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Remarque.
Ces exercices supplémentaires ne représentent pas une liste exhaustive des questions qui peuvent être
posée en examen. Ils sont donnés comme matériel supplémentaire.

Exercice 1.
Donner les solutions des problèmes à valeurs initiales suivants :

(i) y′(t) = t

1 + t2 (1 + y(t)), y(1) = 1

(ii) y′(t) + 1
1 + t

y(t) = 1
1 + t2 , y(0) = −1 avec t > −1

(iii) y′′(t) + 4y′(t) − 5y(t) = e−t, y(0) = 1, y′(0) = 2.

Exercice 2.
Dire si les propositions ci-dessous sont vraies ou fausses :

(i) l’ensemble D donné par
D =

{
(x, y) ∈ R2 | x2 + y2 ≥ 1

}
est fermé.

(ii) L’ensemble D donné par

D =
{

(x, y) ∈ R2 | x > 0 et 0 < y <
1
x

}
est borné.

(iii) Si A ∈ R2 est fermé, alors ∂A ̸= A.

(iv) La suite xn définie par xn =
(
(−1)n, 1

n

)
converge.

(v) La suite xn définie par xn

(
(−1)n, 1

n

)
admet une sous-suite convergente.

Exercice 3.
Soit la courbe γ : [0, 2π] → R2 définie par

γ(t) = (2, cos(t)).

Calculer la longueur de γ.

Exercice 4.
Pour chaque fonction ci-dessous, dire si lim

(x,y)→(0,0)
f(x, y) existe et le cas échéant donner sa valeur.

(i) f(x, y) = sin(xy)
x2 + y2 .

(ii) f(x, y) = tan(x2 + y2)
x2 + y2 .

Exercice 5. (i) Soit f : R2 → R la fonction définie par

f(x, y) =


x3+y3√

x2+y2
si (x, y) ̸= (0, 0)

0 si (x, y) = (0, 0)

Montrer que f est différentiable en (0, 0).
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(ii) Soit f(x, y) = sin(x) sin(y). Calculer la dérivée directionnelle de f au point (π
3 , π

6 ) en direction
du vecteur v =

(
1√
2 , −1√

2

)
).

(iii) Soit f(x, y) = x sin(y) + y sin(x). Donner l’équation du plan tangent au graphe de f au point
(π

2 , π
2 ).

Exercice 6.
Soient f : R3 → R2 définie par f(x, y, z) = (xyz2, x + y + z) et g : R2 → R tel que ∇g(1, 3) = (2, −1).
Soit finalement h : R3 → R donnée comme h = g ◦ f . Calculer ∂h

∂z (1, 1, 1).
Exercice 7.
Donner la nature des points stationnaires de la fonction

f(x, y) = x2y − 2xy2 − 4xy.

Exercice 8.
Donner le polynôme de Taylor à l’ordre 2 de la fonction f(x, y) = (1 + sin(x + y)) cos(x + y) autour
de (0, 0).
Exercice 9.
Soit f : R2 → R définie par

f(x, y) = (x − 2y)ex2+y2−1

et (x0, y0) = (0, −1). L’équation f(x, y) = 2 définit une fonction x = g(y) telle que g(y0) = x0 et
f(g(y), y) = 2 dans un voisinage de y = −1.
Calculer g′(y0).
Exercice 10.
Soient f, g : R2 → R définies par

f(x, y) = 2x2 + 4y2 + 3x, g(x, y) = x2 + y2 − 4.

Donner le minimum et le maximum de f(x, y) sous la contrainte g(x, y) = 0.

Exercice 11.
Soit E =

{
(x, y) ∈ R2 : 0 ≤ x ≤ 2y ≤ 4

}
et f : E → R définie par

f(x, y) = x2 + 2y2 + xy − 3x − 5y + 4.

Trouver min(x,y)∈E f(x, y) et max(x,y)∈E f(x, y).
Exercice 12.
On donne F :]0, +∞[→ R définie par

F (t) =
∫ πt

t

cos(x2t)
x

dx.

Calculer F ′(t).
Exercice 13.
Calculer ∫ 1

2
3

∫ 1−x2

0

18
5 xe

9
10 y2−ydydx

Exercice 14.
Soit D =

{
(x, y) ∈ R2 : x ≥ 0, 1 ≤ x2 + y2 ≤ 4

}
. Calculer∫∫

D
xy2dxdy

Exercice 15.
Pour les ensembles E et les fonctions f données ci-dessous, calculer

∫∫∫
E

f(x, y, z)dxdydz

(i) E =
{
(x, y, z) ∈ R3 : y ≥ 0, z ≥ 0, 1 ≤ x2 + y2 + z2 ≤ 4

}
et f(x, y, z) = x2+y2+z

(x2+y2+z2)2

(ii) E =
{

(x, y, z) ∈ R3 :
√

x2 + y2 ≤ z ≤ 1 +
√

x2 + y2 − x2 − y2
}

et f(x, y, z) = 1
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