inverses de matrices de transformations elementaires et donc un produit de matrices
de transformations elementaires. □
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9.3.2.2. Inversion de matrices par la methode de Gauss. Cette preuve donne une methode sys-
tematique pour inverser une matrice: supposons qu’apres une suite de transformations elementaires
on passe de la matrice inversible M a la matrice identite: il existe des matrices de transformations
elementaires

T1, T2, · · · , Tn

telles que
Tn. · · ·T2.T1.M = Id

alors
M−1 = Tn. · · ·T2.T1.

En pratique, on utilise la methode des vases communicants: on ecrit l’une a cote de l’autre

M et Idd.

Ensuite

– 1. On effectue la premiere transformation elementaire permettant d’echelonner M et on
fait la meme transformation sur la matrice Idd, ce qui revient a multiplier M et Idd a
gauche par T1, ce qui donne

T1.M et T1.Idd.

– 2. On effectue la deuxieme transformation elementaire sur T1.M et on fait la meme trans-
formation sur la matrice T1.Idd, ce qui revient a multiplier les deux matrices a gauche par
T2, ce qui donne

T2.T1.M et T2.T1.Idd.

–
...

– n. On effectue la n-ieme transformation elementaire sur Tn−1. · · · .T1.M et on fait la meme
transformation sur la matrice Tn−1. · · · .T1.Idd, ce qui revient a multiplier les deux matrices
a gauche par Tn ce qui donne

Tn. · · ·T2.T1.M = Idd et Tn. · · ·T2.T1 = M−1.

9.3.3. Extraction d’une base d’une famille generatrice. Soit V un K-EV de diemsnino
d 󰃍 1 et

G = {w1, · · · , wl} ⊂ V

une famille de vecteurs (lignes) et
W = 〈G 〉

l’espace vectoriel qu’ils engendrent. On cherche une base de W .
On choisit B = {ei, i 󰃑 d} ⊂ V un base et on identifie alors V a Kd de cette maniere; on

associe a chaque wi son vecteur ligne

Li = LigB(wi) ∈ Kd, i 󰃑 L

dans cette base. On a donc

〈Li, i 󰃑 l〉 = LigB(〈G 〉) = LigB(W ).

Proposition 9.8 (Description matricielle d’une base d’un SEV). Soit M ∈ Ml×d(K) la matrice
dont les l lignes sont formees des vecteurs lignes Li, i 󰃑 l. Soit R la matrice echelonee reduite
associee a M et

L′
i = Ligi(R), i 󰃑 l

l’ensemble des lignes de R alors si R possede r echelons on a

dimW = r

et les vecteurs de V correspondants aux r premieres lignes

BW = {w′
i = Lig−1

B (L′
i), i 󰃑 r}
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forment une base de W (et les l − r autres vecteurs sont nuls).
On peut alors completer BW en un base B de V en prenant

B = BW ⊔ {ej , j n’est pas un echelon de R}.

Preuve: Les {L′
i, i 󰃑 r} forment une famille libre et par la proposition 9.4

〈{L′
i, i 󰃑 r}〉 = 〈{Li, i 󰃑 l}〉 = LigB(W )

et comme les L′
i sont nuls pour i > r, on a

W = 〈{wi, i 󰃑 l}〉 = 〈{w′
i, i 󰃑 l}〉 = 〈{w′

i, i 󰃑 r}〉.

Pour la completion on note que la famille possede dimV elements et est libre. □

9.3.4. Resolution de systemes lineaires. Soit ϕ : V 󰀁→ W une application lineaire entre
espaces vectoriels de dimension finies (d = dimV et d′ = dimW ). Le probleme qu’on se pose est le
suivant:

Etant donne w ∈ W , trouver les v ∈ V tels que

(9.3.1) ϕ(v) = w.

Autrement dit, il s’agit de determiner si w appartient a ϕ(V ), l’image de V par ϕ et de calculer
l’ensemble des antecedents de w

Solϕ(w) = ϕ−1({w}) = {v ∈ V, ϕ(v) = w}.

L’equation (9.3.1) s’appelle un systeme lineaire.
Rappelons (dans le cadre plus general des groupes quelconques) la structure generale de l’ensemble

des solutions de cette equation.

Théorème 9.4 (Resolution d’equations dans les groupes). Soit ϕ : G 󰀁→ H un morphisme de
groupes alors pour tout h ∈ H, on pose

Solϕ(h) = ϕ−1({h}) = {g ∈ G, ϕ(g) = h} ⊂ G

la preimage de h par ϕ. En particulier Solϕ(eH) = kerϕ. Alors Solϕ(h) est

– soit l’ensemble vide (ssi h ∕∈ ϕ(G)),
– soit il existe g0 ∈ Solϕ(h) (ce qui equivaut a dire que h ∈ ϕ(G)) et

Solϕ(h) = g0.Solϕ(eH) = g0. kerϕ = {g0.k, ϕ(k) = eH}.

Preuve: Si ϕ−1({h}) ∕= ∅, soit g0 ∈ G tel que ϕ(g0) = h. Alors pour tout g tel que ϕ(g) = h on a

ϕ(g−1
0 .g) = ϕ(g0)

−1.ϕ(g) = h−1.h = eH

et donc g = g0.k avec k = g−1
0 .g ∈ kerϕ ce qui montre que

Solϕ(h) ⊂ g0.Solϕ(eH).

Reciproquement pour k ∈ kerϕ

ϕ(g0.k) = ϕ(g0).ϕ(k) = ϕ(g0) = h

ce qui montre

Solϕ(h) ⊃ g0.Solϕ(eH).

□
Appliquant ce resultat general au cas des especes vectoriels (vus vomme groupes additifs) G =

V,H = W et une application lineaire ϕ : V 󰀁→ W on obtient
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Théorème 9.5 (Resolution d’equations dans les espaces vectoriels). Soit ϕ : V 󰀁→ W une
application lineaire entre deux espaces vectoriels de dimension finie. Pour tout w ∈ W , on pose

Solϕ(w) = ϕ−1({w}) = {v ∈ V, ϕ(v) = w} ⊂ V

la preimage de w par ϕ. En particulier Solϕ(0W ) = kerϕ. Alors Solϕ(w) est

– soit w ∕∈ ϕ(V ) et Solϕ(w) est l’ensemble vide,
– soit w ∈ ϕ(V ) et il existe v0 ∈ V tel que ϕ(v0) = w et alors

Solϕ(w) = v0 + Solϕ(0d) = v0 + kerϕ = {v0 + k, k ∈ kerϕ}.

Le corollaire immediat suivant peut alors etre couple avec le Theoreme Noyau-Image:

Corollaire 9.2. Avec les notations precedente, on a en particulier

– si dimkerϕ = 0 (cad. kerϕ = {0V } et ϕ est injective), Solϕ(w) possede 0 ou 1 element
pour tout w.

– si rgϕ = dimϕ(V ) = dim(W ) (cad. ϕ(V ) = W et ϕ est surjective) Solϕ(w) possede au
moins un element pour tout w.

– Si dimV = dimW et que ϕ est ou bien injective ou bien surjective, ϕ est bijective et pour
tout w, Solϕ(w) possede exactement un element.

On va maintenant resoudre ce systeme ”abstrait” en le transformant en un probleme concret.
Pour cela on se donne des bases

B ⊂ V, B′ ⊂ W

et

M = (mij)ij = matB′B(ϕ)

la matrice de ϕ dans ces bases. Soient (vj)j󰃑d les coordonnes d’un vecteur v ∈ V et (wi)i 󰃑 d′ celles
de w ∈ W . L’equation (9.3.1) est equivalente au systeme lineaire a d′ equations et d inconnues dans
K, vj , j 󰃑 d

m11.v1 + · · ·+m1d.vd = w1

m21.v1 + · · ·+m2d.vd = w2

...
md′1.v1 + · · ·+md′d.vd = wd′

ou a l’equation matricielle

(9.3.2) M.Col(v) =

󰀳

󰁅󰁅󰁅󰁃

m11 m12 · · · m1d

m21 m22 · · · m2d

...
...

...
...

...
md1 m12 · · · md′d

󰀴

󰁆󰁆󰁆󰁄
.

󰀳

󰁅󰁅󰁅󰁃

v1
v2
...
vd

󰀴

󰁆󰁆󰁆󰁄
=

󰀳

󰁅󰁅󰁅󰁃

w1

w2

...
wd′

󰀴

󰁆󰁆󰁆󰁄
= Col(w)

On cherche alors une condition necessaire et suffisante sur les (wi)i󰃑d′ pour que ces equations ad-
mettent des solutions (vj)j󰃑d.

Remarque 9.3.1. En particulier si w = 0d′ est le vecteur nul, les solutions nous donnerons les
coordonnees des elements du noyau kerϕ.

Définition 9.6. L’equation lineaire (9.3.2) pour un vecteur general w s’appelle equation (ou
systeme) lineaire avec second membre (ou non-homogene).

L’equation lineaire (9.3.2) pour le vecteur nul 0W s’appelle equation (ou systeme) lineaire sans
second membre ou homogene.

Le Theoreme 9.5 et son corollaire 9.2 se reecrivent alors
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Théorème 9.6 (Resolution d’equations lineaires). Soit M = (mij)i󰃑d′,j󰃑d une matrice. Pour

toute matrice colonne w =

󰀳

󰁅󰁅󰁅󰁃

w1

w2

...
wd′

󰀴

󰁆󰁆󰁆󰁄
∈ Cold′(K), on pose

SolM (w) = {v =

󰀳

󰁅󰁅󰁅󰁃

v1
v2
...
vd

󰀴

󰁆󰁆󰁆󰁄
∈ Cold(K), M.v = w} ⊂ Cold(K)

l’ensemble des solution de l’equation matricielle
󰀳

󰁅󰁅󰁅󰁃

m11 m12 · · · m1d

m21 m22 · · · m2d

...
...

...
...

...
md1 m12 · · · md′d

󰀴

󰁆󰁆󰁆󰁄
.

󰀳

󰁅󰁅󰁅󰁃

v1
v2
...
vd

󰀴

󰁆󰁆󰁆󰁄
=

󰀳

󰁅󰁅󰁅󰁃

w1

w2

...
wd′

󰀴

󰁆󰁆󰁆󰁄

Alors SolM (w) est

– soit l’ensemble vide si w n’est pas de la forme w = M.v0 pour v0 ∈ Cold(K),
– soit de la forme

SolM (w) = v0 + SolM (0d′) = {v0 + k, kSolM (0d′)}
pour tout v0 ∈ Cold(K) tel que w = M.v0

9.3.4.1. Systemes lineaires et reduction de matrices. Pour trouver ces conditions, on applique
une suite de transformations elementaires de part et d’autre de l’egalite (9.3.2) de maniere a
echelonner-reduire la matrice de gauche. On multiplie les deux termes par un produit Πn =
En. · · · .E1 de matrices de transformations elementaires. Ici, on ne fixe pas la valeurs de w mais on
considere ses coordonnees comme des variables:

Πn.

󰀳

󰁅󰁅󰁅󰁃

m11 m12 · · · m1d

m21 m22 · · · m2d

...
...

...
...

...
md′1 md′2 · · · md′d

󰀴

󰁆󰁆󰁆󰁄
.

󰀳

󰁅󰁅󰁅󰁃

v1
v2
...
vd

󰀴

󰁆󰁆󰁆󰁄
= Πn.

󰀳

󰁅󰁅󰁅󰁃

w1

w2

...
wd′

󰀴

󰁆󰁆󰁆󰁄

On obtient alors un produit dont la premiere matrice est reduite (supposons que le premier pivot
soit j1 = 1)

󰀳

󰁅󰁅󰁅󰁅󰁃

1 ∗ 0 0 ∗ ∗
0 0 1 0 ∗ ∗
0 0 0 1 ∗ ∗
· · · · · · · · · · · · · · ·
0 0 0 0 0 0

󰀴

󰁆󰁆󰁆󰁆󰁄
.

󰀳

󰁅󰁅󰁅󰁃

v1
v2
...
vd

󰀴

󰁆󰁆󰁆󰁄
=

󰀳

󰁅󰁅󰁅󰁃

...
w′

r

0
0

󰀴

󰁆󰁆󰁆󰁄
= Πn.

󰀳

󰁅󰁅󰁅󰁃

w1

w2

...
wd′

󰀴

󰁆󰁆󰁆󰁄
=

󰀳

󰁅󰁅󰁅󰁅󰁃

...
w′

r

w′
r+1
...

󰀴

󰁆󰁆󰁆󰁆󰁄
.

ou les
w′

i = w′
i(w1, · · · , wd′), i 󰃑 d′

sont des combinaisons lineaires des wi, i 󰃑 d′. Notons egalement que comme les lignes d’indice
󰃍 r + 1 sont nulles le premier produit fournit un vecteur colonne dont les coordonnes d’indice
󰃍 r + 1 sont nulles.

Définition 9.7. Les inconnues vji pour ji, 1 󰃑 i 󰃑 r etant un echelon sont appelles inconnues
principales du systeme. Les inconnues vj pour j 󰃑 d qui n’est pas un echelon sont appelles inconnues
libres du systeme.

On en retire plusieurs informations:
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(1) Le nombre d’echelons est egal au rang de M qui est le rang de ϕ.
(2) Les egalites obtenues

w′
r+1 = · · · = w′

d′ = 0

forment un systeme de d′ − r equations qui sont les equations cartesiennes l’image ϕ(V ):

ϕ(V ) = {(wi)i󰃑d, w′
k(w1, · · · , wd) = 0, k 󰃍 r + 1} ⊂ W.

(3) Si w ∈ W ne satisfait pas les equations ci-dessus alors w ∕∈ ϕ(V ) et l’ensemble des solutions
est vide.

(4) Si w ∈ W satisfait les equations ci-dessus alors w ∈ ϕ(V ) et l’ensemble des solutions est
non-vide. On obtient toutes les solutions

– en fixant de maniere arbitraire les inconnues libres vj (j pas un echelon),
– puis en resolvant le systeme echelone (dont les inconnues sont les variables principales
vji , i 󰃑 r) en fonctions des inconnues libres prealablement fixees et des w′

i(w), i 󰃑 r:
on resoud chacune des equations

vji + · · · = w′
i(w), i 󰃑 r

independament l’une de l’autre; elles ont chacune une solution unique.
Par exemple on peut fixer v0j = 0 si j n’est pas un echelon et on ptrouve alors v0ji = w′

i

pour i 󰃑 r.
(5) Alternativement on obtient toutes les solutions en calculant resolvant le systeme en prenant

w = 0 le vecteur nul, et en obtenant une relation lineaire entre chaque vji , i 󰃑 r et les
inconnues libres. Cela nous donne les vecteur du noyau kerϕ: une base du noyau (qui est
de dimension d − r) est obtenue en fixant une des inconnue libre egale a 1, et toutes les
autres inconnues libres egales a 0 et en fixant (de maniere unique) les inconnues principales
de sorte que le systeme d’equations

󰀳

󰁅󰁅󰁅󰁅󰁃

1 ∗ 0 0 ∗ ∗
0 0 1 0 ∗ ∗
0 0 0 1 ∗ ∗
· · · · · · · · · · · · · · ·
0 0 0 0 0 0

󰀴

󰁆󰁆󰁆󰁆󰁄
.

󰀳

󰁅󰁅󰁅󰁃

v1
v2
...
vd

󰀴

󰁆󰁆󰁆󰁄
=

󰀳

󰁅󰁅󰁅󰁃

0
...
0
0

󰀴

󰁆󰁆󰁆󰁄

soit satisfait.
Ensuite etant donne w ∈ ϕ(V ), on calcule alors une solution particuliere v0 comme

ci-dessus et on lui ajoute un vecteur arbitraire du noyau kerϕ.

9.4. Operation elementaires sur les colonnes

Soit M = (mij) ∈ Md′×d(K) une matrice. Pour simplifier les notations on ecrira sa i-ieme ligne
(i 󰃑 d′)

Ci = Ci(M) = Coli(M) = (mij)i󰃑d′

Définition 9.8. Les operations elementaires sur les colonnes d’une matrice sont les applications
suivantes de Md′×d(K) vers Md′×d(K): pour i, j ∈ {1, · · · , d} et λ ∈ K× et µ ∈ K

(I) Transposition: Echanger deux colonnes i ∕= j 󰃑 d′ de M :

Ci ←→ Cj

(II) Dilatation: Multiplier la i-eme colonne par un scalaire λ ∕= 0:

Ci → λ.Ci.

(III) Combinaison Lineaire: Additionner a la colonne i un multiple scalaire de la la j-ieme colonne
pour i ∕= j: µ ∈ K

Ci → Ci + µCj

Ces transformations sont appellees transformations elementaires sur les colonnes d’une matrice.
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On rappelle que les transformations sur les lignes sont donnes par des multiplications a gauche
par des matrices inversibles de transformations elementaires (sur les lignes):

M ′ 󰀁→ Tl.M
′

Comme la transposition d’une matrice

M ↔ M ′ = tM

transforme la i-ieme colonne de M en la i-ieme ligne de M ′ et que
t
Tl.M

′ =
t
M ′.tTl = M.tTl,

on obtient immediatement

Proposition 9.9. Une operation elementaire sur les colonnes d’une matrice M equivaut a une
operation elementaire sur les lignes de M ′ = tM .

Une telle transformation est donnee par multiplication par la droite

M 󰀁→ M.tTl

par la transposee d’une matrice de transformation elementaire sur les lignes Tl en composant les
operations suivantes

M 󰀁→ tM 󰀁→ Tl.
tM 󰀁→ t

Tl.
tM = M.tTl = M.Tc.

Il en resulte que des transformations sont bijectives et lineaires.

Définition 9.9. On dit que N est colonne-equivalente a M ssi il existe une suite de transfor-
mations elementaires qui transforme M en N .

– De maniere equivalente, N est colonne-equivalente a M ssi il existe une suite finie de matri-
ces de transformations elementaires (sur les colonnes) telle que N est obtenue a partir de M par
multiplications a droite par cette suite de matrices.

Proposition 9.10. La relation etre ”colonne-equivalente” est une relation d’equivalence sur
Md′×d(K).

– De plus deux matrices M,N colonnes-equivalentes sont equivalentes au sens de la notion
d’equivalence de deux matrices de la Definition 7.10. En particulier elles ont meme rang.





CHAPITRE 10

Determinants

That object was to present the subject as a continuous chain of
arguments, separated from all accessories of explanation or
illustration, a form which I venture to think better suited for a
treatise on exact science than the semi -colloquial semi-logical
form often adopted by Mathematical writers.

Lewis Carroll (1867)

10.1. Formes multilineaires

Définition 10.1. Soit V un K-espace vectoriel et n 󰃍 1 un entier. Une forme multilineaire en
n variables sur V est une application

Λ :
V n 󰀁→ K

(v1, · · · , vn) 󰀁→ Λ(v1, · · · , vn)
telle que pour tout i = 1, · · · , n et tout choix de n − 1 vecteurs vj ∈ V, j ∕= i, l’application Λ
”restreinte a la i-ieme composante”

vi ∈ V 󰀁→ Λ(v1, · · · , vi, · · · , vn) ∈ K

est lineaire:

Λ(v1, · · · ,λ.vi + v′i, · · · , vn) = λ.Λ(v1, · · · , vi, · · · , vn) + Λ(v1, · · · , v′i, · · · , vn).

L’ensemble des formes multilineaires en n variables sur V est note

Mult(n)(V,K) ou bien (V ∗)⊗n(notation ”produit tensoriel”).

Remarque 10.1.1. Si n = 1 c’est la definition usuelle d’une forme lineaire. Si n = 2 on parle
de forme bi-lineaire, n = 3 tri-lineaire, etc...

Remarque 10.1.2. Quelques exemple en basse dimension:

– Si V = K, n = 2 l’application

󰁜
2
:

K2 󰀁→ K
(x1, x2) 󰀁→

󰁔
2(x1, x2) = x1.x2

est multilineaire. Plus generalement

󰁜
n
:

Kn 󰀁→ K
(x1, · · · , xn) 󰀁→

󰁔
n(x1, · · · , xn) = x1 × · · ·× xn

est multilineaire.
– Soit V = K2 et n = 2, on a l’application ”produit scalaire”

•.• :
K2 ×K2 󰀁→ K

((x1, y1), (x2, y2)) 󰀁→ (x1, y1).(x2, y2) = x1.x2 + y1.y2

qui est bilineaire.

165
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– Soit V = K2 et n = 2, on a l’application ”produit alterne”

• ∧ • :
K2 ×K2 󰀁→ K

((x1, y1), (x2, y2)) 󰀁→ (x1, y1) ∧ (x2, y2) = x1.y2 − y1.x2

qui est bilineaire.

Exemple 10.1.1. Soient ℓ1, · · · , ℓn : V 󰀁→ K des formes lineaires, alors l’application

ℓ1 ⊗ · · ·⊗ ℓn : V n 󰀁→ K

definie par

ℓ1 ⊗ · · ·⊗ ℓn(v1, · · · , vn) =
n󰁜

i=1

ℓi(vi) = ℓ1(v1). · · · .ℓn(vn)

est une forme multilineaire en n variables. C’est en fait l’exemple principal. En effet soit i ∈ [1, d]
fixons des vecteurs vj pour chaque j ∈ [1, d] different de i; l’application

v 󰀁→ ℓ1(v1). · · · .ℓi(v). · · · .ℓn(vn) = (
󰁜

j ∕=i

ℓj(vj))ℓi(v)

est un multiple scalaire (de facteur (
󰁔

j ∕=i ℓj(vj))) de la forme lineaire v 󰀁→ ℓi(v) et est donc une
forme lineaire en v.

Remarque 10.1.3. On prendra garde de distinguer la fonction ℓ1⊗· · ·⊗ℓn du produit ℓ1. · · · .ℓn:
le produit ℓ1. · · · .ℓn est la fonction d’UNE variable

ℓ1. · · · .ℓn : v ∈ V 󰀁→ ℓ1(v). · · · .ℓn(v)
alors que la fonction ℓ1 ⊗ · · ·⊗ ℓn est une fonction de n variables

ℓ1 ⊗ · · ·⊗ ℓn : (v1, · · · , vn) ∈ V n 󰀁→ ℓ1(v1). · · · .ℓn(vn) ∈ K.

