
Lecture Notes

Analysis II

For Engineering Students

Spring Semester 2025





Contents

1 The Euclidean space Rn 7
1.1 The vector space Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 The Euclidean distance on Rn . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 The topology on Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Sequences in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Real-valued functions in Rn 21
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Level Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Limits of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Techniques for finding limits of functions . . . . . . . . . . . . . . . . . 28

2.4.1 The squeeze theorem . . . . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Using Polar coordinates . . . . . . . . . . . . . . . . . . . . . . 30
2.4.3 Using Taylor’s theorem . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.4 Using change of variables . . . . . . . . . . . . . . . . . . . . . . 33
2.4.5 Testing along polynomial paths . . . . . . . . . . . . . . . . . . 35

2.5 Continuity at a Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.6 Continuity in a Region . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.7 Extreme Value Theorem and Intermediate Value Theorem . . . . . . . 39

3 Partial derivatives and differentiability 41
3.1 Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Directional Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Differentiability at a Point . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Tangent (Hyper)Planes . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Functions of Class C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Second Order Partial Derivatives . . . . . . . . . . . . . . . . . . . . . 50
3.7 Higher Order Partial Derivatives . . . . . . . . . . . . . . . . . . . . . . 52
3.8 Functions of class Cp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.9 Taylor’s Theorem for Multivariable Functions . . . . . . . . . . . . . . 54
3.10 Local Extreme Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.11 Global Extreme Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.12 Saddle Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.13 The Second Derivative Test – two-variable case . . . . . . . . . . . . . 60

3



4 CONTENTS

3.14 The Second Derivative Test – general case . . . . . . . . . . . . . . . . 62
3.15 Implicit Function Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.16 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.17 Tangent Line to Implicit Curves . . . . . . . . . . . . . . . . . . . . . . 65
3.18 Tangent Plane to Implicit Surfaces . . . . . . . . . . . . . . . . . . . . 68
3.19 Method of Lagrange Multipliers – single constraint . . . . . . . . . . . 70

4 Parametric Curves in Rn 79
4.1 Continuity and Differentiability of Curves . . . . . . . . . . . . . . . . 81
4.2 Motion in Space: Velocity and Acceleration . . . . . . . . . . . . . . . . 83
4.3 Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Vector Calculus 87
5.1 Functions with values in Rm . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Limits and Continuity of Vector-valued Functions . . . . . . . . . . . . 88
5.3 Partial and Directional Derivatives . . . . . . . . . . . . . . . . . . . . 89
5.4 Differentiability of Vector-valued Functions . . . . . . . . . . . . . . . . 91
5.5 Vector-Valued Functions of Class C1 . . . . . . . . . . . . . . . . . . . 92
5.6 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.7 Method of Lagrange Multipliers – multiple constraints . . . . . . . . . 94
5.8 Global Extreme Values on compact sets . . . . . . . . . . . . . . . . . . 95
5.9 Vector Fields Rn → Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Multiple Integrals 101
6.1 Integrability of a bounded function on a closed rectangle . . . . . . . . 101
6.2 Fubini’s Theorem for Double Integrals . . . . . . . . . . . . . . . . . . 102
6.3 Double Integrals over general regions . . . . . . . . . . . . . . . . . . . 104
6.4 Jordan sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.5 Vertical and horizontal slice methods . . . . . . . . . . . . . . . . . . . 107
6.6 Change of variables for Double Integrals . . . . . . . . . . . . . . . . . 112

6.6.1 Polar coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.7 Triple and Multiple integrals . . . . . . . . . . . . . . . . . . . . . . . . 120
6.8 Multiple Integrals over general regions . . . . . . . . . . . . . . . . . . 123
6.9 Computing Triple Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.10 Change of Variables for Triple Integrals . . . . . . . . . . . . . . . . . . 126

6.10.1 Cylindrical Coordinates . . . . . . . . . . . . . . . . . . . . . . 126
6.10.2 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . 129

6.11 Center of Mass in R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.12 Center of Mass in R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7 Ordinary Differential Equations 139
7.1 Introduction to First Order Differential Equations . . . . . . . . . . . . 139
7.2 Antiderivatives as Differential Equations . . . . . . . . . . . . . . . . . 140
7.3 A Toy Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.4 Maximal solutions to Differential Equations . . . . . . . . . . . . . . . 143



CONTENTS 5

7.5 First Order Separable Differential Equations . . . . . . . . . . . . . . . 144
7.6 First Order Homogeneous Differential Equations . . . . . . . . . . . . . 150
7.7 First Order Linear Differential Equations . . . . . . . . . . . . . . . . . 154
7.8 The Bernoulli Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.9 Second Order Linear Differential Equations . . . . . . . . . . . . . . . . 164
7.10 Second Order Homogeneous Linear Differential Equations . . . . . . . . 165
7.11 The Wronskian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.12 Search for Linearly Independent Solutions to Homogeneous Equation . 167





Chapter 1

The Euclidean space Rn

In Analysis 1 you have learned the fundamental concepts of differential and integral
calculus of real-valued functions in one real variable, known as Single Variable Calculus.
However, real-life phenomena often depend on a multitude of factors and it requires
more than just one variable to properly model such situations. This leads to the study
of the theory of differentiation and integration of functions in several variables, called
Multivariable Calculus. The mathematical stage on which the study of functions in
several variables unfolds is the n-dimensional Euclidean space Rn.

Before defining the n-dimensional Euclidean space and its intrinsic topology, let us
recall some basic notions commonly used in analysis and calculus.

N the natural numbers {1, 2, 3, 4, . . .},
Z the integers, i.e., signed whole numbers {. . . ,−2,−1, 0, 1, 2, . . .},
Q the rational numbers a

b
with a ∈ Z and b ∈ N,

R the real numbers,
C the complex numbers,

An open interval is an interval that does not include its boundary points and is
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8 CHAPTER 1. THE EUCLIDEAN SPACE Rn

denoted by parentheses. The open intervals are thus one of the forms

(a, b) = {x ∈ R : a < x < b},
(−∞, b) = {x ∈ R : x < b},
(a,+∞) = {x ∈ R : a < x},

(−∞,+∞) = R,

where a and b are real numbers with a ⩽ b. The interval (a, a) = ∅ is the empty set,
a degenerate interval. Open intervals are open sets in the topology of R.

A closed interval is an interval that includes all its boundary points and is denoted
by square brackets. Closed intervals take the form

[a, b] = {x ∈ R : a ⩽ x ⩽ b},
(−∞, b] = {x ∈ R : x ⩽ b},
[a,+∞) = {x ∈ R : a ⩽ x},

(−∞,+∞) = R,

Closed intervals are closed sets in the topology of R. Note that the interval R =
(−∞,+∞) is both open and closed at the same time.

A half-open interval is a finite interval that includes one endpoint but not the other.
It can be left-open or right-open, depending on which endpoint is excluded:

(a, b] = {x ∈ R : a < x ⩽ b},
[a, b) = {x ∈ R : a ⩽ x < b},

Note that half-open intervals are neither open nor closed sets in the topology of R.
Intervals of the form [a, b], [a, b), (a, b], (a, b) for a, b ∈ R with a ⩽ b are called

bounded intervals, whereas intervals like (−∞, b], (−∞, b), [a,+∞), and (a,+∞) are
unbounded intervals.

1.1 The vector space Rn

Given a positive integer n, the set Rn is defined as the set of all ordered n-tuples
(x1, . . . , xn) of real numbers. It is called the standard Euclidean space of dimension n,
or simply the n-dimensional Euclidean space.

We can represent an element of Rn either as an n-tuple, which is the same as a row
vector with n entries,

x = (x1, . . . , xn)

or as a column vector with n entries

x =


x1
...
xn

 .
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Both representations are common and widely used in the literature. We will generally
use column vectors to denote elements of Rn in calculations, and row vectors to denote
elements of Rn as input parameters of functions defined on Rn.

There are also different ways in which elements in Rn are denoted, the three most
common are

x, x, and x⃗.

In this text, we will predominantly use x for elements in R and x for elements in Rn

for n ⩾ 2.
If n = 1 then R1 = R corresponds to the real line.

0 x

If n = 2 then R2 corresponds to the 2-dimensional plane. A point in R2 is usually
written as either (x, y) or x = (x1, x2)⊤.

•
x =

(
x1
x2

)

x2

x1

If n = 3 then R3 corresponds to the 3-dimensional space. A point in R3 is usually
written as eitehr (x, y, z) or x = (x1, x2, x3)⊤.

•
x3

x2

x1

x =

x1
x2
x3


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The set Rn is an n-dimensional inner product vector space over the real numbers.
This means it is closed under addition, scalar multiplication, and endowed with an
inner product called the scalar product. The addition on Rn is defined coordinate wise
by

x + y =


x1
...
xn

+


y1
...
yn

 =


x1 + y1

...
xn + yn

 .
The multiplication of an element x ∈ Rn by a scalar λ ∈ R is defined as

λx = λ


x1
...
xn

 =


λx1
...

λxn

 .
The way in which addition and multiplication on Rn interact is described by the
distributive law, which asserts that

λ(x + y) = λx + λy. (Distributive Law)

The vector space Rn is also equipped with a scalar product ⟨., .⟩ : Rn × Rn → R
defined as

⟨x,y⟩ =
n∑
k=1

xkyk. (1.1)

Properties of the scalar product: The scalar product satisfies the three following
properties:

1. Positive-definiteness: ⟨x,x⟩ ⩾ 0 for all x ∈ Rn, with equality only for x = 0.
2. Symmetry: ⟨x,y⟩ = ⟨y,x⟩ for all x,y ∈ Rn.
3. Bilinearity: ⟨αx + βy, z⟩ = α⟨x, z⟩ + β⟨y, z⟩ for all x,y, z ∈ Rn and α, β ∈ R.
In linear algebra, a vector x is also an n × 1 matrix. Its transpose, written x⊤ =

(x1, . . . , xn), is therefore a 1 × n matrix, and we can interpret the scalar product of
two vectors x,y as the matrix product of x⊤ and y:

⟨x,y⟩ = x⊤ · y = (x1, . . . , xn) ·


y1
...
yn

 .

1.2 The Euclidean distance on Rn

To be able to extend the analytical methods presented in Analysis 1 to the space Rn,
it is important to endow Rn with a topological structure. On R we have used the
absolute value to define a distance d(x, y) = |x − y|, which was then used to define
notions such as convergence and continuity in R. We seek to generalize the absolute
value and the distance to the space Rn. To do so, we will introduce the concepts of a
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norm and a metric.

Definition 1.1 (The Euclidean norm on Rn). The Euclidean norm on Rn is the
function ∥.∥2 : Rn → R defined by

∥x∥2 =
√

⟨x,x⟩ =
(

n∑
k=1

x2
k

) 1
2

. (1.2)

It measures the distance of the point x to the origin 0 = (0, . . . , 0).

Properties of the Euclidean norm: Observe that in one dimension, the Euclidean
norm of a real number is the same as the absolute value of that number. In general,
the Euclidean norm satisfies the following properties:

1. Non-negativity: ∥x∥2 ⩾ 0 for all x ∈ Rn, with equality if and only if x = 0.
2. Homogeneity: ∥λ · x∥2 = |λ| · ∥x∥2 for all λ ∈ R and x ∈ Rn.
3. Triangle inequality: ∥x + y∥2 ⩽ ∥x∥2 + ∥y∥2 for all x,y ∈ Rn.

One of the most important properties of the scalar product is the Cauchy-Schwarz
inequality, which says that

|⟨x,y⟩| ⩽ ∥x∥2 ∥y∥2 (Cauchy-Schwarz)

The Euclidean norm ∥x∥2 also corresponds to the length of a vector x. The scalar
product ⟨x,y⟩ measures the angle between the two vectors x and y: if we designate θ
as the angle between x and y, then

⟨x,y⟩ = ∥x∥2∥y∥2 cos θ. (Angle Formula)

In particular if x and y are orthogonal vectors, i.e., θ = ±π/2, then ⟨x,y⟩ = 0. As a
consequence, we obtain the famous Pythagorean theorem, which says that if x and y
are orthogonal then

∥x + y∥2
2 = ∥x∥2

2 + ∥y∥2
2. (Pythagoras)

With the help of the Euclidean norm we can define a metric on Rn called the
Euclidean distance.

Definition 1.2 (The Euclidean distance on Rn). The Euclidean distance on Rn is the
function d(., .) : Rn × Rn → [0,∞) given by

d(x,y) := ∥x − y∥2 =
√

(x1 − y1)2 + . . .+ (xn − yn)2. (1.3)

Properties of the Euclidean distance: The Euclidean distance captures the nat-
ural distance between two points in Rn. It satisfies the following three properties:

1. Non-negativity: d(x,y) ⩾ 0 for all x,y ∈ Rn, with equality only when x = y.
2. Symmetry: d(x,y) = d(y,x).
3. Triangle inequality: d(x,y) ⩽ d(x, z) + d(y, z).
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1.3 The topology on Rn

The Euclidean distance d(x,y) induces a topology on Rn which underpins all analytical
considerations on Rn. In particular, notions such as continuity, convergence, differ-
entiablility and integrability are all defined in terms of this topology. The building
blocks of the topology on Rn are the so-called open balls.

Definition 1.3 (Open Ball). Let a ∈ Rn and r > 0. The set

B(a, r) = {x ∈ Rn : d(x, a) < r}

is called the open ball of radius r centered at a.

Open balls are the mathematical conceptualization of “nearness” and an important
use of open balls is to topologically distinguish distinct points: if x,y ∈ Rn and x ̸= y
then we can find a sufficiently small open ball centered at x and another sufficiently
small open ball centered at y such that these two balls don’t touch.

Open balls are instances of open sets. An open set is a set with the property that
if x is a point in the set then all points that are sufficiently near to x also belong to
the set. The mathematically precise definition is as follows:

Definition 1.4 (Open set). A subset U ⊆ Rn is open if for any point x ∈ U there
exists ε > 0 such that the open ball B(x, ε) is contained in U .

The empty set ∅ and the space Rn are open. Also, as was already mentioned, any
open ball B(a, r) is an open set.

Example 1.1 (Open Sets in Rn).
1. If a < b are real numbers then the interval

(a, b) = {x ∈ R : a < x < b}

is an open set. Indeed, if x ∈ (a, b), simply take r = min{x− a, b− x}. Both these
numbers are strictly positive, since a < x < b, and so is their minimum. Then the
“1-dimensional ball” B(x, r) = {y ∈ R : |x − y| < r} is a subset of (a, b). This
proves that (a, b) is an open set.

2. The infinite intervals (a,∞) and (−∞, b) are also open but the intervals

(a, b] = {x ∈ R : a < x ⩽ b} and [a, b] = {x ∈ R : a ⩽ x ⩽ b}

are not open sets.
3. The rectangle

(a, b) × (c, d) = {(x, y) ∈ R2 : a < x < b, c < y < d}

is an open set.

The antithetical notion to an open set is that of a closed set.

Definition 1.5 (Closed set). A subset C ⊆ Rn is closed if its complement Rn\C is
open.
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The empty set ∅ and the space Rn are the only sets that are both closed and open
at the same time. Intuitively, one should think of a closed set as a set that has no
“punctures” or “missing endpoints”, i.e., it includes all limiting values of points. For
instance, the punctured plane R2\{(0, 0)} is not a closed set.

An example of a closed set is the closed ball.

Definition 1.6 (Closed Ball). Let a ∈ Rn and r > 0. The set

B(a, r) = {x ∈ Rn : d(x, a) ⩽ r}

is called the closed ball of radius r centered at a. It is a closed set.

Example 1.2 (Closed Sets in Rn).
1. The closed interval

[a, b] = {x ∈ R : a ⩽ x ⩽ b}

is a closed set, because its complement R\[a, b] = (−∞, a) ∪ (b,∞) is an open set.
2. Infinite intervals with closed boundary [a,∞) and (−∞, b] are closed sets.
3. Halfopen intervals such as [a, b) or (a, b] are neither closed nor open sets.
4. Any set consisting of only finitely many points is a closed set.

The following two propositions describe how open and closed sets behave under
basic set manipulations such as unions, intersections, and set differences.

Proposition 1.1.
• If U ⊆ Rn is open and C ⊆ Rn is closed then U\C is open.
• If C ⊆ Rn is closed and U ⊆ Rn is open then C\U is closed.

Proposition 1.2.
• If U1, . . . , Uk ⊆ Rn are open then U1 ∪ . . . ∪ Uk and U1 ∩ . . . ∩ Uk are open.
• If C1, . . . , Ck ⊆ Rn are closed then C1 ∪ . . . ∪ Ck and C1 ∩ . . . ∩ Ck are closed.

To better grasp the difference between open sets and closed sets, we introduce the
concept of interior points, exterior points, and boundary points.

Definition 1.7 (Interior, Exterior, Boundary Points). Let S be a subset of Rn and x
a point in Rn.

(i) We call x an interior point of S if there exists r > 0 such that the ball B(x, r)
is contained in S.

(ii) We call x an exterior point of S if there exists r > 0 such that the ball B(x, r)
has empty intersection with S.

(iii) We call x a boundary point of S if it is neither an interior point nor an exterior
point for S. Equivalently, x is a boundary point of S if for every r > 0 the ball
B(x, r) has non-empty intersection with S without being entirely contained in
S.

Note that every point is either interior, exterior or on the boundary in relationship
to a set S.
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Figure 1.1: Illustration of the difference between interior, exterior and boundary points
of a set S.

Definition 1.8 (Interior). The set of all interior points of a set S is called the interior
of S and it is denoted by S̊.
Definition 1.9 (Boundary). The set of all boundary points of a set S is called the
boundary of S and we use ∂S to denote it.
Definition 1.10 (Closure). The closure of S, denoted by S, is the set of points x ∈ Rn

with the property that for all r > 0 one has

B(x, r) ∩ S ̸= ∅.

Equivalently, the closure of S is the union of all its interior points and all its boundary
points.

Figure 1.2: The interior, closure and boundary sets of a set S.

Proposition 1.3. Let S ⊆ Rn. The interior S̊ is the largest open set contained inside
of S. The closure S is the smallest closed set that has S as a subset.

Corollary 1.1. A set is open if and only if it is equal to its interior. On the other
hand, a set is closed if and only if it is equal to its closure, which is the same as saying
that it contains all its boundary points.

Properties of closure, interior, and boundary: Suppose S ⊆ Rn.
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1. Closure-interior-boundary relationship: Clearly, we have the set inclusions

S̊ ⊆ S ⊆ S.

Moreover, the closure of S is S plus its boundary, its interior is S minus its
boundary, and the boundary is the closure minus the interior:

S̊ = S\∂S S = S ∪ ∂S, and ∂S = S \S̊.

2. Closure of the interior: The closure of the interior of S is always a subset of
the closure of S,

S̊ ⊆ S.

This indicates that the closure of the interior of S may capture some but not
necessarily all of the boundary ∂S of S.

3. Interior/closure and complement: Let Sc = Rn\S denote the complement
of S in Rn. Then

S̊c = (S)c and Sc = (S̊)c.

4. Boundary and complement: The set S and its complement Sc share the same
boundary, i.e.,

∂S = ∂Sc.

Example 1.3 (Closure, Interior, Boundary).

1. The sets (0, 1), [0, 1], [0, 1), and (0, 1] all have the same closure, interior, and bound-
ary: the closure is [0, 1], the interior is (0, 1), and the boundary consists of the two
points 0 and 1.

2. The sets

{(x, y) ∈ R2 : x2 + y2 < 1} and {(x, y) ∈ R2 : x2 + y2 ⩽ 1}

both have the same closure, interior, and boundary: the closure is the disc of
equation x2 + y2 ⩽ 1, the interior is the disc of equation x2 + y2 < 1, and the
boundary is the circle of equation x2 + y2 = 1.

3. The set

U = {(x, y) ∈ R2 : |y| < x2}

describes the region between two parabolas touching at the origin, shown in Fig. 1.3.
The set is open, so U = Ů . The closure of U is given by

U = {(x, y) ∈ R2 : |y| ⩽ x2}.

In particular, the closure contains the point (0, 0).
4. The unit ball is open in Rn and is defined by

B1 = B(0, 1) = {x ∈ Rn : ∥x∥2 < 1}
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Figure 1.3: The origin belongs to the closure of the shaded region.

Its boundary is the sphere ∂B1 = {x ∈ Rn : ∥x∥2 = 1}.
5. Let f : R → R be a continuous function. The set

Gf = {(x, f(x)) ∈ R2 : x ∈ R}

is known as the graph of f and represents a curve in R2. We have G̊f = ∅. Therefore
Gf = ∂Gf . The closed graph theorem says that graph G̊f is a closed set in R2 if f
is a continuous function.

6. Let B = {x ∈ R2 : ∥x∥2 < 1} and I = [0, 5]. The set S defined by

S = B × I =
{
x ∈ R3 : x2

1 + x2
2 < 1 and 0 ⩽ x3 ⩽ 5

}
is a cylinder. The set S is neither closed nor open. The boundary of S is given by

∂S = ∂B × I︸ ︷︷ ︸
E1

∪ B × ∂I︸ ︷︷ ︸
E2

,

where

E1 =
{
x ∈ R3 : x2

1 + x2
2 = 1 and 0 ⩽ x3 ⩽ 5

}
,

E2 =
{
x ∈ R3 : x2

1 + x2
2 < 1 and x3 ∈ {0, 5}

}
.

Definition 1.11 (Neighborhood of a point in Rn). Let x ∈ Rn and U ⊆ Rn. If x is
an interior point of U then U is called a neighborhood of x.

1.4 Sequences in Rn

Limits of sequences and limits of functions are fundamental notions in calculus, as you
already have seen in Analysis 1. Let us extend these principles to higher dimensions.
We write N = {1, 2, 3, . . .} for the set of natural numbers.
Definition 1.12 (Sequences in Rn). A sequence of elements of Rn is a function k 7→ xk
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that associates to every natural number k ∈ N an element xk ∈ Rn. We write (xk)k∈N
to denote a sequence in Rn.

Although (xk)k∈N is by definition a sequence of n-tuples, we can also think of it as
an n-tuple of sequences by considering each coordinate as an individual sequence,

(xk)k∈N =


(x1,k)k∈N

...
(xn,k)k∈N

 .
Definition 1.13 (Convergent sequence). A sequence (xk)k∈N of points in Rn converges
to a point x ∈ Rn if for every ε > 0 there exists N > 1 such that when k ⩾ N , then
d (xk,x) < ε. In this case we call x the limit of (xk)k∈N and write

lim
k→+∞

xk = x.

Note that not every sequence has a limit, but if a sequence does then this limit is
unique. Sequences that possess a limit are called convergent, whereas sequences that
don’t possess one are called divergent.

It follows from Definition 1.13 that a sequence (xk)k∈N converges to x if and only
if the sequence of distances d (xk,x) converges to 0, i.e.,

lim
k→+∞

xk = x ⇐⇒ lim
k→+∞

d (xk,x) = 0.

