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Remarque.

Ces exercices supplémentaires ne représentent pas une liste exhaustive des questions qui peuvent étre
posée en examen. Ils sont donnés comme matériel supplémentaire.

Exercice 1.
Donner les solutions des problémes a valeurs initiales suivants :

() ¥/(0) = 1 (1 + 9(0), y(1) = 1

1

1 1
.. /t - =~
(i) o0+ 1590 = 10 ¥

(i) y"(t) + 4y'(t) = 5y(t) = e™*, y(0) = 1, ¥/ (0) = 2.

Exercice 2.
Dire si les propositions ci-dessous sont vraies ou fausses :

(0)=—1avect > —1

(7) ensemble D donné par
D= {(aj,y) ER? |22 442 > 1}

est fermé.

(7)) L’ensemble D donné par
9 1
D = (x,y)€R|a:>Oet0<y<5

est borné.
(7ii) Si A € R? est fermé, alors 0A # A.

(iv) La suite z,, définie par x,, = ((—1)"7 %) converge.

(v) La suite x,, définie par z, ((—1)”, %) admet une sous-suite convergente.

Exercice 3.
Soit la courbe 7: [0,27] — R? définie par

A(t) = (2, cos(t)).
Calculer la longueur de ~.

Exercice 4.
Pour chaque fonction ci-dessous, dire si ~ lim  f(z,y) existe et le cas échéant donner sa valeur.

(z,y)—(0,0)
. _ sin(ay)
(Z) f(xvy)_x2+y2'
. tan(z? + y?)
(i) flaag) = 5

Exercice 5. (i) Soit f:R? — R la fonction définie par

Msi T
f(x,y)—{ VR (w,y) # (0,0)
0si (z,y) = (0,0)

Montrer que f est différentiable en (0,0).



(i) Soit f(x,y) = sin(x)sin(y). Calculer la dérivée directionnelle de f au point (5, &) en direction

— (1 =1

du vecteur v = (ﬁ’ \/i))
(7i) Soit f(z,y) = xsin(y) + ysin(x). Donner I’équation du plan tangent au graphe de f au point

(5:5)-
Exercice 6.
Soient f: R3 — R? définie par f(z,y, 2) = (vyz?, 2 +y+ 2) et g: R? — R tel que Vg(1,3) = (2, -1).
Soit finalement h : R® — R donnée comme h = g o f. Calculer %(17 1,1).
Exercice 7.
Donner la nature des points stationnaires de la fonction

fla,y) = 2y — 22y® — day.

Exercice 8.

Donner le polynéme de Taylor a ordre 2 de la fonction f(z,y) = (1 + sin(x + y)) cos(z + y) autour
de (0,0).

Exercice 9.
Soit f: R? — R définie par
fla,y) = (@ —2y)e” !
et (zo,y0) = (0,—1). L’équation f(z,y) = 2 définit une fonction x = g(y) telle que g(yo) = zo et
f(g(y),y) = 2 dans un voisinage de y = —1.
Calculer ¢'(yo).

Exercice 10.
Soient f, g :R? — R définies par

fz,y) =222 + 49> + 3z, g(z,y) = 2> +9° — 4.
Donner le minimum et le maximum de f(z,y) sous la contrainte g(z,y) = 0.
Exercice 11.
Soit E = {(z,y) € R? : 0 <z <2y<4}et f: E— R définie par
fz,y) = 2® + 2y* + zy — 3z — 5y + 4.
Trouver min, ,)ep f(7,y) et maxq yyep f(,y).

Exercice 12.
On donne F :]0, +oo[— R définie par

Ft) = /tm cos(2*t) ..

x
Calculer F'(t).

Exercice 13.
Calculer

1—22 1
/ / —Sxe 10 “Ydydx
Exercice 14.
Soit D = {(z,y) € R? : x>0, 1 <x?+y? <4}. Calculer

/ / zy?dady
D
Exercice 15.

Pour les ensembles F et les fonctions f données ci-dessous, calculer / / f(z,y, z)dxdydz
E

(i) E={(z,y,2) €R® : y>0,2>0, 1§x2+y2—|—22§4} et f(z,y,2) = %

(i) E:{(:c,y, YER? ¢ Va2 2 <2< 1+ 2?2+ 92— y2} et f(z,y,2)=1