On a en fait
ℓ1. · · · .ℓn(v) = ℓ1 ⊗ · · ·⊗ ℓn(v, · · · , v).

Remarque 10.1.4. Notons egalement que l’ordre importe : si ℓ1 ∕= ℓ2 alors

ℓ1 ⊗ ℓ2 ⊗ · · ·⊗ ℓn ∕= ℓ2 ⊗ ℓ1 ⊗ · · ·⊗ ℓn

alors que pour le produit usuel
ℓ1.ℓ2. · · · .ℓn ∕= ℓ2.ℓ1. · · · .ℓn.

Par exemple is ℓ1 = e∗1, ℓ2 = e∗2 on a pour (v1, v2) = (e1, e2)

e∗1 ⊗ e∗2(e1, e2) = e∗1 ⊗ (e1).e
∗
2(e2) = 1.1 = 1

alors que
e∗1 ⊗ e∗2(e2, e1) = e∗1 ⊗ (e2).e

∗
2(e1) = 0.0 = 0.

Remarque 10.1.5. Attention, V n est muni d’une structure naturelle de K-ev en posant

λ.(v1, · · · , vn) + (v′1, · · · , v′n) = (λ.v1 + v′1, · · · ,λ.vn + v′n)

mais une application Λ : V n 󰀁→ K qui est lineaire pour cette structure (une forme lineaire sur V n)
n’est pas multilineaire en general.

Par exemple prenons V = K, n = 2 et considerons la forme lineaire

Σ : (x1, x2) ∈ Ks 󰀁→ x1 + x2 ∈ K.

Fixons x2 et calculons
Σ(λx1 + x′

1, x2) = λx1 + x′
1 + x2

et si la forme etait lineaire en la variable x1 on aurait

Σ(λx1 + x′
1, x2) = λΣ(x1, x2) + Σ(x′

1, x2) = λ.x1 + x2 + x′
1 + x2

qui ne vaut pas λx1 + x′
1 + x2 (sauf si x2 = 0K).
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Notons egalement que si Λ est multilineaire alors pour tout i 󰃑 n pour tout choix de n − 1
vecteurs vj ∈ V j ∕= i, l’application

vi 󰀁→ Λ(v1, · · · , vi, · · · , vd)
est une forme lineaire et sa valeur en 0V est nulle

Λ(v1, · · · , 0V , · · · , vd) = 0K

(le 0V est place ”en position i”). C’est n’est pas forcement le cas d’une forme lineaire sur l’espace
vectoriel V n (sauf si (v1, · · · , 0V , · · · , vd) est dans le noyau).

Remarque 10.1.6. Soient λ1, · · · ,λn, µ1, · · · , µn ∈ K, v1, · · · .vn ∈ V et Λ une forme multilin-
eaire alors

Λ(λ1.v1 + µ1.v
′
1, · · · ,λn.vn + µn.v

′
n)

est la somme de 2n termes (2n est le nombre de decompositions de l’ensemble {1, · · · , n} en deux
sous-ensembles disjoints):

󰁛

I⊔J={1,··· ,n}

(
󰁜

i∈I

λi

󰀄
.(
󰁜

j∈J

µj

󰀄
Λ(wIJ,1, · · · , wIJ,n)

avec

wIJ,i =

󰀫
vi si i ∈ I

v′i si i ∈ J
.

En particulier

Λ(λ1.v1, · · · ,λn.vn) = λ1. · · · .λn.Λ(v1, · · · , vn)
et

Λ(λ.v1, · · · ,λ.vn) = λn.Λ(v1, · · · , vn).

Proposition 10.1. L’ensemble Mult(n)(V,K) = (V ∗)⊗n des formes multilineaires en n vari-
ables est un K-espace vectoriel quand on le muni de l’addition et de la multiplication par les scalaires
usuelle pour les fonctions de V n a valeurs dans K: ∀Λ,Ξ ∈ (V ∗)⊗n et pour λ ∈ K, la fonction

(λΛ+ Ξ)(v1, · · · , vn) = λΛ(v1, · · · , vn) + Ξ(v1, · · · , vn)
est encore une forme multilineaire.

Preuve. Exercice. □

Théorème 10.1 (Dimension et base de l’espace des formes multilineaires). Soit d = dimV ,
B = {e1, · · · , ed} ⊂ V une base et B∗ = {e∗1, · · · , e∗d} ⊂ V ∗ la base duale. Alors V ∗⊗n est de
dimension finie egale a dn; une base de V ∗⊗n est donnee par l’ensemble des formes multilineaires
de la forme

e∗j1 ⊗ · · ·⊗ e∗jn , quand j1, · · · , jn parcourent {1, · · · , d}.
On note cette base

(B∗)⊗n = {e∗j1 ⊗ · · ·⊗ e∗jn , (j1, · · · , jn) ∈ [1, d]n}.
Pour tout Λ ∈ (V ∗)⊗n on a la decomposition

(10.1.1) Λ =
󰁛

· · ·
󰁛

j1,··· ,jn󰃑d

Λ(ej1 , · · · ejn)e∗j1 ⊗ · · ·⊗ e∗jn

Preuve: On va montrer que la famille (B∗)⊗n est libre: soit une familles de dn scalaires

λj1,··· ,jn , j1, · · · , jn 󰃑 d

tels que 󰁛
· · ·

󰁛

j1,··· ,jn󰃑d

λj1,··· ,jne
∗
j1 ⊗ · · ·⊗ e∗jn = 0,
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on veut montrer que
∀j1, · · · , jn 󰃑 d, λj1,··· ,jn = 0.

Soient i1, · · · , in 󰃑 d, on evalue de deux manieres Λ(ei1 , · · · , ein). On a d’abord

Λ(ei1 , · · · , ein) = 0.

D’autre part

Λ(ei1 , · · · , ein) =
󰁛

· · ·
󰁛

j1,··· ,jn󰃑d

λj1,··· ,jne
∗
j1 ⊗ · · ·⊗ e∗jn(ei1 , · · · , ein)

=
󰁛

· · ·
󰁛

j1,··· ,jn󰃑d

λj1,··· ,jne
∗
j1(ei1). · · · .e

∗
jn(ein) =

󰁛
· · ·

󰁛

j1,··· ,jn󰃑d

λj1,··· ,jnδj1=i1 . · · · .δjn=in

= λi1,··· ,in

Ainsi
∀i1, · · · , in 󰃑 d, λi1,··· ,in = 0

et c’est ce que l’on voulait.
On va montrer que la famille est generatrice. On sait deja que c’est le cas pour n = 1 (le cas

des formes lineaires).
Pour se donner une idee, on traite le cas n = 2 (les formes bilineaires) . Soit Λ : V × V 󰀁→ K

une forme bilineaire et v1, v2 ∈ V . On ecrit pour i = 1, 2

vi =

d󰁛

j=1

xijej =

d󰁛

j=1

e∗j (vi)ej

et alors on a

Λ(v1, v2) = Λ(

d󰁛

j1=1

x1j1ej1 , v2).

On a par linearite en la premiere variable

Λ(v1, v2) =
󰁛

j1󰃑d

x1j1Λ(ej1 , v2) =
󰁛

j1󰃑d

x1j1Λ(ej1 ,

d󰁛

j2=1

x2j2ej2)

et par linearite en la deuxieme variable on a

Λ(ej1 ,

d󰁛

j2=1

x2j2ej2) =

d󰁛

j2=1

x2j2Λ(ej1 , ej2)

et donc

Λ(v1, v2) =
󰁛󰁛

j1,j2󰃑d

Λ(ej1 , ej2)x1j1x2j2 =
󰁛󰁛

j1,j2󰃑d

Λ(ej1 , ej2)e
∗
j1(v1).e

∗
j2(v2)

󰁛󰁛

j1,j2󰃑d

Λ(ej1 , ej2)e
∗
j1 ⊗ e∗j2(v1, v2).

Ainsi
Λ =

󰁛󰁛

j1,j2󰃑d

Λ(ej1 , ej2)e
∗
j1 ⊗ e∗j2

ce qui est la formule (10.1.1) pour n = 2.

On traite maintenant le cas general. On montre par recurrence sur n que la famille (B∗)⊗n est
generatrice et que l’on a l’egalite (10.1.1):

Λ =
󰁛

· · ·
󰁛

j1,··· ,jn󰃑d

Λ(ej1 , · · · , ejn)e∗j1 ⊗ · · ·⊗ e∗jn .
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On a deja montre cela pour n = 1 et n = 2. Supposons que (10.1.1) est vraie pour tout Λ ∈
Mult(n)(V,K) et montrons la formule pour Λ ∈ Mult(n+1)(V,K). Soit

Λ : (v1, · · · , vn+1) → Λ(v1, · · · , vn+1) ∈ K

une forme multilineaire en n+ 1 variables. Pour tout vn+1 ∈ V la fonction

Λvn+1 : (v1, · · · , vn) → Λ(v1, · · · , vn, vn+1) ∈ K

est une forme multilineaire en n variables. Elle s’ecrit donc

Λvn+1 =
󰁛󰁛

j1,··· ,jn󰃑d

Λvn+1(ej1 , · · · , ejn)e∗j1 ⊗ · · ·⊗ e∗jn

et on rappelle que

Λvn+1(ej1 , · · · , ejn) = Λ(ej1 , · · · , ejn , vn+1).

Pour chaque (ej1 , · · · , ejn) ∈ Bn, les fonctions

vn+1 ∈ V → Λ(ej1 , · · · , ejn , vn+1) ∈ K

sont des formes lineaires en vn+1 et s’ecrivent donc comme CL de la base B∗ = {e∗1, · · · , e∗d}

Λ(ej1 , · · · , ejn , •) =
󰁛

jn+1󰃑d

Λ(ej1 , · · · , ejn , ejn+1
)e∗jn+1

(•).

On a donc

Λ(v1, · · · , vn, vn+1) =
󰁛󰁛

j1,··· ,jn󰃑d

Λvn+1
(ej1 , · · · , ejn)e∗j1 ⊗ · · ·⊗ e∗jn(v1, · · · , vn)

=
󰁛󰁛

j1,··· ,jn󰃑d

e∗j1(v1). · · · .e
∗
jn(vn)

󰁛

jn+1󰃑d

Λ(ej1 , · · · , ejn , ejn+1)e
∗
jn+1

(vn+1)

=
󰁛

· · ·
󰁛

j1,··· ,jn,jn+1󰃑d

Λ(ej1 , · · · , ejn , ejn+1
)e∗j1(v1). · · · .e

∗
jn(vn)e

∗
jn+1

(vn+1)

=
󰁛

· · ·
󰁛

j1,··· ,jn,jn+1󰃑d

Λ(ej1 , · · · , ejn , ejn+1)e
∗
j1 ⊗ · · ·⊗ e∗jn+1

(v1, · · · , vn, vn+1).

Ainsi on a montre que

Λ =
󰁛

· · ·
󰁛

j1,··· ,jn,jn+1󰃑d

Λ(ej1 , · · · , ejn , ejn+1)e
∗
j1 ⊗ · · ·⊗ e∗jn+1

.

La famille (B∗)⊗n+1 est donc generatrice.
□

Exemple 10.1.2. Pour V = K2 l’espace Mult2(K2,K) est de dimension 22 = 4 et une base est
donnee en terme de la base canonique B0{e01, e02}:

(B0)⊗2 = {e01 ⊗ e01, e
0
1 ⊗ e02, e

0
2 ⊗ e01, e

0
2 ⊗ e02}

et le produit scalaire s’ecrit

• · • = e01 ⊗ e01 + e02 ⊗ e02

et le produit alterne

• ∧ • = e01 ⊗ e02 − e02 ⊗ e01
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10.1.1. Formes symetriques/alternees. A partir d’une forme multilineaire en n variables
on peut en obtenir des nouvelles par ”permutation” des variables: par exemple soit n 󰃍 2 et

Λ ∈ Mult(n)(V,K), une formme multilineaire; on definit alors la forme multilineaire

(12).Λ : (v1, v2, v3, · · · , vn) 󰀁→ Λ(v2, v1, v3, · · · , vn)
en echangeant v1 et v2. Cette formes est a nouveau multilineaire (le verifier).

Plus generalement pour 1 󰃑 i < j 󰃑 n, on pose

(ij).Λ : (v1, · · · , vi, · · · , vj , · · · , vn) 󰀁→ Λ(v1, · · · , vj , · · · , vi, · · · , vn).

Définition 10.2. Une forme multilineaire

Λ : V n 󰀁→ K

est dite

– Symetrique si ∀i ∕= j 󰃑 n
(ij).Λ = Λ

c’est a dire ∀(v1, · · · , vn) ∈ V n, on a

Λ(v1, · · · , vj , · · · , vi, · · · , vn) = Λ(v1, · · · , vi, · · · , vj , · · · , vn).
Autrement dit si la valeur de Λ ne change pas quand on echange deux composantes.

– Alternee si ∀i ∕= j 󰃑 n
(ij).Λ = −Λ

c’est a dire ∀(v1, · · · , vn) ∈ V n, on a

Λ(v1, · · · , vj , · · · , vi, · · · , vn) = −Λ(v1, · · · , vi, · · · , vj , · · · , vn).
Autrement dit si sa valeur est changee en son opposee si on echange deux composantes
distinctes.

L’ensemble des formes multilineaires symetriques en n variables sur V est note

Sym(n)(V ;K).

L’ensemble des formes multilineaires alternees en n variables sur V est note

Alt(n)(V ;K).

Proposition 10.2. Les ensembles Sym(n)(V ;K) et Alt(n)(V ;K) sont des SEV de l’espace vec-

toriel Mult(n)(V ;K).

Preuve: Exercice. Pour cela on utilisera (apres l’avoir demontre) le fait que l’application

(ij) : Λ ∈ Mult(n)(V,K) → (ij)Λ ∈ Mult(n)(V,K)

est lineaire. □
Exemple 10.1.3. On reprend certains exemples vus precedemment pour V = K2:

– L’application ”produit scalaire”

•.• :
K2 ×K2 󰀁→ K

((x1, y1), (x2, y2)) 󰀁→ (x1, y1).(x2, y2) = x1.x2 + y1.y2

qui est bilineaire symmetrique:

(x1, y1).(x2, y2) = x1.x2 + y1.y2 = (x2, y2).(x1, y1)

– L’application ”produit alterne”

• ∧ • :
K2 ×K2 󰀁→ K

((x1, y1), (x2, y2)) 󰀁→ (x1, y1) ∧ (x2, y2) = x1.y2 − y1.x2

qui est bilineaire alternee:

(x1, y1) ∧ (x2, y2) = x1y2 − y1x2 = −(x2y1 − y2x1) = −(x2, y2) ∧ (x1, y1).
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Remarque 10.1.7. Pourquoi demande t on que

(ij)Λ = ±Λ

et pas
(ij)Λ = 3Λ ?

Soit λ un scalaire tel que
(ij)Λ = λΛ.

En reappliquant (ij) a l’egalite precedente on a

(ij)(ij)Λ = λ(ij)Λ = λ2Λ.

Mais
(ij)(ij)Λ = Λ

de sorte que si Λ ∕= 0 on obtient
λ2 = 1 ⇐⇒ λ = ±1.

10.1.2. Permutation et signature. La transformation

(ij).Λ 󰀁→ Λ

est un cas particulier d’une transformation plus generale: soit n 󰃍 1 et

σ : i ∈ {1, · · · , n} 󰀁→ σ(i) ∈ {1, · · · , n}
une permutation de {1, · · · , n}, on dficit alors pour tout n-uple

(v1, · · · , vn) ∈ V n

un nouvel uplet obtenu par permutation des indices en posant

(v1, · · · , vn)σ := (vσ(1), · · · , vσ(n)).

On defini alors pour toute forme multilineaire Λ ∈ Mult(n)(V,K) une nouvelle fonction obtenue par
precomposition par •σ:

σ.Λ : (v1, · · · , vi, · · · , vn) 󰀁→ Λ((v1, · · · , vi, · · · , vn)σ) = Λ(vσ(1), · · · , vσ(i), · · · , vσ(n)).
On verifie facilement que si Λ est multilineaire alors σ.Λ est encore multilineaire.

Théorème 10.2 (Action par permutation sur les formes multilineaires). Pour tout σ ∈ Sn,
l’application

σ.• : Λ ∈ Mult(n)(V,K) 󰀁→ σ.Λ ∈ Mult(n)(V,K)

definit un automorphisme du K-ev Mult(n)(V,K).
Plus precisement, l’application

σ ∈ Sn 󰀁→ σ.• ∈ Aut(Mult(n)(V,K))

verifie

– Soit Idn la permutation triviale. On a ∀Λ, Idn.Λ = Λ autrement dit

Idn.• = IdMult(n)(V,K).

– ∀Λ, ∀σ, τ ∈ Sn, on a
(σ ◦ τ).Λ = σ.(τ.Λ)

autrement dit
(σ ◦ τ).• = (σ.•) ◦ (τ.•) = σ.(τ.•).

En particulier, pour tout σ

(σ.•) ◦ (σ−1.•) = Idn.• = IdMult(n)(V,K)

et donc σ.• est un automorphisme lineaire de Mult(n)(V,K) de reciproque σ−1.•.
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Ainsi

σ 󰀁→ σ.•

definit une action a gauche Sn ↷ Mult(n)(V,K) par automorphismes lineaires.

Preuve: On va montrer que

(σ ◦ τ).• = (σ.•) ◦ (τ.•) = σ.(τ.•).

et le reste s’en deduit. On a, pour toute forme multilineaire Λ et tout uplet (v1, · · · , vn) ∈ V n

(σ ◦ τ).Λ(v1, · · · , vn) = Λ(vσ(τ(1)), · · · , vσ(τ(n))).

Par ailleurs

σ.(τ.Λ)(v1, · · · , vn) = (τ.Λ)((v1, · · · , vn)σ) = τ.Λ(vσ(1), · · · , vσ(n)).

Pour calculer cette derniere expression, faisons le changement de variable

w1 = vσ(1), · · · , wn = vσ(n).

On a alors

τ.Λ(vσ(1), · · · , vσ(n)) = τ.Λ(w1, · · · , wn) = Λ((w1, · · · , wn)
τ ) = Λ(wτ(1), · · · , wτ(n))

et

wτ(i) = vσ(τ(i)) = vσ◦τ(i)

et ainsi

σ.(τ.Λ)(v1, · · · , vn) = Λ(vσ◦τ(1), · · · , vσ◦τ(n)) = ((σ ◦ τ).Λ)(v1, · · · , vn)

□
Pour decrire cette action il est utile de savoir comment Sn agit sur une base de Mult(n)(V ;K),

notamment la base

(B∗)⊗n = {e∗j1 ⊗ · · · e∗jn , (j1, · · · , jn) ∈ {1, · · · , d}n}.

On a le lemme suivant:

Lemme 10.1. Soit V un K-EV de dimension finie, n 󰃍 1 un entier, ℓ1, · · · , ℓn ∈ V ∗, n forme
lineaires et σ ∈ Sn une permutation, on a

σ.ℓ1 ⊗ · · ·⊗ ℓn = ℓσ−1(1) ⊗ · · ·⊗ ℓσ−1(n)

ou σ−1 est la permutation inverse.

Preuve: Pour (v1, · · · , vn) ∈ V n on a

σ.(ℓ1 ⊗ · · ·⊗ ℓn)(v1, · · · , vn) = ℓ1 ⊗ · · ·⊗ ℓn(vσ(1), · · · , vσ(n)) =
n󰁜

i=1

ℓi(vσ(i)).

Faisons le changement de variable j = σ(i), i = 1, · · · , n, on a alors i = σ−1(j) et

n󰁜

i=1

ℓi(vσ(i)) =

n󰁜

j=1

ℓσ−1(j)(vj) = ℓσ−1(1)(v1). · · · .ℓσ−1(n)(vn)

= ℓσ−1(1) ⊗ · · ·⊗ ℓσ−1(n)(v1, · · · , vn)

□



10.1. FORMES MULTILINEAIRES 173

Rappels sur la signature. On rappelle que si K est un corps de caracteristique ∕= 2, le groupe
symetriqueSn possede un (unique) morphisme non-trivial deSn vers le groupe multiplicatif (K×,×)
appelle signature et que ce morphisme est a valeurs dans le sous-groupe {±1} ⊂ K×

sign :
Sn 󰀁→ {±1}
σ 󰀁→ sign(σ)

defini de la maniere suivante: si σ est la composee de t 󰃍 0 transpositions

σ = τ1 ◦ · · · τt
alors

sign(σ) = (−1)t.

Remarque 10.1.8. On rappelle que toute permutation est la composee de transpositions (ie.
l’ensemble des transpositions {(ij), 1 󰃑 i < j 󰃑 n} engendre Sn). En particulier il existe au plus
un morphisme de groupes Sn → K× prenant la valeurs −1 sur toute transposition. Rappelons que
cette decomposition en transpositions n’est pas unique. En revanche la parite t (mod 2) du nombre
de ces transpositions est unique et ainsi

sign(σ) = (−1)t =

󰀫
1 si t ≡ 0 (mod 2)

−1 si t ≡ 1 (mod 2)

est bien definie.

Théorème 10.3. Les formes multilineaires alternees Alt(n)(V ;K) (resp. symetriques Sym(n)(V ;K))
sont exactement les formes multilineaires verifiant

(10.1.2) ∀σ ∈ Sn,σ.Λ = sign(σ)Λ (resp. σ.Λ = Λ).

Preuve: Il est clair qu’une forme verifiant (10.1.2) est alternee (resp. symetrique) puisque la
signature de la transposition τij echangeant i ∕= j vaut −1. Inversement soit Λ une forme alternee;
pour tout σ ∈ Sn, si on ecrit σ = τ1 ◦ · · · τt alors

σ.Λ = (τ1 ◦ · · · τt).Λ = (−1)(τ1 ◦ · · · τt−1).Λ = · · · = (−1). · · · .(−1)Λ = (−1)tΛ = sign(σ)Λ

puisque sign est un morphisme de groupes. □

10.1.3. Dimension des espaces de formes symetriques ou alternees. On va s’interesse
particulierement a l’espace des formes alternees.