Convergence is also observed coordinate wise: A sequence (xk)k∈N converges to x if
and only if each coordinate of (xk)k∈N converges to the respective coordinate of x.
More precisely, if

(xk)k∈N =


(x1,k)k∈N

...
(xn,k)k∈N

 and x =


x1
...
xn


then

lim
k→+∞

xk = x ⇐⇒ lim
k→+∞

xi,k = xi for all i = 1, . . . , n.

Example 1.4 (Convergent and divergent sequences in Rn).
1. The sequence (xk)k∈N given by

xk =

 e−k

k
k+1

1√
k2−k−k


converges as k → +∞ to the limit

x =

 0
1

−2

 ,
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because limk→+∞ e−k = 0, limk→+∞
k
k+1 = 1, and limk→+∞

1√
k2−k−k = −2.

2. The sequence (xk)k∈N given by

xk =
(

0
1−(−1)k

2

)

diverges because it diverges in the second coordinate.

The following properties describe the arithmetic operations of sequences in the n-
dimensional Euclidean space and tell us that limits cooperate nicely with the vector
space structure of Rn.
Properties of limits of sequences. Let (xk)k∈N and (yk)k∈N be sequences in Rn

and let (λk)k∈N be a sequence in R.
1. Addition of sequences: If (xk)k∈N and (yk)k∈N both converge then so does

(xk + yk)k∈N and

lim
k→+∞

xk + yk = lim
k→+∞

xk + lim
k→+∞

yk.

2. Multiplication of sequences: If (xk)k∈N and (λk)k∈N both converge then so
does (λkxk)k∈N and

lim
k→+∞

λkxk =
(

lim
k→+∞

λk

)
·
(

lim
k→+∞

xk
)
.

3. Inner product of sequences: If (xk)k∈N and (yk)k∈N both converge then so
does (⟨xk, yk⟩)k∈N and

lim
k→+∞

⟨xk, yk⟩ =
〈

lim
k→+∞

xk, lim
k→+∞

yk
〉
.

Definition 1.14 (Cauchy sequences). A sequence (xk)k∈N is a Cauchy sequence if for
every ε > 0 there exists N > 1 such that k, l ⩾ N implies d (xk,xl) < ε.

Theorem 1.1. Every convergent sequence (xk)k∈N is a Cauchy sequence and every
Cauchy sequence is convergent.

Proposition 1.4. Let S ⊆ Rn be a non-empty set and suppose x ∈ ∂S is a boundary
point of S. Then there exists a sequence of elements in S̊, x1,x2,x3, . . . ∈ S̊, such that

lim
k→+∞

xk = x.

The following example provides an illustration of the content of Proposition 1.4.

Example 1.5. Consider the open ball of radius 5 centered at the origin in R2,

B(0, 5) = {x ∈ R2 : ∥x∥2 < 5} = {(x, y) ∈ R2 : x2 + y2 < 25}.

The boundary of B((0, 0), 5) is the circle of radius 5 centered at the origin, i.e.,

∂B(0, 5) = {x ∈ R2 : ∥x∥2 = 5} = {(x, y) ∈ R2 : x2 + y2 = 25}.
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Any point x ∈ ∂B(0, 5) of this circle takes the form

x =
(

5 cos θ
5 sin θ

)
, for some θ ∈ [0, 2π).

We can define a sequence

xk =
( 5k
k+1 cos θ
5k
k+1 sin θ

)
,

and note that limk→+∞ xk = x. So we see that x1,x2,x3, . . . is a sequence of points
inside the open ball B(0, 5) converging to the point x on the border .

Proposition 1.5. Let S ⊆ Rn be a non-empty subset of Rn and let (xk)k∈N be a
sequence of elements in S. If (xk)k∈N converges then the limit limk→+∞ xk = x must
belong to S, the closure of S.

Example 1.6. Consider the “halfopen” rectangle

S = [0, 1] × [0, 1).

This is not a closed set, because the point (2
3 , 1), for example, is in the boundary ∂S

but not in S itself. Moreover, the sequence(
2
3
1
2

)
,

(
2
3
2
3

)
,

(
2
3
3
4

)
,

(
2
3
4
5

)
,

(
2
3
5
6

)
, . . .

is a sequence of points in the interior of S that converge to the point (2
3 , 1), which is

not part of S, but it is part of the closure of S.

Definition 1.15 (Bounded set). A subset E ⊆ Rn is bounded if it is contained in a
ball of finite radius centered at the origin:

E ⊆ B(0, R) for some R < ∞.

Note that a closed set need not be bounded. For instance, the interval [0,∞) is
closed, but it is not a bounded.

Definition 1.16 (Compact set). A subset C ⊆ Rn is compact if it is closed and
bounded.

Compactness is the basic "finiteness criterion" for subsets of Rn. An important char-
acterization of compact sets in Euclidean spaces is given by the Bolzano-Weierstrass
theorem. Before we can state this theorem, we need to recall what is a subsequence.

Definition 1.17 (Subsequence). A subsequence of a sequence (xk)k∈N is any sequence
of the form (xki

)i∈N, where (ki)i∈N is a strictly increasing sequence of positive integers.

If a sequence converges then any subsequence of it also converges to the same limit.

Theorem 1.2 (Bolzano-Weierstrass theorem in Rn). Let C ⊆ Rn be compact. Any
sequence (xk)k∈N of elements in C possesses a convergent subsequence (xki

)i∈N whose
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limit is in C.

Definition 1.18 (Bounded sequences in Rn). A sequence (xk)k∈N is bounded if there
exists a constant C > 0 such that ∥xk∥2 ⩽ C for any k ∈ N.

Note that every convergent sequence is a bounded sequence, but the opposite is
in general not true. For example, the sequence xk = (−1)k is bounded and does not
converge. The following is an immediate corollary of the Bolzano-Weierstrass theorem.

Corollary 1.2. Each bounded sequence (xk)k∈N in Rn has a convergent subsequence
(xki

)i∈N.



Chapter 2

Real-valued functions in Rn

Multivariable calculus, also known as multivariate calculus, is the extension of calculus
in one variable to calculus with functions of several variables. We start by defining
real-valued functions in more than one variable.

2.1 Definition

Definition 2.1 (Real-valued function on E ⊆ Rn). Let E be a non-empty subset of
Rn. A function f : E → R that assigns to every element x ∈ E a unique real number
y = f(x) is called a real-valued function on E.

Given a function f : E → R, the domain of f is E, denoted dom(f) or dom f . In
theory, the domain should always be a part of the definition of the function rather
than a property of it, but in practice it is often the case that the domain is inferred
by the description of the function (see Examples 2.1 and 2.3 below).

The image (sometimes also called the range) of a function f is the set of all the
output values that f produces. We denote it by Im(f) and it is formally defined as

Im(f) = {f(x) : x ∈ E} = {y ∈ R : ∃x ∈ E with f(x) = y}.

Example 2.1. Let us find and sketch the domain of the function

f(x, y) =
√
x+ y + 1
(x− 1) .

The expression for f makes sense if the denominator is not 0 and the quantity under
the square root sign is nonnegative. So the domain of f is:

dom(f) = {(x, y) ∈ R2 : x+ y + 1 ⩾ 0, x ̸= 1}.

The inequality x+ y + 1 > 0, or y > −x− 1, describes the points that lie on or above
the line y = −x − 1, while x ̸= 1 means that the points on the line x = 1 must be
excluded from the domain. See Fig. 2.1 for a sketch of this region.

21



22 CHAPTER 2. REAL-VALUED FUNCTIONS IN Rn

dom(f)

x

y

x+ y + 1 = 0
x = 1

−1

−1

Figure 2.1: The domain of the function f(x, y) =
√
x+y+1
(x−1)

.

The relationship between the domain and the image of a function is described by
its graph. We use G(f) to denote the graph of a function f : E → R and it is given by

G(f) =
{(

x
f(x)

)
: x ∈ D

}
⊆ Rn+1.

Note that the graph of f is a subset of Rn+1. More precisely, the graph is the
hypersurface in Rn+1 corresponding to the set of all points (x1, . . . , xn, xn+1)⊤ ∈ Rn+1

that satisfy the equation

xn+1 = f(x1, . . . , xn).

Example 2.2. Consider the equation x+ y = z; as you learned in linear algebra, the
solutions to this equation describe a plane in R3. Now, compare this with the function
f(x, y) = x + y, a real-valued function in two variables. By definition, the graph of
f(x, y) consists of points (x, y, z) ∈ R3 where z = f(x, y). For f(x, y) = x + y, this
gives the equation of the plane x+y = z. Thus, the graph of f(x, y) = x+y is exactly
the plane in R3 determined by the equation x+ y = z.

Example 2.2 connects what you studied in linear algebra, where you worked with
linear equations like x+ y = z, to what you’re learning now in multivariable calculus.
But there’s more! With multivariable functions, you can describe not just planes, but
much more complex geometric surfaces, as this next example illustrates.

Example 2.3. Consider the real-valued function f(x, y) =
√

1 − x2 − y2, which is a
function in 2 variables. The natural domain of this function is dom(f) = {(x, y) ∈
R2 : x2 + y2 ⩽ 1}, which is the closed disc of radius 1 centered at the origin. The
image of f is Im(f) = [0, 1] and the graph G(f) = {(x, y, z) ∈ D × R, z = f(x, y)}
coincides with the set of solutions to the equations

x2 + y2 + z2 = 1 and z ⩾ 0.

In other words, the graph of the function is a semi-sphere, see Fig. 2.2 below.
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Figure 2.2: Graph of the function f(x, y) =
√

1 − x2 − y2.

Example 2.4. In physics, the functions f : Rn → R are often called scalar fields.
The gravitational potential of a mass or the electric potential of an electric charge are
examples of scalar fields:

ϕ : R3\{0} → R, ϕ(x) = k

∥x∥2

for a real constant k. In mechanics, we often consider systems where the energy is
conserved (Hamiltonian systems). For the movement of a particle of mass m in space,
subject to the potential V (x), its energy is a real-valued function of its momentum
p = mv here v is the velocity and x the position in space:

E : Rn × Rn → R, E(p,x) = ∥p∥2
2

2m + V (x).

The movement follows the lines at which the energy E is constant. These lines are
called “contour lines” and they are special cases of so-called level sets, which we define
and discuss next.

2.2 Level Sets

Definition 2.2 (Level set). Let f : E → R, E ⊆ Rn(E ̸= ∅). Given a real number
c ∈ Im(f), we call the set

Lc(f) = {x ∈ D : f(x) = c} = f−1({c})

the level set of f at height c. If c /∈ Im(f), then Lc(f) = ∅.
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Figure 2.3: The figure displays the graph of a function in 2 variables together with an
illustration of its level curves in the xy-plane. One can also think of level curves as the
projection of the horizontal traces onto the xy-plane, where a horizontal trace is a line
formed by intersecting the graph of the function with a plane parallel to the xy-plane.

Level sets of functions in 2 variables f : R2 → R are sometimes also called level
curves (or contour lines). It represents all the points where f has "height" c. A
collection of contour lines is called a contour map. Contour maps are very helpful for
visualizing functions, and they are most descriptive if the level curves are drawn for
equally spaced heights, see Fig. 2.4.

Figure 2.4: Contour map of participation as a function in two variables, the longitude
and latitude coordinates on earth.

In summary, we now have learned of two ways of graphically representing a real-
valued functions in two variables. The first way is by its graph, which is a hypersurface
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in R3, and the second is by a contour map, the projection of its contour lines onto the
plane R2. In Fig. 2.5 below you can see these two methods juxtaposed.

(2-x^3+6*y^4+y^3+x^4+6*x^4*y^2)*exp(-x^2-y^2*1.2)

–2

–1

0

1

2

x

–2

–1

0

1

2

y

0

1

2

–2

–1

1

2

y

–2 –1 1 2

x

Figure 2.5: Depiction of graph (left) and contour diagram (right) of the same function
in 2 variables.

Example 2.5. Let f(x, y) = xy−1√
y−x2

, whose domain is dom(f) = {(x, y) ∈ R2 : y >
x2}. Notice that dom(f) is open and unbounded.

Figure 2.6: The figure displays a series of level curves for the function f(x, y) = xy−1√
y−x2

passing through the point (1, 1). As we will explore subsequently, this indicates that
the limit of f(x, y) as (x, y) approaches (1,1) is not well-defined.
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2.3 Limits of functions

Definition 2.3. Let f : E → R with E ⊆ Rn. We say that f is defined in a neighbor-
hood of x0 ∈ Rn if x0 is an interior point of E ∪ {x0}. That is, there exists δ > 0 such
that B(x0, δ) ⊆ E ∪ {x0}.

In the above definition, it is possible that x0 /∈ E. In other words, it is possible
for a function to be defined in a neighborhood of x0 ∈ Rn without being defined at x0
itself.

Example 2.6. Consider the function f(x) = 1
∥x∥ whose domain equals dom(f) =

{x ∈ Rn : ∥x∥ ≠ 0} = Rn\{0}. Although this function is not defined at 0, it is defined
in a neighborhood of 0.

We are concerned with points where the function is defined in a neighborhood
around the point, because this is necessary to properly define the limit of a function at
that point. If the function is not defined in the neighborhood of a point, then it is not
always possible to talk about the limit of the function at that point without running
into mathematical contradictions.

Definition 2.4 (Limit of a function). Let E be a subset of Rn, f : E → R a function
with domain E and assume f is defined in a neighborhood of the point x0 ∈ Rn. We
say that f has a limit l ∈ R at x0 and write

lim
x→x0

f(x) = l,

if for all ε > 0 there exists δ > 0 such that for all x ∈ E,

0 < d(x,x0) ⩽ δ =⇒ |f(x) − l|⩽ ε

Note that the limit of a function at a point does not always exist. But if it does
exists then it is unique, which means that a function has at most one limit at a given
point.

Example 2.7. Let f : R2 → R be the function defined by

f(x, y) =

x3+y3

x2+y2 if (x, y) ̸= (0, 0)
0 if (x, y) = (0, 0)

Let’s calculate its limit as (x, y) approaches (0, 0). We will learn several different
methods of finding the limit of a function at a point (see, for example, the Squeeze
Theorem below), but the most standard method consists of simply verifying Defini-
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tion 2.4. Given the relation 0 ⩽
√
x2 + y2, we have

|f(x, y)| = |x+ y| |x2 − xy + y2|
x2 + y2 ⩽ (|x| + |y|)x

2 + |x||y| + y2

x2 + y2

⩽ (|x| + |y|)
x2 + |x||y| + y2 + 1

2(|x| − |y|)2

x2 + y2

= (|x| + |y|)
3
2x

2 + 3
2y

2

x2 + y2

⩽ 2
√
x2 + y2

3
2x

2 + 3
2y

2

x2 + y2 = 3
√
x2 + y2 = 3∥(x, y)∥2.

This shows that as long as δ < ε
3 we have d((x, y), (0, 0)) < δ =⇒ |f(x, y)| ⩽ ε.

According to Definition 2.4, this means exactly that lim(x,y)→(0,0) f(x, y) = 0.

Proposition 2.1 (Characterization of limits by sequences). Let E ⊆ Rn,x0 ∈ Rn

and assume f : E → R defined on a neighbourhood of x0, and l ∈ Rn. The following
statements are equivalent:

1. limx→x0 f(x) = l.
2. limk→∞ f(xk) = l for every sequence (xk)k∈N in E\{x0} with limk→∞ xk = x0.

Properties of limits of functions. Let f and g be two functions defined in a
neighborhood of x0 and assume the limits limx→x0 f(x) and limx→x0 g(x) exist.

1. Linearity: For constants α, β ∈ R, we have

lim
x→x0

(αf(x) + βg(x)) = α
(

lim
x→x0

f(x)
)

+ β
(

lim
x→x0

g(x)
)

2. Products:

lim
x→x0

(f(x) · g(x)) =
(

lim
x→x0

f(x)
)

·
(

lim
x→x0

g(x)
)
.

3. Quotients: If limx→x0 g(x) ̸= 0, then

lim
x→x0

(
f(x)
g(x)

)
= limx→x0 f(x)

limx→x0 g(x) .

4. Compositions: Let a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bn) ∈ Rn be given. If
limx→a f(x) exists, and gi : R → R are functions such that limx→bi

gi(x) = ai for
each i, then

lim
x→b

f(g1(x1), g2(x2), . . . , gn(xn)) = lim
x→a

f(x).

Example 2.8. Let us calculate

lim
(x,y)→(−3,4)

1 + xy

1 − xy
.

Since lim(x,y)→(−3,4) x = −3 and lim(x,y)→(−3,4) y = 4, it follows from properties 1 and 2
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of limits of functions that

lim
(x,y)→(−3,4)

1 + xy = 1 +
(

lim
(x,y)→(−3,4)

x
)(

lim
(x,y)→(−3,4)

y
)

= 1 + (−3) · 4 = −11.

Similarly, we obtain lim(x,y)→(−3,4) 1 − xy = 13. Since the limit of the numerator
and denominator exist and the denominator does not converge to 0, it follows from
property 3 of limits of functions that

lim
(x,y)→(−3,4)

1 + xy

1 − xy
= lim(x,y)→(−3,4) 1 + xy

lim(x,y)→(−3,4) 1 − xy
= −11

13 .

2.4 Techniques for finding limits of functions

Example 2.9 (The problem with limits in several variables). Let f : R2 → R2 be a
function in two variables; we would like to determine the limit

lim
(x,y)→(0,0)

f(x, y).

A (naïve) idea is to compute the two iterated limits:

lim
x→0

lim
y→0

f(x, y) or lim
y→0

lim
x→0

f(x, y).

If these two limits exist and coincide, one might then be led to believe that the limit of
the function at (0, 0) is equal to 0. However, this is note true! For example, consider
the function

f(x, y) =


xy
x2+y2 , if (x, y) ̸= (0, 0),
0, if (x, y) = (0, 0).

For this particular function, we find that the iterated limits are:

lim
x→0

lim
y→0

f(x, y) = lim
x→0

lim
y→0

xy

x2 + y2 = lim
x→0

0
x2 + 0 = 0,

lim
y→0

lim
x→0

f(x, y) = lim
y→0

lim
x→0

xy

x2 + y2 = lim
y→0

0
0 + y2 = 0.

However, instead having the two variables approach 0 one after the other, we can have
them approach zero simultaneously, for example along the diagonal x = y. In this
case, setting both x and y equal to t and letting t go to zero, we obtain

lim
t→0

f(t, t) = lim
t→0

t · t
t2 + t2

= lim
t→0

1
2 = 1

2 ,

which yields a different result. Since we can approach (0, 0) in two different ways and
obtain different results, it means that the limit does not exist.
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→ 0

→ 1
2

→ −1
2

A next idea would be to test all possible directions,

lim
t→0

f(αt, βt),

with α, β ∈ R not both zero (thus covering all lines of equation βx − αy = 0, which
are all lines passing through 0). If all the limits along all the lines passing through 0
exist and coincide, can we conclude that the limit exists? The answer is still no! This
is because we might obtain a different result when following a trajectory that is not a
straight line.

→ 0 → 1
2

For example, if f : R2 → R is defined by

f(x, y) =


xy2

x2+y4 , if (x, y) ̸= (0, 0),
0, if (x, y) = (0, 0).

then for any α, β ∈ R, we have

lim
t→0

f(αt, βt) = lim
t→0

αβ2t3

α2t2 + β4t4
.

If α = 0, then β ̸= 0 and we obtain 0. Otherwise,

lim
t→0

f(αt, βt) = lim
t→0

αβ2t

α2 + β4t2
= 0
α + 0 = 0.

We obtain 0 in all directions. However,

lim
t→0

f(t2, t) = lim
t→0

t4

t4 + t4
= 1

2 .

Again, this means that the limit does not exist.
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2.4.1 The squeeze theorem

Theorem 2.1 (Squeeze theorem - théorème des gendarmes). Let E ⊆ Rn, and func-
tions f, g, h : E → R be defined on a neighborhood of x0 ∈ Rn. If

lim
x→x0

g(x) = lim
x→x0

h(x) = l

and there exists ε > 0 such that for all x ∈ E,

0 < d(x,x0) < ε =⇒ g(x) ⩽ f(x) ⩽ h(x)

then

lim
x→x0

f(x) = l.

Example 2.10. Consider f : R2\{(0, 0)} → R defined by

f(x, y) = x4y3

x4 + y12 .

Let’s discuss the limit

lim
(x,y)→(0,0)

f(x, y).

We can estimate

0 ⩽ f(x, y) = x4y3

x4 + y12 ⩽
x4y3

x4 = y3.

So if we define

g(x, y) = 0 and h(x, y) = y3

then g(x, y) ⩽ f(x, y) ⩽ h(x, y). Since lim(x,y)→(0,0) g(x, y) = lim(x,y)→(0,0) h(x, y) = 0,
it follows from the Squeeze Theorem that lim(x,y)→(0,0) f(x, y) = 0.

2.4.2 Using Polar coordinates

Polar coordinates are useful when given a function in two variables involving terms
like x2 + y2, representing the distance from the origin, or when the function behaves
similarly along all directions (i.e., has radial symmetry). This simplifies the analysis
by converting the problem into one of radial distance and angular symmetry, making
it easier to evaluate limits as the distance from the origin approaches zero.

The following version of the squeeze theorem involving polar coordinates allows
us to bound a function in terms of its distance from the origin, making it easier to
evaluate limits as the distance approaches zero.

Theorem 2.2 (Squeeze theorem in polar coordinates). Let E ⊆ R2 and (x0, y0) ∈ R2.
Assume f : E → R is a function that is defined in the neighborhood of (x0, y0) and let
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l ∈ R. Then,

lim
(x,y)→(x0,y0)

f(x, y) = l

if and only if there exists ε > 0 and a function ψ : (0, ε) → [0,∞) such that

(i) limr→0+ ψ(r) = 0, and

(ii) for all θ ∈ [0, 2π) we have |f(x0 + r cos θ, y0 + r sin θ) − l| ⩽ ψ(r)

Example 2.11. Consider f : R2\{(0, 0)} → R defined by

f(x, y) = x2y

x2 + y
5
2
.

Let’s discuss the limit

lim
(x,y)→(0,0)

f(x, y).

We switch to polar coordinates and get

f(r cos θ, r sin θ) = r3 cos2 θ sin θ
r2 cos2 θ + r

5
2 sin 5

2 θ

= r cos2 θ sin θ
cos2 θ + r

1
2 sin 5

2 θ
.

Thus,

|f(r cos θ, r sin θ)| = r cos2 θ| sin θ|
cos2 θ + r

1
2 sin 5

2 θ
⩽
r cos2 θ| sin θ|

cos2 θ
= r| sin θ| ⩽ r.

Taking l = 0 and ψ(r) = r, we see that the hypothesis of the squeeze theorem in polar
coordinates is satisfied, and conclude that

lim
(x,y)→(0,0)

f(x, y) = 0.