Théorème 10.4 (Dimension des espaces de formes alternees). On suppose que car(K) ∕= 2. Soit
d = dimV . On a

dimAlt(n)(V ;K) =

󰀻
󰁁󰀿

󰁁󰀽

0 si n > d

1 si n = d

Cn
d si n 󰃑 d

Remarque 10.1.9. Si car(K) = 2 alors −1K = 1K et

Sym(n)(V ;K) = Alt(n)(V ;K).

Le theoreme est faux: pour d = n = 2 les produit scalaire •.• et le produit alterne •∧• sont alternes
et lineairement independants.

Preuve: (debut) On va seulement demontrer les cas n > d et n = d (qui est celui qui nous interesse
le plus.

Notons que si Λ est alternee alors on a

Λ(v1, · · · , v, · · · , v, · · · , vn) = −Λ(v1, · · · , v, · · · , v, · · · , vn)
et donc

2Λ(v1, · · · , v, · · · , v, · · · , vn) = 0K
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et donc (car 2K ∕= 0K)

Λ(v1, · · · , v, · · · , v, · · · , vn) = 0K .

Plus generalement si la famille

{v1, · · · , vn} ⊂ V

est liee alors

Λ(v1, · · · , · · · , vn) = 0.

En effet si la famille est liee, il existe i tel que vi est combinaison lineaire des autres vecteurs:
supposons par exemple que ce soit vn:

vn = x1.v1 + · · ·+ xn−1.vn−1

alors

Λ(v1, · · · , · · · , vn) = Λ(v1, · · · , · · · , vn−1, x1.v1 + · · ·+ xn−1.vn−1)

= x1Λ(v1, · · · , vn−1, v1) + · · ·+ xn−1Λ(v1, · · · , vn−1, vn−1) = 0.

car on a toujours deux vecteurs egaux dans chacun des n− 1 termes de la somme.
En particulier si n > d une famille {v1, · · · , vn} de n vecteurs est toujours liee et donc

Λ(v1, · · · , vn) = 0.

Cela montre que pour n > d

Alt(n)(V ;K) = {0}.
Le cas n = d. Supposons que n = d. Soit B = {e1, · · · , ed} une base de V et B = {e∗1, · · · , e∗d}

la base duale.
Comme Λ est multilineaire, elle se decompose dans la base (B∗)⊗d:

(10.1.3) Λ =
󰁛

· · ·
󰁛

j1,··· ,jd󰃑d

Λ(ej1 , · · · , ejd)e∗j1 ⊗ · · ·⊗ e∗jn

et Λ est completement determinee si on connait les valeurs Λ(ej1 , · · · , ejd) pour tout les choix
possibles de j1, · · · jd ∈ {1, · · · , d}.

Notons que si pour i ∕= i′ on a ji = ji′ alors

Λ(ej1 , · · · , eji , · · · , eji′ , ejd) = Λ(ej1 , · · · , eji , · · · , eji , ejd) = 0.

Ainsi la somme (10.1.3) est restreinte aux j1, · · · , jd ∈ {1, · · · , d} qui dont distincts. Mais cela
signifie que l’application

i ∈ {1, · · · , d} 󰀁→ ji ∈ {1, · · · , d}
est une permutation σ de {1, · · · , d}.

Etant donne une telle permutation σ; comme Λ est alternee on a

Λ(ej1 , · · · , ejd) = Λ(eσ(1), · · · , eσ(d)) = sign(σ)Λ(e1, · · · , ed).
On a donc

Λ =
󰁛

σ∈Sd

Λ(eσ(1), · · · , eσ(d))e∗σ(1) ⊗ · · ·⊗ e∗σ(d)

=
󰁛

σ∈Sd

sign(σ)Λ(e1, · · · , ed)e∗σ(1) ⊗ · · ·⊗ e∗σ(d)(10.1.4)

= Λ(e1, · · · , ed)∆B

avec

(10.1.5) ∆B :=
󰁛

σ∈Sd

sign(σ)e∗σ(1) ⊗ · · ·⊗ e∗σ(d).

Pour conclure il suffira alors de montrer que
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Théorème 10.5. La forme multilineaire ∆B : V d 󰀁→ K

∆B :=
󰁛

σ∈Sd

sign(σ)e∗σ(1) ⊗ · · ·⊗ e∗σ(d)

est alternee et non-nulle.

En effet, si on admet que ∆B est une forme alternee non-nulle la formule (10.1.4) nous dit que

tout forme alternee est proportionelle a ∆B; cela montre que {∆B} est une base de Alt(d)(V ;K) et
que

dimAlt(d)(V ;K) = 1.

Preuve: (du Theoreme 10.5) Evaluons cette forme en (e1, · · · , ed):

∆B(e1, · · · , ed) =
󰁛

σ∈Sn

sign(σ)(e∗σ(1) ⊗ · · ·⊗ e∗σ(d))(e1, · · · , ed)

=
󰁛

σ∈Sn

sign(σ)e∗σ(1)(e1). · · · .e∗σ(d)(ed)

=
󰁛

σ∈Sn

sign(σ)δσ(1)=1. · · · .δσ(d)=d.

Ainsi, le seul terme non-nul de cette somme est celui ou

σ(1) = 1,σ(2) = 2, · · · ,σ(d) = d

c’est a dire la permutation triviale: on a donc

(10.1.6) ∆B(e1, · · · , ed) = σ(Idd) = 1.

La forme est non-nulle; montrons qu’elle est alternee.
Soit τ une permutation; calculons

τ.∆B = τ(
󰁛

σ∈Sn

sign(σ)e∗σ(1) ⊗ · · ·⊗ e∗σ(d))

=
󰁛

σ∈Sn

sign(σ)τ.e∗σ(1) ⊗ · · ·⊗ e∗σ(d)

car l’action est lineaire. Par le Lemme 10.1 on a donc

τ.∆B =
󰁛

σ∈Sn

sign(σ)e∗σ(τ−1(1)) ⊗ · · ·⊗ e∗σ(τ−1(d))

=
󰁛

σ∈Sn

sign(σ)e∗σ◦τ−1(1) ⊗ · · ·⊗ e∗σ◦τ−1(d)

Faisons le changement de variable

σ′ = σ ◦ τ−1, ie. σ = σ′ ◦ τ.

On a alors

τ.∆B =
󰁛

σ′∈Sn

sign(σ′ ◦ τ)e∗σ′(1) ⊗ · · ·⊗ e∗σ′(d).

On a

sign(σ′ ◦ τ) = sign(σ′)sign(τ)

et donc

τ.∆B = sign(τ)
󰁛

σ′∈Sn

sign(σ′)e∗σ′(1) ⊗ · · ·⊗ e∗σ′(d) = sign(τ)∆B.

et ∆B est bien une forme alternee. □
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Explicitement, si les vecteurs vi, i = 1, · · · , d ecrivent dans la base B

vi =

d󰁛

j=1

xijej , i 󰃑 d

avec xij = e∗j (vi), on obtient

∆B(v1, · · · , vd) =
󰁛

σ∈Sd

sign(σ)x1σ(1). · · · .xdσ(d).

Définition. Soit V un K-EV de dimension d et B = {e1, · · · , ed} une base de V .
La forme alternee ∆B est appellee determinant de V dans la base B. On la note egalement

detB = ∆B =
󰁛

σ∈Sd

sign(σ)e∗σ(1) ⊗ · · ·⊗ e∗σ(d).

Si on ecrit vi =
󰁓d

j=1 xijej , i 󰃑 d, on a

detB(v1, · · · , vd) =
󰁛

σ∈Sd

sign(σ)x1σ(1). · · · .xdσ(d).

La forme detB est l’unique forme multilineaire alternee Λ verifiant

(10.1.7) Λ(e1, · · · , ed) = 1.

C’est une base de Alt(d)(V,K) et pour Λ ∈ Alt(d)(V,K) on a

(10.1.8) Λ = Λ(e1, · · · , ed)detB.

En particulier, pour V = Kd et B = B0
d la base canonique on note simplement ∆d = detd.

Ainsi si pour i = 1, · · · , d on a vi = (xij)j󰃑d

detd(v1, · · · , vd) =
󰁛

σ∈Sd

sign(σ)x1σ(1). · · · .xdσ(d).

Remarque 10.1.10. La forme detB depend de la base B puisqu’elle s’exprime comme un poly-
nome en les coefficients des vecteurs vi exprimes dans la base B. Si on choisit une autre base
B′ = {e′1, · · · , e′d} alors detB′ est une autre forme alternee, non-nulle et on a une relation de pro-
portionalite

detB = detB′(e′1, · · · , e′d)detB′

avec detB′(e′1, · · · , e′d) ∈ K× car sinon on obtiendrait que detB ≡ 0. Echangeant les role de B et
B′ on obtient

detB′(e′1, · · · , e′d) = detB(e1, · · · , ed)−1.

10.1.4. Interlude: Principe general de symmetrisation. On va ici donner un principe
general de construction des formes alternees.

Pour illustrer dans un cas simple ce processus on rappelle comment on construit une fonction
paire ou impaire a partir d’une fonction generale f : R 󰀁→ R: on pose

f1(x) := f(x) + f(−x), f−(x) := f(x)− f(−x);

alors f+ est une fonction paire

f+(−x) = f(−x) + f(−(−x)) = f(−x) + f(x) = f+(x)

et f− est impaire

f−(−x) = f(−x)− f(−(−x)) = f(−x)− f(x) = −f−(x).

Remarque 10.1.11. De plus on a

f(x) =
1

2
f+(x) +

1

2
f−(x).
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Le cas precedent et le cas de l’action du groupe symetrique Sn ↷ Mult(n)(V,K) sont des cas
particulier du contexte suivant: soit W un K-EV et G un groupe fini agissant a gauche sur W
lineairement: l’action de G est donnee par un morphisme de G vers le groupe des automorphismes
lineaires de W

ι : G → GL(W ).

On notera cette action

g · w = ι(g)(w).

Exemple 10.1.4. Le groupe {±1} agit sur les fonctions f : R → R par (ε = ±1)

ε · f(x) = f(εx).

Le groupe Sn agit sur Mult(n)(V ;K) par

σ.Λ : (v1, · · · , vn) ∈ V n 󰀁→ Λ(vσ(1), · · · , vσ(n)) ∈ K.

Supposons qu’on veuille trouver un vecteur w1 invariant sous l’action de G: tel que

∀g ∈ G, g · w1 = w1.

Exemple 10.1.5. Par exemple pour G = {±1} et W = F(R;R) on veut que

f(±x) = f(x)

c’est a dire que f est paire.

Alors on considere pour tout w ∈ W la somme des transformes de w par tous les elements de g

w1 :=
󰁛

h∈G

h · w

Alors w1 est invariant:

∀g ∈ G, g · w1 = w1.

En effet comme l’action est lineaire

g · w1 = g · (
󰁛

h∈G

h · w) =
󰁛

h∈G

g · h · w

=
󰁛

h∈G

(g.h) · w

=
󰁛

h′∈G

h′ · w = w1

en faisant le changement de variable h′ = g.h car la translation

h ∈ G 󰀁→ g.h ∈ G

est une bijection de G sur G.
Cela permet d’obtenir les fonctions paires. Pour les fonctions impaire on a la variante suivante:

Théorème 10.6 (Processus de symetrisation pour l’action d’un groupe fini). Soit K un corps,
(G, .) un groupe fini, W un K-ev de dimension finie et

ι : G 󰀁→ GL(W )

une action a gauche de G sur W qui est lineaire: ι est morphisme de groupe de G vers le groupe des
automorphismes de W . On notera cette action

g · w = ι(g)(w).

Soit

χ : G 󰀁→ (K×,×)
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un morphisme de G vers le groupe multiplicatif de K (on dit que χ est un caractere de G a valeurs
dans K×). Soit w ∈ W un vecteur, alors le vecteur

wχ :=
󰁛

h∈G

χ(h)−1.h · v

verifie pour tout g ∈ G

g · wχ = χ(g).wχ.

Remarque 10.1.12. Au semestre prochain vous verrez la notion de vecteur propre et de
valeur propre pour un endomorphisme: le vecteur vχ est un vecteur propre pour chaque endo-
morphisme ι(g) de valeur propre χ(g).

Preuve: Comme g · • est lineaire, on a

g · wχ = g · (
󰁛

h∈G

χ(h)−1.h · w) =
󰁛

h∈G

χ(h)−1.g · h · w =
󰁛

h∈G

χ(h)−1.(g.h) · w.

Posons h′ = g.h alors quand h parcours G, h′ parcourt G, on a donc (changement de variable
h = g−1.h′)

󰁛

h∈G

χ(h)−1.(g.h) · w =
󰁛

h′∈G

χ(g−1.h′)−1.h′ · w = χ(g)
󰁛

h′∈G

χ(h′)−1.h′ · w = χ(g).wχ;

en effet comme χ est un morphisme

χ(g−1.h′)−1 = χ(g−1)−1.χ(h′)−1 = χ(g).χ(h′)−1.

□

10.1.5. Application a la construction de formes alternees. Prenant W = Mult(n)(V ;K),
G = Sn agissant par

σ.Λ(v1, · · · , vn) = Λ(vσ(1), · · · , vσ(n))

et χ = sign : Sn → {±1}, et applicant le Theoreme 10.6 et utilisant que fait que comme sign(σ) ∈
{±1} on a sign(σ) = sign(σ)−1, on obtient

Corollaire 10.1. Soit Λ une forme multilineaire en n variables sur V alors

Λsign =
󰁛

σ∈Sn

sign(σ)σ.Λ

est alternee.

Remarque 10.1.13. On a demontre que si n > d, Alt(n)(V ;K) = {0K} donc pour toute forme
multilineaire Λ en n > d variables

Λsign = 0K .

Par contre pour n 󰃑 d cette construction produit souvent une forme alternee non-nulle et cela permet

des calculer les dimensions des Alt(n)(V ;K) si n 󰃑 d.

Pour n = d et

Λ = e∗1 ⊗ · · ·⊗ e∗d

on a une forme alternee

(e∗1 ⊗ · · ·⊗ e∗d)sign =
󰁛

σ∈Sd

sign(σ)σ.(e∗1 ⊗ · · ·⊗ e∗d)
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qui est donc un multiple de detB. On a

(e∗1 ⊗ · · ·⊗ e∗d)sign(e1, · · · , ed) =
󰁛

σ

sign(σ)σ.(e∗1 ⊗ · · ·⊗ e∗d)(e1, · · · , ed)

=
󰁛

σ

sign(σ)e∗1 ⊗ · · ·⊗ e∗d(eσ(1), · · · , eσ(d))

=
󰁛

σ

sign(σ)

d󰁜

i=1

δi=σ(i) = sign(Idd)1 = 1.

Ainsi on a

(e∗1 ⊗ · · ·⊗ e∗d)sign = detB.

10.2. Determinants

10.2.1. Determinant relatif a une base. Rappelons la

Définition 10.3. Soit V un K-EV de dimension d et B = {e1, · · · , ed} une base de V .
La forme alternee definie par

detB = ∆B =
󰁛

σ∈Sd

sign(σ)e∗σ(1) ⊗ · · ·⊗ e∗σ(d)

est appellee determinant de V dans la base B.
La forme detB est l’unique forme multilineaire alternee Λ verifiant

(10.2.1) Λ(e1, · · · , ed) = 1.

C’est une base de Alt(d)(V,K) et pour Λ ∈ Alt(d)(V,K) on a

(10.2.2) Λ = Λ(e1, · · · , ed)detB.

Si on prend V = Kd et B = B0
d la base canonique on note simplement ∆d = detd. Ainsi si

vi = (xij)j󰃑d

detd(v1, · · · , vd) =
󰁛

σ∈Sd

sign(σ)x1σ(1). · · · .xdσ(d).

10.2.1.1. Expression explicite de detB.

Théorème 10.7 (Formules combinatoire pour le determinant). Soient v1, · · · , vd des vecteurs
et (xij)j󰃑d leurs coordonnees dans la base B:

vi =

d󰁛

j=1

xijej .

On a les formules suivantes

(10.2.3) detB(v1, · · · , vd) =
󰁛

σ∈Sd

sign(σ)

d󰁜

i=1

xiσ(i) =
󰁛

σ∈Sd

sign(σ)x1σ(1). · · · .xdσ(d).

(10.2.4) detB(v1, · · · , vd) =
󰁛

σ∈Sd

sign(σ)

d󰁜

j=1

xσ(j)j =
󰁛

σ∈Sd

sign(σ)xσ(1)1. · · · .xσ(d)d.

Preuve: On a deja vu la premiere formule. Pour la deuxieme, ecrivons j = σ(i), on a alors
i = σ−1(j) et quand i parcours {1, · · · , d}, j parcours egalement {1, · · · , d}. On a donc

detB(v1, · · · , vd) =
󰁛

σ∈Sd

sign(σ)

d󰁜

i=1

xiσ(i) =
󰁛

σ∈Sd

sign(σ)

d󰁜

j=1

xσ−1(j)j .
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On fait le changement de variable σ ⇆ σ−1 et la somme s’ecrit

detB(v1, · · · , vd) =
󰁛

σ∈Sd

sign(σ−1)

d󰁜

j=1

xσ(j)j

et comme

sign(σ−1) = sign(σ)−1 = sign(σ)

car sign(σ) = ±1 on obtient

detB(v1, · · · , vd) =
󰁛

σ∈Sd

sign(σ)

d󰁜

j=1

xσ(j)j .

□

Remarque 10.2.1. Les formules (10.2.3) ou (10.2.4) auraient pu etre prise comme definissant
le determinant de d vecteurs exprimes dans une base B dans un espace de dimension d sans jamais
parler de formes multilineaires alternees et c’est ce qu’on trouve dans de nombreux cours d’algebre
lineaires.

10.2.2. Determinant d’un endomorphisme. Soit ϕ : V 󰀁→ V un endomorphisme. A toute
forme multilineaire Λ (en n variables) on associe une nouvelle forme (inspiree de la construction de
l’application adjointe pour les formes lineaires) en posant

ϕ∗(Λ)(v1, · · · , vn) := Λ(ϕ(v1), · · · ,ϕ(vn)).
On verifie que ϕ∗(Λ) est multilineaire et que si Λ est alternee ou symetrique ϕ∗(Λ) est alternee

ou symetrique: si σ ∈ Sn est une permutation, on a

σ.(ϕ∗Λ)(v1, · · · , vn) = ϕ∗Λ(vσ(1), · · · , vσ(n))
= Λ(ϕ(vσ(1)), · · · ,ϕ(vσ(n))) = ϕ∗(σ.Λ)(v1, · · · , vn)

et

σ.Λ = ±Λ =⇒ σ.(ϕ∗Λ) = ±ϕ∗Λ.

Remarque 10.2.2. Cette notation ϕ∗(Λ) est analogue avec la notation pour l’application lineaire
duale dans le cas des formes lineaires (ie. les formes multilineaires en une variable). Il faut cependant
remarquer que ϕ∗(Λ) est la composee Λ ◦ ϕ⊗n ou ϕ⊗n : V n 󰀁→ V n est l’application

ϕ⊗n : (v1, · · · , vn) 󰀁→ (ϕ(v1), · · · ,ϕ(vn)).
Ainsi on aurait pu/du poser (ϕ⊗n)∗(Λ) au lieu de ϕ∗(Λ).

En particulier si n = d, ϕ∗(detB) est proportionel a detB:

ϕ∗(detB) = λϕ.detB.

En fait si Λ est n’importe quelle autre forme alternee, on a Λ = λ.detB, λ ∈ K (car Alt(d)(V ;K)
est de dimension 1) et

ϕ∗Λ = ϕ∗(λ.detB) = λ.ϕ∗(detB) = λ.λϕ.detB = λϕ.λ.detB = λϕΛ.

Le facteur de proportionalite λϕ ∈ K s’appelle le determinant de ϕ et est note detϕ.

Définition 10.4. Le determinant de ϕ, detϕ ∈ K est le scalaire verifiant pour tout Λ ∈
Alt(d)(V ;K)

(10.2.5) ϕ∗(Λ) = det(ϕ)Λ.

En particulier det(ϕ) ne depend pas du choix d’une base de V et pour toute base B ⊂ V on a

ϕ∗(detB) = det(ϕ)detB.
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Théorème 10.8 (Proprietes fonctionelles du determinant). Soit ϕ : V 󰀁→ V un endomorphisme.
L’application det : End(V ) 󰀁→ K a les proprietes suivantes

(1) Homogeneite: soit λ ∈ K alors

det(λ.ϕ) = λd. det(ϕ).

(2) Multiplicativite: on a

det(ψ ◦ ϕ) = det(ψ) det(ϕ) = det(ϕ) det(ψ) = det(ϕ ◦ ψ).
(3) Critere d’inversibilite: on a

det(ϕ) ∕= 0 ⇐⇒ ϕ ∈ GL(V ).

(4) Invariance par conjugaison: pour tout ϕ ∈ End(V ) et ψ ∈ GL(V ) on a

det(Ad(ψ)(ϕ)) = det(ψϕψ−1) = det(ϕ).

(5) Morphisme: L’application

det : GL(V ) 󰀁→ K×

est un morphisme de groupes. En particulier det(IdV ) = 1.

Preuve: Soit det(ϕ) tel que

ϕ∗(detB) = det(ϕ)detB.

Soit Λ une forme alternee quelconque, alors

Λ = λ.detB, λ ∈ K

et

ϕ∗(Λ) = ϕ∗(λ.detB) = (λ.detB) ◦ ϕ⊗d = λ.(detB ◦ ϕ⊗d) = λ.ϕ∗(detB) = λ.det(ϕ)detB = det(ϕ)Λ.

– Homogeneite: on calcule pour Λ une forme alternee quelconque

(λ.ϕ)∗(Λ)(v1, · · · , vd) = Λ(λ.ϕ(v1), · · · ,λ.ϕ(vd)) = λdΛ(ϕ(v1), · · · ,ϕ(vd)) = λdϕ∗(Λ)(v1, · · · , vd)
car Λ est multilineaire en d variables. Ainsi par (10.2.5)

(λ.ϕ)∗(Λ) = det(λϕ)Λ = λd det(ϕ)Λ.

– Multiplicativite: Soient ϕ,ψ ∈ End(V ), on a

(ψ ◦ ϕ)∗Λ = Λ ◦ ψ⊗d ◦ ϕ⊗d = ϕ∗(ψ∗Λ) = ϕ∗ ◦ ψ∗(Λ).

En effet

(ψ ◦ ϕ)∗(Λ)(v1, · · · , vn) = Λ(ψ(ϕ(v1)), · · · ,ψ(ϕ(vn))
= (ψ∗Λ)(ϕ(v1), · · · ,ϕ(vn))
= ϕ∗(ψ∗Λ)(v1, · · · , vn)

Par (10.2.5) on a donc

(ψ ◦ ϕ)∗Λ = det(ψ ◦ ϕ)Λ
et

ϕ∗ ◦ ψ∗(Λ) = det(ϕ)ψ∗(Λ) = det(ϕ)det(ψ)Λ

Ainsi

det(ψ ◦ ϕ) = det(ψ)det(ϕ);

de plus come K est commutatif

det(ψ ◦ ϕ) = det(ψ)det(ϕ) = det(ϕ)det(ψ) = det(ϕ ◦ ψ).
Si ψ = IdV , on a a bien sur

det(IdV ) = 1



182 10. DETERMINANTS

car

Id∗V Λ = Λ.

– Critere d’inversibilite (condition necessaire) Si ϕ est inversible, on a

det(IdV ) = 1 = det(ϕ−1 ◦ ϕ) = det(ϕ−1)det(ϕ)

ce qui implique que det(ϕ−1), det(ϕ) sont non-nuls et inverse l’un de l’autre:

det(ϕ−1) = det(ϕ)−1.

– Morphisme: On a donc montre que

det : GL(V ) 󰀁→ K×

est un morphisme de groupes.
– Critere d’inversibilite (condition suffisante) Soit ϕ ∈ End(V )−GL(V ) (qui n’est pas inversible)

alors

{ϕ(e1), · · · ,ϕ(ed)}
n’est pas une base et est donc liee. En particulier

det(ϕ) = det(ϕ)detB(e1, · · · , ed) = detB(ϕ(e1), · · · ,ϕ(ed)) = 0.

□

Définition 10.5. Le noyau du morphisme det : GL(V ) 󰀁→ K× est appelle ”groupe special
lineaire de V ” et on le note

SL(V ) = ker det = {ϕ ∈ GL(V ), detϕ = 1}.

C’est un sous-groupe distingue de GL(V ) (car c’est un noyau).

10.2.3. Determinant d’une matrice.

Définition 10.6. Soit M ∈ Md(K) une matrice carree de coefficients M = (mij)ij󰃑d. Le
determinant det(M) de M est (de maniere equivalente):

(1) Le scalaire

detM = det(ϕM )

ou ϕM : Kd 󰀁→ Kd est l’application lineaire sur Kd dont la matrice dans la base canonique

matB0(ϕM ) = M.

(2) Le determinant –relatif a la base canonique B0
Cold

de l’espace vectoriel Cold(K) des vecteurs
colonnes de hauteur d– de l’ensemble des vecteurs colonnes de la matrice M :

det(M) = detB0
Cold

(Col1(M), · · · ,Cold(M))

(3) Le determinant – relatif a la base canonique B0
Ligd

de l’espace vectoriel Ligd(K) des

vecteurs lignes de longueur d– des vecteurs lignes de la matrice M dans l’espace des vecteurs
lignes Ligd(K):

det(M) = detB0
Ligd

(Lig1(M), · · · ,Ligd(M))

(4) La somme

(10.2.6) det(M) =
󰁛

σ∈Sd

sign(σ)mσ(1)1. · · · .mσ(d)d.

(5) La somme

(10.2.7) det(M) =
󰁛

σ∈Sd

sign(σ)m1σ(1). · · · .mdσ(d).
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Remarque 10.2.3. En sens inverse, pour tout K-EV V , tout endomorphisme ϕ : V → V et
toute base B ⊂ V , on a

det(matB(ϕ)) = det(ϕ).

Preuve: (de l’equivalence de la premiere definition avec les autres) Soit ϕM : Kd 󰀁→ Kd telle que
matB0(ϕM ) = M. C’est a dire que la j-ieme colonne de M est formee par les coordonnees de ϕM (ej)
dans la base canonique:

ϕM (ej) =

d󰁛

i=1

mijei.

Par definition

det(M) := det(ϕM )

ou det(ϕM ) verifie

ϕ∗(detB0) = det(ϕM )detB0 .

Evaluons cette egalite a (e1, · · · , ed). On obtient

detB0(ϕ(e1), · · · ,ϕ(ed)) = det(ϕM )detB0(e1, · · · , ed) = det(ϕM ) = det(M).

– Cela montre l’equivalence de la premiere et de la deuxieme definition.
– La quatrieme egalite (10.2.6) provient du fait que les coordonnees du vecteur colonne Colj(M)

sont donnees par les (mij)i󰃑d et du Theoreme 10.7 : on a

detB0(ϕ(e1), · · · ,ϕ(ed)) = detB0((m11, · · · ,md1), · · · , (m1d, · · · ,mdd)

=
󰁛

σSd

sign(σ)

d󰁜

i=1

mσ(1)1. · · · .mσ(d)d

(on a pose vi = (m1i, · · · ,mdi) le vecteur correspondant a la i-eme colonne).
– La troisieme et la cinquieme egalite (10.2.7) proviennet a nouveau du Theoreme 10.7: on a

detB0
Ligd

(Lig1(M), · · · ,Ligd(M)) = detmsB0
d
((m11, · · · ,m1d), · · · , (md1, · · · ,mdd))

=
󰁛

σSd

sign(σ)

d󰁜

i=1

m1σ(1). · · · .m1σ(d)

□

Remarque 10.2.4. Pour tout endomorphisme ϕ : V → V et toute base B on a

det(ϕ) = det(matB(ϕ)).

Exemple 10.2.1. Si d = 2 et

M =

󰀕
m11 m12

m21 m22

󰀖

et S2 = {Id2, (12)} On trouve

det(M) = m11m22 −m12m21.

Autrement dit si

M =

󰀕
a b
c d

󰀖

det(M) = ad− bc.

Si d = 3,

M =

󰀳

󰁃
m11 m12 m13

m21 m22 m23

m31 m32 m33

󰀴

󰁄

S3 = {Id3, (12), (13), (23), (123), (132)}
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Figure 1. Regle de Sarrus

det(M) = m11m22m33 −m12m21m33 −m13m22m31 −m11m23m31 +m12m23m31 +m13m21m32.

On reecrit quelquefois ce determinant en groupant ensemble les terme avec un + et ceux avec
− pour calculer selon la regle de Sarrus.

det(M) = m11m22m33 +m12m23m31 +m13m21m32 −m12m21m33 −m13m22m31 −m11m23m31.

Il resulte de cette definition et des proprietes du determinant d’une application lineaire et de
(10.2.6) et (10.2.7) que:

Théorème 10.9 (Proprietes fonctionelles du determinant des matrices). Le determinant d’une
matrice a les proprietes suivantes

(1) Homogeneite: soit λ ∈ K alors

det(λ.M) = λd. det(M).

(2) Invariance par transposition:

det(M) = det(tM).

(3) Multiplicativite: on a

det(M.N) = det(M) det(N) = det(N) det(M) = det(N.M).

(4) Critere d’inversibilite: on a

det(M) ∕= 0 ⇐⇒ M ∈ GLd(K).

(5) Invariance par conjugaison: pour C ∈ GLd(K)

det(Ad(C)M) = det(CMC−1) = det(M).

(6) Morphisme: L’application

det : GLd(K) 󰀁→ K×

est un morphisme de groupes. En particulier det(Idd) = 1.

Preuve: Rappelons que si M = matB0
(ϕ), N = matB0

(ψ) alors M.N = matB0
(ϕ ◦ ψ) et

det(M.N) = det(ϕ ◦ ψ) = det(ϕ) det(ψ) = det(M) det(N).

Cela montre la multiplicativite qui permet de montrer le critere d’inversibilite ou le fait qu’on a un
morphisme.

Pour montrer que (on pose tM = (m∗
ij)i,j = (mji)i,j)

det(M) = det(tM)
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on remarque que

detM =
󰁛

σ∈Sd

sign(σ)mσ(1)1. · · · .mσ(d)d =
󰁛

σ∈Sd

sign(σ)m1σ(1). · · · .mdσ(d)

=
󰁛

σ∈Sd

sign(σ)m∗
σ(1)1. · · · .m∗

σ(d)d = det(tM)

□

Corollaire 10.2. (Invariance du determinant par dualite) Soit ϕ ∈ End(V ) et ϕ∗ ∈ End(V ∗)
l’application lineaire duale. On

detϕ∗ = detϕ.

Preuve: C’est un corollaire de (2) du Theorem 10.9. □

Corollaire 10.3. Soient M et N deux matrices semblables (ie. conjugues): il existe P ∈
GLd(K) tel que

N = P.M.P−1.

Alors

det(M) = det(N).

Le determinant ne depend que de la classe de conjugaison (d’une matrice ou d’un endomorphisme).

Preuve: On a

det(N) = det(P.M.P−1) = det(P ) det(M) det(P )−1 = det(P ) det(P )−1 det(M) = det(M)

car la corps K est commutatif. □

Remarque 10.2.5. Ce resultat s’interprete en terme de changement de base: si M = matB(ϕ)
est la matrice dans une certaine base d’une application lineaire ϕ et N = matB′(ϕ) est la matrice
de la meme application calculee dans une autre base. On a par la formule de changement de base

N = P.M.P−1

ou P = matB′B est une matrice de changement de base et on obtient que

detN = detM = detϕ.

Définition 10.7. Le noyau du morphisme det : GLd(K) 󰀁→ K× est appelle ”groupe special
lineaire des matrices de taille d” et on le note

SLd(K) = ker det = {M ∈ GLd(K), detM = 1}.

C’est un sous-groupe distingue de GLd(K) (car c’est un noyau).

10.3. Calcul de determinants

Pour calculer explicitement des determinants il est pratique de les noter

det(M) = |M | =

󰀏󰀏󰀏󰀏󰀏󰀏󰀏

m11 · · · m1d

... · · ·
...

md1 · · · mdd

󰀏󰀏󰀏󰀏󰀏󰀏󰀏
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10.3.1. Matrices blocs.

Théorème 10.10 (Determinant des matrices par blocs). Supposons que la matrice M ∈ Md(K)
s’ecrive sous forme triangulaire superieure par blocs:

M =

󰀕
M1 ∗
0 M2

󰀖
, M1 ∈ Md1(K), M2 ∈ Md2(K), d1 + d2 = d

alors

det(M) = det(M1) det(M2)

On va donner deux preuves.
Preuve: (Methode purement combinatoire) Notons que pour j 󰃑 d1 et i > d1 on a mij = 0. On
considere l’expression du determinant sous la forme

det(M) = det(tM) =
󰁛

σ∈Sd

sign(σ)mσ(1)1. · · · .mσ(d)d.

Dans cette somme, on voit donc que les σ tels qu’il existe 1 󰃑 j 󰃑 d1 verifiant σ(j) > d1 ont une
contribution nulle car mσ(j)j = 0. Ainsi la somme definissant le determinant est le long de l’ensemble
Sd,d1

des permutations σ verifiant

σ({1, · · · , d1}) ⊂ {1, · · · , d1}

et donc

σ({d1 + 1, · · · , d1 + d2}) ⊂ {d1 + 1, · · · , d1 + d2}.
Notons qu’une telle permutation σ induit alors (par restriction) deux permutations

σ1 = σ|{1,··· ,d1} ∈ Sd1

σ2 = σ|{d1+1,··· ,d1+d2} ∈ S{d1+1,··· ,d1+d2} ≃ Sd2

et on a

σ = σ1 ◦ σ2

en considerant σ1 comme la permutation de {1, · · · , d} qui permute le sous-ensemble {1, · · · , d1} par
σ1 et qui est l’identite sur {d1 + 1, · · · , d1 + d2} (et similairement pour σ2). En particulier on a

sign(σ) = sign(σ1)sign(σ2).

On laisse le lemme suivant au lecteur:

Lemme 10.2. L’ensemble Sd,d1 est un sous groupe de Sd et l’application

σ 󰀁→ (σ1,σ2)

est un isomorphisme de groupes

Sd,d1 ≃ Sd1 ×S{d1+1,··· ,d1+d2} ≃ Sd1 ×Sd2 .

On peut donc reecrire

det(M) =
󰁛

σ1∈Sd1

󰁛

σ2∈Sd2

sign(σ1)sign(σ2)

d1󰁜

i=1

mσ1(i)i ×
d2󰁜

i=1

md1+σ2(i),d1+i.

=
󰀓 󰁛

σ1∈Sd1

sign(σ1)

d1󰁜

i=1

mσ1(i)i

󰀔
×
󰀓 󰁛

σ2∈Sd2

sign(σ2)

d2󰁜

i=1

md1+σ2(i),d1+i

󰀔
= det(M1) det(M2).

□
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Corollaire 10.4. Soit k 󰃍 2 un entier, si M est une matrice triangulaire superieure a k blocs

M =

󰀳

󰁅󰁃
M1 ∗ ∗

0
. . . ∗

0 0 Mk

󰀴

󰁆󰁄 , Mi ∈ Mdi(K), i 󰃑 k, d1 + · · ·+ dk = d

on a

detM = det(M1). · · · . det(Mk).

En particulier, si M est triangulaire superieure (k = d) –par exemple diagonale–

M =

󰀳

󰁅󰁅󰁅󰁃

λ1 ∗ · · · · · ·
0 λ2 ∗ ∗
... 0

. . . ∗
0 · · · · · · λd

󰀴

󰁆󰁆󰁆󰁄
,

on a

detM = λ1. · · · .λd.

10.3.1.1. Matrices triangulaires inferieures par blocs. Un matrice M est triangulaire inferieure
par blocs si elle est de la forme

M =

󰀕
M1 0
∗ M2

󰀖
, M1 ∈ Md1(K), M2 ∈ Md2(K), d1 + d2 = d.

Théorème 10.11. Supposons que la matrice M ∈ Md(K) s’ecrive sous forme triangulaire in-
ferieure par blocs:

M =

󰀕
M1 0
∗ M2

󰀖
, M1 ∈ Md1(K), M2 ∈ Md2(K), d1 + d2 = d.

alors

det(M) = det(M1) det(M2).

Soit k 󰃍 2 un entier, si M est une matrice triangulaire inferieure a k blocs

M =

󰀳

󰁅󰁃
M1 0 0

∗
. . . 0

∗ ∗ Mk

󰀴

󰁆󰁄 , Mi ∈ Mdi
(K), i 󰃑 k, d1 + · · ·+ dk = d

on a

detM = det(M1). · · · . det(Mk).

Preuve: Sa transposee tM est alors triangulaire superieure par blocs de la forme

tM =

󰀕
tM1 ∗
0 tM2

󰀖
.

alors on a par invariance du determinant par transposition

det(M) = det(tM) = det(tM1) det(
tM2) = det(M1) det(M2).

□
Preuve: (Par factorisation) Ecrivons

M =

󰀕
M1 M3

0 M2

󰀖
, M3 ∈ matd1×d2(K).

Notons que si M1 ou M2 n’est pas inversible la matrice M n’est pas inversible: c’est clair si M1

n’est pas inversible car la famille des d1 premieres colonnes sera liee et si M2 n’est pas inversible la
famille des d2 dernieres colonnes sera liee: dans ces deux cas detM = 0 = det(M1) det(M2).
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Si M1 et M2 sont inversibles, on a la factorisation

M =

󰀕
M1 M3

0 M2

󰀖
=

󰀕
M1 0
0 Idd2

󰀖󰀕
Idd1 M−1

1 M3

0 M2

󰀖

=

󰀕
M1 0
0 Idd2

󰀖󰀕
Idd1 M−1

1 M3

0 M2

󰀖󰀕
Idd1 M−1

1 M3

0 M2

󰀖

=

󰀕
M1 0
0 Idd2

󰀖󰀕
Idd1 M−1

1 M3M
−1
2

0 Idd2

󰀖󰀕
Idd1 0
0 M2

󰀖

= M ′
1M

′
3M

′
2

On a donc

det(M) = det

󰀕
M1 0
0 Idd2

󰀖
det

󰀕
Idd1 M−1

1 M3M
−1
2

0 Idd2

󰀖
det

󰀕
Idd1

0
0 M2

󰀖

et il suffit de montrer que ces determinants valent

det(M ′
1) = det(M1), det(M ′

3) = 1, det(M ′
2) = det(M2)

respectivement.
On a

det

󰀕
M1 0
0 Idd2

󰀖
=

󰁛

σ∈Sd

sign(σ)m′
1,σ(1)1. · · · .m′

1,σ(d)d.

Notons que pour j 󰃍 d1 + 1, la j-ieme colonne n’a qu’un seul terme non-nul, le j-ieme; on a donc
m′

1,σ(j)j = 0 sauf si σ(j) = j auquel cas m′
jj = 1. Ainsi la somme porte sur les permutations σ telles

que σ(j) = j pour tout j 󰃍 d1 + 1 c’est a dire les permutations qui fixent tous les elements entre
d1 + 1 et d. L’ensemble de ces permutations Sd,󰃍d1+1 forme un sous-groupe isomorphe a Sd1

(en
envoyant une permutation de Sd1 sur la permutation de {1, · · · , d} qui permute les elements de 1 a
d1 et fixe les autres)

σ1 ∈ Sd1
󰀁→ σ ∈ Sd,󰃍d1+1 :

󰀫
j 󰀁→ σ1(j), j 󰃑 d1

j 󰀁→ j, j 󰃍 d1 + 1.

et on a

sign(σ) = sign(σ1).

On a alors

det

󰀕
M1 0
0 Idd2

󰀖
=

󰁛

σ∈Sd,󰃍d1+1

sign(σ)m′
1,σ(1)1. · · · .m′

1,σ(d1)d1
1. · · · .1

=
󰁛

σ∈Sd1

sign(σ)m′
1,σ(1)1. · · · .m′

1,σ(d1)d1
= det(M1).

On montre par un raisonnement similaire que

det

󰀕
Idd1 0
0 M2

󰀖
= det(M2)

en notant que la somme
󰁓

σ∈Sd
· · · pour sur les σ tels que

∀j 󰃑 d1, σ(j) = j

et l’ensemble de ces permutations Sd,󰃑d1 est un sous-groupe isomorphe a Sd2 , l’isomorphisme etant
donne par

σ2 ∈ S2 󰀁→ σ ∈ Sd,󰃑d1
:

󰀫
j 󰀁→ j, j 󰃑 d1

d1 + j 󰀁→ d1 + σ2(j).

et que la signature est preservee.



10.3. CALCUL DE DETERMINANTS 189

Pour la matrice du milieu M ′
3 on ecrit

detM ′
3 =

󰁛

σ2∈Sd2

sign(σ2)

d2󰁜

j=1

m′
3,d1+σ2(j),d1+j .

Notons que si σ2(j) > j alors m′
3,d1+σ2(j),d1+j = 0 car la matrice M ′

3 est triangulaire superieure donc

necessairement la somme porte sur les σ2 telles que

∀j = 1, · · · , d2, σ(j) 󰃑 j

mais il n’existe qu’une seul telle permutation, Idd2
et alors

m′
3,d1+Idd2

(j),d1+j = m′
3,d1+j,d1+j = 1.

On obtient donc

detM ′
3 = 1.

□

10.3.2. Calcul par operations elementaires sur les lignes.

Lemme 10.3. Soient Tij , Di,λ, CLij,µ les matrices associees aux transformations elementaires
sur les lignes d’une matrice. On a

detTij = −1 (si i ∕= j)

detDi,λ = λ

detClij,µ = 1, (si i ∕= j).

Preuve: Notons que Tij est la matrice telle que pour tout matrice carree de taille d×d l’application

M 󰀁→ TijM

echange les lignes i et j de M . On a donc (disons que i < j)

det(Tij .M) = det(Tij) det(M) = detB0
Lig

(L1, · · · , Lj , · · · , Li, · · · , Ld)

= −detB0
Lig

(L1, · · · , Li, · · · , Lj , · · · , Ld)

car detB0
Lig

(· · · ) est alternee.
La matrice Di,λ est diagonale avec des 1 sur la diagonale sauf en i-eme position ou on a λ et

donc

detDi,λ = 1. · · · .1.λ = λ.

On a pour i ∕= j,

Clij,µ = Idd + µ.Eij , i ∕= j

qui est une matrice triangulaire inferieure ou superieure (suivant que i < j ou i > j) avec des 1 sur
la diagonale, son determinant vaut donc 1. □

Corollaire 10.5. Supposons que N soit deduite de M par une des trois type de transformations
elementaires sur les lignes de M alors on a

– Type (I): detN = − detM .
– Type (II): detN = λ detM
– Type (III): detM = detN

Preuve: En effet on a suivant les cas

N = Tij .M, N = Di,λ.M, N = Clij,µ

et det(N) est le produit du determinant de M et de cette matrice. □
En utilisant ce corollaire on peut calculer detM en echelonnant la matrice M et en gardant

la trace des transformations elementaires effectuees. Si E est une forme echelonnee de M , on a
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detE = 0 = detM si E a r < d echelons (car E et donc M ne sont pas inversibles) et si E a d
echelons E est triangulaire superieure et son determinant se calcule facilement.

Par exemple is E est la forme echelonnee reduite et que r = d alors on a E = Idd. On a alors

Tk.Tk−1. · · · .T1.M = Idd

avec Tj des matrices de transformations elementaires et on a

det(Tk.Tk−1. · · · .T1.M) = det(Tk). · · · det(T1). det(M) = det(Idd) = 1

et

detM = det(T1)
−1. · · · det(Tk)

−1.

Remarque 10.3.1. En pratique il vaut mieux ne pas appliquer de transformation de type II
juste des transformations de type I (de determinant −1) ou III (de determinant 1). On peut alors
toujours reduire la matrice sous forme triangulaire superieure avec λ1, · · · ,λd sur la diagonale et si
on se souvient du nombre e d’echanges de lignes realises on aura

detM = (−1)eλ1. · · · .λd.