2.4.3 Using Taylor’s theorem

Taylor’s theorem (which you have learned in Analysis I) can be useful to find limits
because it approximates a function near a point by a polynomial, simplifying the
analysis before applying the squeeze theorem. For convenience, let us quickly recall
the statement of Taylor’s theorem.

Theorem 2.3 (Taylor’s theorem – single variable case). Let k ∈ N. Suppose I ⊆ R
is an open interval and f : I → R is a function of class Ck(I). Then for any a ∈ I we
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have

f(x) =

kth-order approximation︷ ︸︸ ︷
k∑
j=1

f (j)(a)
j! (x− a)k +

remainder︷ ︸︸ ︷
rk(x)

︸ ︷︷ ︸
kth-order expansion

where rk(x) is an “error” term satisfying limx→a
rk(x)

|x−a|k = 0.

Example 2.12. Calculate the following limits if they exist:
(a) lim(x,y)→(0,0)

x2+ln(1+y2)√
x2+y2

(b) lim(x,y)→(0,0)
1−e(x3)

x2+y2

(a) The first-order expansion of ln(1 + x) around a = 0 is

ln(1 + x) = x+ r1(x)

where limx→0
r1(x)
x

= 0. We obtain

lim
(x,y)→(0,0)

x2 + ln(1 + y2)√
x2 + y2 = lim

(x,y)→(0,0)

x2 + y2 + r1(y2)√
x2 + y2

= lim
(x,y)→(0,0)

x2 + y2
√
x2 + y2 + lim

(x,y)→(0,0)

r1(y2)√
x2 + y2 = 0 + 0 = 0.

The second limit is zero because, for (x, y) ̸= (0, 0),

−|r1(y2)|
|y|

⩽
r1(y2)√
x2 + y2 ⩽

|r1(y2)|
|y|

with

lim
(x,y)→(0,0)

|r1(y2)|
|y|

= lim
(x,y)→(0,0)

|y| · lim
(x,y)→(0,0)

|r1(y2)|
|y2|

= 0 · 0 = 0.

By the squeeze theorem, it follows that

lim
(x,y)→(0,0)

r1(y2)√
x2 + y2 = 0.

(b) The first-order expansion of ex around a = 0 is

ex = 1 + x+ r1(x)

where limx→0
r1(x)
x

= 0. We obtain

lim
(x,y)→(0,0)

1 − ex
3

x2 + y2 = lim
(x,y)→(0,0)

1 − 1 − x3 − r1(x3)
x2 + y2 = lim

(x,y)→(0,0)

−x3 − r1(x3)
x2 + y2 .
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Now, for (x, y) ̸= (0, 0),

−|x3| + |r1(x3)|
|x2|

⩽
−x3 − r1(x3)
x2 + y2 ⩽

|x3| + |r1(x3)|
|x2|

with

lim
(x,y)→(0,0)

|x3| + |r1(x3)|
|x2|

=
(

lim
(x,y)→(0,0)

|x3|
|x2|

)
+
(

lim
(x,y)→(0,0)

|r1(x3)|
|x2|

)
= 0 + 0 = 0.

The squeeze theorem therefore ensures that

lim
(x,y)→(0,0)

−x3 − r1(x3)
x2 + y2 = 0.

2.4.4 Using change of variables

The following proposition enables us to convert limits in two variables into limits in a
single variable.

Proposition 2.2 (Composition with Functions of a Single Variable). Let E ⊆ R2

and let g : E → R be defined in a neighborhood of (x0, y0) ∈ R2. Let I ⊆ R be such
that I ⊆ g(E) and let φ : I → R be defined in a neighborhood of l ∈ R. Finally, let
f : E → R be defined by f(x, y) = φ(g(x, y)). If

lim
(x,y)→(x0,y0)

g(x, y) = l and lim
t→l

φ(t) exists,

then

lim
(x,y)→(x0,y0)

f(x, y) = lim
t→l

φ(t).

Example 2.13. Let f : R2\{(0, 0)} → R be defined by

f(x, y) = tan(3x2 + y2)
3x2 + y2 .

We analyze the limit

lim
(x,y)→(0,0)

f(x, y).

If we define g(x, y) = 3x2 + y2, then by properties of limits we have

lim
(x,y)→(0,0)

g(x, y) = 3
(

lim
(x,y)→(0,0)

x
)2

+
(

lim
(x,y)→(0,0)

y
)2

= 3 · 02 + 02 = 0.

Define φ : R\{0} → R by

φ(t) = tan(t)
t

.
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Then we have f(x, y) = φ(g(x, y)). Hence, in light of Proposition 2.2, we have

lim
(x,y)→(0,0)

tan(3x2 + y2)
3x2 + y2 = lim

t→0

tan(t)
t

.

Now,

lim
t→0

tan(t)
t

L’Hôpital’s Rule= lim
t→0

1
cos2(t)

1 = 1.

Thus,

lim
(x,y)→(0,0)

f(x, y) = 1.

Figure 2.7: Graph of the function f(x, y) = xy ln(|x| + |y|).

Example 2.14. Let us demonstrate that the limit of the function f : R2 → R defined
by

f(x, y) =
xy ln(|x| + |y|) if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

is zero as (x, y) approaches (0, 0) (see Fig. 2.7). Note that for every point (x, y) with
0 <

√
x2 + y2 < 1 we have |xy| ⩽ |x| + |y|. This implies that for any such (x, y) we

have the estimate

0 ⩽ |f(x, y)| = |xy ln(|x| + |y|)| ⩽ (|x| + |y|)| ln(|x| + |y|)|.

So if we define

g(x, y) = −(|x| + |y|)| ln(|x| + |y|)| and h(x, y) = (|x| + |y|)| ln(|x| + |y|)|

then we see that

0 <
√
x2 + y2 < 1 =⇒ g(x, y) ⩽ f(x, y) ⩽ h(x, y).
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Substituting t for |x| + |y|, it follows from Proposition 2.2 that:

lim
(x,y)→(0,0)

±(|x| + |y|)| ln(|x| + |y|)| = lim
t→0+

t ln t = 0,

where we used the fact limt→0+ t ln t = 0, which can be verified using L’Hôpital’s Rule.
In other words lim(x,y)→(0,0) g(x, y) = lim(x,y)→(0,0) h(x, y) = 0. Invoking the Squeeze
Theorem, we conclude that lim(x,y)→(0,0) f(x, y) = 0.

2.4.5 Testing along polynomial paths

Testing paths of the form (tα, tβ) is useful for evaluating limits of functions in two
variables because these paths allow us to explore how the function behaves along
different directions approaching the origin. By adjusting the exponents α and β, we
can test a variety of trajectories that the function might take, revealing whether the
limit depends on the direction of approach.

Example 2.15. Let f : R2\{(0, 0)} → R be defined by

f(x, y) = x3y3

x4 + y12 .

Our goal is to determine the limit

lim
(x,y)→(0,0)

f(x, y).

First, let us test all linear paths by considering

lim
t→0

f(αt, βt),

with α, β ∈ R not both zero. In this case, we get

lim
t→0

f(αt, βt) = lim
t→0

α3β3t6

α4t4 + β12t12 = lim
t→0

α3β3t2

α4 + β12t8
= 0.

We see that all linear paths yield the same limit. Therefore, to demonstrate that the
limit does not exist, we must consider non-linear paths.

When dealing with a denominator containing different powers of x and y, a good
approach is to examine paths of the form (tα, tβ) for various values of α, β ∈ (0,∞).
This gives

lim
t→0

f(tα, tβ) = lim
t→0

t3α+3β

t4α + t12β .

First, we can take α = β = 1. In this case we have

lim
t→0

f(t, t) = lim
t→0

t6

t4 + t12 = lim
t→0

t2

1 + t8
= 0.

Next, we choose α and β so that the powers appearing in the denominator match. For
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us, this means we want to find α and β such that

4α = 12β.

For example, this is achieved by taking α = 3 and β = 1. Then,

lim
t→0

f(t3, t) = lim
t→0

t12

t12 + t12 = 1
2 .

Since α = β = 1 and α = 3, β = 1 yield different results, we conclude that the limit
does not exist.

2.5 Continuity at a Point
The purpose of this section is to introduce and discuss continuous functions in several
variables.
Definition 2.5 (Continuous function at a point). Let E ⊆ Rn and let x0 be an interior
point of E. A function f : E → R is said to be continuous at x0 if

lim
x→x0

f(x) = f(x0).

Definition 2.6 (1st equivalent definition). Let x0 be an interior point of E. A function
f : E → R is continuous at x0 if and only if, for every real number ε > 0, there exists
a real number δ > 0 such that for all x ∈ E,

d(x,x0) ⩽ δ =⇒ |f(x) − f(x0)|⩽ ε.

Definition 2.7 (2nd equivalent definition). Let x0 be an interior point of E. A function
f : E → R is continuous at x0 if and only if, for every sequence (ak)k∈N of elements of
E we have

lim
k→+∞

ak = x0 =⇒ lim
k→+∞

f(ak) = f(x0).

Remark 2.1. It is very tempting to believe that if a function is continuous in ev-
ery coordinate then the function is continuous. However, this is NOT TRUE! As a
counterexample, consider the function

f(x, y) =


xy
x2+y2 if (x, y) ̸= (0, 0)
0 if (x, y) = (0, 0)

.

Let f1, f2 : R → R denote the two functions obtained by restricting f(x, y) to the first
and second coordinate at the point (0, 0), that is, f1(x) = f(x, 0) and f2(y) = f(0, y).
Then f1(x) and f2(y) both are continuous at x = 0 and y = 0 respectively. Nonetheless,
we have already seen in Example 2.9 that the limit of f(x, y) as (x, y) approaches (0, 0)
does not exist, which means that the function f(x, y) (as a function in two variables)
is not continuous at the point (0, 0).
Properties of continuity. Let f and g be two functions from E ⊆ Rn to R that are
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continuous at a point x0 ∈ Rn. Then:
1. Linearity: For any α, β ∈ R, the function αf + βg is continuous at x0;
2. Products: The product function fg is continuous at x0;
3. Quotients: If g(x0) ̸= 0 and g(x) ̸= 0 for all x ∈ E then the quotient f

g
is

continuous at x0;
4. Compositions: Let A be a subset of Rn and let

g1, . . . , gp : A → R

be functions continuous at the point a = (a1, . . . , an). On the other hand, let B be
a subset of Rp containing

{(g1(y), . . . , gp(y)) : y ∈ A}

and f : B → R a function continuous at the point b = (g1(a), . . . , gp(a)). Then the
function F : A → R defined by

F (y1, . . . , yn) = f(g1(y1, . . . , yn), . . . , gp(y1, . . . , yn))

is continuous at the point a = (a1, . . . , an).

Example 2.16. Let us demonstrate the usefulness of the properties of continuity by
showing that the function F : R2 → R given by F (x, y) = − sin(x)y is continuous at
the point (0, 0). To do this, consider the three auxiliary functions f : R2 → R and
g1, g2 : R → R defined respectively by

f(x, y) = xy, g1(x, y) = − sin(x), and g2(x, y) = y.

Since both g1(x, y) and g2(x, y) are continuous at (0, 0) and f(x, y) is continuous
at (g1(0, 0), g2(0, 0)) = (0, 0), we can conclude that F (x, y) = f(g1(x, y), g2(x, y)) is
continuous at the point (0, 0) (See Fig. 2.8).

Figure 2.8: Graph of the function F (x, y) = − sin(x)y.
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2.6 Continuity in a Region
Definition 2.8 (Continuous function in a Region). Let E be a non-empty subset of
Rn. A function f : E → R is continuous on E if for every x0 ∈ E and every real
number ε > 0 there exists a real number δ > 0 such that for all x ∈ E,

d(x,x0) ⩽ δ =⇒ |f(x) − f(x0)|⩽ ε.

Definition 2.9 (Equivalent definition). Let E be a non-empty subset of Rn. A func-
tion f : E → R is continuous on E if for every sequence (ak)k∈N of elements of E we
have

lim
k→+∞

ak = x0 =⇒ lim
k→+∞

f(ak) = f(x0).

Remark 2.2. If E is an open set then f : E → R is continuous on E if and only if it
is continuous at every point in E.
Example 2.17. Let us demonstrate that the function f : R2 → R defined by

f(x, y) =


sin(xy)
x

if x ̸= 0
y if x = 0

is continuous on R2 (see Fig. 2.9).

Figure 2.9: Graph of f(x, y) = sin(xy)
x

for x ̸= 0.

Define the function h : R → R by

h(s) =


sin(s)
s

if s ̸= 0
1 if s = 0

It is continuous for all s ̸= 0 and, as lims→0 h(s) = 1 = h(0), it is also continuous at 0.
This is useful because we have f(x, y) = h(xy)y for all (x, y) ∈ R2. Since the functions

a(x, y) = xy and b(x, y) = y
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are continuous at every point in R2 and f(x, y) = h(xy)y = a(h(a(x, y)), b(x, y)) for all
(x, y) ∈ R2, it follows from the properties of continuity that f is continuous at every
point in R2.

2.7 Extreme Value Theorem and Intermediate Value
Theorem

Definition 2.10 (Maximum and minimum). Let E ⊆ Rn be non-empty and f a
function from E to R. A real number M satisfying

• f(x) ⩽M for every element x in E, and
• M ∈ Im(f),

is called the maximum of the function f on E and is denoted by maxx∈E f(x). If
x0 ∈ E is such that f(x0) = M then we say that the function f reaches its maximum
at the point x0. Similarly, a real number m satisfying

• f(x) ⩾ m for every element x in E, and
• m ∈ Im(f),

is called the minimum of the function f on E and is denoted by minx∈E f(x). If
x0 ∈ E is such that f(x0) = M then we say that the function f reaches its minimum
at the point x0.

Proposition 2.3 (Extreme value theorem). Let E be a compact subset of Rn and
f : E → R a continuous function. Then f has a minimum minx∈E f(x) and a maximum
maxx∈E f(x) on E.





Chapter 3

Partial derivatives and
differentiability

3.1 Partial Derivatives
Recall that given a differentiable function in a single variable f : R → R, the derivative
of f at the point a ∈ R is defined as

f ′(a) = df

dx
(a) = lim

t→0

f(a+ t) − f(a)
t

= lim
x→a

f(x) − f(a)
x− a

.

We are already familiar with several different ways of thinking about the derivative of
a function:

• The derivative of a function f quantifies the rate of change of the function’s
output value with respect to its input value. For example, if the derivative
of f at a point a is a ‘large’ positive number then a positive change close to
a will result in a ‘proportionately large’ positive change in the output value.
Conversely, if the derivative of f at a point a is a ‘small’ negative number then a
positive change close to a will result in a ‘proportionately small’ negative change
in the output value.

• The derivative f ′(a) of a function f at a point a equals the slope of the tangent
line to the graph of the function at that point. Moreover, the tangent line is the
best linear approximation of the function near that input value.

The goal of this chapter is to extend derivatives to functions in several variables.
While functions in one variable have only one derivative, functions in several variables
have multiple derivatives, one for each variable. These are called the partial derivatives.

Let

e1 =



1
0
0
...
0

 , e2 =



0
1
0
...
0

 , . . . , en =



0
0
...
0
1


41
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denote the vectors of the canonical basis of Rn. Note that for any element x =
(x1, . . . , xn) ∈ Rn we have x = ∑n

k=1 xkek, where xk = ⟨x, ek⟩, for k = 1, . . . , n.

Definition 3.1 (Partial derivatives). Suppose E ⊆ Rn is a set and a = (a1, . . . , an)
is an interior point of E. Let f : E → R be a real-valued function in the variables
(x1, . . . , xn). The partial derivative of f at the point a with respect to the variable xk
(the k-th variable) is defined as

∂f

∂xk
(a) = lim

t→0

f (a + tek) − f(a)
t

whenever this limit exists. If this limit does not exist then we say that the partial
derivative of f at a with respect to xk does not exist.

Intuitively, the partial derivative ∂f
∂xk

is the derivative of f(x1, . . . , xn) with respect
to the variable xk while all the other variables remain constant. We also use the
notation

Dkf(a) = ∂f

∂xk
(a);

or if the real variables of f are explicitly given, say f(x, y, z), then we write

Dxf(x, y, z) = ∂f

∂x
(x, y, z)

Dyf(x, y, z) = ∂f

∂y
(x, y, z)

Dzf(x, y, z) = ∂f

∂z
(x, y, z).

Remark 3.1. The partial derivative ∂f
∂xk

(a) exists if and only if the function gk(t) =
f (a + tek) is differentiable at t = 0, because

∂f

∂xk
(a) = lim

t→0

f (a + tek) − f(a)
t

= lim
t→0

gk(t) − gk(0)
t

= g′
k(0). (3.1)

This means that ∂f
∂xk

(a) corresponds to the slope of the tangent line pointing in the
direction of the canonical vector ek. In the case of two variables, Fig. 3.1 below provides
an illustration of the partial derivatives as the slope of tangent lines in the x-direction
and in the y-direction.
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(x0, y0, f(x0, y0))

x

y

z

tangent line in x direction

with slope ∂f
∂x

(x0, y0)

(x0, y0, 0)

(x0, y0, f(x0, y0))

x

y

z

tangent line in y direction

with slope ∂f
∂y

(x0, y0)

(x0, y0, 0)

Figure 3.1: The gray surface is the graph of the function f(x, y) and contains the point
(x0, y0, f(x0, y0)). In the left figure, the plane y = y0 (pink plane) intersects the graph
of f(x, y) in a curve. The tangent line to this curve at the point (x0, y0, f(x0, y0)) (pink
line) has slope equal to the partial derivative of f(x, y) with respect to the variable x
at the point (x0, y0). The right figure depicts the tangent line (green line) to the curve
that is the intersection of the graph of f(x, y) with the plane x = x0 (green plane) at
the point (x0, y0, f(x0, y0)), whose slope is the partial derivative of f(x, y) with respect
to the variable y at the point (x0, y0).

Example 3.1. Consider a pot filled with water being heated on top of a stove
(see Fig. 3.2). Let us think of the pot as a cylinder in R3 given by

D = {(x, y, z) ∈ R3 : x2 + y2 < 1, 0 < z < 1}.

Suppose at time t the temperature of the water at the position (x, y, z) is given by the
equation

T (x, y, z, t) =
(

100 − 80
1 + t

)
·
(

1 − z

2

)
· e−x2−y2

.

Then T is a function in 4 variables (3 space variables and 1 time variable) with domain
dom(T ) = D × [0,∞). We can calculate its partial derivatives as

DxT (x, y, z, t) = ∂T

∂x
(x, y, z, t) =

(
100 − 80

1 + t

)
·
(

1 − z

2

)
· (−2x) · e−x2−y2

,

DyT (x, y, z, t) = ∂T

∂y
(x, y, z, t) =

(
100 − 80

1 + t

)
·
(

1 − z

2

)
· (−2y) · e−x2−y2

,

DzT (x, y, z, t) = ∂T

∂z
(x, y, z, t) =

(
100 − 80

1 + t

)
·
(

− 1
2

)
· e−x2−y2

,

DtT (x, y, z, t) = ∂T

∂t
(x, y, z, t) = 80

(1 + t)2 ·
(

1 − z

2

)
· e−x2−y2

.
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What do these partial derivatives mean? For example, Tt(x, y, z, t) describes the rate
of change in temperature at a stationary point (x, y, z) as time t changes. Since Tt is
always positive, we see that in every point (x, y, z) the temperature is increasing as
the time t increases. Conversely, due to the sign of Tx, Ty, Tz, we see that for a fixed
time t, the temperature is decreasing as we move away from the origin and towards
the boundary of the cylinder, which makes sense because the water at the edge of the
pot should be cooler than the water in the middle.

Figure 3.2: A pot of water with heat being applied from the bottom.

Definition 3.2 (Gradient vector). Let E ⊆ Rn be an open set, let f : E → R be a
function and suppose all partial derivatives ∂f

∂x1
(a), . . . , ∂f

∂xn
(a) of f at the point a ∈ E

exist. Then

∇f(a) = grad f(a) :=
(
∂f

∂xn
(a), . . . , ∂f

∂xn
(a)

)
∈ R1×n,

is called the gradient of f at a. If at least one of the partial derivatives ∂f
∂x1

(a), . . . , ∂f
∂xn

(a)
of f at the point a does not exist then we say that the gradient of f at a does not
exist.
Remark 3.2. The gradient ∇f(a) can also be written as a linear combination using
the canonical vectors e1, . . . , en,

∇f(a) =
n∑
k=1

Dkf(a)e⊤
k .

Therefore Dkf(a) = ∂f
∂xk

(a) = ⟨∇f(a), ek⟩ for all k = 1, 2, . . . , n.

3.2 Directional Derivatives
Definition 3.3 (Directional derivatives). Let E ⊆ Rn be an open set, f : E → R a
real-valued function, and v ∈ Rn\{0}. The directional derivative of f along the vector
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v at the point a ∈ E is defined as

∇vf(a) = lim
t→0

f (a + tv) − f(a)
t

wherever this limit exists. If this limit does not exist then we say that the directional
derivative of f along v at the point a does not exist. When v is a unit vector (which
means ∥v∥2 = 1), it is also called the derivative in the direction v.

Note that the partial derivative with respect to the variable xk coincides with the
directional derivative along the vector ek, that is,

∂f

∂xk
(a) = ∇ek

f(a).

Properties of directional/partial derivatives: Many of the familiar properties
of the ordinary derivative hold for the directional derivative. In particular, if ∇vf(a)
and ∇vg(a) exist then

1. Linearity: For all α, β ∈ R we have

∇v(αf + βg)(a) = α(∇vf(a)) + β(∇vg(a)).

2. Product rule (or Leibniz’s rule):

∇v(f · g)(a) = g(a) · ∇vf(a) + f(a) · ∇vg(a).

3. Quotient rule: If g(a) ̸= 0 then

∇v

(
f

g

)
(a) = g(a) · ∇vf(a) − f(a) · ∇vg(a)

g(a)2 .

3.3 Differentiability at a Point
Recall from linear algebra that a linear map from Rn to R is a function L : Rn → R
that satisfies linearity, meaning it preserves addition and scalar multiplication: for all
x,y ∈ Rn and all α, β ∈ R, we have

L(αx + βy) = αL(x) + βL(y).

Note that any linear map L can always be represented as L(x) = ⟨w,x⟩, where w ∈ Rn

is a fixed vector and ⟨., .⟩ denotes the standard inner product on Rn defined in (1.1).
Definition 3.4 (Differentiability at a point). Let E be a non-empty open subset of
Rn. A function f : E → R is differentiable at the point a ∈ E if there exists a linear
map La : Rn → R such that

lim
h→0

∣∣∣f (a + h) − f(a) − La(h)
∣∣∣

∥h∥2
= 0.