Exemple 10.3.1.
󰀏󰀏󰀏󰀏󰀏󰀏

2 3 1
3 1 2
1 2 3

󰀏󰀏󰀏󰀏󰀏󰀏
= −

󰀏󰀏󰀏󰀏󰀏󰀏

2 3 1
1 2 3
3 1 2

󰀏󰀏󰀏󰀏󰀏󰀏
=

󰀏󰀏󰀏󰀏󰀏󰀏

1 2 3
2 3 1
3 1 2

󰀏󰀏󰀏󰀏󰀏󰀏
=

󰀏󰀏󰀏󰀏󰀏󰀏

1 2 3
0 −1 −5
0 −5 −7

󰀏󰀏󰀏󰀏󰀏󰀏
=

󰀏󰀏󰀏󰀏󰀏󰀏

1 2 3
0 −1 −5
0 0 18

󰀏󰀏󰀏󰀏󰀏󰀏
= −18

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

X 0 0 d
−1 X 0 c
0 −1 X b
0 0 −1 X + a

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏
=

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

X 0 0 d
0 X 0 c+ d

X
0 −1 X b
0 0 −1 X + a

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏
=

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

X 0 0 d
0 X 0 c+ d

X

0 0 X b+ c
X + d

X2

0 0 −1 X + a

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

=

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏

X 0 0 d
0 X 0 c+ d

X

0 0 X b+ c
X + d

X2

0 0 0 X + a+ 1
X (b+ c

X + d
X2 )

󰀏󰀏󰀏󰀏󰀏󰀏󰀏󰀏
= X4 + aX3 + bX2 + cX + d.

10.3.3. Developpement –de Lagrange– le long d’une ligne-colonne. On va maintenant
donner une methode (due a Lagrange) de calcul du determinant par recurrence sur la dimension d.
Soit M = (mij) ∈ Md(K) une matrice de dimension d et k, l 󰃑 d, on pose M(k|l) ∈ Md−1(K) la
matrice de dimension d − 1 obtenue a partir de M en effacant la i-ieme ligne et la j-ieme colonne:
le scalaire M(i|j) est le (i, j)-ieme mineur de la matrice M .

Théorème 10.12 (Developpement de Lagrange le long d’une colonne). On a pour tout j 󰃑 d

detM =

d󰁛

i=1

mij(−1)i+j det(M(i|j)).

Preuve: On va montrer le resultat pour car(K) ∕= 2. Soient v1, · · · , vd ∈ Kd les vecteurs de
coordonnees des colonnes de M qu’on note

vk = m1ke1 + · · ·+mdked.

On a

detM = detB(v1, · · · , vj , · · · , vd).
On va d’abord montrer la formule pour j = 1: soit le premier vecteur

v1 = m11e1 + · · ·+md1ed
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et par multilinearite on a

detB(v1, v2, · · · , vd) =
d󰁛

i=1

mi1detB(ei, v2, · · · , vd).

Pour fixer les idees on suppose que i ∕= 1, d. Notons pour l 󰃍 2

v
(i)
l =

󰁛

k ∕=i

mklek;

alors on a

detB(ei, v2, · · · , vd) = detB(ei, v
(i)
2 , · · · , v(i)d ).

Notons que l’application

Λ(i) : (v
(i)
2 , · · · , v(i)d ) 󰀁→ detB(ei, v

(i)
2 , · · · , v(i)d )

est une forme multilineaire alternee en d− 1 variables sur le sous-espace vectoriel

Kd,(i) = {v ∈ Kd, e∗i (v) = 0} = Vect(e1, · · · , ei−1, ei+1, · · · , ed)
des vecteurs de V dont la coordonnee suivant ei est nulle: (disons que i ∕= 1, d).

Une base de cet espace est donne par

B(i) = {ek, 1 󰃑 k ∕= i 󰃑 d}.
Comme (car(K) ∕= 2) l’espace des formes alternees est de dimension 1, on a (disons que i ∕= 1, d)

Λ(i)(•) = Λ(i)(e1, · · · , êi, · · · , ed)detB(i)(•) = detB(ei, e1, · · · , ei−1, ei+1, · · · , ed)detB(i)(•)
et donc

Λ(i)(e1, · · · , ei−1, ei+1, · · · , ed) = detB(ei, e1, · · · , ei−1, ei+1, · · · , ed);
mais

detB(ei, e1, · · · , ei−1, ei+1, · · · , ed) = (−1)i−1detB(e1, · · · , ei, · · · , ed) = (−1)i+1

car on ramene ei de la premiere a la i-ieme position par i− 1 transpositions. On obtient donc

detB(v1, · · · , vd) =
d󰁛

i=1

mi1(−1)i+1detB(i)(v
(i)
2 , · · · , v(i)d )

et donc

detB(i)(v
(i)
2 , · · · , v(i)d ) = det(M(i|1))

on conclut si j = 1.
Dans la cas general, si j ∕= 1, on pose M ′ = (m′

kl)k,l󰃑d = (1j).M la matrice dont on a echange
la premiere et la j-ieme colonne: on a donc

m′
i1 = mij , m′

ij = mi1.

On a (par transposition)

detM ′ = − detM

et developpant par rapport a la premiere colonne on a

− detM = detM ′ =

d󰁛

i=1

mij(−1)i+1 det(M ′(i|1)).

Mais M ′(i|1) est la matrice carre de taille d− 1 dont on a retire la i-ieme ligne et dont la j− 1-ieme
colonne est la premiere colonne de M (moins le i-ieme coefficient). On ramene alors la j − 1-ieme
colonne en premiere position par j − 1 transpositions; le determinant de cette derniere matrice est
le mineur det(M(i|j)). On a donc

det(M ′(i|1)) = (−1)j−1 det(M(i|j))
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et

detM =

d󰁛

i=1

mij(−1)i+j det(M(i|j)).

□
Par le meme raisonnement, on demontre le

Théorème 10.13 (Developpement de Lagrange le long d’une ligne). On a pour tout i 󰃑 d

detM =

d󰁛

j=1

mij(−1)i+j det(M(i|j)).

Preuve: Par calcul direct ou en utilisant l’invariance par transposition et le fait qu’un developpe-
ment le long d’une ligne devient un developpement le long d’une colonne par transposition. □

Exemple 10.3.2. Soit la matrice 3× 3

M =

󰀳

󰁃
a b c
d e f
g h i

󰀴

󰁄

Si on developpe par rapport a la premiere colonne on obtient

detM = a det

󰀕
e f
h i

󰀖
− d det

󰀕
b c
h i

󰀖
+ g det

󰀕
b c
e f

󰀖

et par rapport a la deuxieme colonne on obtient

detM = −b det

󰀕
d f
g i

󰀖
+ e det

󰀕
a c
g i

󰀖
− h det

󰀕
a c
d f

󰀖

et si on developpe par rapport a la premieres ligne

detM = a det

󰀕
e f
h i

󰀖
− b det

󰀕
d f
g i

󰀖
+ c det

󰀕
d e
g h

󰀖

10.3.4. Formule de Cramer.

Définition 10.8. Pour k, l 󰃑 d

– le determinant det(M(k|l)) est appele le (k, l) mineur de M .
– le determinant avec signe, (−1)k+l det(M(k|l)) est appele le (k, l) cofacteur de M .
– La matrice des cofacteurs de M , est la matrice dont les coefficients sont les cofacteurs de
M :

cof(M) = (m̃ij)i󰃑d
j󰃑d

, m̃ij = (−1)i+j det(M(i|j))

Théorème 10.14 (Formule de Cramer). Soit M ∈ Md(K) et cof(M) sa matrice des cofacteurs.
On a

M.tcof(M) = tcof(M).M = det(M).Idd.

En particulier si detM ∕= 0, alors M est inversible et son inverse est donnee par

M−1 =
1

detM
tcof(M).

Remarque 10.3.2. En particulier si d = 2 et M =

󰀕
a b
c d

󰀖
on a

cof(M) =

󰀕
d −c
−b a

󰀖
, tcof(M) =

󰀕
d −b
−c a

󰀖

et on retrouve la formule󰀕
a b
c d

󰀖
.

󰀕
d −b
−c a

󰀖
=

󰀕
d −b
−c a

󰀖
.

󰀕
a b
c d

󰀖
= (ad− bc)

󰀕
1 0
0 1

󰀖
.
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Preuve: Soit M = (mij)i,j󰃑d comme ci-dessus et soit M̃ = tcof(M) la transposee de la matrice des
cofacteurs de M : on a

m̃ji = (−1)i+j detM(i|j)

et le developpement de Lagrange le long d’une colonne se reecrit

d󰁛

i=1

m̃jimij = detM.

Par la regle de produit de matrices, on voit qu’il s’agit du coefficient (j, j) de la matrice produit

M̃.M.
Les autres coefficients de ce produit sont donnes, pour k ∕= j par les sommes

d󰁛

i=1

m̃kimij =

d󰁛

i=1

mij(−1)i+k det(M(i|k)).

On va les calculer (montrer qu’ils valent 0) en les interpretant comme un developpement d’un
determinant.

Soit M (j,k) la matrice dont toutes les colonnes sont egales a celles de M sauf la k-ieme qui est
egale a la j-ieme colonne de M . On a pour i = 1, · · · , d

m
(j,k)
ik = mij , M (j,k)(i|k) = M(i|k);

en effet la matrice extraire M (j,k)(i|k) est egale a la matrice extraite M(i|k) car cette dernieres
obtenue en effacant la k-ieme colonne (la i ligne) et c’est seulement le long de cette colonne que M
et M (j,k) different.

D’autre part, comme M (j,k) a deux colonnes egales, on a

detM (j,k) = 0

et par le developpement de Lagrange par rapport a la k-ieme colonne on a

d󰁛

i=1

m
(j,k)
ik (−1)i+kM (j,k)(i|k) =

d󰁛

i=1

mij(−1)i+k det(M(i|k)) = 0 =

d󰁛

i=1

m̃kimij .

On a donc montre que

tcof(M).M = det(M).Idd.

En utilisant le developpement suivant les lignes on obtient

M.tcof(M) = det(M).Idd.

On a donc demontre la formule de Cramer. □

10.3.5. Applications de la formula de Cramer. L’interet de la formule de Cramer est
surtout theorique: pour calculer en pratique l’inverse d’une matrice il vaut mieux utiliser la methode
de Gauss.

En revanche, on observe que la transposee de la matrice des cofacteurs tcof(M) a pour coefficients
des polynomes en les coefficients M et que detM est egalement un polynome en les coefficients de
M .

On en tire des application algebriques et analytique
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Application algebrique. Soit A ⊂ K est un sous-anneau et M ∈ Md(A) alors

detM ∈ A, tcof(M) ∈ Md(A)

et si detM ∕= 0

M−1 ∈ 1

detM
Md(A).

En particulier si detM ∈ A×,

M−1 ∈ Md(A).

On en deduit que Md(A) est un sous-anneau de Md(K) dont le groupe des unites (des elements
inversibles) est

GLd(A) = {M ∈ Md(A), detM ∈ A×}.
Application analytique. Supposons que K = R alors

Md(R) ≃ Rd2

herite de la topologie produit de celle de R.
Les fonctions

det(•) : Md(R) 󰀁→ R
M 󰀁→ detM

, tcof(•) : Md(R) 󰀁→ Md(R)
M 󰀁→ tcof(M)

sont continues (car polynomiales) et

GLd(R) = {M ∈ Md(R), detM ∕= 0}

est un ouvert de Md(R). On en deduit que l’inversion

M ∈ GLd(R) 󰀁→ M−1 =
1

detM
tcof(M) ∈ GLd(R)

est continue.

10.4. Le determinant en caracteristique 2

Si car(K) = 2 une partie des raisonnements precedents ne s’appliquent pas car l’espace des
formes alternees en d variables tel qu’on l’a defini n’est pas forcement de dimension 1 (cet espace
coincide avec l’espace des formes symetriques car −1K = 1K).

Un maniere de s’en tirer est de redefinir une forme alternee de la maniere suivante:

Définition 10.9. Soit V un K-EV de dimension d 󰃍 1. Une forme multilineaire

Λ : (v1, · · · , vn) ∈ V n → Λ(v1, · · · , vn) ∈ K

est alternee si pour tout 1 󰃑 i < j 󰃑 n, et tout (v1, · · · , v̂j , · · · , vn) ∈ V n−1 on a

Λ : (v1, · · · , vi, · · · , vi, · · · , vn) = 0.

On note

Alt(n)(V ;K) ⊂ Mult(n)(V ;K)

le sous-ensemble des formes alternees.

Remarque 10.4.1. Si carK ∕= 2 c’est equivalent a la definition precedente mais pas en carac-
tristique 2.

On peut alors montrer que Alt(n)(V ;K) est un SEV de Mult(n)(V ;K) et que
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Théorème 10.15. Soit K un corps (quelconque) et V un K-EV de dimension d 󰃍 1 alors

dimAlt(d)(V ;K) = 1

et une base de Alt(d)(V ;K) est donnee par la forme

detB =
󰁛

σ∈Sd

sign(σ)e∗σ(1) ⊗ · · ·⊗ e∗σ(d)

qui est alternee et non-nulle.

On peut alors etendre la theorie en adaptant les preuves en consequence.
Une autre maniere est de voir qu’on dispose toujours de la forme multilineaire obtenue par

symetrisation:

detB = sign(σ)e∗σ(1) ⊗ · · ·⊗ e∗σ(d)

car dans un corps de caracteristique 2, sign(σ)K = (±1)K = 1K . Elle verifie donc

σ.detB = sign(σ)detB = detB.

On peut partir de la pour definir une theorie du determinant.
Par exemple on a

Théorème 10.16. Soit K un corps quelconque et V un K-ev de dimension d. La forme detB
verifie que si pour i ∕= j, on a vi = vj alors

detB(v1, · · · , vd) = 0K

et c’est plus generalement vrai si la famille {v1, · · · , vd} est liee.

Preuve. On donne la preuve en caracteristique generale: on peut supposer en appliquant une
permutation convenable que i = 1 et j = 2 et donc pour k = 1, · · · , d, on a

x1k = x2k.

Soit τ = (12) la transposition qui permute 1 et 2. Soit

Ad = ker(sign) = {σ ∈ Sd, sign(σ) = +1}
le groupe alterne des permutation paires. alors Ad est d’indice 2 dans Sd et comme τ ∕∈ Ad on a

Sd = Ad ⊔ Ad ◦ (12).
On a alors

detB(v1, · · · , vd) =
󰁛

σ∈Sd

sign(σ)x1σ(1).x2σ(2) · · · .xdσ(d) =
󰁛

σ∈Sd

sign(σ)x1σ(1).x1σ(2) · · · .xdσ(d)

=
󰁛

σ∈Ad

sign(σ)x1σ(1).x1σ(2) · · · .xdσ(d) +
󰁛

σ∈Ad

sign(σ ◦ τ)x1σ◦τ(1).x1σ◦τ(2). · · · .xdσ(d)

=
󰁛

σ∈Ad

x1σ(1).x1σ(2) · · · .xdσ(d) −
󰁛

σ∈Ad

x1σ(2).x1σ(1). · · · .xdσ(d) = 0K .

□
On developpe alors la theorie du determinant en caracteristique quelconque de la maniere suiv-

ante:

(1) Prenant V = Kd et B = B0, on definit ainsi le determinant de d vecteurs de Kd.
(2) On definit egalement le determinant d’une matrice par la meme formule:

det(M) =
󰁛

σ∈Sd

sign(σ)m1σ(1). · · · .mdσ(d) =
󰁛

σ∈Sd

sign(σ)mσ(1)1. · · · .mσ(d)d.

et on montre par un calcul direct sur les matrices et les permutations que le theoreme 10.9
reste vrai.
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(3) On definit alors le determinant d’une application lineaire generale ϕ : V 󰀁→ V en posant

det(ϕ) := detmatB(ϕ)

pour une base quelconque B de V . On peut montrer par un calcul direct (utilisant la
Theoreme 10.16) que

ϕ∗(detB) = detϕ.detB.

Par ailleurs la formule de changement de base, conjuguee au Theoreme 10.9 montre que
cette definition ne depend pas du choix de la base. On deduit du Theoreme 10.9 que le
Theoreme 10.8 est vrai.

(4) La resultats concernant le determinant des matrice par bloc restent vrais.
(5) On montre directement par le calcul que les developements de Lagrange le long d’une ligne

ou d’une colonnes restent vrais (Theoremes 10.12 et 10.13) ainsi que la formule de Cramer.

Remarque 10.4.2. Un interet de ce dernier point de vue est qu’on peut remplacer K par un
anneau commutatif pas forcement integre.



CHAPITRE 11

Le polynome caracteristique

11.1. Le polynome caracteristique d’une matrice

Soit K[X] l’anneau des polynomes a coefficients dans K. C’est (voir le l’appendice A pour la
definition formelle en terme de suite (an)n󰃍0 ∈ KN

fin a support fini) l’ensemble des expressions de la
forme

P (X) = a0X
0 + a1X + · · · adXd = a0 + a1X + · · · adXd, d 󰃍 0, a0, · · · , ad ∈ K.

C’est un K-EV d’element neutre le polynome nul 0(X) = 0 en posant

(P +Q)(X) = (a0 + b0) + (a1 + b1)X + · · · (ad + bd)X
d, λ.P (X) = λ.a0 + λ.a1X + · · ·λ.adXd.

C’est un anneau commutatif d’unite de polynome constant 1(X) = 1 quand on le munit du produit
usuel

PQ(X) =
󰁛

k󰃑2d

ciX
i

avec
ck =

󰁛

i1j=k

aibj , en posant ai, bj = 0 pour i, j > d.

L’application degree
degP = max{j 󰃍 0, aj ∕= 0}, deg 0 = −∞

et le fait que
deg(P.Q) = degP + degQ

permet de montrer que c’est anneau integre dont le corps des fractions est le corps des fractions
rationelles a coefficients dans K

K(X) = {P (X)

Q(X)
, P,Q ∈ K[X], Q ∕= 0}.

Soit M ∈ Md(K) une matrice. Comme K ↩→ K(X) (tout element de λ ∈ K peut etre identifie a
le polynome constant λ(X) = λ) on peut voir M comme une matrice a coefficients dans Md(K(X))
ainsi que la matrice

X.Idd −M ∈ Md(K(X))

dont les coordonnees sont donnees par

(X.Idd −M)ij = Xδi=j −mij .

On peut donc calculer son determinant

det(X.Idd −M) =
󰁛

σ∈Sd

sign(σ)

d󰁜

i=1

(Xδiσ(i) −miσ(i))

qui est en fait un polynome en X.

Définition 11.1. Le polynome caracteristique de M est le determinant

Pcar,M (X) = det(X.Idd −M) =
󰁛

σ

sign(σ)

d󰁜

i=1

(Xδiσ(i) −miσ(i)) ∈ K[X]

197



198 11. LE POLYNOME CARACTERISTIQUE

Théorème 11.1. Le polynome caracteristique est un polynome unitaire de degree d et si on ecrit

det(X.Idd −M) = Xd + ad−1X
d−1 + · · ·+ a0

On a

a0 = P (0) = (−1)d detM,

ad−1 = −tr(M) = −(m11 + · · ·+mdd)

est la trace de la matrice M .

Preuve: On voit que

det(X.Idd −M) =
󰁛

σ

sign(σ)

d󰁜

i=1

(Xδiσ(i) −miσ(i))

est une somme de polynomes de degre au plus d; de plus la contribution de σ = Idd est

d󰁜

i=1

(X −mii)

est un polynome unitaire de degree d.
Notons egalement que si σ ∕= Id il existe i tel que σ(i) ∕= i et Xδiσ(i) −miσ(i) = −miσ(i); ainsi󰁔d

i=1(Xδiσ(i) −miσ(i)) est degree < d donc det(X.Idd −M) est unitaire de degree d.
On a

ad = P (0) = det(−M) = (−1)d detM.

Par ailleurs si σ ∕= Id soit i tel que σ(i) = j ∕= i alors σ(j) ∕= j (car σ est injective) et on a

(Xδiσ(i) −miσ(i))(Xδjσ(j) −mjσ(j)) = miσ(i)mjσ(j)

ainsi si σ ∕= Idd le polynome
󰁔d

i=1(Xδiσ(i) −miσ(i)) est de degre 󰃑 d− 2 et le terme de degree d− 1
de det(X.Idd −M) est celui de

d󰁜

i=1

(X −mii) = Xd − (m11 + · · ·+mdd)X
d−1 + · · · .

□

Théorème 11.2 (Proprietes fonctionnelles du polynome caracteristique). Soient M,N des ma-
trices, on a

Pcar,tM (X) = Pcar,M (X)

et

Pcar,MN (X) = Pcar,NM (X).

Ainsi pour tout k 󰃑 d

ak(M.N) = ak(N.M)

et en particulier

tr(M.N) = tr(N.M).

Preuve: On a

Pcar,tM (X) = det(X.Idd − tM) = det(t(X.Idd −M)) = det(X.Idd −M) = Pcar,M (X).

On suppose d’abord que M est inversible. On a

Pcar,MN (X) = det(X.Idd −M.N) = det(X.M.M−1 −M.N)

= det(M.(X.M−1 −N)) = det((X.M−1 −N)M) = det(X.Idd −N.M).

Soit T une autre indeterminee; on considere le corps K ′ = K(T ).
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On peut faire des calculs dans ce corps de base K ′ qui contient K. Notons MT := M − T.Idd ∈
Md(K

′): c’ est une matrice inversible car son determinant est un polynome de degre d en la variable
T et est en particulier est non-nul. On a donc

det(X.Idd −MT .N) = det(X.Idd −N.MT ).

Ce determinant est un polynome en T a coefficients dans K[X] dont la valeur en T = 0K vaut (car
M0 = M)

det(X.Idd −M.N) = det(X.Idd −N.M).

□

Théorème 11.3 (Invariance par conjugaison). Le polynome caracteristique est un invariant de
la classe de conjugaison de la matrice M : pour toute matrice inversible P ∈ GLd(K), on a

Pcar,P.M.P−1(X) = Pcar,M (X).

Preuve: On a

Pcar,P.M.P−1(X) = det(X.Idd − P.M.P−1) = det(P.X.Idd.P
−1 − P.M.P−1)

= det(P (X.Idd −M).P−1) = det(X.Idd −M) = Pcar,M (X).

□

Corollaire 11.1. Soient (ak(M))0󰃑k󰃑d les coefficients de Pcar,M (X) :

det(X.Idd −M) = Xd + ad−1(M)Xd−1 + · · ·+ ad(M)

(on a ad(M) = 1).
Ces coefficients sont des invariants de la classe de conjugaison de M .
Autrement dit, pour toute matrice inversible P ∈ GLd(K) et 0 󰃑 k 󰃑 d

ak(M) = ak(P.M.P−1).

Remarque 11.1.1. On retrouve ainsi que la trace d’une matrice ne depend que de la classe de
conjugaison de celle-ci.

11.1.1. Exemple: la ”matrice compagnon”. On aura egalement besoin de la ”matrice
compagnon” qu’on a deja rencontre en seance d’exercices: soit un polynome unitaire de degre d,

P (X) = Xd + bd−1X
d−1 + · · ·+ b0;

on note b = (b0, · · · , bd−1) ∈ Kd le vecteur de ces coefficients. La matrice compagnion de P est la
matrice

MP = Mb =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

0 0 0 0 −b0
1 0 0 0 −b1
0 1 0 0 −b2
...

...
. . .

...
...

0 0 0 1 −bd−1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
∈ Md(K).

On a vu en exercice que

P (MP ) = Md
P + bd−1M

d−1
P + · · ·+ b0Idd = 0d.

Par exemple la matrice compagnon de X2 + 1 est la matrice I =

󰀕
0 −1
1 0

󰀖
qui sert a definir les

nombres complexes et qui verifie

I2 + Id2 = 02.
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Proposition 11.1. Soit

P (X) = Xd + bd−1X
d−1 + · · ·+ b0 ∈ K[X]

un polynome et

MP =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

0 0 0 0 −b0
1 0 0 0 −b1
0 1 0 0 −b2
...

...
. . .

...
...

0 0 0 1 −bd−1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
∈ Md(K).

la matrice compagnion associee au polynome P . Alors son polynome caracteristique est egal a P :

Pcar,MP
(X) = det(X.Idd −MP ) = P (X) = Xd + bd−1X

d−1 + · · ·+ b0.

Preuve. (par developpement de Lagrange) On developpe par rapport a la derniere colonne:

Pcar,MP
(X) =

d−1󰁛

i=0

(−1)d+i+1bi det(M(i+ 1|d))

ou M(i+1|d) est la matrice dont on a efface la derniere colonne et la i+1-eme ligne. Cette matrice
est triangulaire superieure avec i, X’s et d− 1− i (−1)’s le long de la diagonale. Par exemple

M(1|d) =

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

✚✚X ✁0 ✁0 ✁0 󰂸󰂸b0
−1 X 0 0 󰂸󰂸b1
0 −1 X 0 󰂸󰂸b2
...

...
. . .

...
...

0 0 0 −1 ✘✘✘✘✘X + bd−1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄

On a donc

detM(i+ 1|d) = (−1)d−1−iXi

et

Pcar,MP
(X) =

d−1󰁛

i=0

(−1)d+i+1+d−1−ibiX
i =

d−1󰁛

i=0

biX
i = P (X).

□

Exercice 11.1. Redemontrer la Proposition en echelonnant la matrice

det

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

X 0 0 0 b0
−1 X 0 0 b1
0 −1 X 0 b2
...

...
. . .

...
...

0 0 0 −1 X + bd−1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄

(dans le corps K(X) des fractions rationelles) par une suite d’operations de type (III) pour la rendre
triangulaire superieure.

11.1.2. Cas des matrices triangulaires par blocs.

Proposition 11.2. Supposons que la matrice M ∈ Md(K) s’ecrive sous forme triangulaire
superieure par blocs:

M =

󰀕
M1 ∗
0 M2

󰀖
, M1 ∈ Md1(K), M2 ∈ Md2(K), d1 + d2 = d

alors

Pcar,M (X) = Pcar,M1(X)Pcar,M2(X)
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Preuve: Exercice. □
En iterant on obtient

Corollaire 11.2. soit k 󰃍 2 un entier, si M est une matrice triangulaire superieure a k blocs

M =

󰀳

󰁅󰁃
M1 ∗ ∗

0
. . . ∗

0 0 Mk

󰀴

󰁆󰁄 , Mi ∈ Mdi(K), i 󰃑 k, d1 + · · ·+ dk = d

on a

Pcar,M (X) = Pcar,M1
(X). · · · .Pcar,Mk

(X)

En particulier, si M est triangulaire superieure (k = d) –par exemple diagonale–

M =

󰀳

󰁅󰁅󰁅󰁃

λ1 ∗ · · · · · ·
0 λ2 ∗ ∗
... 0

. . . ∗
0 · · · · · · λd

󰀴

󰁆󰁆󰁆󰁄
,

on a

Pcar,M (X) =

d󰁜

i=1

(X − λi).

Remarque 11.1.2. Notons enfin que par invariance du polynome caracteristique par transpo-
sition le Corollaire reste vrai pour une matrice triangulaire inferieure par blocs.

11.2. Le polynome caracteristique d’un endomorphisme

L’invariance par conjugaison du polynome caracteristique permet de definir le polynome carac-
teristique d’une application lineaire:

Définition 11.2. Soit ϕ ∈ End(V ) une application lineaire, on definit son polynome caracter-
istique par

Pcar,ϕ(X) = Pcar,M (X)

ou M = matB(ϕ) est la matrice de ϕ dans une base quelconque de V .

Notons que cette definition ne depend pas de la base B choisie: si M ′ = matB′(ϕ) est la matrice
de ϕ dans une autre base alors par la formule de changement de base

M ′ = matB′B.M.mat−1
B′B

et

Pcar,M ′(X) = Pcar,M (X) = Pcar,ϕ(X).

En particulier les coefficient ak(ϕ) = ak(M) du polynome caracteristique ne dependent pas du choix
de la base.

Définition 11.3. On definit la trace de ϕ comme etant la trace de M

tr(ϕ) = tr(M) = m11 + · · ·+mdd

et cette definition ne depend pas du choix de la base B.

Proposition 11.3. Le polynome caracteristique Pcar,ϕ(X) ne depend que de la classe de con-
jugaison de ϕ dans End(V ): pour tout ψ ∈ GL(V )

Pcar,ψ.ϕ.ψ−1(X) = Pcar,ϕ(X).
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11.2.1. Sous-espaces propres. L’interet du polynome caracteristique est qu’il permet d’identifier
des sous-espaces interessant de V relativement a ϕ:

Théorème 11.4. Soit Pcar,ϕ le polynome caracteristique d’une application lineaire ϕ.
Les enonces suivants sont equivalents

(1) Le scalaire λ ∈ K est racine de Pcar,ϕ: Pcar,ϕ(λ) = 0.
(2) Il existe v ∈ V − {0} tel que ϕ(v) = λ.v

Preuve: On a les equivalences suivantes

– Pcar,ϕ(λ) = det(λ.IdV − ϕ) = 0,
– λ.IdV − ϕ n’est pas inversible,
– λ.IdV − ϕ n’est pas injective,
– ker(λ.IdV − ϕ) ∕= {0V },
– Il existe v ∈ V − {0V } tel que

0V = (λ.IdV − ϕ)(v) = λ.v − ϕ(v).

□

Définition 11.4. Soit λ ∈ K, le sous-espace

Vϕ,λ := ker(ϕ− λ.IdV ) = {v ∈ V, ϕ(v) = λ.v}

est appelle sous-espace propre associe a λ. Si Vϕ,λ ∕= {0V } on dit que λ est une valeur propre de ϕ
et tout vecteur non-nul de Vϕ,λ (ie. verifiant ϕ(v) = λ.v) est appelle vecteur propre de ϕ associe a
la valeur propre λ.

L’ensemble des valeurs propres de ϕ est appelle le spectre de ϕ (dans K) est est note

Specϕ(K).

Le Theoreme precedent dit ainsi que les racines dans K du polynome caracteristique sont ex-
actement les valeurs propres de ϕ:

RacPcar,ϕ(K) = Specϕ(K).

Voici quelques proprietes de base des sous-espaces propres:

Théorème 11.5. Soit ϕ ∈ End(V ) et λ,λ′ des valeurs propres de ϕ et Vϕ,λ, Vϕ,λ′ les sous-
espaces propres associes.

– Le sous-espace Vϕ,λ est stable par ϕ:

ϕ(Vϕ,λ) ⊂ Vϕ,λ.

– Si λ ∕= λ′ les sous-espaces Vϕ,λ et Vϕ,λ′ sont en somme directe:

Vϕ,λ ∩ Vϕ,λ′ = {0V }.

Preuve: Soit v ∈ Vϕ,λ, et w = ϕ(v), on a

ϕ(w) = ϕ(ϕ(v)) = ϕ(λ.v) = λ.ϕ(v) = λ.w

et donc w = ϕ(v) ∈ Vϕ,λ.
Soit λ ∕= λ′ et v ∈ Vϕ,λ ∩ Vϕ,λ′ , on a

ϕ(v) = λ.v = λ′.v

et donc

(λ− λ′).v = 0V

mais comme λ− λ′ ∕= 0K , on a v = 0V . □
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11.3. Le Theoreme de Cayley-Hamilton

Soit K[X] l’algebre des polynomes sur un corps K , (A,+, .) une K-algebre et ϕ ∈ A un element
de cette algebre. Cette donnee permet de definir une application d’ ”evaluation en ϕ”

evϕ :
K[X] 󰀁→ A
P (X) 󰀁→ P (ϕ)

ou on a note
P (ϕ) = an.ϕ

n + an−1.ϕ
n−1 + · · ·+ a0.1A

pour P (X) un polynome a coefficients dans K

P (X) = an.X
n + an−1.X

n−1 + · · ·+ a0, a0, · · · , ad ∈ K.

On rappelle que
ϕd := ϕ. · · · .ϕ (d fois si d 󰃍 1), ϕ0 := 1A.

On verifie facilement que

Proposition 11.4. L’application evϕ est un morphisme de K-algebres:

evϕ(λ.P +Q) = λP (ϕ) +Q(ϕ) = λ.evϕ(P ) + evϕ(Q)

evϕ(P.Q) = P (ϕ).Q(ϕ) = evϕ(P ).evϕ(Q).

Son image evϕ(K[X]) est notee

K[ϕ] = {an.ϕn + an−1.ϕ
n−1 + · · ·+ a0.1A, n 󰃍 1, a0, · · · , an ∈ K} ⊂ A

est une sous-algebre commutative de A engendree comme K-ev par les puissance de ϕ:

{1A = ϕ0,ϕ, · · · ,ϕn, · · · }.

Remarque 11.3.1. La commutativite resulte du fait que K[X] est commutatif et donc

P (ϕ).Q(ϕ) = (P.Q)(ϕ) = (Q.P )(ϕ) = Q(ϕ).P (ϕ).

On va appliquer cette construction a l’algebre des endomorphismes (EndK(V ),+, ◦) d’un K-EV
de dimension d et ϕ : V 󰀁→ V un endomorphisme et/ou a l’algebre des matrices (Md(K),+, .) pour
une matrice M ∈ Md(K). Pour tout polynome P (X) ∈ K[X] son evaluation en ϕ ou en M est
donnee par

evϕ(P ) := P (ϕ) = an.ϕ
n + an−1.ϕ

n−1 + · · ·+ a0.IdV ∈ EndK(V )

et
evϕ(M) := P (M) = an.M

n + an−1.M
n−1 + · · ·+ a0.Idd ∈ Md(K).

Notons que comme EndK(V ) et Md(K) sont de dimensions finies (egale a d2) et que K[X] est
de dimension infinie evϕ et evM ne sont pas injectives et les noyaux ker evϕ et ker evM sont non nuls:
plus precisement, si on restreint ces applications au SEV des polynomes de degre 󰃑 d2, K[X]󰃑d2 qui
est de dimension d2 + 1, on a par le Theoreme noyau-Image

dimker evϕ + dimK(K[ϕ]) = dimker evM + dimK(K[M ]) = d2 + 1

et comme
dimK(K[ϕ]), dimK(K[M ]) 󰃑 dimEndK(V ) = dimMd(K) = d2

on a
dimker evϕ, dimker evM 󰃍 1.

On peut donc trouver dans les noyaux ker evϕ et ker evM un polynome non-nul de degree 󰃑 d2. En
fait on peut trouver un polynome de degre d:

Théorème 11.6 (Cayley-Hamilton). Soit ϕ ∈ End(V ) (resp. M ∈ Md(K)) alors son polynome
caracteristique Pcar,ϕ(X) (resp. Pcar,M (X)) appartient a ker evϕ (resp. ker evM ); en d’autre termes

Pcar,ϕ(ϕ) = 0V , Pcar,M (M) = 0d×d.
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Preuve: Soit ϕ : V 󰀁→ V . Il s’agit de montrer que pour tout v ∈ V − {0},

Pcar,ϕ(ϕ)(v) = 0V .

Si v = 0V c’est evident. Sinon on considere la suite de vecteurs

v, ϕ(v), ϕ2(v), · · · , · · · ,ϕk(v), · · · .

Comme V est de dimension finie il existe d1 󰃑 d tel que

v, ϕ(v), ϕ2(v), · · · , · · · ,ϕd1(v)

est liee. Prenons d1 󰃍 1 le plus petit possible pour cette propriete de sorte que

B1 := {v, ϕ(v), ϕ2(v), · · · , · · · ,ϕd1−1(v)}

est libre et il existe b0, · · · , bd1−1 ∈ K tels que

ϕd1(v) = b0.v + · · ·+ bd1−1ϕ
d1−1(v).

Completons la famille Bv en une base de V : B = B1 ⊔ B2. Soit M = matB(ϕ) la matrice de ϕ
dans cette base. Elle est de la forme

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁅󰁃

0 0 0 0 b0 ∗
1 0 0 0 b1 ∗
0 1 0 0 b2 ∗
...

...
. . .

...
...

...
0 0 0 1 bd1−1 ∗

0 M2

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁆󰁄

=

󰀳

󰁅󰁅󰁅󰁅󰁅󰁅󰁃

∗
∗

M1 ∗
∗
∗

0 M2

󰀴

󰁆󰁆󰁆󰁆󰁆󰁆󰁄

de sorte que

Pcar,ϕ(X) = Pcar,M (X) = Pcar,M1
(X)Pcar,M2

(X) = Pcar,M2
(X)Pcar,M1

(X)

La matrice M1 est une matrice compagnion dont on connait le polynome caracteristique (cf. Prop
11.1)

Pcar,M1(X) = det

󰀳

󰁅󰁅󰁅󰁅󰁅󰁃

X 0 0 0 −b0
−1 X 0 0 −b1
0 −1 X 0 −b2
...

...
. . .

...
...

0 0 0 −1 X − bd1−1

󰀴

󰁆󰁆󰁆󰁆󰁆󰁄
= Xd1 − bd1−1X

d1−1 − · · ·− b0

et

Pcar,ϕ(ϕ)(v) = Pcar,M2(ϕ) ◦ Pcar,M1(ϕ)(v) = Pcar,M2(ϕ)(Pcar,M1(ϕ)(v)) = 0V

car

Pcar,M1(ϕ)(v) = ϕd1(v)− bd1−1ϕ
d1−1(v)− · · ·− b0v = 0V

□

Remarque 11.3.2. Dans cette preuve on a implicitement utilise le fait que l’on connaissait deja
le Theoreme pour les matrices compagnons (Prop 11.1 et la remarque qui suit).

Corollaire 11.3. Soit K[ϕ] ⊂ End(V ) ou K[M ] ⊂ Md(K) les images de K[X] par les appli-
cations

evϕ : P ∈ K[X] 󰀁→ P (ϕ) ∈ End(V )

ou

evM : P ∈ K[X] 󰀁→ P (ϕ) ∈ Md(K)

alors K[ϕ] et K[M ] sont des sous-anneaux (commutatifs) et des K-evs de dimension 󰃑 d.
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Preuve: Soit P (X) ∈ K[X] un polynome de degree 󰃍 d, alors par division euclidienne on a

P (X) = Q(X)Pcar,ϕ(X) +R(X)

avec Q,R ∈ K[X] et degR 󰃑 d− 1. Evaluant en ϕ on a

P (ϕ) = Q(ϕ)Pcar,ϕ(ϕ) +R(ϕ) = R(ϕ).

Ainsi
K[ϕ] = K[ϕ]󰃑d−1

avec
K[X]󰃑d−1 = {R(X) ∈ K[X], degR 󰃑 d− 1}

qui est un K-ev de dimension d. In a donc

dimK[ϕ]󰃑d−1 = dim(Im(evϕ|K[X]󰃑d−1
)) 󰃑 dimK[X]󰃑d−1 = d.

□
Corollaire 11.4. Soit ϕ un endomorphisme et M sa matrice associee dans une base quel-

conque. Si det(ϕ) = det(M) ∕= 0 alors ϕ et M sont inversibles et on a

ϕ−1 =
(−1)d+1

detϕ
(a1IdV + · · ·+ ad−1ϕ

d−2 + ϕd−1)

M−1 =
(−1)d+1

detM
(a1Idd + · · ·+ ad−1M

d−2 +Md−1)

ou
Pcar,ϕ(X) = Pcar,M (X) = a0 + a1X + · · ·+ ad−1X

d−1 +Xd.

En particulier ϕ−1 ∈ K[ϕ] et M−1 ∈ K[M ].

Preuve: On a
0d = a0Idd + a1M + · · ·+ ad−1M

d−1 +Md

de sorte que

−a0Idd = a1M + · · ·+ ad−1M
d−1 +Md = M.(a1IdV + · · ·+ ad−1M

d−2 +Md−1)

et si a0 = (−1)d det(M) ∕= 0, on a

Idd = M.
−1

a0
(a1Idd + · · ·+ ad−1M

d−2 +Md−1)

ce qui montre que M est inversible. □





APPENDICE A

L’anneau des polynomes sur un corps

”Trois anneaux pour les rois Elfes sous le ciel,
Bcrys, Bst, BdR,

Sept pour les Seigneurs Nains dans leurs demeures de pierre,
EQp , AQp , BQp , E, A, B, Ã

Neuf pour les Hommes Mortels destinés au trépas,
Qp, Zp, Fp, Qp, Fp, Cp, OCp , Qnr

p , BHT

Un pour le Seigneur Ténébreux sur son sombre trône
Ainf”

Dans ce chapitre on donne la construction algebrique des polynomes a coefficients dans un anneau
commutatif A (et en particulier quand A = K est un corps). On rappellera ensuite la terminologie et
les proprietes de base concernant polynomes (degree, monomes, division euclidienne, factorisation,
polynomes irreductibles, racines). on appliquera la theorie a la construction de sous-algebres dans
des algebres sur un corps (algebres monogenes)

A.1. Preliminaire: fonctions polynomiales

Sur le corps des nombres reels R, on a l’habitude de definir un polynome comme etant une
fonction de R a valeurs dans R de la forme

P (•) : x ∈ R 󰀁→ P (x) = adx
d + ad−1x

d−1 + · · ·+ a0 ∈ R

ou a0, · · · , ad sont des reels fixes (les coefficients du polynome) et si ad ∕= 0 on dit que P est un
polynome de degree degP = d. La fonction identiquement nulle 0 est egalement une fonction
polynomiale correspondant a ad = · · · = a0 = 0 et on declare que

deg 0 = −∞.

De plus, on sait que la somme et le produit de deux fonctions polynomiales sont des fonctions
polynomiales: si P et Q sont des fonctions polynomiales, on peut toujours les ecrire sous la forme

P (x) = adx
d + ad−1x

d−1 + · · ·+ a0, Q(x) = bdx
d + bd−1x

d−1 + · · ·+ b0

(avec d = max(degP, degQ) et en posant ad = · · · = adegQ = 0 ou bd = · · · = bdegP = 0 si
degP ∕= degQ) et on a

x 󰀁→ (P +Q)(x) = (ad + bd)x
d + (ad−1 + bd−1)x

d−1 + · · ·+ (a0 + b0)

et

P.Q(•) : x 󰀁→ P.Q(x) = (adx
d + ad−1x

d−1 + · · ·+ a0).(bdx
d + bd−1x

d−1 + · · ·+ b0)

= c2dx
2d + c2d−1x

2d−1 + · · ·+ c0

avec

cn =
󰁛

p+q=n

ap.bq =
󰁛

q+p=n

bq.ap, 0 󰃑 n 󰃑 2d.

207
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On a alors
deg(P +Q) 󰃑 max(degP, degQ), deg(P.Q) = deg(P ) + deg(Q)

Remarque A.1.1. Cette derniere formule reste vraie si P ou Q = 0 car on a pose deg 0 = −∞.

L’ensemble des fonctions polynomiales sur R forme alors un anneau commutatif que l’on note
R[X] dont le nul est le polynome nul et l’unite le polynome constant egal a 1.

De plus R[x] a une structure R-module via la multiplication des polynomes par les polynomes
constants:

(a, P ) ∈ R× R[X] 󰀁→ a.P : x 󰀁→ aadx
d + aad−1x

d−1 + · · ·+ aa0.

Ainsi R[X] est une R-algebre.
On pourrait faire de meme pour tout anneau commutatif A en definissant l’anneau des polynomes

A[X] comme etant l’ensemble des fonction polynomiales de A vers A c’est a dire les fonctions de la
forme

P : x ∈ A 󰀁→ P (x) = adx
d + ad−1x

d−1 + · · ·+ a0

ou a0, · · · , ad ∈ A sont des elements de A fixes. On voit de me que la somme et le produit de
deux fonctions polynomiales sont polynomiales et l’ensemble des fonctions polynomiales est un sous-
anneau commutatif de l’anneau des fonctions de A vers A. Cependant dans certains cas, on rencontre
des problemes avec un telle definition: une meme fonction polynomiale peut avoir des expressions
differentes, ainsi les notions de coefficients d’un polynome ou de degree ne sont pas bien definies:

Prenons A = Fp pour p premier le corps a p elements. On a vu que pour tout x ∈ Fp on a

xp = x

et en d’autre termes la fonction polynomiale identiquement nulle est egalement donnee par la fonction

x ∈ Fp 󰀁→ xp − x.