In this case, the linear map La : Rn → R is called the differential of f at the point a.
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Theorem 3.1 (Fundamental theorem). Suppose f : E → R is a function defined on
a set E ⊆ Rn, and a is an interior point of E. If f is differentiable at a then the
following statements hold:

(i) f is continuous at a.
(ii) All partial derivatives of f at the point a exist, the gradient vector ∇f(a) of f

at the point a exists, and the differential La : Rn → R of f at the point a is the
same as scalar multiplication by the gradient vector, i.e.,

La(v) = ∇f(a) · v, ∀v ∈ Rn.

(iii) All directional derivatives of f at the point a exist and are given by

∇vf(a) = La(v) = ∇f(a) · v, ∀v ∈ Rn.

(iv) For all x ∈ E we have

f(x) = f(a) + ∇f(a) · (x − a) + r1(x),

where r1 is an “error” term satisfying

lim
x→a

r1(x)
∥x − a∥2

= 0.

The function

t(x) = f(a) + ∇f(a) · (x − a)

is called the linearization (or linear approximation) of f at the point a.
(v) The function f(x) = f(x1, . . . , xn) increases most rapidly in the direction ∇f ,

and decreases most rapidly in the direction −∇f . Any vector v ∈ Rn\{0}
orthogonal to ∇f is a direction of zero change.

Figure 3.3: The gradient vector ∇f gives the direction of steepest incline, while the
rate of change in the direction of the contour lines equals 0.
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Remark 3.3. The gradient is perpendicular to the level sets of a function.

Theorem 3.2 (Sufficient conditions for differentiability). Let E ⊆ Rn, f : E → R,
and suppose a is an interior point of E. If there exists δ > 0 such that every partial
derivative ∂f

∂xk
of f exists at every point in the open ball B(a, δ) and ∂f

∂xk
(x1, . . . , xk) is

a continuous function at the point a, then f is differentiable at the point a.

Example 3.2. Consider n = 2, E = R2, f : R2 → R, f(x, y) = x2 − y2. We have:
∂f

∂x
(x, y) = 2x,

∂f

∂y
(x, y) = −2y,

∇f(x, y) = (2x,−2y).

Example 3.3. Let E = {(x, y) ∈ R2 : x > 0} and f(x, y) = ey log x. Then

∂f

∂x
(x, y) = yey log x

x
,

∂f

∂y
(x, y) = ey log x · log x,

∇f(x, y) =
(
yey log x

x
, ey log x · log x

)
.

3.4 Tangent (Hyper)Planes

Recall that a straight line is called a tangent line to the curve y = f(x) at a point
x = a if the line passes through the point (a, f(a)) on the curve and has slope f ′(a),
where f ′(x) is the 1st derivative of f . The equation of the tangent line is then given
by

y = f(a) + f ′(a)(x− a).

The equation of the tangent line is closely related to Taylor’s theorem, which says that
the 1st-order Taylor expansion of f is given by

f(x) =

linear approximation︷ ︸︸ ︷
f(a) + f ′(a)(x− a) +

remainder︷ ︸︸ ︷
r1(x)︸ ︷︷ ︸

1st-order expansion

where r1(x) is an “error” term that satisfies limx→a
r1(x)
|x−a| = 0.

A similar concept applies to multivariate functions in n-dimensional Euclidean
space. As we have seen (cf. part (iv) of Theorem 3.1) if f(x1, . . . , xn) is a function in
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n variables that is differentiable at a point a ∈ Rn then

f(x) = f(a) + La(x − a) + r1(x) =

linear approximation︷ ︸︸ ︷
f(a) + ∇f(a) · (x − a) +

remainder︷ ︸︸ ︷
r1(x)︸ ︷︷ ︸

1st-order expansion

(3.2)

where r1(x) is an “error” term satisfying limx→a
r1(x)

∥x−a∥2
= 0.

Definition 3.5 (Tangent hyperplane). Let E ⊆ Rn and f : E → R, and assume that
a is an interior point of E. Suppose f is differentiable at a, and consider the linear
approximation of f at a given by

t(x) = f(a) + ∇f(a) · (x − a).

The graph of t(x) is called the tangent hyperplane of f at a. That is, the tangent
hyperplane consists of all points (x1, . . . , xn, xn+1) ∈ Rn+1 satisfying the equation

xn+1 = t(x1, . . . , xn).

This equation is commonly referred to as the equation of the tangent hyperplane.

When n = 1, the tangent hyperplane is the same as the tangent line, and when
n = 2 the tangent hyperplane is usually just called the tangent plane (see Fig. 3.4).

Figure 3.4: Tangent plane to a function z = f(x, y) at P = (x0, y0, f(x0, y0)).

Example 3.4. Let us find the equation of the tangent plane to the elliptic paraboloid

z = 2x2 + y2 + 1

at the point (1,−1, 4). This elliptic paraboloid is the graph of the function f(x, y) =
2x2 + y2 + 1. The partial derivatives of f form the gradient given by

∇f(x, y) = (4x, 2y).
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We can now write down the linear approximation of f(x, y) at the point (1,−1) as

t(x, y) = f(1,−1) + ∇f(1,−1) ·
((

x
y

)
−
(

1
−1

))
=

= 4 + (4,−2) ·
(
x− 1
y + 1

)
= 4 + 4(x− 1) − 2(y + 1)
= 4x− 2y − 2.

Thus, the equation of the tangent plane to the elliptic paraboloid at the point (1,−1, 4)
is

z = 4x− 2y − 2.

3.5 Functions of Class C1

Definition 3.6 (Differentiability in a region). Let E ⊆ Rn be an open set and f : E →
R a function on E. If f is differentiable at every point a ∈ E then we say that f is
differentiable on E.

Definition 3.7 (Functions of Class C1). Let E ⊆ Rn be an open set. A function
f : E → R is said to be of class C1(E) if all its partial derivatives exist and are
continuous at each point x ∈ E.

The existence and continuity of the partial derivatives at every point in E implies
the differentiability of the function at every point in E (see Theorem 3.2). It follows
that any function of class C1(E) is differentiable on E.

Proposition 3.1. Let E ⊆ Rn be open and f : E → R a function of class C1(E).
Then f is differentiable on E.

Example 3.5. Consider the function f : R2 → R given by

f(x, y) =
{

xy
x2+y2 if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

We have already studied this function in Example 2.9 and Remark 2.1.
• For (x, y) ̸= (0, 0), we can calculate the partial derivatives as

∂f

∂x
(x, y) = y

x2 + y2 − 2x2y

(x2 + y2)2

∂f

∂y
(x, y) = x

x2 + y2 − 2xy2

(x2 + y2)2 .
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• At the point (0, 0) we can use the definition of partial derivatives and find

∂f

∂x
(0, 0) = lim

h→0

f(h, 0) − f(0, 0)
h

= lim
h→0

0
h

= 0

∂f

∂y
(0, 0) = lim

h→0

f(0, h) − f(0, 0)
h

= lim
h→0

0
h

= 0.

This shows that the partial derivatives ∂f
∂x

and ∂f
∂y

exist for every point in R2. Nonethe-
less, this function is not differentiable at the point (0, 0). Indeed, we have seen in
Example 2.9 that this function is not even continuous at the point (0, 0), so according
to part (i) of Theorem 3.1, it cannot be differentiable at that point. This example
illustrates that even if a function is differentiable in every coordinate, this does not
mean that it is differentiable. In conclusion, the function f is of class C1(R2\{(0, 0)}).

3.6 Second Order Partial Derivatives

The partial derivatives ∂f
∂x1
, . . . , ∂f

∂xn
are also referred to as “partial derivatives of order

1” or “first order partial derivatives”. Let us now define the second order partial
derivatives.

Definition 3.8 (Partial derivatives of second order). Let E ⊆ Rn be an open set and
1 ⩽ k ⩽ n. Assume f : E → R is a function whose partial derivative ∂f

∂xk
exists for

every point in E. For 1 ⩽ i ⩽ n, if the partial derivative of ∂f
∂xk

with respect to the
variable xi at the point a exists, then we obtain a second order partial derivative of f
with respect to xi and xk at a denoted by ∂2f

∂xi∂xk
(a). If this derivative exists for every

a ∈ E, it defines a function ∂2f
∂xi∂xk

: E → R.

If i = k, then it is also common to write ∂2f
∂x2

i
instead of ∂2f

∂xi∂xi
. If i ̸= k, then there

are generally two mixed second-order partial derivatives:

∂2f

∂xi∂xk
and ∂2f

∂xk∂xi
.

These derivatives are not necessarily equal since the order of differentiation can affect
the result. However, as the following theorem states, they are equal if an additional
continuity assumption is satisfied.

Theorem 3.3 (Schwarz’s theorem). Let E ⊆ Rn be open and let f : E → R be a
function defined on E. For any point a ∈ E and indices i, k ∈ {1, . . . , n}, suppose the
mixed partial derivatives ∂2f

∂xi∂xk
and ∂2f

∂xk∂xi
exist in E and are continuous at a. Then,

∂2f
∂xi∂xk

(a) = ∂2f
∂xk∂xi

(a).
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Definition 3.9. The n× n matrix

Hess(f)(a) =


∂2f

∂x1∂x1
(a) . . . ∂2f

∂xn∂x1
(a)

...
. . .

...
∂2f

∂x1∂xn
(a) . . . ∂2f

∂xn∂xn
(a)


is called the Hessian matrix of f at the point a, written Hess(f)(a).

If all the partial derivatives of order 2 exist and are continuous at a then by
Schwarz’s theorem the Hessian matrix is a symmetric matrix, i.e., Hess(f)(a) =
Hess(f)(a)T . In this case we can use the Hessian matrix to form the second order
expansion of a differentiable function, given by

f(x) =

quadratic approximation︷ ︸︸ ︷
linear approximation︷ ︸︸ ︷

f(a) + ∇f(a) · (x − a) + 1
2(x − a)T · Hess(f)(a) · (x − a) +

remainder︷ ︸︸ ︷
r2(x)︸ ︷︷ ︸

2nd-order expansion
(3.3)

where r2(x) is an “error” term satisfying limx→a
r2(x)

∥x−a∥2
2

= 0.

The quadratic approximation is a polynomial of degree 2 in n variables called the
Taylor polynomial of order 2 at the point a and it is usually denoted by P2(x, y).

Example 3.6. Let us find the Taylor polynomial of order 2 for the function f(x, y) =
sin(2x+ y) + 3 cos(x+ y) at the point (0, 0). Recall the formula for computing the
quadratic approximation of a function in two variables at the point (0, 0) is

P2(x, y) = f(0, 0) + ∇f(0, 0) ·
(
x
y

)
+ 1

2(x, y) · Hess (f)(0, 0) ·
(
x
y

)
.

To use this formula, we have to find the gradient vector and the Hessian matrix
first. We have

∇f(x, y) = (2 cos(2x+ y) − 3 sin(x+ y), cos(2x+ y) − 3 sin(x+ y))

which gives

∇f(0, 0) = (2, 1).

Moreover,

Hess(f)(x, y) =
(

−4 sin(2x+ y) − 3 cos(x+ y) −2 sin(2x+ y) − 3 cos(x+ y)
−2 sin(2x+ y) − 3 cos(x+ y) − sin(2x+ y) − 3 cos(x+ y)

)

and hence

Hess(f)(0, 0) =
(

−3 −3
−3 −3

)
.
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It follows that

P2(x, y) = 3 + (2, 1) ·
(
x
y

)
+ 1

2(x, y) ·
(

−3 −3
−3 −3

)
·
(
x
y

)

= 3 + 2x+ y − 3
2x

2 − 3xy − 3
2y

2.

This is a degree 2 polynomial in 2 variables.

3.7 Higher Order Partial Derivatives

Definition 3.10 (Partial derivatives of higher orders). Consider a function f : E → R
defined on an open set E ⊆ Rn. For a sequence of indices i1, . . . , ip with each ij ∈
{1, . . . , n} and for p ⩾ 3, assume that the (p − 1)-th order partial derivative of f ,
denoted as ∂p−1f

∂xi1 ...∂xip−1
, exists in E. Then, the p-th order partial derivative of f with

respect to these indices, if it exists, is given by:

∂pf

∂xip . . . ∂xi1
= ∂

∂xip

(
∂p−1f

∂xi1 . . . ∂xip−1

)
.

This derivative is denoted as ∂f
∂xip ...∂xi1

(a) for any point a ∈ E. If such a derivative
exists for every a ∈ E, it defines a function ∂pf

∂xip ...∂xi1
: E → R.

Example 3.7. Consider a function f : R2 −→ R defined by f(x, y) = x3y2. We
calculate its higher-order partial derivatives as follows:

∂f

∂x
(x, y) = 3x2y2,

∂2f

∂x2 (x, y) = ∂

∂x
(3x2y2) = 6xy2,

∂2f

∂y∂x
(x, y) = ∂

∂y
(3x2y2) = 6x2y,

∂3f

∂y∂x2 (x, y) = ∂

∂y
(6xy2) = 12xy,

∂3f

∂x3 (x, y) = ∂

∂x
(6xy2) = 6y2.

This illustrates the computation of first, second, and third-order partial derivatives for
a function of two variables.

Remark 3.4. Explicit computations also give ∂2f
∂x∂y

(x, y) = 6x2y = ∂2f
∂y∂x

(x, y) and
∂3f

∂x∂y∂x
(x, y) = 12xy = ∂3f

∂y∂x2 (x, y), demonstrating the symmetry in mixed partial
derivatives.
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3.8 Functions of class Cp

Definition 3.11 (Functions of class Cp). Let E be an open subset of Rn and p a
positive integer. A function f : E → R is said to be of class Cp(E) if all its partial
derivatives of order p exist and are continuous at every point in E.
A function f : E → R is said to be of class C∞(E) if, for every integer p > 0, it is of
class Cp(E).

Proposition 3.2. If f : E → R is a function of class Cp(E), then it is also of class
Ck(E) for all 0 < k ⩽ p.

Example 3.8. Consider the function f : R2 → R defined by f(x, y) = x sin(xy).
Then, for every (x, y) ∈ R2, we have:

∂f

∂x
(x, y) = sin(xy) + xy cos(xy),

∂f

∂y
(x, y) = x2 cos(xy),

∂2f

∂x2 (x, y) = 2y cos(xy) − xy2 sin(xy),

∂2f

∂x∂y
(x, y) = ∂2f

∂y∂x
(x, y) = 2x cos(xy) − x2y sin(xy),

∂2f

∂y2 (x, y) = −x3 sin(xy).

Figure 3.5: f(x, y) = x sin(xy)

The following is a corollary of Schwarz’s theorem.

Corollary 3.1. Let f : E → R be a function of class Cp(E) and let k be an integer
between 1 and p. If two ordered k-tuples (i1, · · · , ik) and (j1, · · · , jk) are equal up to
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a permutation, then, for any element a = (a1, . . . , an) of E, we have

∂kf

∂xi1 · · · ∂xik
(a1, · · · , an) = ∂kf

∂xj1 · · · ∂xjk
(a1, · · · , an).

3.9 Taylor’s Theorem for Multivariable Functions
The following is a special (but often very useful) case of Taylor’s theorem for multi-
variate functions.

Theorem 3.4 (Taylor’s Formula – special case). Let E ⊆ Rn be open and f : E → R
a function of class Cp+1(E). Then for every a ∈ E there exists a real number δ > 0
such that B(a, 2δ) ⊆ E and, for every element x ∈ B(a, δ), one can associate a number
0 < θ < 1 so that the following equality (known as Taylor’s formula) holds:

f(x) = F (0) + F ′(0) + . . .+ F (p)(0) 1
p! + F (p+1)(θ) 1

(p+ 1)! ,

where F : (−2, 2) → R is the function defined by F (t) = f(a + t(x − a)).

To state Taylor’s theorem for multivariate functions in full generality, we first
need to introduce the multi-index notation. Given an n-tuple of non-negative integers
α = (α1, . . . , αn) and a point x ∈ Rn, let

|α| = α1 + . . .+ αn, α! = α1! · · ·αn!, xα = xα1
1 · · ·xαn

n .

(Recall that by convention 0! = 1.) For example, if n = 3 and α = (1, 0, 4) then
we have |α| = 1 + 0 + 4 = 5, and α! = 1! · 0! · 4! = 24, and (x1, x2, x3)α = x1x

4
3.

Given a function f : E → R of class Ck(E) and an n-tuple of non-negative integers
α = (α1, . . . , αn) with |α| ⩽ k then we write

Dαf = ∂|α|f

∂xα1
1 · · · ∂xαn

n

.

Since f is of class Ck(E), all its k-th order partial derivatives exist and are continuous
and, by Schwarz’s theorem, one can change the order of mixed derivatives. This ensures
that as long as |α| ⩽ k the above notation is well-defined and unambiguous.

Theorem 3.5 (Multivariate version of Taylor’s theorem). Let k ∈ N. Suppose E ⊆
Rn is open and f : E → R is a function of class Ck(E). Then

f(x) =

kth-order approximation︷ ︸︸ ︷∑
|α|⩽k

Dαf(a)
α! (x − a)α +

remainder︷ ︸︸ ︷
rk(x)

︸ ︷︷ ︸
kth-order expansion

(3.4)

where the sum is taken over all n-tuples of non-negative integers α = (α1, . . . , αn)
with |α| ⩽ k and rk(x) is an “error” term satisfying limx→a

rk(x)
∥x−a∥k

2
= 0.
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Note that if k = 1 then formula (3.4) is the same as (3.2) and if k = 2 then formula
(3.4) is the same as (3.3).

3.10 Local Extreme Values
One of the main uses of ordinary derivatives is in finding maximum and minimum
values (extreme values). In this section we see how to use partial derivatives to locate
maxima and minima of functions in more than one variables. This theory finds many
applications, for example it can be used to maximize the volume of a box without a
lid if we have a fixed amount of cardboard to work with.

Figure 3.6

Look at the hills and valleys in the graph of f shown in Fig. 3.6. There are two
points where f has a local maximum, that is, where f is larger than at nearby values,
and two local minima, where f is smaller than at nearby values. We observe that
at all these extreme values, the tangent plane to the graph is horizontal, or in other
words, all the partial derivatives vanish at these points. This motivates the following
definition.
Definition 3.12 (Stationary Point). We say that a = (a1, . . . , an) ∈ E is a stationary
point of the function f : E → R if all its partial derivatives are well-defined and vanish
at a, that is,

∂f

∂x1
(a1, . . . , an) = . . . = ∂f

∂xn
(a1, . . . , an) = 0.

Definition 3.13 (Local Maximum and Minimum of a Function). We say that the
function f : E → R admits a local maximum (resp. local minimum) at the point a ∈ E
if there exists a real number δ > 0 such that for all x ∈ E we have x ∈ B(a, δ) implies
f(x) ⩽ f(a) (resp. f(x) ⩾ f(a)). Furthermore, we will say that a function admits a
local extreme value at the point a if this function admits either a local maximum or a
local minimum at that point.

The notion of a local maximum or minimum is not to be confused with the notion
of (global) maximum or minimum given in Definition 2.10.
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Theorem 3.6 (Necessary Condition for local extreme values). Let f : E → R be a
function and assume all partial derivatives of f at point a exist. If f has a local
extreme value at the point a, then a must be a stationary point.

Figure 3.7: A so-called monkey saddle surface, with the equation z = x3 − 3xy2.
Its name derives from the observation that a saddle for a monkey would require two
depressions for the legs and one additional depression for the tail.

The geometric interpretation of Theorem 3.6 is that if the graph of f has a tangent
plane and a local extreme value at a point a, then this tangent plane must be horizontal.
Remark 3.5. The condition demonstrated in Theorem 3.6 is only a necessary one,
but not sufficient, because stationary points are not always local extreme values. For
example, let f : R2 → R be the function defined by f(x, y) = x3 − 3xy2. Since

∂f

∂x
(0, 0) = ∂f

∂y
(0, 0) = 0,

ti follows that (0, 0) is a stationary point of f . However, f does not have a local
extreme value at (0, 0), which is evident from the graph of f depicted in Fig. 3.7.
Indeed, we see that this surface has a horizontal tangent plane at the origin, yet it
does not have a local extreme value at that point.

Proposition 3.3. Given a function f : E → R, if f possesses a local extrema at the
point a = (a1, . . . , an), then, in light of the necessary conditions outlined in Theo-
rem 3.6, the point a must fall into one of the following categories:

• Stationary points of f , where the gradient of f exists and vanishes;
• Points within the domain E at which at least one of the partial derivatives of f

does not exist.
This categorization is crucial for identifying the points at which the function f may
achieve its maximum or minimum values, highlighted by either a zero gradient (indi-
cating a lack of change in all directions) or the absence of a derivative (indicative of a
potential sharp point or discontinuity).
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Example 3.9. Consider four points in R2: A = (7, 1), B = (x,−x), C = (y, y), and
D = (8, 4). How should we choose x and y so that the sum of the distances from A to
B, from B to C, and from C to D is minimal? This problem is equivalent to finding
a point in R2 for which the function f : R2 → R defined by

f(x, y) =
√

(x− 7)2 +(−x− 1)2 +
√

(x− y)2 +(−x− y)2 +
√

(y − 8)2 +(y − 4)2

=
√

2
(√

x2 −6x+ 25 +
√
x2 +y2 +

√
y2 −12y+40

)
reaches its minimum. First, we need to demonstrate that such a point exists. For this,
let E = {(x, y) ∈ R2 : x2 + y2 ⩽ 103}. Since f is continuous on E and E is a compact
subset of R2, it follows from the Extreme Value Theorem (see Proposition 2.3) that
there exists an element (a, b) in E such that

f(a, b) = min
(x,y)∈E

f(x, y).

Consequently, noting that for every (x, y) /∈ E:

f(x, y) ⩾
√

2
√
x2 + y2 >

√
2
√

1000 >
√

2(5 +
√

40) = f(0, 0) ⩾ f(a, b)

we can conclude that

f(a, b) = min
(x,y)∈R2

f(x, y).

So there exists a global minimum for the function f . Notice that
∂f

∂x
(x, y) =

√
2
((
x2 − 6x+ 25

)−1/2
(x− 3) +

(
x2 + y2

)−1/2
x
)

∂f

∂y
(x, y) =

√
2
((
x2 + y2

)−1/2
y +

(
y2 − 12y + 40

)−1/2
(y − 6)

)
for (x, y) ̸= (0, 0). Since the only stationary point of f is (1, 2), we can assert that
(a, b) = (1, 2) or (a, b) = (0, 0) (see Proposition 3.3). However,

f(1, 2) = 5
√

10 <
√

2(5 +
√

40) = f(0, 0)

thus, we can affirm that (a, b) = (1, 2). Consequently, the two sought points are

B = (1,−1) and C = (2, 2).

Fig. 3.8 below provides the geometric solution to this problem.

3.11 Global Extreme Values

The Extreme Value Theorem (Proposition 2.3) says that any continuous function on
a compact set attains a maximum and minimum. To find these extreme values (which
are sometimes also called absolute extreme values or global extreme values), we can
employ the following extension of the Closed Interval Method.
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b
1
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8a

Figure 3.8: The aim is to find a point C on the blue line and B on the purple line
such that the distance AB +BC + CD is minimal.