Cette absence d’unicite pose notamment des problemes quand on considere l’extension suivante: soit
B ⊃ A un autre anneau commutaif contenant A alors une expression polynomiale sur A

P : x ∈ A 󰀁→ P (x) = adx
d + ad−1x

d−1 + · · ·+ a0 ∈ A

defini une fonction polynomiale sur B en posant

P : x ∈ B 󰀁→ P (x) = adx
d + ad−1x

d−1 + · · ·+ a0 ∈ B

et il se peut qu’une fonction polynomiale identiquement nulle sur A ne le soit pas sur B. Par exemple,
si A = Fp et B = Fp[Id] le corps a p2 element construit en exercices il existe x ∈ Fp[Id] tel que

xp − x ∕= 0Fp[Id].

Ainsi pour definir les polynomes on va devoir le faire a partir de leur expression polynomiale abstraite

P (x) = adx
d + ad−1x

d−1 + · · ·+ a0.

A.2. Les polynomes sont des suites

Soit A un anneau commutatif et soit

AN = {(an)n󰃍0, an ∈ A}.
l’ensemble des suites a valeurs dans A (ou encore l’ensemble des fonctions de N a valeurs dans A,
(an)n󰃍0 : n 󰀁→ an). L’ensemble AN a une structure de A-module pour l’addition terme a terme

(an)n󰃍0 + (bn)n󰃍0 = (an + bn)n󰃍0

dont l’element neutre est la suite identiquement nulle

0A = (0A, · · · , 0A, · · · )
et la multiplication par les scalaires est donnee pour a ∈ A par

a.(an)n󰃍0 = (a.an)n󰃍0.
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Définition A.1. Soit (an)n󰃍0 ∈ AN une suite a valeurs dans A. Le support de cette suite est
defini comme etant l’ensemble des indices ou la suite prend une valeur non-nulle

supp((an)n󰃍0) = {n ∈ N, an ∕= 0A} ⊂ N.

L’ensemble des polynomes A[X] est construit algebriquement de la maniere suivante:

Définition A.2. Un polynome P a coefficient dans A est une suite

P = (an)n󰃍0

de support fini: telle que
supp(P ) = {n ∈ N, an ∕= 0A} est fini.

Le n-ieme terme de cette suite an est le coefficient d’ordre n de P ; on le note egalement cn(P ).
L’ensemble des polynomes a coefficients dans A est le sous-ensemble AN

f ⊂ AN forme des suites
a support fini; on le note

AN
f = {(an)n󰃍0, an ∈ A, |supp((an)n󰃍0| < ∞}.

Proposition A.1. L’ensemble AN
f est un sous-A module de AN pour l’addition et la multipli-

cation par les scalaire sur l’espaces des suites.

Preuve: Rappelons que si a = (an)n󰃍0), et b = (bn)n󰃍0) sont des suites et a ∈ A, l’addition est
definie par

a+ b := (an + bn)n󰃍0

et la multiplication par a est definie par

a.a := (a.an)n󰃍0).

On a
an + bn ∕= 0A =⇒ an ∕= 0A ou bn ∕= 0A

et
a.an ∕= 0A =⇒ an ∕= 0A

et donc
supp(a+ b) ⊂ supp(a) ∪ supp(b), supp(a.a) ⊂ supp(a).

Ainsi, si a et b sont a supports finis alors a+ b et a.a sont a supports finis et ainsi AN
f est un sous

A-module de AN. □

A.2.1. Degre d’un polynome. Un sous-ensemble de N est fini ssi il possede un plus grand
element:

Définition A.3. Le degree d’un polynome non-nul P = (an)n󰃍0 est le plus grand element de
supp(P ):

deg(P ) = max{d 󰃍 0, ad ∕= 0}.
Si P = 0K est le polynome nul, le support de P est l’ensemble vide et on defini son degree comme
etant

deg(0K) = −∞.

Définition A.4. Etant donne un polynome de degre 󰃑 d

P = (a0, · · · , ad, 0, · · · )
le d-ieme coefficient ad est appele coefficient dominant de P . Un polynome non-nul est unitaire si
le coefficient de degre degP verifie

adegP = 1.

Proposition A.2. Soient P,Q des polynomes, on a

deg(P +Q) 󰃑 max(degP, degQ)

avec egalite si degP ∕= degQ.
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Preuve: C’est evident si P ou Q = 0.
Sinon soit d = degP 󰃍 d′ = degQ, on a

P = (a0, a1, · · · , ad, 0, · · · ), Q = (b0, b1, · · · , bd′ , 0, · · · )

avec ad, bd′ ∕= 0.
Supposons d′ 󰃍 d, on a

P +Q = (a0 + b0, a1 + b1, · · · , ad + bd, 0 + bd+1, · · · , 0 + b′d, 0, · · · )

et deg(P +Q) 󰃑 d′ (avec egalite ssi d = d′ et ad′ + bd′ ∕= 0). □

Corollaire A.1. Soit d 󰃍 0 et

AN
f󰃑d

= {P ∈ AN
f , degP 󰃑 d}

l’ensemble des polynomes de degre 󰃑 d. Alors AN
f󰃑d

est un sous A-module de AN
f .

A.2.2. La famille des monomes unitaires. On va maintenant identifier une famille partic-
uliere de polynomes:

Notation A.1. Soit k 󰃍 0 un entier, on a note Xk le polynome (ie la suite de support fini)
defini par

Xk := (δn=k)n󰃍0

avec (δn=k le symbole de Kronecker)

δn=k =

󰀫
1K si n = k

0K sinon.

Le polynome Xk est appelle monome unitaire de degree k.
On note l’ensemble des monomes unitaires

M = {Xk, k 󰃍 0} ⊂ A[X].

Exemple A.2.1. Le monome Xd est de degre d.

Avec cet notation on a pour tout polynome P = (an)n󰃍0 non nul de degre d

P = (a0, a1, · · · , ad, 0, 0, · · · , 0, · · · )
= a0(1, 0, · · · , ) + a1.(0, 1, 0, · · · ) + · · ·+ ad(0, · · · , 1, 0, · · · )
= a0.X

0 + a1.X
1 + · · ·+ ad.X

d

et plus generalement on a le theoreme suivant qu’on ne montrera pas

Théorème A.1. La famille des monomes M engendre AN
f comme A-module: tout polynome se

decompose en combinaison lineaire (a coefficient dans A) de monomes: pour tout P ∈ AN
f il existe

d 󰃍 0 et a0, · · · , ad ∈ A tels que

P = a0.X
0 + a1.X

1 + · · ·+ ad.X
d.

De plus, cette decomposition est unique: si

P = a0.X
0 + a1.X

1 + · · ·+ ad.X
d = a′0.X

0 + a′1.X
1 + · · ·+ a′d′ .Xd′

avec d 󰃑 d′ alors pour tout k 󰃑 d on a ak = a′k et pour d < k 󰃑 d′ on a a′k = 0K .
La famille des monomes unitaires est aussi appellee base canonique de l’espace des polynomes.
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Notation A.2. On notera l’espace des polynomes

A[X] := AN
f

et

A[X]󰃑d = {P ∈ A[X], degP 󰃑 d}
le sous A-module des polynomes de degre 󰃑 d.

On notera egalement quelquefois un polynome P (X) au lieu de P .

Alors le theoreme precedent dit que l’application

(a0, · · · , ad) ∈ Ad+1 󰀁→ adX
d + · · ·+ a0X

0 ∈ A[X]󰃑d

est un isomorphisme de A-module et A[X]󰃑d est libre de rang d+ 1.

A.3. Structure d’anneau

A.3.1. Fonction polynomiale associee a un polynome. Armes de la notion abstraite de
polynome et de la notation monomiale on peut associer une fonction polynomiale a un polynome:

Définition A.5. Soit A un anneau commutatif et

P = ad.X
d + ad−1.X

d−1 + · · ·+ a1.X
1 + a0X

0

un polynome a coefficient dans A. La fonction polynomiale associee a P est la fonction

P (•) : A 󰀁→ A

definie par

P (•) : x ∈ A 󰀁→ P (x) := ad.x
d + ad−1.x

d−1 + · · ·+ a1.x+ a0 ∈ A.

Proposition A.3. L’application ”fonction polynomiale”

P ∈ A[X] 󰀁→ P (•) ∈ F(A,A)

est un morphisme de A-modules pour la structure naturelle de A-module sur l’espaces des fonctions
de A vers A: on a

(P +Q)(•) = P (•) +Q(•)
et pour a ∈ A

(a.P )(•) = a.P (•).

Par ailleurs, l’espace F(A,A) possede egalement une structure d’anneau (et meme de A-algebre)
donnee par pour f, g ∈ F(A,A) et λ ∈ A

(f.g) : x ∈ A 󰀁→ f(x).g(x) ∈ A, (λ.f) : x ∈ A 󰀁→ λ.f(x).

Proposition A.4. Soit d 󰃍 1 et P et Q deux polynomes de degre 󰃑 d

P = ad.X
d + ad−1.X

d−1 + · · ·+ a1.X
1 + a0X

0, Q = bd.X
d + bd−1.X

d−1 + · · ·+ b1.X
1 + b0X

0,

alors le produit de leur fonctions polynomiales,

P (•).Q(•) : x ∈ A 󰀁→ P (x).Q(x)

est encore une fonction polynomiale: C’est la fonction associee au polynome

P.Q = c2dX
2d + · · ·+ c1X + c0

ou pour n 󰃑 2d,

cn =
󰁛

p+q=n

ap.bq = a0.bn + a1.bn−1 + · · ·+ an.b0.
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Preuve: Pour tout x ∈ A, on a (utilisant la distributivite, l’associativite et la commutativite de A)

P (x).Q(x) = (a0.+ a1.x+ · · ·+ ad.x
d).(b0 + b1.x+ · · ·+ bd.x

d) =
󰁛

p,q󰃑d

ap.X
p.bq.X

q =
󰁛

p,q󰃑d

ap.bq.x
p+q =

󰁛

n󰃑2d

(
󰁛

p+q=n

ap.bq)x
n =

󰁛

n󰃑2d

cn.x
n

□

A.3.2. Multiplication abstraite des polynomes. La proposition precedente motive l’introdution
de la loi de multiplication interne sur A[X]: on defini le produit de polynomes

•.• :
A[X]×A[X] 󰀁→ AN

(P = (an)n󰃍0, Q = (bn)n󰃍0) 󰀁→ P.Q = (cn)n󰃍0

avec

cn =
󰁛

p+q=n

ap.bq = a0.bn + a1.bn−1 + · · ·+ an.b0.

Notons que si les suites P = (an)n󰃍0 et Q = (bn)n󰃍0 sont a support fini, alors P.Q est a support
fini, plus precisement

Proposition A.5. Soient P,Q des polynomes, alors P.Q est un polynome de degree

deg(P.Q) 󰃑 degP + degQ.

Preuve: Si P ou Q = (0A)n󰃍0 alors P.Q = (0A)n󰃍0 et compte-tenu du fait que deg 0A = −∞ on a
bien

deg(P.Q) = −∞ = degP + degQ.

Si P et Q sont non-nuls, on a pour n > degP + degQ

cn =
󰁛

p+q=n

ap.bq = 0A

car si p + q = n > degP + degQ ou bien p > degP et ap = 0 ou bien q > degQ et bq = 0. Ainsi
P.Q est a support fini et de degre 󰃑 degP + degQ. □

On verifie alors (exercice)

Théorème A.2. La loi de multiplication interne •.• sur A[X] est associative, commutative et
distributive par rapport a l’addition et fait de (A[X],+, .) un anneau commutatif dont l’element unite
est le monome unitaire de degre 0,

X0 = (1A, 0, · · · ).
Par ailleurs A[X] muni de la multiplication externe (a, P ) 󰀁→ a.P fait de A[X] une A-algebre.

A.3.3. Retour sur les fonctions polynomiales. L’interet d’avoir defini l’addition et la mul-
tiplication des polynomes comme on l’a fait est la proposition suivante:

Proposition A.6. Soit F(A;A) l’espace des fonctions de A a valeurs dans A: L’application
”fonction polynomiale”

P ∈ A[X] 󰀁→ P (•) ∈ F(A;A)

qui a un polynome associe sa fonction polynomiale est un morphisme d’anneaux.
En particulier si P = a0X

0 est un polynome de degree 0 ou −∞ < la fonction correspondante
est la fonction constante egale a a0 ∈ A

a0X
0(•) = a0 : x 󰀁→ a0.



A.3. STRUCTURE D’ANNEAU 213

Notation A.3. Un polynome de degre 0 ou −∞, a0.X
0 sera appelle ”polynome constant” (de

valeur a0). L’application ”polynome constant”

a ∈ A 󰀁→ aX0 ∈ A[X]󰃑0 ⊂ A[X]

identifie A avec l’anneau des polynomes constant et pour simplifier les notations on ecrira a0 au lieu
de a0.X

0. En particulier on ecrira 1 = 1a au lieu de X0.
De meme on ecrira X a la place du monome X1.
Le coefficient a0(P ) de degre 0 d’un polynome P est appele coefficient constant de P . On a la

formule
a0(P ) = P (0).

Remarque A.3.1. Notons qu’en general l’application ”fonction polynomiale” n’est PAS injec-
tive: par exemple si A = Fp est le corps fini a p elements, la fonction polynomiale sur Fp associee
au polynome Xp −X est la fonction identiquement nulle: on a vu que ∀x ∈ Fp, on a

xp − x = 0Fp
.

On va analyser plus tard quand cette application est injective (et donc quand on peut identifier
l’algebre des polynomes a l’algebre des fonctions polynomiales).

A.3.4. Fonction polynomiales sur une A-algebre. Soit (A,+, .) une A-algebre (pas force-
ment commutative) d’unite 1A). On associe a tout polynome a coefficients dans A, P (X) ∈ A[X]
une fonction (polynomiale) de A vers A en posant

P (•) : M ∈ A 󰀁→ P (M) = ad.M
d + · · ·+ a1.M + a0.1A.

On a alors

(P +Q)(M) = P (M) +Q(M), (P.Q)(M) = P (M).Q(M), (a.P )(M) = a.P (M)

autrement dit
P ∈ A[X] 󰀁→ P (•) ∈ F(A,A)

est un morphisme de A-algebre dont l’image est l’ensemble des fonctions polynomiales sur A.

A.3.5. Derivation formelle. Sur l’espace des fonctions de R vers R on a la notion de derivee
d’une fonction obtenue a partir de la notion de limite (limite d’un taux d’accroissement) et on sait
que la derivee d’une fonction polynomiale est polynomiale: si

P (X) = ad.X
d + · · ·+ a1.X + a0 ∈ R[X]

alors pour tout x ∈ R on a

lim
h→0

P (x+ h)− P (x)

h
= P ′(x) = ad.(d− 1).Xd−1 + · · ·+ ak.k.x

k−1 + · · ·+ a1

est donc une fonction polynomiale (de degree 󰃑 degP − 1).
On peut definir la derivation des polynomes asur un anneau de maniere purement formelle:

Définition A.6. Soit

P (X) = ad.X
d + · · ·+ a1.X + a0 ∈ A[X]

un polynome a coefficient dans un anneau commutatif A; son polynome derive est le polynome

P ′(X) = ad.(d− 1).Xd−1 + · · ·+ ak.k.x
k−1 + · · ·+ a1 ∈ A[X].

Ici on a note

a2.2 = a2.2A = a2 + a2 (2 fois), ad.d = a2.dA = ad + · · ·+ ad (d fois)

ou
dA = 1A + · · ·+ 1A (d fois)

est l’image de d par le morphisme canonique de Z vers A.
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Théorème A.3. La derivation

•′ : P ∈ A[X] 󰀁→ P ′ ∈ A[X]

– est lineaire:

∀a ∈ A, P,Q ∈ A[X], (a.P +Q)′ = a.P ′ +Q′

et son noyau contient les polynomes constants.
– verifie la regle de Leibnitz:

∀P,Q ∈ A[X], (P.Q)′ = P ′.Q+ P.Q′.

Preuve: Exercice. □

Remarque A.3.2. En general la derivation n’annule pas que les polynomes constants: si d est
tel que dA = 0A (si d est contenu dans le noyau du morphisme canonique: par exemple si A est un
corps et d = carK) on a

(Xd)′ = dA.X
d−1 = 0A.

On a

ker(•′) = {P ∈ A[X], supp(P ) ⊂ ker(CanA)}.
Si K est un corps de caracteristique nulle

ker(•′) = {a1, a1 ∈ K}.

A.3.6. Integralite de A[X] et corps des fractions.

Proposition A.7. L’anneau A[X] est integre ssi A est integre et on a alors pour tout P,Q ∈
A[X],

deg(P.Q) = degP + degQ.

Preuve: Si A n’est pas integre alors A[X] ne l’est pas: soient a, b ∈ A tels que a.b = OA alors le
produit des polynomes constants (de degre 󰃑 0) a et b vaut le polynome constant a.b = 0A.

Supposons que A est integre et soient P et Q tous deux non-nuls et (cn)n󰃍0 les coefficients de
P.Q: alors pour n = degP + degQ, on a

cn =
󰁛

p+q=degP+degQ

ap.bq = adegP .bdegQ

car p 󰃑 degP et q 󰃑 degQ. Par definition du degre adegP , bdegQ ∕= 0A et comme A est integre

adegP .bdegQ ∕= 0A.

Ainsi degP.Q 󰃍 degP + degQ et donc degP.Q = degP + degQ. □

Proposition A.8. Si A est integre de corps des fraction K, alors le corps des fractions de
l’anneau integre A[X] est egal au corps des fractions de l’anneau des polynomes a coefficients dans
K[X]: on a

Frac(A[X]) = {F (X) = P (X)
Q(X) , P,Q ∈ A[X], Q ∕= 0}

= {F (X) = P (X)
Q(X) , P,Q ∈ K[X], Q ∕= 0} = Frac(K[X]).

On l’appelle le corps des fractions rationelles a coefficients dans K.

A.4. Division et factorisation

On suppose maintenant et dans toute la suite que A = K est un corps.
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A.4.1. Relation de divisibilite. comme tout anneau K[X] est muni d’une relation de divis-
ibilite: on dit que Q divise P et on le note

Q|P
si il existe S tel que

P = Q.S.

On dit alors que S est le quotient de P par Q. Notons que la relation de divisibilite est

– Reflexive: ∀Q ∈ K[X], on a Q|Q.
– Transitive: Q|P et P |L =⇒ Q|L.
– ∀P on a 1|P et P |0.

A.4.2. Division euclidienne. On sait que l’espace des polynome R[X] a coefficient reels ad-
met une division euclidienne; cette division se generalise a K[X] pour K un corps arbitraire:

Théorème A.4. Soit Q ∈ K[X]− {0} un polynome non-nul. Pour tout P ∈ K[X] il existe des
polynomes S,R ∈ K[X] uniques verifiant

degR < degQ et tels que P = Q.S +R.

Définition A.7. Les polynomes R et S sont appeles respectivement ”reste” et ”quotient” de la
division euclidienne de P par Q.

De plus R = 0 si et seulement si Q|P.

Preuve: Soit q = degQ:

Q = bq.X
q + · · ·+ b1.X + b0, bq ∕= 0.

Ecrivons

P = ad.X
d + · · ·+ a0.

Si d < q, on prend R = P et S = 0. Sinon, on procede par recurrence sur d:

P1 := P − ad
bq

Q.Xd−q = ad.X
d − ad

bq
bq.X

d.Xd−q + polynome de degree 󰃑 d− 1

et comme

ad.X
d − ad

bq
bq.X

d.Xd−q = 0

Le polynome P1 est de degree 󰃑 d− 1. Par recurrence sur le degre il existe R1, S1 tels que

P1 = Q.S1 +R1

avec degR1 < q et donc

P =
ad
bq

Q.Xd−q +Q.S1 +R1 = Q.S +R

avec

S =
ad
bq

Xd−q + S1, R = R1.

On conclut par recurrence. Montrons l’unicite: supposons que

P = Q.S +R = Q.S′ +R′

avec degR, degR′ < q. Alors

Q.S −Q.S′ = Q.(S − S′) = R′ −R.

On a

deg(Q.(S − S′)) = q + deg(S − S′) = deg(R′ −R) < q

et la seule possibilite est que S − S′ = 0 (de sorte que deg(S − S′) = −∞) et donc R′ −R = 0. □

Remarque A.4.1. La division euclidienne se generalise a l’anneau A[X] pour A un anneau
commutatif quelconque de la maniere suivante:



216 A. L’ANNEAU DES POLYNOMES SUR UN CORPS

Théorème A.5. Soit A un anneau commutatif et Q ∈ A[X]−{0} un polynome dont le coefficient
dominant adegQ(Q) ∈ A× (ie est inversible). Pour tout P ∈ K[X] il existe des polynomes S,R ∈
K[X] uniques verifiant

degR < degQ et tels que P = Q.S +R.

A.4.3. Application aux racines d’un polynome. Un invariant important d’un polynome
est l’ensemble des valeurs ou sa fonction polynomiale s’annule:

Définition A.8. Soit

P (X) = ad.X
d + ad−1.X

d−1 + · · ·+ a1.X + a0

un polynome a coefficient dans K. L’ensemble des racines de P dans K, RacP (K) est l’ensemble
des solution dans K de l’equation P (z) = 0:

RacP (K) = {z ∈ K, P (z) = 0K}.

Proposition A.9. Soit K un corps et P un polynome et z ∈ K, les deux enonces suivants sont
equivalents:

(1) P (z) = 0 (ie. z est une racine de P ).
(2) Le polynome X − z divise P (X).

Preuve: Si P (X) = (X − z)Q(X) on a

P (z) = (z − z).S(z) = 0K .

Reciproquement si P (z) = 0, divisons P par X − z: on a

P (X) = S(X).(X − z) +R

avec R de degre < degX − z = 1 et donc R est constant (eventuellement nul). Mais

P (z) = 0 = S(z).(z − z) +R = R

et donc R = 0 c’est a dire

P (X) = S(X).(X − z).

□
On deduit de cette proposition le resultat fondamental suivant:

Théorème A.6. Soit P ∈ K[X] un polynome non nul alors P est divisible par le produit
󰁜

z∈RacP (K)

(X − z).