Finding Global Extreme Values. Let f : E → R be a continuous function on
a compact set E and suppose f is differentiable on the interior E̊. To find the
absolute maximum and minimum values of f on E, complete the following three
steps:

1. Find the stationary points of f on the interior E̊.
2. Find the extreme values of f on the boundary ∂E.
3. Compile a list of the function values at the points found in steps 1 and 2. The

largest of these values is the (absolute/global) maximum value; the smallest
of these values is the (absolute/global) minimum value.

Example 3.10. Let us find the absolute maximum and minimum values of the func-
tion f(x, y) = x2 − 2xy + 2y on the rectangle D = {(x, y) : 0 ⩽ x ⩽ 3, 0 ⩽ y ⩽ 2} =
[0, 3] × [0, 2].

Since f is a polynomial, it is continuous on the compact rectangle D, so Proposi-
tion 2.3 tells us there is both an absolute maximum and an absolute minimum. First
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we find all the stationary points. These occur when
∂f

∂x
(x, y) = 2x− 2y = 0,

∂f

∂y
(x, y) = 2x− 2y = 0,

so the only stationary point in is (1, 1). This point is in D̊ and the value of f at this
point is f(1, 1) = 1.

In step 2 we look at the values of f on the boundary of D, which consists of the four
line segments L1 = [0, 3]×{0}, L2 = {3}×[0, 2], L3 = [0, 3]×{2}, and L4 = {0}×[0, 2].
On L1 we have y = 0 and

f(x, 0) = x2, 0 ⩽ x ⩽ 3.

This is an increasing function of x, so its minimum value is f(0, 0) = 0 and its maximum
value is f(3, 0) = 9. On L2 we have x = 3 and

f(3, y) = 9 − 4y, 0 ⩽ y ⩽ 2,

which is a decreasing function of y, so its minimum value is f(3, 2) = 1 and its
maximum value is f(3, 0) = 9. On L3 and L4 we can execute very similar strategies.
We find that when restricted to L3, f has a minimum at (2, 2), which is f(2, 2) = 0
and a maximum value at (0, 2), which is f(0, 2) = 4. The maximum of f on L4 is at
(0, 2), with f(0, 2) = 4, and the minimum is at (0, 0) with f(0, 0) = 0.

In step 3, we compare all the values that we have thus far found:
(x,y) f(x,y)
(1,1) 1
(0,0) 0
(3,0) 9
(3,2) 1
(2,2) 0
(0,2,) 4

We see that the maximum value of f on D is f(3, 0) = 9 and the minimum value is
f(0, 0) = f(2, 2) = 0.

3.12 Saddle Points
Recall that for functions of a single variable, a stationary point c where f ′(c) = 0 may
correspond to a local maximum, a local minimum, or neither. An analogous situation
occurs for multivariate functions. If a is a stationary point of a function f , where
∇f(a) = 0, then f(a) may be a local maximum, a local minimum, or neither. In the
last case, we are dealing with a so-called saddle point of f .
Definition 3.14. If a is a stationary point of a function f that is not a local extreme
value then a is called a saddle point of f .
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The name ‘saddle point’ derives from the fact that the prototypical example in
two dimensions is a surface that curves up in one direction, and curves down in a
different direction, resembling a riding saddle (for a rider of an animal such as a horse)
or landform saddle (a mountain pass between two peaks). In general, the graph of a
function at a saddle point need not resemble an actual saddle, but the graph crosses
the tangent plane at that point.

In summary, saddle points are points where the tangent plane is horizontal, but
there are points arbitrarily close to it where the function value lies above the tangent
plane, and at the same time points arbitrarily close where the function value is below
the tangent plane.

3.13 The Second Derivative Test – two-variable case
We need to be able to determine whether or not a function has an extreme value at
a critical point. The following test is analogous to the Second Derivative Test for
functions of one variable.

Theorem 3.7 (Second Derivative Test – 2 variable case). Let E ⊆ R2 be an open
set and f : E → R a function of class C2(E). Let D denote the determinant of the
Hessian matrix of f at the point (a, b) ∈ E, i.e.,

D = det(Hess(f)(a, b)) =
∣∣∣∣∣∣
 ∂2f

∂x2 (a, b) ∂2f
∂y∂x

(a, b)
∂2f
∂x∂y

(a, b) ∂2f
∂y2 (a, b)

∣∣∣∣∣∣
= ∂2f

∂x2 (a, b) · ∂2f
∂y2 (a, b) −

(
∂2f
∂x∂y

(a, b)
)2
.

If (a, b) is a stationary point then the following conditions determine the nature of the
extreme value at (a, b):

• If D > 0 and ∂2f
∂x2 (a, b) > 0, then f has a local minimum at (a, b).

• If D > 0 and ∂2f
∂x2 (a, b) < 0, then f has a local maximum at (a, b).

• If D < 0, then f has a saddle point at (a, b).
• If D = 0 then the test is inconclusive.

Remark 3.6.
• If D = 0 then the test gives no information: f could have a local maximum or

local minimum or a saddle point at (a, b). An example of such a function would
be f(x, y) = (y − x2)(y − 2x2) at the point (a, b) = (0, 0).

• If D > 0 then ∂2f
∂x2 (a, b) and ∂2f

∂y2 (a, b) are both non-zero and have the same
sign. This means we can replace the condition ∂2f

∂x2 (a, b) > 0 in the first part
of the test with either the condition ∂2f

∂y2 (a, b) > 0 or even with the condition
tr(Hess(f)(a, b)) > 0, the trace of the Hessian matrix. The same goes with the
condition ∂2f

∂x2 (a, b) > 0 in the second part of the test.
• Note that Theorem 3.7 only concerns functions in two variables. There is also

a version of the second derivative test for functions in three and more variables,
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which we cover in the next section.

Example 3.11. The two functions g, h : R2 → R defined respectively by g(x, y) =
x3 + x2 + y3 and h(x, y) = x4 + y4 (see Example 3.11) have (0, 0) as a stationary point
and satisfy (

∂2g

∂x∂y
(0, 0)

)2

− ∂2g

∂x2 (0, 0) · ∂
2g

∂y2 (0, 0) = 0,(
∂2h

∂x∂y
(0, 0)

)2

− ∂2h

∂x2 (0, 0) · ∂
2h

∂y2 (0, 0) = 0.

Since the function g does not have a local extreme value at the point (0, 0), while the
function h does, this example illustrates that for a C2 class function f : R2 → R in the
neighborhood of (a, b) which satisfies

∂f

∂x
(a, b) = ∂f

∂y
(a, b) = 0, and

(
∂2f

∂x∂y
(a, b)

)2

− ∂2f

∂x2 (a, b) · ∂
2f

∂y2 (a, b) = 0,

it is generally not possible a priori to determine whether it admits an extrema at the
point (a, b).

Example 3.12. Let f : R2 → R be the function defined by f(x, y) = y3+3y2−4xy+x2.
Since for all (x, y) ∈ R2:

∂f

∂x
(x, y) = −4y + 2x, ∂f

∂y
(x, y) = 3y2 + 6y − 4x,

and
∂2f

∂x2 (x, y) = 2, ∂2f

∂x∂y
(x, y) = −4, ∂2f

∂y2 (x, y) = 6(y + 1),

it follows that the stationary points of the function f are (0, 0) and (4/3, 2/3), and at
these points

∂2f

∂x2 (0, 0) · ∂
2f

∂y2 (0, 0) −
(
∂2f

∂x∂y
(0, 0)

)2

= −4 < 0,
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and

∂2f

∂x2 (4/3, 2/3) · ∂
2f

∂y2 (4/3, 2/3) −
(
∂2f

∂x∂y
(4/3, 2/3)

)2

= 4 > 0.

Therefore, according to Theorem 3.7, the function f has a local minimum at the point
(4/3, 2/3), while at the point (0, 0), it does not have a local extreme value because it
is a saddle point.

3.14 The Second Derivative Test – general case
Recall from linear algebra that every real symmetric n × n matrix is diagonalizable.
In particular, symmetric matrices possess n real eigenvalues (when counted with mul-
tiplicities) and admit a basis of eigenvectors. This also applies to the Hessian matrix
of a function: As we have learned, if f(x1, . . . , xn) is a function in n variables of class
C2 then its Hessian matrix

Hess(f) =


∂2f

∂x1∂x1
. . . ∂2f

∂xn∂x1
...

. . .
...

∂2f
∂x1∂xn

. . . ∂2f
∂xn∂xn


is a real symmetric matrix, which means it admits n real eigenvalues λ1, . . . , λn. These
eigenvalues determine the curvature behavior of the function f and play a crucial role
in the second derivative test for multivariate functions.

Theorem 3.8 (Second Derivative Test – general case). Let E ⊆ Rn be an open set
and f : E → R a function of class C2(E). Let a ∈ E and let λ1, . . . , λn denote the
eigenvalues of the matrix Hess(f)(a). If a is a stationary point then the following
conditions determine the nature of the extreme value at a:

• If the eigenvalues λ1, . . . , λn are all positive then f has a local minimum at a.
• If the eigenvalues λ1, . . . , λn are all negative then f has a local maximum at a.
• If the eigenvalues λ1, . . . , λn are all non-zero, but some are positive and some are

negative, then f has a saddle point at a.
• If at least one of the eigenvalues λ1, . . . , λn equals zero then the test is inconclu-

sive.

Example 3.13. Let f : R3 → R be a function of class C2(R) and let a be a stationary
point of f . If the three eigenvalues of the Hessian matrix Hess(f)(a) satisfy

λ1 + λ2 + λ3 = 2 and λ1λ2λ3 = −1

then can f have a local extreme value at the point a? The answer is no. Since
λ1λ2λ3 = −1, the Second Derivative Test is not inconclusive, so we must be either in
the first, second, or third case of the test. However, since λ1λ2λ3 is negative we cannot
be in the first case, and since λ1 + λ2 + λ3 is positive we cannot be in the second case.
By method of elimination, we must be in the third case of the test, so a is a saddle
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point of f .

3.15 Implicit Function Theorem

In mathematics, we say that variables are in an explicit relation when one variable is
expressed directly in terms of the other variable(s). For example, an explicit equation
of a variable xn in terms of the variables x1, . . . , xn−1 is a relation of the form

xn = f(x1, . . . , xn−1),

where f is a function of n − 1 variables. In this context, we refer to xn as the de-
pendent variable and x1, . . . , xn−1 as the independent variables and the function f is
the “law” that describes the relationship between xn and x1, . . . , xn−1. The great ad-
vantage of explicit relations is that if one knows the values of all the independent
variables x1, . . . , xn−1 then it is relatively easy to calculate the values of the dependent
variable xn.

In contrast to explicit relations, variables can also be in an implicit relation, which
means their relationship isn’t expressed explicitly in terms of one variable depending
on the others. More precisely, an implicit equation in the variables x1, . . . , xn is a
relation of the form

F (x1, . . . , xn) = c,

where F is a function of n variables and c ∈ R is a constant. For example, the unit
circle is commonly described by the implicit equation

x2 + y2 = 1.

Note that simple implicit equations can easily be transformed into explicit equa-
tions by isolating one variable on one side of the equation. For example, the implicit
equation x + y + z = 1 (which describes a plane in R3) can easily be tuned into the
explicit equation z = 1 − x − y using rudimentary algebraic manipulations. But if
the implicit equation is more complicated then it is often not possible to express one
variable in terms of the others by hand. In this case, we need a more sophisticated
tool, which is where the Implicit Function Theorem comes into play.

An implicit function is a function defined by an implicit equation that expresses
one of the variables, say xn, as a function of other variables, say x1, . . . , xn−1. Here’s
the simple example: The equation x2 + y2 = 1 of the unit circle defines y as an
implicit function of x if −1 < x < 1, and y is restricted to positive values. Under this
restrictions we have

x2 + y2 = 1︸ ︷︷ ︸
implicit equation

⇐⇒ y =
√

1 − x2︸ ︷︷ ︸
implicit function for y>0

,

where f(x) =
√

1 − x2 is the implicit function defined by the implicit equation x2+y2 =
1 in the domain {(x, y) : −1 < x < 1, y > 0}. Similarly, if y is restricted to negative
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values then we have

x2 + y2 = 1︸ ︷︷ ︸
implicit equation

⇐⇒ y = −
√

1 − x2︸ ︷︷ ︸
implicit function for y<0

,

where f(x) = −
√

1 − x2 is the implicit function defined by the implicit equation
x2 + y2 = 1 in the domain {(x, y) : −1 < x < 1, y < 0}. If y = 0, or equivalently if
x = 1 or x = −1, then it is impossible to express y in terms of x and so the implicit
function does not exist.

The Implicit Function Theorem tells under what conditions – and in what neigh-
borhood – an implicit function exists, which helps us deal with cases where we have
an implicit equation relating multiple variables and it’s not easy to solve explicitly for
one variable in terms of the others.

Theorem 3.9 (Implicit Function Theorem). Let n be an integer where n ⩾ 2. Let
E ⊆ Rn be an open set, and let F : E → R be a function of class C1(E). If a =
(a1, . . . , an) ∈ E and c ∈ R is such that

F (a) = c and ∂F

∂xn
(a) ̸= 0,

then there exist a neighborhood U ⊆ Rn−1 of the point (a1, . . . , an−1), a neighbor-
hood V ⊆ R of the point an, and a unique function f : U → V such that for all
(x1, . . . , xn−1) ∈ U and all xn ∈ V we have

F (x1, . . . , xn) = c ⇐⇒ xn = f(x1, . . . , xn).

The function f : U → V is called the implicit function for the equation F (x1, . . . , xn) =
c at the point (a1, . . . , an).

Remark 3.7. Note that the implicit function f : U → V satisfies

an = f(a1, . . . , an−1).

This follows from the assumption F (a1, . . . , an) = c.

Remark 3.8. If, in the statement of the Implicit Function Theorem Theorem 3.9, we
do not assume that ∂F

∂xn
(a) ̸= 0, then the result may no longer be true, even if the other

assumptions are satisfied. For example, this is the case for the function F : R2 → R
defined by F (x, y) = x2 + y2 for a = (0, 0).

Example 3.14. Let F : R2 → R be the function defined by F (x, y) = 1 − yex + xey.
Since F (0, 1) = 0 and ∂F

∂y
(0, 1) = −1, we know, thanks to the Implicit Function

Theorem, that there exists a real number δ > 0 and a continuously differentiable
function f : (−δ, δ) → R satisfying the following two properties (see Example 3.14):
f(0) = 1 and F (x, f(x)) = 0 for every x ∈ (−δ, δ). Since the derivative of the function
s → F (s, f(s)) is zero, we can use the chain rule for multivariable functions (which we
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will cover in Section 5.6) to conclude that
∂F

∂x
(0, 1) + ∂F

∂y
(0, 1)f ′(0) = 0

and therefore

f ′(0) = −
∂F
∂x

(0, 1)
∂F
∂y

(0, 1)
= −1 + e.

3.16 Implicit Differentiation
The technique we used at the end of Example 3.14 to compute the derivative of a
function is called implicit differentiation.

Theorem 3.10 (Implicit differentiation). Let n be an integer, where n ⩾ 2, let E
be an open subset of Rn, and let F : E → R be a function of class C1(E). Sup-
pose a = (a1, . . . , an) and there exists exists a real number δ > 0 and a function
f : B((a1, . . . , an−1) , δ) → R of class C1(B((a1, . . . , an−1) , δ)) such that

F (x1, . . . , xn−1, f(x1, . . . , xn−1)) = 0

holds for all (x1, . . . , xn−1) ∈ B((a1, . . . , an−1) , δ). Then

∂f

∂xj
(a1, . . . , an−1) = −

∂F
∂xj

(a)
∂F
∂xn

(a)
, ∀j = 1, . . . , n− 1.

3.17 Tangent Line to Implicit Curves
An implicit curve is a plane curve defined by an implicit equation relating two variables,
commonly x and y. For example, the unit circle is defined by the implicit equation
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x2 + y2 = 1. In general, every implicit curve is defined by an equation of the form

F (x, y) = c

for some function F of two variables and some constant c. Hence an implicit curve can
always be considered as the level curve of a function in two variables (cf. Definition 2.2).
In this context, “implicit” means that the equation is not expressed explicitly in either
one of the variables of the function.

Figure 3.9: The implicit curve sin(x+ y) − cos(xy) + 1 = 0 plotted as a graph in 2
dimensions (left) and as a level curve of the surface z = sin(x+ y) − cos(xy) + 1 in 3
dimensions (right). This example also showcases the possibly complicated geometric
structure of an implicit curve.

Let D ⊆ R2 be an open set, F : D → R a function of class C1(D), c ∈ R, and
consider the implicit curve defined by the equation

F (x, y) = c, (x, y) ∈ D.

The implicit function theorem (Theorem 3.9) describes conditions under which the
above equation can be solved in terms of x and/or y. This theorem is key for the
computation of essential geometric features of implicit curves such as tangents, normal
vectors, and curvature. In particular, the Implicit Function Theorem says that if
(a, b) ∈ D such that

F (a, b) = c and ∂F

∂y
(a, b) ̸= 0,

then there exists a function f such that for all points (x, y) ∈ D with ∥(x, y) − (a, b)∥
sufficiently small, we have F (x, y) = c ⇐⇒ y = f(x). This leads to two crucial
insights:

• Equivalence between the level set and the graph of f : If the point (x, y)
is sufficiently close to (a, b) then it satisfies the equation F (x, y) = c if and only
if it lies on the graph of the function f . Formally, this relationship is expressed
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as:

(x, y) ∈ Lc(F ) ⇐⇒ (x, y) ∈ G(f),

where Lc(F ) = {(x, y) ∈ D : F (x, y) = c} denotes the level set of F at height c,
and G(f) = {(x, f(x)) : x ∈ dom(f)} represents the graph of the function f .

• Tangent line equation at a point on the graph of f : Recall from your
Analysis I course that the tangent to the graph of f at the point (a, b) is given
by the equation

y = f(a) + f ′(a) · (x− a).

By implicit differentiation (Theorem 3.10) we know that

f ′(a) = −
∂F
∂x

(a, b)
∂F
∂y

(a, b)
,

which allows us to rewrite the equation of the tangent line as

y = f(a) −
∂F
∂x

(a, b)
∂F
∂y

(a, b)
· (x− a).

Finally, using f(a) = b, we can express the tangent line of F at the point (a, b)
in terms of the gradient as

∇F (a, b) ·
(
x− a
y − b

)
= 0.

Equation of the tangent line to an implicit curve. Let D ⊆ R2 be an open
set, F : D → R a function of class C1(D), and c ∈ R a real number. Consider the
implicit curve defined by the equation F (x, y) = c. If (a, b) is a point on this curve
with ∇F (a, b) ̸= 0 then the equation of the tangent line to this implicit curve at
the point (a, b) is

∇F (a, b) ·
(
x− a
y − b

)
= 0.

Example 3.15. Given c > 0, let us find the tangent line to the circle x2 + y2 = c at
a point (a, b) on this circle.

Letting F (x, y) = x2 + y2, the level set Lc(F ) is a circle of radius
√
c. For a point

(a, b) such that a2 + b2 = c and b ̸= 0, the condition ∂F
∂y

(a, b) = 2b ̸= 0 holds. Thus,
near (a, b), the level set Lc(F ) corresponds to the graph of the function x 7→ f(x),
defined as f(x) =

√
c− x2. If a2 + b2 = c with b = 0, we can swap the roles of x and

y, as then
∂F

∂x
(a, b) = 2a ̸= 0.
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In either one of the two cases, the gradient of F is ∇F (x, y) = (2x, 2y) and hence
∇F (a, b) = (2a, 2b). Therefore, the equation of the line through the point (a, b) and
tangent to the circle x2 + y2 = c is

(2a, 2b) ·
(
x− a
y − b

)
= 0.

Using a2 + b2 = c, this can be simplified to

ax+ by = c.

3.18 Tangent Plane to Implicit Surfaces
An implicit surface is a surface in R3 defined by an equation of the form

F (x, y, z) = d,

where F is some function depending on three variables and d is some constant real
number. Implicit surfaces are the same as level surfaces of functions in three variables.

Figure 3.10: The surface that is depicted above is defined by the implicit equation
2y(y2 − 3x2)(1 − z2) + (x2 + y2)2 − (9z2 − 1)(1 − z2) = 0.

Let D ⊆ R3 be an open set, F : D → R be a function of class C1(D), and (a, b, c) ∈
D with d ∈ R such that

F (a, b, c) = d and ∂F

∂z
(a, b, c) ̸= 0.

The Implicit Function Theorem guarantees the existence of a differentiable function f
such that for all

c = f(a, b) and F (x, y, f(x, y)) = d for all (x, y) sufficiently close to (a, b).

• First consequence: For any (x, y, z) sufficiently close to (a, b, c), we have :

F (x, y, z) = d ⇐⇒ z = f(x, y).
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In other words, locally around the point (a, b, c) the level set Ld(F ) and the
graph G(f) coincide.

• Second consequence: As we have learned in Section 3.4, the equation of the
tangent plane to the graph of f at (a, b) is given by

z = f(a, b) + ∂f

∂x
(a, b)(x− a) + ∂f

∂y
(a, b)(y − b).

On the other hand, using implicit differentiation (Theorem 3.10) we have

∂f

∂x
(a, b) = −

∂F
∂x

(a, b, c)
∂F
∂z

(a, b, c)
and ∂f

∂y
(a, b) = −

∂F
∂y

(a, b, c)
∂F
∂z

(a, b, c)
.

So we can rewrite the equation of the tangent plane in terms of the gradient of
F as

∇F (a, b, c) ·

x− a
y − b
z − c

 = 0,

which is the equation of the tangent plane to the graph of f at the point (a, b, c).
Thus, ∇F (a, b, c) is orthogonal to the tangent plane of the graph of f at (a, b, c).

Equation of the tangent plane to an implicit surface. Let D ⊆ R3 be an
open set, F : D → R a function of class C1(D), and d ∈ R a real number. Consider
the implicit curve defined by the equation F (x, y, z) = d. If (a, b, c) is a point on
this curve with ∇F (a, b, c) ̸= 0 then the equation of the tangent plane to this
implicit surface at the point (a, b, c) is

∇F (a, b, c) ·

x− a
y − b
z − c

 = 0.

Example 3.16. Let F (x, y, z) = x2 +y2 + z2 and consider the level set F (x, y, z) = 1,
which describes a sphere of radius 1. For a point (x0, y0) such that x2

0 + y2
0 < 1, let

z0 = ±
√

1 − x2
0 − y2

0. We have F (x0, y0, z0) = 1 and ∂F
∂z

(x0, y0, z0) = 2z0 ̸= 0. The
equation of the tangent plane at the point (x0, y0, z0) is given by:

∇F (x0, y0, z0) ·

x− x0
y − y0
z − z0

 = 0 ⇐⇒

2x0
2y0
2z0

 ·

x− x0
y − y0
z − z0

 = 0.

Simplifying the expression and using x2
0 + y2

0 + z2
0 = 1 we get the euqation of the

tangent plane as

x0x+ y0y + z0z = 1.
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3.19 Method of Lagrange Multipliers – single con-
straint

Constrained optimization is the process of optimizing a function with respect to some
variables in the presence of constraints on those variables. The Method of Lagrange
Multipliers is a powerful technique for constrained optimization. It lets you find the
maximum or minimum of a multivariable function subject to an implicit constraint
equation. While it was originally developed to solve physics equations, today it finds
applications in all sciences, especially in machine learning. To motivate the subject
matter, let us first look at a simple constrained optimization problem that you are
probably familiar with from your high school mathematics education.
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Example 3.17. For a rectangle whose perimeter is 20 meters, find the dimensions
that will maximize the area.

Solution: Let x denote the width and y the height of the rectangle in question. Both
the area A(x, y) = xy and the perimeter P (x, y) = 2x + 2y of the rectangle are
functions in the two variables x and y. The constrained optimization problem can
now be summarized as:

Maximize : A(x, y),
Constraint : P (x, y) = 20.

There is a simple method, using single-variable calculus, for solving this problem.
Since the implicit equation 2x + 2y = 20 can easily be recast as an explicit equation
y = 10 − x, we can substitute this explicit formula into A(x, y) to get a new function
f(x) = A(x, 10 − x) = 10x− x2. This is now a function of x alone, so we just have to
maximize the function f(x) = 10x − x2 on the interval [0, 10]. Since f ′(x) = 10 − 2x
we see that x = 5 is a stationary point for f(x). Since f ′′(5) = −2 < 0, the Second
Derivative Test tells us that x = 5 is a local maximum for f , and hence x = 5 must
be the global maximum on the interval [0, 10] (since the interval is compact and the
function f equals 0 at the endpoints of the interval). So since y = 10 − x = 5, then
the maximum area occurs for a rectangle whose width and height are both equal to 5
meters.

Notice in the above example that the ease of the solution depended on being able
to solve the constraint equation for one variable in terms of the other. However, this is
not always possible, especially when the constraint equation is more complicated and
when there are more variables involved. In this case, the hands-on task of solving the
constraint equation in terms of one of the variables is replaced by an application of
the Implicit Function Theorem.

The general type of constrained optimization problem that we are interested in is:

Maximize (or minimize) : f(x1, . . . , xn),
Constraint : g(x1, . . . , xn) = c.

The function being maximized or minimized, f(x1, . . . , xn), is called the objective func-
tion. The function, g(x1, . . . , xn), whose level set at height c represents the constraint,
that is, all the values allowed to be considered for the optimization, is called the con-
straint function. Points (x1, . . . , xn) which yield maxima or minima of f(x1, . . . , xn)
with the condition that they satisfy the constraint equation g(x1, . . . , xn) = c are called
constrained maximum points or constrained minimum points, respectively.

A constrained optimization problem in two variables has an illustrative geomet-
ric interpretation. Indeed, if the input space is two-dimensional, then the graph of
the objective function f(x, y) is a 3 dimensional surface and the constraint equation
g(x, y) = c is a curve in 2 dimensions. We can projected the curve (in red) onto
the surface (in blue) as shown in Fig. 3.11. The goal of the constrained optimization
problem is simply to find the highest (resp. lowest) point on that red line.
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Figure 3.11: Constrained optimization problem in two variables.

In Fig. 3.11 we see that the highest point on the red line is the point where the
red line is tangent to a level curve of f(x, y). But the red line is itself a level curve
coming from the function g(x, y). So the core idea is to look for points where the level
curves of f(x, y) and g(x, y) are tangent. This is the same as finding points where the
gradient vectors ∇f and ∇g are are parallel to each other (see Fig. 3.12). In other
words, there exists some λ ∈ R such that ∇f = λ∇g.

Figure 3.12: Maximization of function f(x, y) subject to the constraint g(x, y) = 0.
At the constrained local extreme value, the gradients of f and g, namely ∇f(x, y) and
∇g(x, y), are parallel.

In general, the Lagrange multiplier method for solving constrained optimization
problems can be stated as follows.

Theorem 3.11 (Lagrange Multiplier Theorem). Consider an open set E ⊆ Rn, two
functions f, g : E → R of class C1(E) and let c ∈ R be a constant. If the function f
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restricted to the level set {x ∈ E : g(x) = c} achieves a local extreme value at a point
a and additionally ∇g(a) ̸= 0 then there must be a scalar number λ ∈ R such that
∇f(a) = λ∇g(a). The number λ is called the Lagrange multiplier.

Example 3.18. For a rectangle whose perimeter is 20 m, use the Lagrange multiplier
method to find the dimensions that will maximize the area.

Solution: As we saw in Example 3.17, with x and y representing the width and height,
respectively, of the rectangle, this problem can be stated as:

Maximize : A(x, y) = xy

Constraint equation : P (x, y) = 2x+ 2y = 20

In light of Theorem 3.11, the above can only have a solution when ∇A(x, y) =
λ∇P (x, y) for some λ. Since ∇A(x, y) = (y, x) and ∇P (x, y) = (2, 2), we need to
solve the system of equations

y = 2λ ,
x = 2λ.

The general idea is to solve for λ in both equations, then set those expressions equal
(since they both equal λ) to solve for x and y. Doing this we get

y

2 = λ = x

2 =⇒ x = y.

Substituting either of the expressions for x or y into the constraint equation, we obtain

20 = g(x, y) = 2x+ 2y = 2x+ 2x = 4x =⇒ x = 5 =⇒ y = 5.

Hence there must be a maximum area, since the minimum area is 0 and f(5, 5) =
2S > 0, so the point (5, 5) that we found (called a constrained critical point) must be
the constrained maximum. Therefore the maximum area occurs for a rectangle whose
width and height both are 5 meters.

Example 3.19. Let us find the constrained extreme values of the expression x + z
subject to the constrained g(x, y, z) = x2 + y2 + z2 = 1. In other words,

Maximize (and minimize) : f(x, y, z) = x+ z,

Constrained equation : g(x, y, z) = x2 + y2 + z2 = 1.

By Theorem 3.11, the strategy is to look for solutions to the equation ∇f(x, y, z) =
λ∇g(x, y, z). Since ∇f(x, y, z) = (1, 0, 1) and ∇g(x, y, z) = (2x, 2y, 2z), we have

1 = 2λx
0 = 2λy
1 = 2λz

The first equation implies λ ̸= 0 (otherwise we would have 1 = 0), so we can divide
by λ in the second equation to get y = 0 and we can divide by λ in the first and
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third equations to get x = 1
2λ = z. Substituting these expressions into the constraint

equation g(x, y, z) = x2 + y2 + z2 = 1 yields the constrained critical points ( 1√
2 , 0,

1√
2)

and ( −1√
2 , 0,

−1√
2). Since f( 1√

2 , 0,
1√
2) > f( −1√

2 , 0,
−1√

2), and since the constraint equation
x2 + y2 + z2 = 1 describes a sphere (which is bounded) in R3, then ( 1√

2 , 0,
1√
2) is the

constrained maximum point and ( −1√
2 , 0,

−1√
2) is the constrained minimum point.

Example 3.20. We aim to prove that for any m-tuple of positive real numbers
(α1, . . . , αm), the following inequality holds:

m
√
α1 · . . . · αm ⩽

α1 + . . .+ αm
m

.

In other words, the geometric mean of a finite number of elements from R∗
+ is never

greater than their arithmetic mean.
Given an arbitrary m-tuple of positive real numbers

α = (α1, . . . , αm),

let us consider the set

E = {(x1, . . . , xm) ∈ Rm : x1 ⩾ 0, . . . , xm ⩾ 0}

and define two functions f, g : E → R by

f(x1, . . . , xm) = m
√
x1 · . . . · xm,

g(x1, . . . , xm) = x1 + . . .+ xm − β, where β = α1 + . . .+ αm.

Given that

E1 = {(x1, . . . , xm) ∈ E | g (x1, . . . , xm) = 0}

is a compact subset of Rm and f is continuous, there exists at least one element
a = (a1, . . . , am) in E1 where the restriction of f to E1 achieves its maximum. The
method of Lagrange multipliers asserts that this maximum, referred to as a constrained
maximum, occurs in the following cases:

1) a1 · . . . · am = 0,
2) a1 · . . . · am > 0 and there exists a real number λ such that



∂f

∂x1
(a) + λ

∂g

∂x1
(a) = 0,

...

∂f

∂xm
(a) + λ

∂g

∂xm
(a) = 0.

In the first case, we have f(a) = 0. Observing that ( β
m
, . . . , β

m
) ∈ E1 and that

f( β
m
, . . . , β

m
) > 0, we conclude that the first case does not occur for a point a where
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the constrained maximum is achieved. In the second case, f is indeed of class C1 in
the vicinity of a and there exists a real number λ such that

1
m

m
√
a1 · . . . · am

a1
+ λ = 0,

...

1
m

m
√
a1 · . . . · am
am

+ λ = 0.

Therefore, by solving this system and taking into account that a1 + . . .+ am = β, we
deduce that

a1 = . . . = am = β

m
,

and thus the constrained maximum is achieved at a =
(
β
m
, . . . , β

m

)
∈ E1. Finally, since

α = (α1, . . . , αm) ∈ E1, we can state that

m
√
α1 · . . . · αm = f(α) ⩽ f(a) = m

√
a1 · . . . · am = β

m
= α1 + . . .+ αm

m
.

Example 3.21. Consider a situation in which ∇g(x0, y0) ̸= 0 is not satisfied, and
thus the theorem cannot be applied to the functions f(x, y) = x2 + y and g(x, y) = y2.
Clearly, f admits a local minimum at (x0, y0) = (0, 0) under the constraint g(x0, y0) =
0, since f(x, 0) = x2.

Moreover, we have

∇f(x, y) =
(

2x
1

)
, ∇g(x, y) =

(
0
2y

)
,

∇f(0, 0) =
(

0
1

)
, ∇g(0, 0) =

(
0
0

)
,

hence there exists no λ ∈ R such that

∇f(0, 0) = λ∇g(0, 0).

Here, ∇g(x0, y0) ̸= 0 is not satisfied.

In fact, ∇g(x, y) =
(

0
2y

)
for all (x, y) ∈ R2 st. g(x, y) = 0.

Intuitive Explanation for the Theorem: We argue by contradiction and
assume that the calculation is false. That is, ∇f(x0, y0) is not a multiple of ∇g(x0, y0)
(in particular ∇f(x0, y0) ̸= 0). Fix c = f(x0, y0) ∈ R. Since ∇f(x0, y0) is orthogonal
to the level set Lc(f) at (x0, y0), and ∇g(x0, y0) is orthogonal to the level set L0(g) at
(x0, y0), we deduce that Lc(f) crosses L0(g) without being tangent to it. This implies
that for ε > 0 small enough, L0(g) also crosses Lc+ε(f) and Lc−ε(f). In particular, f
does not have a local extremum at (x0, y0).
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Example 3.22. Consider a box without a cover.

Volume = abc,

Surface Area = ab+ 2ac+ 2bc.

Find all those boxes of maximal volume for a given surface area S > 0. We put
x = ab, y = ac, z = bc, so f(x, y, z) = √

xyz represents the volume.

g(x, y, z) = x+ 2y + 2z − S = 0, E =
{
(x, y, z) ∈ R3 : x ⩾ 0, y ⩾ 0, z ⩾ 0

}
.

For x, y, z, we recover a, b, c as: a =
√

xy
z
, b =

√
xz
y
, c =

√
yz
x

. Moreover, xyz = 0 ⇔
abc = 0 ⇔ zero volume (not maximal). We look for (x0, y0, z0) ∈ E such that f reaches
its maximum under the constraint g(x, y, z) = 0. Since {(x, y, z) ∈ E : g(x, y, z) = 0}
is compact (closed and bounded), and f is continuous, such a maximum (x0, y0, z0)
exists.

Observe, moreover, that ∇g(x, y, z) = (1, 2, 2) ̸= 0. We then search for (x, y, z) ∈ E
and λ ∈ R such that: {

∇f(x, y, z) = λ∇g(x, y, z)
g(x, y, z) = 0

That is, we have:
1

2√
xyz

yz = λ

1
2√

xyz
xz = 2λ

1
2√

xyz
xy = 2λ

x+ 2y + 2z − S = 0

Substituting, we get:

xz = 2yz (1)
xy = 2yz (2)
x+ 2y + 2z − S = 0 (3)

From equations (1) and (2), we obtain y = x
2 and z = x

2 . Substituting into (3), we
have:

x+ x+ x− S = 0 =⇒ x = S

3
Thus,

x = S

3 , y = S

6 , z = S

6 , and f(x, y, z) =
√
S

3 · S6 · S6 = 1
6

√
S3

3 > 0.

For all points (x, y, z) on the boundary of E, denoted as ∂E, the function f satisfies
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f(x, y, z) = 0 < 1
6

√
S3

3 . Therefore, the final solution is given by the point (x0, y0, z0) =(
S
3 ,

S
6 ,

S
6

)
.

In terms of variables (a, b, c), we have:

a0 =
√
x0y0

z0
=
√
S

3 , b0 =
√
S

3 , c0 = 1
2

√
S

3 .





Chapter 4

Parametric Curves in Rn

We now turn our attention to a particularly important case of vector-valued functions,
where the domain is an interval of R and its range is a subset of Rn with n ⩾ 2, in
which case there exist specific notions and terminology.

Definition 4.1 (Parametric Curve). Let n ⩾ 1 be an integer. Given a non-empty
interval I ⊆ R, a (vector-valued) function of the from f : I → Rn is called a parametric
curve in Rn.

Given a parametric curve

f(t) =


f1(t)
...

fn(t)

 , t ∈ I,

the functions f1, . . . , fn are called the component functions of f . The interval I is called
the parameter interval of the curve and the variable t is the parameter. The image of
f

Im f = {f(t) : t ∈ I}

is also called the trace of f . Parametric curves are often used to describe the path of
a moving particle in space, where the particle’s position, represented as a point in R3,
varies with a single time-parameter t. The image of the parametric curve corresponds
to the trajectory “traced” by the moving particle, thus earning the name trace.

Example 4.1 (Helix). For r > 0 and c ∈ R let f : R → R3 be given by

f(t) =

 r cos t
r sin t
ct


79
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Figure 4.1: Helix

Example 4.2 (A non-injective curve). Let f : R → R2 be the function

f(t) =
(
t2 − 1
t3 − t

)

We have f(−1) = f(1) = 0 and

Im(f) = f(R) =
{
(x, y) ∈ R2 : x2 + x3 = y2

}

Example 4.3. Let us find a parametric curve whose trace represents the curve of
intersection of the cylinder x2 + y2 = 1 and the plane y + z = 2 (see Fig. 4.2).

Let C denote the parametric curve that we are seeking. The projection of C onto
the xy-plane is the circle x2 + y2 = 1, z = 0. The parametrization of this circle is
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given by

x(t) = cos(t), y(t) = sin(t), t ∈ [0, 2π).

From the equation of the plane, we have

z(t) = 2 − y(t) = 2 − sin(t), t ∈ [0, 2π).

So we can write parametric function tracing the curve C as

r(t) =

x(t)
y(t)
z(t)

 , t ∈ [0, 2π),

where

x(t) = cos(t), y(t) = sin(t), and z(t) = 2 − sin(t).

The arrows on the right in Fig. 4.2 indicate the direction in which C is traced by the
parametric curve r(t) as the parameter t ranges from 0 to 2π.

Figure 4.2

4.1 Continuity and Differentiability of Parametric
Curves

Definition 4.2 (Continuity). A parametric curve f : I → Rn is continuous at t0 ∈ I
if and only if, for every real number ε > 0, there exists a real number δ > 0 such that
for all t ∈ I,

|t− t0| ⩽ δ =⇒ ∥f(t) − f(t0)∥2 ⩽ ε.

If f : I → Rn is continuous at every t ∈ I then f is also referred to as a path in Rn.
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Proposition 4.1. Suppose f(t) : I → Rn is a parametric curve in Rn and

f(t) =


f1(t)
...

fn(t)


are its components functions. Then f(t) is continuous at t0 if and only if all of its
component functions f1(t), . . . , fn(t) are continuous at t0.

Definition 4.3 (Differentiability). We say that the curve f is differentiable at t0 ∈ I
and that its tangent vector (or velocity vector) at t0 is f ′(t0) ∈ Rn if

lim
t→t0

∥∥∥∥∥f(t) − f(t0)
t− t0

− f ′(t0)
∥∥∥∥∥

2
= 0.

If f is differentiable at t0 and f ′(t0) ̸= 0 then the vector
1

∥f ′(t0)∥2
f ′(t0)

is called the unit tangent vector.

Proposition 4.2. Suppose f(t) : I → Rn is a parametric curve in Rn and

f(t) =


f1(t)
...

fn(t)


are its components functions. Then f(t) is differentiable at t0 if and only if all of its
component functions f1(t), . . . , fn(t) are differentiable at t0. In this case,

d

dt
f(t0) = f ′ (t0) =


f ′

1(t0)
...

f ′
n(t0)

 .
Properties of tangent vectors: Below, we see that many of the differentiation
formulas for real-valued functions have their counterparts for parametric curves.

1. Linearity: For all α, β ∈ R we have
d

dt
[αu(t) + βv(t)] = αu′(t) + βv′(t).

2. Product rule for scalar products:
d

dt
[g(t)u(t)] = g′(t)u(t) + g(t)u′(t)

3. Product rule for inner products:
d

dt
[u(t) · v(t)] = u′(t) · v(t) + u(t) · v′(t).
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4. Chain rule:
d

dt
[u(g(t))] = u′(g(t))g′(t).

Definitions 4.1. Let f : I → Rn be a parametric curve with component functions
f1, . . . , fn. Let k ⩾ 1 be an integer. If the derivatives f (m)

j exist and are continuous on
I for all 1 ⩽ m ⩽ k and all 1 ⩽ j ⩽ n, then the curve f is said to be of class Ck(I). If
f is of class Ck(I) for all k ⩾ 1, it is said to be of class C∞(I).

Example 4.4. Consider the curve

x = t3 − t, y = e2t, z = cos(3t).

Let us find the equation of the tangent line at t = 1.

First, we compute the Velocity Vector:

v(t) =
(
d

dt
(t3 − t), d

dt
e2t,

d

dt
cos(3t)

)
= (3t2 − 1, 2e2t,−3 sin(3t)).

At t = 1, this yields

v(1) = (3(1)2 − 1, 2e2,−3 sin 3) = (2, 2e2,−3 sin 3).

We also need the point of tangency, which is

P = (13 − 1, e2(1), cos(3(1))) = (0, e2, cos 3).

We can now write the tangent line equations (in parametric form) as

x = 0 + 2s, y = e2 + 2e2s, z = cos 3 − 3 sin 3 · s.

Thus, the tangent line at (0, e2, cos 3) follows the direction (2, 2e2,−3 sin 3).

4.2 Motion in Space: Velocity and Acceleration

We can use vector-valued functions to represent physical quantities, such as velocity,
acceleration, force, momentum, etc. For example, let the real variable t represent time
elapsed from some initial time (such as t = 0), and suppose that an object of constant
mass m is subjected to some force so that it moves in 3-dimensional space, with its
position (x, y, z) at time t a function of t. That is, x = x(t), y = y(t), z = z(t) for
some real-valued functions x(t), y(t), z(t). Call r(t) = (x(t), y(t), z(t)) the position
vector of the object. We can define various physical quantities associated with the
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object as follows:

position: r(t) =

x(t)
y(t)
z(t)


velocity: v(t) = ṙ(t) = r ′(t) = dr

dt

=

x
′(t)
y′(t)
z′(t)


acceleration: a(t) = v̇(t) = v ′(t) = dv

dt

= r̈(t) = r ′′(t) = d2r
dt2

=

x
′′(t)
y′′(t)
z′′(t)


momentum: p(t) = mv(t)

force: F(t) = ṗ(t) = p ′(t) = dp
dt

(Newton’s Second Law of Motion)

The magnitude ∥v(t)∥2 of the velocity vector is called the speed of the object. Note that
since the mass m is a constant, the force equation becomes the familiar F(t) = ma(t).

Example 4.5. Let us show that if ∥r(t)∥2 = c (a constant) then r′(t) is orthogonal
to r(t) for all t.

To prove this claim, we will simply use the product rule for inner products. Since

r(t) · r(t) = ∥r(t)∥2
2 = c2

and c2 is a constant, we have
d

dt

(
r(t) · r(t)

)
= 0.

By the product rule, the left hand side is
d

dt

(
r(t) · r(t)

)
= r′(t) · r(t) + r(t) · r′(t) = 2r′(t) · r(t).

Thus r′(t) · r(t) = 0, which says that r′(t) and r(t) are orthogonal.

Example 4.6. An object with mass m that moves in a circular path with constant
angular speed ω has position vector r(t) = (a cos(ωt), a sin(ωt)). Find the force acting
on the object and show that it is directed toward the origin.
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To find the force, we first need to know the acceleration:

v(t) = r′(t) =
(

−aω sin(ωt)
aω cos(ωt)

)

a(t) = v′(t) =
(

−aω2 cos(ωt)
−aω2 sin(ωt)

)
.

Therefore Newton’s Second Law gives the force as

F(t) = ma(t) = −mω2
(
a cos(ωt)
a sin(ωt)

)
.

Notice that F(t) = −aω2r(t). This shows that the force acts in the direction opposite
to the radius vector r(t) and therefore points toward the origin. Such a force is called
a centripetal (center-seeking) force.

4.3 Arc Length
Definition 4.4 (Length of a Curve Arc). Let there be a curve f : I → Rn of class
C1(I) and let a < b ∈ I. The arc length of the curve f : [a, b] → Rn is defined as

L(f) =
∫ b

a
∥f ′(t)∥2 dt.

Given that the interval [a, b] is closed and bounded, L(f) < +∞.
Example 4.7. In R2, consider the circle with center c = (c1, c2) and radius r > 0
parameterized by

f(θ) =
(
c1 + r cos(aθ)
c2 + r sin(aθ)

)
= c + r

(
cos(aθ)
sin(aθ)

)
, θ ∈ R

where a > 0 is a constant. The length of the curve arc f : [0, 2π/a] → R2 is∫ 2π/a

0
ra dθ = 2πr.

Example 4.8. Given a continuously differentiable function g : I → R, consider its
parameterized graph:

f(t) =
(

t
g(t)

)
, t ∈ I.

For a < b ∈ I, the arc length of the graph is therefore given by∫ b

a
∥f ′(t)∥2 dt =

∫ b

a

√
1 + (g′(t))2 dt.