En particulier

|RacP (K)| = deg
󰁜

z∈RacP (K)

(X − z) 󰃑 degP.

Preuve: Par recurrence sur degP : si P est constant non-nul c’est evident car P n’a pas de racines
et

|RacP (K)| = 0 = degP.

Soit z ∈ K une racine de P (X) (si il n’y en a pas on a fini: |RacP (K)| = 0) alors

P (X) = (X − z).S(X)

et (comme K est integre)

P (z′) = 0 ⇐⇒ z′ = z ou bien Q(z′) = 0

donc

RacP (K) = {z} ∪ RacS(K).
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comme degS = d− 1 on a par recurrence que

S(X) =
󰁜

z′∈RacS(K)

(X − z′).T (X)

et
P (X) = (X − z).

󰁜

z′∈RacS(K)

(X − z′).T (X).

□
Corollaire A.2. Soit K un corps et |K| son cardinal (eventuellement infini) alors l’application

lineaire
P (X) ∈ K[X]degP<|K| 󰀁→ P (•) ∈ F (K;K)

est injective (tout polynome de degre < |K| peut etre identifie avec une unique fonction polynomiale).
En particulier si carK = 0 alors |K| 󰃍 |Q| = ∞ l’application

P (X) ∈ K[X] 󰀁→ P (•) ∈ F (K;K)

est injective.

Preuve: Soit P ∈ K[X]degP<|K| dans le noyau: la fonction x ∈ K 󰀁→ P (x) ∈ K est donc identique-
ment nulle et P possede |K| racines comme degP < |K| ceci n’est possible que si P est le polynome
nul. □

A.4.4. Application: Structure des ideaux de K[X]. On rappelle qu’un ideal I ⊂ K[X]
de l’anneau K[X] est un sous K[X]-module contenu dans K[X]: un sous-groupe de (K[X],+) qui
stable par multiplication par les elements de K[X]. En d’autres termes, I verifie la condition de
stabilite suivante:

∀P,Q ∈ I, S ∈ K[X], P + S.Q ∈ I.

Un exemple simple d’ideal est le suivant: Q = Q(X) ∈ K[X] un polynome, alors l’ensemble des
multiples de Q

(Q) := K[X].Q = {S.Q, S ∈ K[X]}
est un ideal de K[X] (le verifier).

Notation A.4. Soit Q = Q(X) ∈ K[X] un polynome, l’ideal

(Q) = K[X].Q = {S.Q, S ∈ K[X]}
est appelle ideal principal engendre par Q.

L’existence d’une division euclidienne permet une classification des ideaux de K[X] entierement
similaire a celle des sous-groupes de Z: tout ideal de K[X] est principal.

Théorème A.7. Soit I ⊂ K[X] un ideal alors il existe Q ∈ K[X] tel que I est l’ensemble des
multiples de Q:

I = (Q) = {S.Q, S ∈ K[X]}.
De plus si on suppose Q unitaire alors Q est unique.

Preuve: Si I = {0} = 0.K[X] on a fini. Si I ∕= {0} soit Q ∈ I − {0} un polynome non-nul de degre
q minimal parmi les polynomes non-nuls de I. Soit P ∈ I. Par division euclidienne on peut ecrire

P = Q.S +R

avec degR < q. On a
R = P −Q.S ∈ I

(car P,Q ∈ I et pour tout S ∈ K[X], S.Q ∈ I par definition d’un ideal) et donc R ∈ I. Par
minimalite de q la seule possibilite est que R = 0 et donc P = S.Q ∈ K[X].Q. Si L est tel que
I = K[X].Q = K[X].L alors L est un multiple de Q (et Q est un multiple de L) et il n’existe qu’un
seul multiple de Q qui soit unitaire: adegQ(Q)−1.Q ou adegQ(Q) ∕= 0 est le coefficient dominant de
Q. □
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Définition A.9. Soit I ⊂ K[X] un ideal non-nul alors l’unique polynome unitaire QI tel que

I = (QI) = QI .K[X]

est appelle polynome minimal de I. Si I = {0K} est l’ideal nul on posera

QI = 0K .

Comme un noyau d’un morphisme d’anneau ϕ : K[X] 󰀁→ A est un ideal on a:

Corollaire A.3. Soit B un anneau et ϕ : K[X] 󰀁→ B un morphisme d’anneaux. Alors il existe
Qϕ ∈ K[X] unitaire (ou nul) tel que

ker(ϕ) = Qϕ.K[X].

Le polynome Qϕ s’appelle le polynome minimal de ϕ.

Définition A.10. Un anneau A tel que tout ideal I ⊂ A est de la forme I = q.A pour q ∈ A
est dit principal. Un anneau de polynomes sur un corps est donc principal.

On notera le lien suivant entre inclusion d’ideaux et divisibilite

Proposition A.10. Soient

I = (P ) = P.K[X] et J = (Q) = Q.K[X]

des ideaux de K[X] engendres par des polynomes P et Q alors on a

I ⊂ J ⇐⇒ Q|P.
Preuve: En effet si I ⊂ J alors P ⊂ J = Q.K[X] et donc

P = Q.R, R ∈ K[X].

Reciproquement si P = Q.R alors pour tout L ∈ I on a pour S ∈ K[X]

L = P.S = Q.R.S ∈ Q.K[X] = J

et donc I ⊂ J . □

A.4.5. Decomposition en polynomes irreductibles.

Définition A.11. Un polynome P (X) ∈ K[X] non constant est irreductible (ou premier) si les
seuls diviseurs de P sont les multiples de 1 ou de P :

Q|P =⇒ Q = λ ou Q = λ.P, λ ∈ K×.

De maniere equivalente: P est irreductible si et seulement si

Q|P ⇐⇒ degQ = 0 ou P.

On notera P ⊂ K[X] l’ensemble de tous les polynomes irreductibles et Pu ⊂ P l’ensemble de ceux
qui sont unitaires.

Proposition A.11. (Lemme de Gauss) Soit P irreductible, si P |Q1.Q2 alors P |Q1 ou P |Q2.

Preuve: Ecrivons Q1.Q2 = P.S. Supposons que P ∕ |Q1 et soit l’ideal

I = K[X].P +K[X].Q1 ⊂ K[X].

l’ideal engendre par P et Q1. On va montrer que I = K[X]. On a I = D(X).K[X] pour D un
polynome. Comme P ∈ I on a D|P mais cela implique que D est soit un scalaire non nul soit un
multiple de P . Dans ce dernier cas I = P.K[X] et comme Q1 ∈ I on a P |Q1 ce qu’on a exclut. Si
D est un scalaire non-nul alors I = K[X] ∋ 1 : il existe A(X), B(X) tels que

A(X)P (X) +B(X)Q1(X) = 1.

On a alors

Q2 = 1.Q2 = (A.P +B.Q1).Q2 = A.P.Q2 +B.Q1.Q2 = P.(A.Q2 +B.S).

□
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Théorème A.8. Soient Q un polynome non constant alors Q se factorise de maniere unique
sous la forme

Q = λ.P1. · · · .Ps

ou les Pi sont des polynomes irreductibles unitaires et λ ∈ K×. De plus cette factorisation est
unique: Si on a deux telles factorisation en irreductibles (unitaires)

Q = λ.P1. · · · .Ps = µ.R1. · · · .Rr

alors s = r, λ = µ et il existe une permutation σ : {1, · · · r} 󰀁→ {1, · · · s = r} telle que

Ri = Pσ(i).

Preuve: On va montrer la factorisation par recurrence sur degQ. Si degQ = 1 on a fini car Q est
forcement irreductible et si Q(X) = a.X + b, a, b ∈ K, a ∕= 0 et on a l’ecriture unique

Q = a(X + b/a).

Supposons degQ = q+1 et qu’on a le resultat pour tous les polynomes de degree 󰃑 q. Si Q possede
un diviseur Q1 non-constant et non multiple de Q on a alors 1 < degQ1 < q + 1 et

Q = Q1.Q2

avec degQ1, degQ2 < q + 1. Sinon Q est irreductible et on a la factorisation

Q = adegQ.Q1, Q1 = a−1
degQ.Q.

Dans le cas precedent, on a par recurrence

Q1 = λ1.P1. · · · .Ps1 , Q2 = λ2.Ps1+1. · · · .Ps1+s2

avec les Pi irreductibles unitaires et

Q = λ1.λ2.P1. · · · .Ps1 .Ps1+1. · · · .Ps1+s2 .

Montrons l’unicite par recurrence sur degQ. Si degQ = 1 c’est immediat.
Dans le cas general soit

Q = λ.P1. · · · .Ps = µ.R1. · · · .Rr

alors Ps|µ.R1. · · · .Rr et par le lemme de Gauss Ps divise un des Ri. Ops que c’est Rr. Comme Rr

est irreductible, unitaire et Ps est non constant unitaire on a Ps = Rr et

Q = λ.P1. · · · .Ps = µ.R1. · · · .Rr−1.Ps

et

0 = (λ.P1. · · · .Ps−1 − µ.R1. · · · .Rr−1)Ps

et comme K[X] est integre

λ.P1. · · · .Ps−1 = µ.R1. · · · .Rr−1

et on applique la recurrence. □
A.4.5.1. Valuation. Soit Q(X) = aqX

q + aq−1X
q−1 + · · · + a0 un polynome de degre q 󰃍 0

(aq ∕= 0) alors la decomposition de Q en irreductibles peut se reecrire de maniere compacte

Q = aq
󰁜

P∈Pu

P vP (Q)

ou

– P parcourt l’ensemble infini des polynome irreductibles unitaires,
– les vP (Q) 󰃍 0 sont des entiers nuls pour tous les P sauf un nombre fini,
– Quand vP (Q) = 0 on a pose

P vP (Q) = P 0 := 1.

Ainsi, l’entier vP (Q) est l’exposant de la plus grande puissance du polynome irreductible P
divisant Q.
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Définition A.12. L’entier vP (Q) est appelle la valuation de Q en P ou la valuation P -adique
de Q. Pour Q = 0 on pose vP (Q) = +∞ pour tout P irreductible.

Ces valuations ont les proprietes suivantes

Théorème A.9. Soient Q,R ∈ K[X]− {0} de degres respectif q et r et de coefficient dominant
aq et br; on a

(1) Pour tout P ∈ Pu, on a

vP (Q.R) = vP (Q) + vP (R)

et plus precisement

Q.R = aq.br
󰁜

P∈Pu

P vP (Q)+vP (R).

(2) On a

Q|R ⇐⇒ ∀P ∈ Pu, vP (Q) 󰃑 vP (R)

(3) Pour tout P on a

vP (Q+R) 󰃍 min(vP (Q), vP (R))

avec egalite si vP (Q) ∕= vP (R).

A.4.6. PGDC et PPMC. Soient P,Q ∈ K[X]− {0}. On a alors les deux ideaux:

(P ) := K[X].P, (Q) := K[X].Q

et on peut alors former deux autres ideaux: leur intersection et leur somme

(P ) ∩ (Q) ⊂ (P ), (Q) ⊂ (P ) + (Q) = 〈P,Q〉 ⊂ K[X].

A.4.6.1. Le PGCD. L’ideal engendre par P et Q est de la forme

〈P,Q〉 = (P ) + (Q) = K[X].P +K[X].Q = R.K[X]

avec R unitaire. Alors comme P,Q ∈ 〈P,Q〉, R divise et P et Q: on a

R|P & R|Q.

D’autre part si un polynome S divise a la fois P et Q alors

K[X].P +K[X].Q = R.K[X] ⊂ S.K[X]

et donc S|R. Ainsi R est le Plus Grand Diviseur Commun (unitaire) de P et Q au sens ou tout
diviseur commun de P et Q doit diviser R.

Définition A.13. Soient P,Q ∈ K[X]− {0}, note

(P,Q) := R

le generateur unitaire de l’ideal (P )+(Q) = 〈P,Q〉 et on l’appelle le PGCD de P et Q. En particulier
si (P,Q) = 1 (cad 〈P,Q〉 = K[X]) on dit que P et Q sont premiers entre eux.

Remarque A.4.2. Si Q = 0 alors (P, 0) = Pu est l’unique polynome unitaire qui est multiple
de P .

Proposition A.12. (Bezout) Soient P,Q des polynomes. Il existe A,B ∈ K[X] tels que

(P,Q) = A.P +B.Q.

En particulier, deux polynomes P et Q sont premiers entre eux ssi il existe A,B ∈ K[X] tels que

1 = A.P +B.Q.
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Preuve: On a

(P ) + (Q) = (P,Q).K[X] = P.K[X] +Q.K[X].

En particulier (P,Q) est de la forme

(P,Q) = P.A+Q.B.

Supposons qu’il existe A,B tels que 1 = A.P +B.Q alors (P )+(Q) contient 1 et donc 1.K[X] =
K[X] de sorte que (P ) + (Q) = K[X].

□
A.4.6.2. Algorithme d’Euclide. L’algorithme d’Euclide qui permet de calculer le PGDC de deux

entier permet de calculer le PGCD de deux polynomes: Si P et Q sont deux polynome dont on
souhaite calculer (P,Q) on applique la methode suivante:

(1) On suppose que degP 󰃍 degQ et on effectue la division euclidienne de P par Q:

P = SQ+R, degR < degP.

Si R = 0 cela signifie et Q|P et donc

(P,Q) = Q.

Sinon, cette relation implique que l’ideal engendre par P et Q est egal a l’ideal engendre
par Q et R

(P,Q) = (Q,R).

(2) On recommence l’etape precedente avec P1 = R et Q1 = Q.
(3) · · ·
(4) Comme le degre du reste diminue d’au moins 1 a chaque etape strictement le processus

s’arrete apres au plus max(degP, degQ) etapes.

A.4.6.3. Le PPCM. Soit l’intersection (P )∩ (Q) ⊂ K[X]. C’est un ideal non-nul car il contient
le produit P.Q. Il est donc de la forme (P ) ∩ (Q) = K[X].S avec S unitaire. On a donc

P |S&Q|S

et S est un multiple commun a P et a Q. De plus si P |T et Q|T alors

T ∈ K[X].P ∩K[X].Q = K[X].S

et S|T . Ainsi S est le Plus Petit Multiple Commun (unitaire) de P et Q.

Définition A.14. Soient P,Q ∈ K[X]− {0}, note

[P,Q] := R

le generateur unitaire de l’ideal (P ) ∩ (Q) et on l’appelle le PPCM de P et Q.

Proposition A.13. (Formule du produit) Soient P,Q ∈ K[X]− {0} et unitaires. On a

P.Q = [P,Q](P,Q).

Preuve: Voir l’exercice concernant la formule du produit

m.n = (m,n)[m,n]

pour m,n ∈ Z. □
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A.4.6.4. Generalisation a un nombre arbitraire de polynomes.

Définition A.15. Soient P1, · · · , Pk des polynomes alors leur PGCD et leur PPCM notes

(P1, · · · , Pk) et [P1, · · · , Pk]

sont respectivement les generateurs unitaires des ideaux

(P1) + · · ·+ (Pk) et (P+) ∩ · · · ∩ (Pk).

En particulier si

(P1, · · · , Pk) = 1, ie.〈P1, · · · , Pk〉 = K[X]

on dit que P1, · · · , Pk sont premiers dans leur ensemble.

Remarque A.4.3. On a

(P1, · · · , Pk)|(P1, P2)

car

(P1) + (P2) ⊂ (P1) + · · ·+ (Pk).

A.4.6.5. PGDC, PPMC et decomposition en irreductibles.

Théorème A.10. Soient Q,R des polynomes non-nuls de degres q et r et

Q = aq.
󰁜

P∈Pu

P vP (Q), R = br.
󰁜

P∈Pu

P vP (R)

leur decompositions en polynomes irreductible unitaires alors

(Q,R) =
󰁜

P∈Pu

Pmin(vP (Q),vP (R)), [Q,R] =
󰁜

P∈Pu

Pmax(vP (Q),vP (R)).

Preuve: Exercice. □

A.5. Application a la construction de corps

Soit M une K-algebre (pas forcement commutative, par exemple End(V ) ou Md(K)) d’unite
1M et M ∈ M un element. On associe a M une application (dite d’evaluation en M)

evM :
K[X] 󰀁→ M
P (X) 󰀁→ P (M)

ou

P (M) = a0.M
0 + a1.M + · · ·+ an.M

n + · · ·+ ad.M
d.

On a pose M0 = 1M et

Mn = M.M · · · .M(n fois).

Proposition A.14. Cette application est un morphisme d’algebres: on a

(λ.P +Q)(M) = λ.P (M) +Q(M), (P.Q)(M) = P (M).Q(M).

On notera l’image de cette aplication par

K[M ] = evM (K[X]) = {P (M), P ∈ K[X]}.

C’est une sous-algebre (un sous-anneau et un SEV) commutative de M : l’algebre des polynomes
en M .
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Preuve: On ne fait que la multiplication:

P (M).Q(M) = (a0.M
0 + a1.M + · · ·+ ad.M

d).(b0.M
0 + b1.X + · · ·+ bd.M

d) =
󰁛

p,q󰃑d

ap.M
p.bq.M

q =
󰁛

p,q󰃑d

ap.bq.M
p+q =

󰁛

n󰃑d+d′

(
󰁛

p+q=n

ap.bq)M
n = (P.Q)(M)

ici on a utilise les proprietes des lois de composition de M (associativite, distributivite) et le fait
(valable meme si M n’est pas commutative) que

ap.M
p.bq.M

q = ap.bq.M
p.Mq = ap.bq.M

p+q.

L’algebre K[M ] est commutative car K[X] l’est:

P (M).Q(M) = (P.Q)(M) = (Q.P )(M) = Q(M).P (M).

□
Exercice A.1. Montrer que K[M ] est la plus petite sous-algebre de M contenant M : c’est

l’algebre engendree par M . On dit que K[M ] est monogene car elle est engendre par un seul element.

A.5.1. Polynome minimal de M . Comme evM : K[X] 󰀁→ M est un morphisme d’anneau
son noyau ker(evM ) est un K[X] ideal et donc de la forme

ker(evM ) = QevM
.K[X]

pour QevM
un polynome nul ou unitaire.

Définition A.16. Soit M un K-algebre et M ∈ M et

evM : P (X) ∈ K[X] 󰀁→ P (M) ∈ M
le morphisme d’evaluation en M dont le noyau est

ker(evM ) = {P, P (M) = 0M} = QevM
.K[X]

avec QevM
nul ou unitaire. Le polynome

QevM

est appele polynome minimal de M et est note

Pmin,M := QevM
.

A.5.2. Un critere pour que K[M ] soit un corps.

Théorème A.11. Soit B un anneau et ϕ : K[X] 󰀁→ B un morphisme d’anneaux non-nul et
ecrivons kerϕ = Q.K[X]. Alors on a

Q est irreductible ⇐⇒ ϕ(K[X]) est un corps.

Preuve: Soit b = ϕ(P ) ∈ ϕ(K[X]) − {0}. Supposons P irreductible; on veut montrer que b est
inversible dans ϕ(K[X]). Considerons l’ideal I = 〈P,Q〉 = K[X].P +K[X].Q alors I = K[X]: en
effet ecrivons I = K[X].R; comme P,Q ∈ I = K[X].R et on doit avoir R|P et R|Q. Comme P
est irreductible et R|P , R est constant non-nul ou de la forme λ.P . Dans le second cas on aurait
I = K[X].P = kerϕ ce qui contredit le fait que b = ϕ(P ) ∕= 0. On a donc I = K[X] et il existe
U, V ∈ K[X] tels que

U.P + V.Q = 1K

et alors

1B = ϕ(U.P + V.Q) = ϕ(U).ϕ(P ) + ϕ(V ).ϕ(Q) = ϕ(U).ϕ(P ) = ϕ(V ).b

et b est inversible et son inverse ϕ(V ) ∈ ϕ(K[X]).
Reciproquement supposons que ϕ(K[X]) est un corps; alors Q ∕= 0 car sinon ϕ sera un isomor-

phisme de K[X] vers son image et K[X] est pas un corps. Q n’est pas non-plus constant non nul
car ϕ sera le morphisme nul.
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Supposons que Q ne soit pas irreductible: Q = RS avec 0 < degR, degS < degQ. On a

ϕ(Q) = 0B = ϕ(R).ϕ(S)

et donc ϕ(R) ou ϕ(S) = 0B mais R et S ne peuvent appartenir a ker(ϕ) (car ils seraient divisible
par Q). □

Appliquant ce resultat, on obtient

Corollaire A.4. Soit M un K-algebre et M ∈ M et

evM : P (X) ∈ K[X] 󰀁→ P (M) ∈ M
le morphsime d’evaluation en M . Alors K[M ] est un corps si et seulement si Pmin,M (X) est irre-
ductible (en particulier Pmin,M (X) ∕= 0).

Voici un critere d’irreductibilite

Proposition A.15. Soit P (X) ∈ K[X] un polynome de degre 2, 3 alors P (X) est irreductible
ssi il n’a pas de racine dans K.

Preuve: On peut supposer P unitaire de degre 󰃍 2. Si P est irreductible il n’a pas de factorisation
de la forme

P (X) = (X − z)S(X), z ∈ K, S ∈ K[X]

et donc il n’a pas de racine dans K.
Supposons degP = 2, 3. Si P est reductible il aura une factorisation

P (X) = Q(X)S(X)

avec Q,S unitaires tels que

degQ+ degS = degP = 2 ou 3, degQ, degS 󰃍 1

et donc Q ou S doit avoir degre 1: ie est de la forme X − z, z ∈ K et donc P admet une racine dans
K. □

Exercice A.2. (a faire apres le chapitre sur les applications lineaires) Soit M un K-algebre de
dimension finie et M ∈ M. Soit K[X]󰃑d le sous-espace vectoriel des polynomes de degree 󰃑 d.

(1) Montrer que si d 󰃍 dimM, il existe un polynome P non-nul de degree 󰃑 d tel que
P (M) = 0d.

(2) Montrer que Pmin,M ∕= 0 et Pmin,M 󰃑 dimM.
(3) Montrer que si P (0) = a0 ∕= 0 alors M est inversible dans M et en fait M−1 = Q(M) avec

Q ∈ K[X]󰃑d−1 et donc M−1 ∈ K[M ].