Proposition 4.3 (Derivative of an Integral Depending on a Parameter). Let a < b
be two real numbers, I an open interval, and f : [a, b] × I → R a continuous function
whose partial derivative with respect to the second variable exists and is continuous



86 CHAPTER 4. PARAMETRIC CURVES IN Rn

on [a, b] × I. Then, the function F : I → R defined by

F (t) =
∫ b

a
F (x, t) dx

is continuously differentiable on I and, moreover, for every t ∈ I, we have:

F ′(t) =
∫ b

a

∂f

∂t
(x, t) dx.

Proposition 4.4. Let a, b : R → R be of class C1(R), and f : R2 → R of class C1(R2),
and define F (t) by

F (t) =
∫ b(t)

a(t)
f(x, t) dx.

Then F is continuously differentiable on R and

F ′(t) = F (b(t), t) · b′(t) − F (a(t), t) · a′(t) +
∫ b(t)

a(t)

∂f

∂t
(x, t) dx.

Example 4.9. 1) Given F (t) =
∫ π

0
sin(tx)
x

dx, let us calculate F ′
(

1
4

)
. First, note that

f(x, t) is of class C1(R2) (which needs verification!). So it follows that

F ′(t) =
∫ π

0

cos(tx)x
x

dxF ′(t) =
∫ π

0

cos(tx)x
x

dx

=
[1
t

sin(tx)
]x=π

x=0

= 1
t

sin(πt).

Hence, we have

F ′
(1

4

)
= 4 sin

(
π · 1

4

)
= 4 ·

√
2

2 = 2
√

2

2) Next let us find F ′
(

1
4

)
when F (t) =

∫ t2
0

sin(tx)
x

dx. We have

F ′(t) = 1
t2

sin
(
t · t2

)
· (2t) +

[1
t

sin(tx)
]x=t2

x=0

= 2
t

sin
(
t3
)

+ 1
t

sin
(
t3
)

= 3
t

sin
(
t3
)
.

This now gives

F ′
(1

4

)
= 12 sin

( 1
64

)
.



Chapter 5

Vector Calculus

In this chapter, we study the calculus of multivariable vector-valued functions and
vector fields. These are functions that assign vectors to points in space.

5.1 Functions with values in Rm

A vector-valued function, sometimes also referred to as a vector function, is a math-
ematical function of one or more variables whose output values are multidimensional
vectors. In other words, it is a function of the form f : E → Rm whose domain
dom(f) = E is a subset of Rn and its image im(f) = {f(x) : x ∈ E} is a subset of Rm.
Every vector-valued function f : E → Rm can be viewed as an m-tuple of real-valued
functions,

f(x) =


f1(x)
...

fm(x)

 ∈ Rm,

where f1, . . . , fm : E → R are called the component functions of f .
We have already encountered several types of vector-valued functions in this course.

For example, in Chapter 4 we discussed vector-valued functions of the form f : R →
Rm, called parametric curves. Also, in Section 3.1 we introduced the gradient vector
∇f(x) and in Section 3.6 the Hessian matrix Hess(f)(x), which are both examples
of vector-valued functions. Indeed, ∇f : Rn → R1×n is a vector-valued function with
domain Rn and codomain R1×n ∼= Rn (where we can identify the space of n-dimensional
row vectors R1×n with the space of n-dimensional column vectors Rn), and the Hessian
matrix Hess(f) : Rn → Rn×n is a vector-valued function with domain Rn and codomain
Rn×n ∼= Rn2 (where we can identify the space of n × n matrices with the euclidean
vector space Rn2 of dimension n2).

87
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5.2 Limits and Continuity of Vector-valued Func-
tions

The concepts of limits and continuity can be extended to functions f : Rn → Rm in a
straightforward manner.

Definition 5.1. Let f : E → Rm with E ⊆ Rn. We say that f is defined in a neigh-
borhood of a if a is an interior point of E ∪ {a}.

Definition 5.2 (Limit of a function). Let a be a point in Rn, and let f : E → Rm

with E ⊆ Rn be a vector-valued function defined in a neighborhood of a. Then we
say that the limit of f(x) equals L ∈ Rm as x approaches a, written as

lim
x→a

f(x) = L, (5.1)

if given any ε > 0, there exists δ > 0 such that

0 < ∥x − a∥2 < δ =⇒ ∥f(x) − L∥2 < ε.

It is sufficient to check component functions for limits of vector-valued functions,
as evidenced by the next proposition, because the convergence of each component
function guarantees the convergence of the vector-valued function as a whole.

Proposition 5.1. Suppose f : E → Rm is a vector-valued function defined in a neigh-
borhood of a ∈ Rn. If

f(x) =


f1(x)
...

fm(x)

 and L =


L1
...
Lm


then lim

x→a
f(x) = L if and only if lim

x→a
fi(x) = Li for all 1 ⩽ i ⩽ m.

Definition 5.3 (Continuity at a point). Let a be an interior point of E. A function
f : E → Rm is continuous at a if and only if, for every real number ε > 0, there exists
a real number δ > 0 such that for all x ∈ E,

∥x − a∥2 ⩽ δ =⇒ ∥f(x) − f(a)∥2 ⩽ ε.

Continuity for vector-valued functions is ensured if and only if all component func-
tions are continuous, akin to the situation with limits. This allows known principles
about continuity of real-valued functions to generalize directly to vector-valued func-
tions, as the following proposition demonstrates

Proposition 5.2. Suppose

f(x) =


f1(x)
...

fm(x)

 : E → Rm
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is a vector-valued function and a an interior point of E. The following are equivalent:

(i) f(x) is continuous at a;
(ii) limx→a f(x) = f(a);
(iii) for every sequence (ak)k∈N of elements of E we have

lim
k→+∞

ak = a =⇒ lim
k→+∞

f(ak) = f(a);

(iv) fi(x) is continuous at a for all 1 ⩽ i ⩽ m.

Remark 5.1. Now that we understand what it means for a vector-valued function to
be continuous, we can revisit the definition of the class of C1 and C2 functions given
in Chapter 3. Let E ⊆ Rn be an open set and let f : E → R be a real-valued function
in n variables. In light of Proposition 5.2, we see that f is of class C1(E), as specified
in Definition 3.7, if and only if the gradient vector ∇f : E → Rn is continuous as a
vector-valued function. Similarly, f is of class C2(E), as specified in Definition 3.11,
if and only if its Hessian matrix Hess(f) : E → Rn×n is a continuous vector-valued
function from E to Rn×n ∼= Rn2 .

5.3 Partial and Directional Derivatives of Vector-
valued Functions

The partial derivatives of a multivariable real-valued function are real numbers (see
Definition 3.1). In analogy, the partial derivatives of a multivariable vector-valued
function are vectors.

Definition 5.4 (Partial derivatives). Let E ⊆ Rn be open and f : E → Rm a vector-
valued function in the variables x1, . . . , xn. Then f has a partial derivative at the point
a ∈ E with respect to the variable xj if each of its component functions f1, . . . , fm
has a partial derivative at the point a with respect to the variable xj. In this case, we
denote the partial derivative of f with respect to the variable xj as an m-dimensional
column vector:

∂f
∂xj

(a) =



∂f1
∂xj

(a)
∂f2
∂xj

(a)
...

∂fm

∂xj
(a)

 .

Definition 5.5 (Jacobian matrix). Let E ⊆ Rn be an open set, let f : E → Rm be a
function and suppose all partial derivatives ∂f

∂x1
(a), . . . , ∂f

∂xn
(a) of f at the point a ∈ E
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exist. The matrix

Df(a) = Jf (a) =


∂f1
∂x1

(a) ∂f1
∂x2

(a) · · · ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) · · · ∂f2
∂xn

(a)
...

...
...

∂fm

∂x1
(a) ∂fm

∂x2
(a) . . . ∂fm

∂xn
(a)


is called the Jacobian matrix or the Jacobian of f at the point a. It is an m×n matrix,
i.e., it has m rows and n columns. The columns correspond to the partial derivatives
∂f
∂x1

(a), . . . , ∂f
∂xn

(a), whereas the rows correspond to the gradients of the component
functions ∇f1(a), . . . ,∇fm(a).

When m = n, the Jacobian matrix is a square matrix and its determinant

D(f1, . . . , fn)
D(x1, . . . , xn)(a) = det Jf (a) =

∣∣∣∣∣∣∣∣∣∣∣

∂f1
∂x1

(a) ∂f1
∂x2

(a) . . . ∂f1
∂xn

(a)
∂f2
∂x1

(a) ∂f2
∂x2

(a) . . . ∂f2
∂xn

(a)
...

...
...

∂fn

∂x1
(a) ∂fn

∂x2
(a) . . . ∂fn

∂xn
(a)

∣∣∣∣∣∣∣∣∣∣∣
is denoted as D(f1,...,fn)

D(x1,...,xn)(a) and called the Jacobian determinant of f at the point a.

Example 5.1. If f : R2 → R2 is f(x, y) = (xy, x+ y), then Jf (1, 2) can be calculated
as

Jf (x, y) =
(
y x
1 1

)
and hence Jf (1, 2) =

(
2 1
1 1

)
.

Example 5.2. Suppose f : Rn → Rm is differentiable at a ∈ Rn.
• if n = m = 1 then f is a real-valued single-variable function and its Jacobian

Jf (a), which is 1 × 1 matrix, coincides with the derivative f ′(a).
• if m = 1 and n is arbitrary then f is a real-valued function in n variables and its

Jacobian Jf (a), which is a 1 × n matrix, is the same as the gradient ∇f(a).
• if n = 1 and m is arbitrary then f is a parametric curve in Rm and its Jacobian

Jf (a) is the same as the tangent vector f ′(a).

Definition 5.6 (Directional derivatives). Let E ⊆ Rn be open and f : E → Rm

a vector-valued function. Then f has a directional derivative along the vector v ∈
Rn\{0} at the point a ∈ E if each of its component functions f1, . . . , fm has a di-
rectional derivative along v at the point a. In this case, we denote the directional
derivative of f along v as an m-dimensional column vector:

∇vf(a) =


∇vf1(a)
∇vf2(a)

...
∇vfm(a)

 .

When ∥v∥2 = 1, it is also called the derivative in the direction v.
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5.4 Differentiability of Vector-valued Functions

We have already learned what it means for functions Rn → R to be differentiable
(see Definition 3.4), and what it means for functions R → Rm to be differentiable
(see Definition 4.3). The following definition encompasses both of these cases and
provides the general framework to discuss differentiability for multivariable vector-
valued functions.

Definition 5.7 (Differentiability at a point). Let E be a non-empty subset of Rn. A
function f : E → R is differentiable at the point a ∈ E if there exists a linear map
La : Rn → Rm such that

lim
h→0

∥∥∥f (a + h) − f(a) − La(h)
∥∥∥

2
∥h∥2

= 0.

In this case, the linear map La : Rn → Rm is called the differential of f at the point a.

Proposition 5.3. Let f : E → Rm and a ∈ E ⊆ Rn. Then f is differentiable at a if
and only if all its component functions f1, . . . , fm are differentiable at a.

Theorem 5.1 (Fundamental theorem). Suppose f : E → Rm is differentiable at a
point a ∈ E. Then the following statements hold.

(i) f is continuous at a.
(ii) All partial derivatives of f at the point a exist, the Jacobian matrix Jf (a) of f

at the point a exists, and the differential La : Rn → Rm of f at the point a is
the same as matrix multiplication with the Jacobian matrix, i.e.,

La(v) = Jf (a) · v, ∀v ∈ Rn.

(iii) All directional derivatives of f at the point a exist and are given by

∇vf(a) = Jf (a) · v, ∀v ∈ Rn.

(iv) For all x ∈ E we have

f(x) = f(a) + Jf (a) · (x − a) + r1(x),

where r1 is an “error” term satisfying

lim
x→a

∥r1(x)∥2

∥x − a∥2
= 0.

The function

t(x) = f(a) + Jf (a) · (x − a)

is called the linearization (or linear approximation) of f at the point a.
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Among other things, the above theorem implies that if f is differentiable at a then

∇vf(a) =


∇vf1(a)
∇vf2(a)

...
∇vfm(a)

 =


⟨∇f1(a),v⟩
⟨∇f2(a),v⟩

...
⟨∇fm(a),v⟩

 = Jf (a) · v =
n∑
j=1

vj
∂f
∂xj

(a)

for all v = (v1, . . . , vn) ∈ Rn\{0}.

Example 5.3. Let f : R2 → R2 with f(1, 2) = (3,−1) and Jf (1, 2) =
(

1 −1
−3 0

)
. We can

use this limited amount of information to approximate f(1.1, 1.8). Indeed, the linear
approximation of f at the point (1, 2) is

t(x, y) = f(1, 2) + Jf (1, 2) ·
((

x
y

)
−
(

1
2

))

=
(

3
−1

)
+
(

1 −1
−3 0

)
·
(
x− 1
y − 2

)

=
(
x− y + 4

2 − 3x

)
.

Thus, as an approximation of f(1.1, 1.8) we obtain

f(1.1, 1.8) ≈ t(1.1, 1.8) =
(

3.3
−1.3

)
.

5.5 Vector-Valued Functions of Class C1

Definition 5.8. Let E ⊆ Rn be an open set and let f : E → Rm be a function. We
say that f is of class C1(E) if all partial derivatives ∂f

∂x1
(a), . . . , ∂f

∂xn
(a) of f exist and

are continuous at every point a ∈ E.

It follows from the definition that f : E → Rm is of class C1(E) if and only if
the Jacobian matrix Jf (a) exists at every point a ∈ E and the map Jf : E → Rm×n

is a continuous function. So, continuity of the Jacobian matrix is the multivariable
analogue of continuous differentiability for vector-valued functions.

Proposition 5.4. Let E ⊆ Rn be an open set, let f : E → Rm be a function, and let
f1, . . . , fm : E → R be its component functions. Then f is of class C1(E) if and only
if all its component functions f1, . . . , fm are of class C1(E).

Recall that real-valued functions of class C1 are always differentiable (cf. Propo-
sition 3.1). The next corollary, which follows by combining Proposition 3.1, Proposi-
tion 5.4 and Proposition 5.3, asserts that the same is true for vector-valued functions.

Corollary 5.1. Let E ⊆ Rn be an open set, let f : E → Rm be a function. If f is of
class C1(E) then f is differetniable at every point in E.
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5.6 The Chain Rule

The goal of this section is to introduce the chain rule for multivariable vector-valued
functions. As motivation, let us first recall the chain rule for single-variable functions
as you have learned it in Analysis I: If f : R → R and g : R → R are functions such
that g is differentiable at a point a and f is differentiable at the point g(a), then the
composition f ◦ g is differentiable at the point a, and its derivative is given by

(f ◦ g)′(a) = f ′(g(a)) · g′(a).

This expresses that the rate of change of f ◦ g at a is the product of the rate of change
of f at g(a) and the rate of change of g at a.

The following theorem is the appropriate generalization of the chain rule to higher
dimensions.

Theorem 5.2 (Chain Rule). Suppose we are given an open subset A ⊆ Rn, a function
g : A → Rp, an open subset B ⊆ Rp with g(A) ⊆ B, and a function f : B → Rq.
Therefore, the composite function f ◦ g : A → Rq is well-defined. If a ∈ A and
g(a) ∈ B such that g is differentiable at a and f is differentiable at g(a), then f ◦ g is
differentiable at a and and the Jacobian matrix Jf◦g(a) ∈ Rq×n is the matrix product
of the Jacobian matrices Jf (g(a)) ∈ Rq×p(R) and Jg(a) ∈ Rp×n:

Jf◦g(a) = Jf (g(a)) · Jg(a).

Furthermore, if n = p = q, then the following relationship for the Jacobian determi-
nants is obtained:

|Jf◦g(a)| = |Jf (g(a))| · |Jg(a)|.

Example 5.4. Let f : R2 → R and g : R2 → R2 with g(x, y) = (x2y, x − y) and
h = f ◦ g. Let us find ∂h

∂x
(1, 2), assuming that ∂f

∂x
(2,−1) = 3 and ∂f

∂y
(2,−1) = −2.

First, the Jacobian matrix of the function g(x, y) = (x2y, x− y) is

Jg(x, y) =
(

2xy x2

1 −1

)
.

Therefore, the Jacobian at the point (x, y) = (1, 2) equals

Jg(1, 2) =
(

4 1
1 −1

)
.

Also, we know that

g(1, 2) = (2,−1) and ∇f(2,−1) = (3,−2).

So, it follows form the chain rule that

∇h(1, 2) = ∇f(2,−1) · Jg(1, 2) = (3, −2) ·
(

4 1
1 −1

)
= (10, 5).
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We deduce that ∂h
∂x

(1, 2) = 10.

5.7 Method of Lagrange Multipliers – multiple con-
straints

In Lagrange multipliers for a single constraint, we introduce a new variable, usually
denoted as λ, called the Lagrange multiplier, to determine when the gradient of the
objective function is parallel to the gradient of the constraint function. When dealing
with multiple constraints, each constraint adds a new term with its respective Lagrange
multiplier. So, if we have m constraints then we introduce m Lagrange multipliers,
usually denoted as λ1, . . . , λm.

Theorem 5.3 (Lagrange Multiplier Theorem – multiple constraints). Consider an
open set E ⊆ Rn, functions f, g1, . . . , gm : E → R of class C1(E) and constants
c1, . . . , cm ∈ R. If the function f(x) achieves a local extreme value subject to the
constraints g1(x) = c1, . . . , gm(x) = cm at a point a ∈ E and additionally the vectors
∇g1(a), . . . ,∇gm(a) are linearly independent then there must exist scalar numbers
λ1, . . . , λm ∈ R such that ∇f(a) = ∑m

i=1 λi∇gi(a). The numbers λi are called the
Lagrange multipliers.

Example 5.5. The planes x+ y− z = 3 and x− y+ z = −1 intersect in a line. Find
the point on this line that is closest to the origin.

In other words, we have to minimize the function f(x, y, z) = x2 + y2 + z2 subject
to the two constraints

1. g1(x, y, z) = x+ y − z = 3,
2. g2(x, y, z) = x− y + z = −1.

To solve this problem using Lagrange multipliers, we need to take the partial deriva-
tives. We get

∇f(x, y, z) = (2x, 2y, 2z)

and

∇g1(x, y, z) = (1, 1,−1) ∇g2(x, y, z) = (1,−1, 1).

It is important do not forget checking linear dependence: The vectors (1, 1,−1) and
(1,−1, 1) are linearly independent. So we can use the method of Lagrange multipliers
and obtain

∇f(x, y, z) = λ1∇g1(x, y, z) + λ2∇g2(x, y, z)

which is equivalent to

(2x, 2y, 2z) = (λ1 + λ2, λ1 − λ2, λ2 − λ1).
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This leaves us with five equations:

2x = λ1 + λ2,

2y = λ1 − λ2,

2z = λ2 − λ1,

x+ y − z = 3,
x− y + z = −1.

Solving these equations simultaneously will give us the values of x, y, z, λ1, and λ2
at the critical points, which yield potential solutions to our optimization problem. In
particular, using some basic algebra, we obtain the solution

(x, y, z, λ1, λ2) = (1, 1,−1, 2, 0).

So the point that lies on both planes simultaneously and is closest to the origin is
(1, 1,−1).

5.8 Finding Global Extreme Values on compact sets
defined by inequalities.

In Section 3.11 we have seen a “3-step recipe” of how to find the global extreme values
of a functions of class C1 on a compact set. If the compact set is given by an inequality,
we can further refine this recipe as follows:

Finding Global Extreme Values on compact sets defined by inequal-
ities. Let D ⊆ Rn be open and let g : E → R be of class C1(E), where
E := {x ∈ D : g(x) ⩽ 0} ⊆ D. Suppose, moreover, that E is non-empty and
compact (i.e., closed and bounded). Let f : D → R be of class C1(D). In order to
find the points where f attains a global maximum or minimum in E, it suffices to
follow these steps:

1. Determine the stationary points of f in {x ∈ D : g(x) < 0}.
2. Determine the points x ∈ D such that g(x) = 0 and ∇g(x) = 0.
3. Determine the points x ∈ D such that g(x) = 0, ∇g(x) ̸= 0, and there exists
λ ∈ R that satisfies ∇f(x) = λ∇g(x).

4. Evaluate f at the points identified in steps 1, 2, and 3 above and compare
their corresponding values.

Remark 5.2.
• Do not forget to check 2!
• Do not forget to check that E is compact! Otherwise, we cannot be sure that f

attains its maximum and/or minimum.
Example 5.6. Let f : Rn → R be defined by f(x) = x1 · . . . · xn = ∏n

i=1 xi. Find the
extrema of the restriction of f to the closed unit ball.
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Here, g(x) = ∑n
i=1 x

2
i − 1 for x ∈ Rn. The functions f and g are continuously

differentiable, and the set E = {x ∈ Rn : g(x) ⩽ 0} is compact. Suppose first that
g(x) < 0, which is equivalent to ∥x∥2 < 1. In this region, any point with at least two
coordinates equal to zero is a stationary point of f , since the gradient of f vanishes
there.

We want to find x ∈ Rn and λ ∈ R such that:

∥x∥2 = 1,
x2 · . . . · xn = λ2x1,

x1x3 · · ·xn = λ2x2,
...

x1 · · ·xn−1 = λ2xn,

⇔



x1x2 · . . . · xn = 2λx2
1,

x1x2 · . . . · xn = 2λx2
2,

...

x1x2 · · ·xn = 2λx2
n.

Adding up all these equations, we obtain:

nf(x) = 2λ∥x∥2
2 = 2λ.

Therefore, λ = nf(x)
2 .

If f(x) = 0, then λ = 0 and ∇f(x) = 0, which implies that at least two coordinates
of x must be zero.

If f(x) ̸= 0, then we have:

f(x) = 2λx2
1 = 2λx2

2 = . . . = 2λx2
n.

This leads to xi = ± 1√
n

for all i ∈ {1, . . . , n}, and hence x =
(

± 1√
n
, . . . ,± 1√

n

)
︸ ︷︷ ︸

2n possibilities

.

Comparison:
• If ∃i ̸= j s.t. xi = xj = 0 ⇒ f(x) = 0.
• If x =

(
± 1√

n
, . . . ,± 1√

n

)
, then f(x) = ±

(
1√
n

)n
= ±n− n

2 .

Answer: If x =
(
± 1√

n
, . . . ,± 1√

n

)
with an even (respectively, odd) number of

negative signs, then f attains its maximum (respectively, minimum) in E, with value
n− n

2 (respectively, −n− n
2 ).

5.9 Vector Fields Rn → Rn

In general, a multivariable vector-valued function describes a mapping from Rn to Rm,
where n represents the input dimensions and m denotes the output dimensions. If the
number of input dimensions equals the number of output dimensions (i.e., n = m), then
such a function has called a vector field. Vector fields show up often in many natural
situations and find important applications. For example, in physics they describe
magnetic and electric fields or the velocity field of a fluid. Coordinate changes are also
applications Rn → Rn.
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Graphic representation. Let U ⊆ Rn. A vector field v : U → Rn is represented
graphically by an arrow (i.e. a vector) attached at each point x ∈ Rn.

–1

–0.5

0

0.5

1

y

–1 –0.5 0.5 1

x

–2

–1

1

2

y

–2 –1 1 2

x

(x, y) 7→
(

sin(π(x+ y))
cos(π(x− y))

)
(x, y) 7→

 x+y
4
√

4(x2+y2)
x−y

4
√

4(x2+y2)



Figure 5.1: Graphic representation of vector fields.

Example 5.7. Newton’s Law of force between two objects with masses m and M is

|F| = GmM

r2

where r is the distance between the objects and G is the gravitational constant. (This
is an example of an inverse square law.) Let’s assume that the object with mass M is
located at the origin in R3. For instance, M could be the mass of the earth and the
origin would be at its center. Let the position vector of the object with mass m be
x = (x, y, z). Then r = ∥x∥2, so r2 = ∥x∥2

2. The gravitational force exerted on this
second object acts toward the origin (compare with Example 4.6), and the unit vector
in this direction is

− x
∥x∥2

.

Therefore, the gravitational force acting on the object at x = (x, y, z) is

F(x) = −GmM

∥x∥3
2

x (5.2)
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(Physicists often use the notation r instead of x for the position vector, so you may
see (5.2) written in the form F = −

(
GmM
r3

)
r.)

An example of a vector field is the gravitational field, because it associates a vector,
the force F(x), with every point x in space.

Equation (5.2) is a compact way of writing the gravitational field, but we can also
write it in terms of its component functions by using the facts that x = xe1 +ye2 +ze3
and ∥x∥2 =

√
x2 + y2 + z2

F(x, y, z) = −GmMx

(x2 + y2 + z2)3/2 e1 + −GmMy

(x2 + y2 + z2)3/2 e2 + −GmMz

(x2 + y2 + z2)3/2 e3

The gravitational field F is pictured in Fig. 5.2.

Figure 5.2: Depiction of a gravitational vector field.

Example 5.8. Consider an electric charge Q located at the origin (0, 0, 0). According
to Coulomb’s Law, the electric force F(x) exerted by this charge on a point charge q
located at the position x = (x, y, z) is

F(x) = εqQ

∥x∥3
2
x (5.3)

where ε is a constant (that depends on the units used). For like charges, we have
qQ > 0 and the force is repulsive; for unlike charges, we have qQ < 0 and the force
is attractive. Notice the similarity between (5.2) and (5.3). Both vector fields are
examples of so-called force fields.

Instead of considering the electric force F, physicists often consider the electric
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field per unit charge:

E(x) = 1
q

F(x) = εQ

∥x∥3
2
x

Then E is a vector field on R3 called the electric field of Q.
If f : Rn → R is a real-valued function of n variables then its gradient ∇f is a

vector field on Rn and it is called the gradient vector field of f .
Definition 5.9. A vector filed F : Rn → Rn is called conservative if there exists a
real-valued function f : Rn → R such that F = ∇fT . In this situation, f is called a
potential function for F.
Example 5.9. While not all vector fields are conservative, vector fields arising in
physics often are. For example, the gravitational field F in Example 5.7 is conservative
because if we define

f(x, y, z) = mMG√
x2 + y2 + z2

then

∇f(x, y, z) =
(

−mMGx

(x2 + y2 + z2)3/2 ,
−mMGy

(x2 + y2 + z2)3/2 ,
−mMGz

(x2 + y2 + z2)3/2

)
= F(x, y, z)T .

A similar calculation can be done for the electric field E of a charge Q seen in Exam-
ple 5.8.





Chapter 6

Multiple Integrals

6.1 Integrability of a bounded function on a closed
rectangle

Recall that the definite integral of a non-negative function f(x) ⩾ 0 represented the
area “under” the curve y = f(x). As we will now see, the double integral of a non-
negative real-valued function f(x, y) ⩾ 0 represents the volume “under” the surface
z = f(x, y).

The goal is to extend the theory of Riemann integrals to real-valued functions in
two real variables. Let a < b and c < d be four real numbers and consider the closed
rectangle R = [a, b] × [c, d] and a non-negative continuous function f : R → R. To
approximate the volume “under” the surface z = f(x, y), we can use a subdivision of
R into smaller rectangles. This is accomplished by dividing the interval [a, b] into n
equidistant subintervals and [c, d] into m equidistant subintervals. This will create a
grid of rectangles Ri,j over the region R. Let ∆x = b−a

n
and ∆y = d−c

m
be the widths

of the subintervals along the x-axis and y-axis respectively.
To establish the Riemann sum, we also need to choose a sample point (x∗

i , y
∗
j ) in

each subrectangle Ri,j. A common choice is the bottom-left corner of each rectangle,
but one can choose any point within each rectangle. For each subrectangle Ri,j, we
can now compute the volume of the thin rectangular solid formed by multiplying the
function value at the sample point (x∗

i , y
∗
j ) by the area of the subrectangle Area(Ri,j) =

∆x∆y (see Fig. 6.1). This gives you the approximate volume of the portion of the
surface that lies over that rectangular solid.

Summing up all the volumes obtained will then yield an approximation of the
volume under the surface z = f(x, y) over the rectangle R.
Definition 6.1 (Double integral). Let a < b and c < d be four real numbers, and
f : R = [a, b] × [c, d] → R a function. If the limit∫∫

R
f(x, y) dx dy = lim

n,m→∞

n∑
i=1

m∑
j=1

f(x∗
i , y

∗
j )∆x∆y

exists then we say that f(x, y) is Riemann integrable over R. In this case, the number

101
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x

y

z = f(x, y)

R

a

b

c
d

dV

Figure 6.1

∫∫
R f(x, y) dx dy is called the double integral of f(x, y) over the rectangle R = [a, b] ×

[c, d].

Proposition 6.1. Let a < b and c < d be four real numbers, R = [a, b] × [c, d] and
f : R → R be continuous on R. Then, f is integrable on R.

6.2 Fubini’s Theorem for Double Integrals
Let a < b and c < d be four real numbers, and f : R = [a, b] × [c, d] → R a continuous
function. Then the two functions g : [c, d] → R and h : [a, b] → R, defined respectively
by

g(y) =
∫ b

a
f(x, y)dx and h(x) =

∫ d

c
f(x, y)dy

are continuous. Thus, the two numbers∫ d

c
g(y)dy =

∫ d

c

(∫ b

a
f(x, y)dx

)
dy

and ∫ b

a
h(x)dx =

∫ b

a

(∫ d

c
f(x, y)dy

)
dx

are well defined. Fubini’s theorem says that these two numbers are the same and
coincide with the double integral of f over R.

Theorem 6.1 (Fubini’s theorem for double integrals – rectangular regions). Let a < b
and c < d be four real numbers, and f : R = [a, b] × [c, d] → R a continuous function.
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Then ∫∫
R
f(x, y) dx dy =

∫ d

c

(∫ b

a
f(x, y)dx

)
dy =

∫ b

a

(∫ d

c
f(x, y)dy

)
dx.

Example 6.1. Let R = [0, π]×[0, 1] and f : R → R be the continuous function defined
by f(x, y) = x sin(xy). Then, the integral of f over R is given by∫∫

R
f(x, y) dx dy =

∫ π

0

(∫ 1

0
x sin(xy) dy

)
dx =

∫ π

0
− cos(xy)

∣∣∣∣y=1

y=0
dx

=
∫ π

0
(1 − cosx) dx = (x− sin x)

∣∣∣∣π
0

= π.

We can switch the order of integration because the region R is a rectangle, but in this
case, integrating with respect to y first (as we did above) makes the calculation much
simpler than starting with x. This shows that sometimes choosing the right order of
integration can make a big difference in how easy the problem is to solve.

Example 6.2. Our goal is to find the volume of the solid S that is bounded by the
elliptic paraboloid x2 + 2y2 + z = 16, the planes x = 2 and y = 2, and the three
coordinate planes.

Figure 6.2

We first observe that S is the solid that lies under the surface z = 16 − x2 − 2y2

and above the square R = [0, 2] × [0, 2]. (See Figure 6.2.) This solid was considered in
Example 1, but we are now in a position to evaluate the double integral using Fubini’s
Theorem. Therefore
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V =
∫∫

R
(16 − x2 − 2y2) dx dy

=
∫ 2

0

∫ 2

0
(16 − x2 − 2y2) dx dy

=
∫ 2

0

[
16x− 1

3x
3 − 2y2x

]2

0
dy

=
∫ 2

0

(88
3 − 4y2

)
dy

=
[88

3 y − 4
3y

3
]2

0

= 48

Theorem 6.2 (Mean Value Theorem). Let a < b and c < d be four real numbers and
f : R = [a, b] × [c, d] → R a continuous function. Then there exists an element (x0, y0)
in R such that ∫∫

R
f(x, y) dx dy = f(x0, y0) · Area(R)

6.3 Double Integrals over general regions
Consider a general region D in R2 like the one illustrated on the left-hand side of
Fig. 6.3. We suppose that D is a bounded region, so D can be enclosed in a rectangular
regionR as illustrated on the right-hand side of Fig. 6.3. In order to integrate a function
f : D → R over D we define a new function F : R → R with domain R by

F (x, y) =
f(x, y) if (x, y) ∈ D,

0 if (x, y) ∈ R\D.
(6.1)

Figure 6.3

Definition 6.2. We say that f : D → R is integrable over the region D ⊆ R2 if the
function F , as defined in (6.1), is integrable over the rectangle R.
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Properties of double integrals: Suppose f : D → R and g : D → R are integrable
over the region D ⊆ R2. Then the double integral has the following properties

1. Linearity: For all α, β ∈ R we have∫∫
D

(αf + βg)(x, y) dx dy = α
∫∫

D
f(x, y) dx dy + β

∫∫
D
g(x, y) dx dy

2. Monotonicity: If f(x, y) ⩽ g(x, y) then∫∫
D
f(x, y) dx dy ⩽

∫∫
D
g(x, y) dx dy.

3. Positivity: If f(x, y) ⩾ 0 then∫∫
D
f(x, y) dx dy ⩾ 0.

Moreover, if D is open and f is continuous then∫∫
D
f(x, y) dx dy = 0 if and only if f(x, y) = 0 for all (x, y) ∈ D.

4. Triangle Inequality: We have∣∣∣∣∫∫
D
f(x, y) dx dy

∣∣∣∣ ⩽ ∫∫
D

|f(x, y)| dx dy

Proposition 6.2 (Double Integral over a Subset). If f : D → [0,+∞) is bounded and
integrable on the bounded subset D ⊆ R2 and if f : D′ → [0,+∞) is integrable on
D′ ⊆ D, then ∫∫

D′
f(x, y) dx dy ⩽

∫∫
D
f(x, y) dx dy.

6.4 Jordan sets
A Jordan set in two dimensions, also known as a Jordan region or Jordan domain,
refers to a bounded subset of the plane R2 that has a well-defined boundary. More
formally, a Jordan sets are defined as follows.
Definition 6.3. A bounded subset D of R2 is a Jordan set (in R2) if for every ε > 0
there exists k ∈ N and closed rectangles R1, . . . , Rk ⊆ R2 such that

∂D ⊆
k⋃
j=1

Rj and
k∑
j=1

Area(Rj) ⩽ ε.

Intuitively, a Jordan set in two dimensions is a well-behaved region with a clear
and distinct boundary. This makes it particularly suitable for integration. Examples
of Jordan sets include all polygons (triangles, quadrilaterals, etc.), circles, ellipses, and
many more.

Theorem 6.3. Suppose D ⊆ R2 is a bounded set and f : D → R is a bounded
function. If f is continuous on the interior D̊ and D is a Jordan set then f(x, y) is



106 CHAPTER 6. MULTIPLE INTEGRALS

integrable over D.

In this section, we generalize the definition of the Riemann integral of a bounded
function on a closed rectangle to a bounded function on a bounded subset of R2.

Definition 6.4 (Area). Let D be a Jordan subset of R2. Then the real number

area(D) =
∫∫

D
1 dx dy.

is called the area of D.

Proposition 6.3 (Bounds of the double integral). Let D be a Jordan subset of R2,
and f : D → R be a bounded function that is integrable on D. Then,

m · Area(D) ⩽
∫∫

D
f(x, y) dx dy ⩽M · Area(D),

where m = inf{f(x, y) : (x, y) ∈ D} and M = sup{f(x, y) : (x, y) ∈ D}.

To find the average value of a function f(x, y) over a region D, divide the double
integral

∫∫
D f(x, y) dx dy by the area of the region, Area(R); this yields a single number

representing the typical value of the function over D.

Definition 6.5 (Average value). Let D be a Jordan subset of R2, and f : D → R be
a bounded function that is integrable on D. Then the average value of f over D is
defined as

Average = 1
Area(D)

∫∫
D
f(x, y) dx dy

Example 6.3. A metal plate in the shape of a rectangle extends from x = 0 to x = 4
meters and from y = 0 to y = 3 meters. The temperature at any point on the plate is
given by the function

T (x, y) = 100 − x2 − y2,

where T (x, y) is measured in degrees Celsius. Let us find the average temperature of
the plate. The average value of T (x, y) over the rectangle R = [a, b] × [c, d] is given by

Average = 1
Area(R)

∫∫
R
f(x, y) dx dy.

In our case, Area(R) = (4 − 0)(3 − 0) = 12. Using Fubini’s theorem, we can compute
the double integral as∫∫

R
(100 − x2 − y2) dx dy =

∫ 3

0

∫ 4

0
(100 − x2 − y2) dx dy.

The inner integral yields∫ 4

0
(100 − x2 − y2) dx = (100 − y2)(4) − 64

3 = 400 − 4y2 − 64
3 .
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Now integrating with respect to y gives∫ 3

0

(
400 − 4y2 − 64

3

)
dy =

∫ 3

0

(1136
3 − 4y2

)
dy

=
[

1136
3 y − 4y3

3

]3

0
= 1136

3 · 3 − 4
3 · 27 = 1100.

So the average temperature equals
1
12 · 1100 = 1100

12 = 275
3 ≈ 91.67◦C.

6.5 Vertical and horizontal slice methods
Suppose that we have a region D in the xy-plane that is bounded on the left by the
vertical line x = a, bounded on the right by the vertical line x = b (where a < b),
bounded below by a curve y = φ1(x), and bounded above by a curve y = φ2(x), as in
Fig. 6.4. We will assume that φ1(x) and φ2(x) do not intersect on the open interval
(a, b) (they could intersect at the endpoints x = a and x = b, though). Then the
integral of a continuous function over this region can be computed using the vertical
slice method.

a b

x

y

0

y = φ2(x)

y = φ1(x)

D

Figure 6.4: Double integral over a non-rectangular region D using the vertical slice
method:

∫∫
D f(x, y) dx dy =

∫ b
a

∫ φ2(x)
φ1(x) f(x, y) dy dx.

Theorem 6.4 (Vertical Slice Method). Let a and b be two real numbers, and φ1, φ2 : [a, b] →
R be two continuous functions such that for every x ∈ (a, b), φ1(x) < φ2(x), and let
D be the open bounded subset of R2 defined by:

D =
{
(x, y) ∈ R2 : a < x < b, φ1(x) < y < φ2(x)

}
.

Then, for any continuous function

f : D =
{
(x, y) ∈ R2 : a ⩽ x ⩽ b, φ1(x) ⩽ y ⩽ φ2(x)

}
→ R,
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we have: ∫∫
D
f(x, y) dx dy =

∫∫
D
f(x, y) dx dy =

∫ b

a

(∫ φ2(x)

φ1(x)
f(x, y) dy

)
dx.

Corollary 6.1. Let a < b be two real numbers, and let φ1, φ2 : [a, b] → R be two
continuous functions such that for all x ∈ (a, b), φ1(x) < φ2(x), and let D be the open
bounded subset of R2 defined by

D =
{
(x, y) ∈ R2 : a < x < b, φ1(x) < y < φ2(x)

}
.

Then,

Area(D) = Area(D) =
∫ b

a
(φ2(x) − φ1(x)) dx

x

y

0

x = ψ1(y)

x = ψ2(y)

D
c

d

Figure 6.5: Double integral over a non-rectangular region D using the horizontal
slice method:

∫∫
D f(x, y) dx dy =

∫ d
c

∫ ψ2(y)
ψ1(y) f(x, y) dx dy.

In certain situations, it is advantageous to use horizontal slices instead of vertical
ones, see Fig. 6.5.

Theorem 6.5 (Horizontal Slice Method). Let c and d be two real numbers, and
ψ1, ψ2 : [c, d] → R be two continuous functions such that for every y ∈ (c, d), ψ1(y) <
ψ2(y), and let D be the open bounded subset of R2 defined by:

D =
{
(x, y) ∈ R2 : c < y < d, ψ1(y) < x < ψ2(y)

}
.

Then, for any continuous function f : D → R we have:∫∫
D
f(x, y) dx dy =

∫∫
D
f(x, y) dx dy =

∫ d

c

(∫ ψ2(y)

ψ1(y)
f(x, y) dx

)
dy.

Corollary 6.2. Let c < d be two real numbers, and let ψ1, ψ2 : [c, d] → R be two
continuous functions such that for all y ∈ (c, d), ψ1(y) < ψ2(y), and let D be the open
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bounded subset of R2 defined by

D =
{
(x, y) ∈ R2 : c < y < d, ψ1(y) < x < ψ2(y)

}
.

Then,

Area(D) = Area(D) =
∫ d

c
(ψ2(y) − ψ1(y)) dy.

Example 6.4. Let D = {(x, y) ∈ R2 : 0 < x < 1, 0 < y < 1 − x} and f : D → R be
the continuous function defined by f(x, y) = 6x2y. Hence,∫∫

D
f(x, y)dx dy =

∫ 1

0
6x
(∫ 1−x

0
2y dy

)
dx

=
∫ 1

0
ex ln 6

(∫ 1−x

0
ey ln 2 dy

)
dx

=
∫ 1

0
ex ln 6 1

ln 2
(
e(1−x) ln 2 − 1

)
dx

= 1
ln 2

∫ 1

0

(
ex(ln 2+ln 3)−x ln 2+ln 2 − ex ln 6

)
dx

= 1
ln 2

∫ 1

0

(
2ex ln 3 − ex ln 6

)
dx = 1

ln 2

( 4
ln 3 − 5

ln 6

)
.

Example 6.5. LetD = {(x, y) ∈ R2 : 0 < x < y < 2x, x2 + y2 > 4, xy < 4} (see Fig. 6.6)
and f : D → R be the continuous function defined by f(x, y) = xy.

Then, denoting by φ1, φ2 : [2/
√

5, 2] → R the two continuous functions defined
respectively by

φ1(x) =


√
4 − x2 if x ∈ [2/

√
5,

√
2]

x if x ∈ [
√

2, 2]

and

φ2(x) =
2x if x ∈ [2/

√
5,

√
2]

4/x if x ∈ [
√

2, 2]
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2√
5

√
2 2

1

2 xy = 4

y = x

y = 2x

Circle

x

y

Figure 6.6: Depiction of D = {(x, y) : 0 < x < y < 2x, x2 + y2 > 4, xy < 4}.

we obtain thatD =
{
(x, y) ∈ R2 : 2/

√
5 < x < 2, φ1(x) < y < φ2(x)

}
. Consequently,

∫∫
D
f(x, y) dx dy =

∫ 2

2/
√

5

(∫ φ2(x)

φ1(x)
xy dy

)
dx

=
∫ √

2

2/
√

5

(∫ 2x
√

4−x2
xy dy

)
dx+

∫ 2
√

2

(∫ 4/x

x
xy dy

)
dx

= 1
2

∫ √
2

2/
√

5

(
4x3 − x · (4 − x2)

)
dx+ 1

2

∫ 2
√

2

(
16 − x3

)
dx

= 1
2

(4
4x

4 − 1
2x

2 · (4 − x2)
)∣∣∣∣

√
2

2/
√

5
+ 1

2

(
16 ln x− 1

4x
4
)∣∣∣∣2√

2

= −3
5 + 4 ln 2.

Example 6.6. Let us find the volume V of the solid bounded by the three coordinate
planes and the plane 2x + y + 4z = 4. The solid is shown in Fig. 6.7 (left) with a

y

z

x

(0, 4, 0)

(0, 0, 1)

(2, 0, 0)

2x+ y + 4z = 4

x

y

0

y = −2x+ 4

R

2

4

Figure 6.7
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typical vertical slice. The volume V is given by the double integral of the function
f(x, y) = z = 1

4(4−2x−y) over the region R = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ −2x+4},
shown in Fig. 6.7 (right). Using vertical slices in R gives

V =
∫∫
R

1
4(4 − 2x− y) dx dy

=
∫ 2

0

(∫ −2x+4

0
1
4(4 − 2x− y) dy

)
dx

=
∫ 2

0

(
1
4(4y − 2xy − 1

2y
2)
∣∣∣∣y=−2x+4

y=0

)
dx

=
∫ 2

0
(2 − 2x+ 1

2x
2) dx

= 2x− x2 + 1
6x

3
∣∣∣∣2
0

= 4
3 .

We conclude that the volume V equals 4
3 .

Corollary 6.3 (Fubini’s theorem for double integrals – general regions). Let a ⩽ b and
c ⩽ d be real numbers, and φ1, φ2 : (a, b) → R and ψ1, ψ2 : (c, d) → R be continuous
functions such that

D =
{
(x, y) ∈ R2 : a <x < b, φ1(x) < y < φ2(x)

}
=
{
(x, y) ∈ R2 : c < y < d, ψ1(y) < x < ψ2(y)

}
.

Then, for any continuous function f : D → R we have:∫ b

a

(∫ φ2(x)

φ1(x)
f(x, y) dy

)
dx =

∫ d

c

(∫ ψ2(y)

ψ1(y)
f(x, y) dx

)
dy.

Example 6.7. We are given the integral

I =
∫ 1

0

(∫ 1

y3

36y8

1 + x4 dx

)
dy.

Note that the integrand 36y8

1+x4 separates into a function of y and a function of x, but
the limits of the integrals are interdependent. To simplify, we change the order of
integration. The region of integration is:

• y ∈ [0, 1]
• For each y, x ∈ [y3, 1].

This corresponds to:
• x ∈ [0, 1]
• For each x, y ∈ [0, x1/3]

So we change the order of integration:

I =
∫ 1

0

(∫ x1/3

0

36y8

1 + x4 dy

)
dx.
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Now factor out the part independent of y:

I =
∫ 1

0

36
1 + x4

(∫ x1/3

0
y8 dy

)
dx.

Evaluate the inner integral:
∫ x1/3

0
y8 dy =

[
y9

9

]x1/3

0
= x3

9 .

Substituting:

I =
∫ 1

0

36
1 + x4 · x

3

9 dx =
∫ 1

0

4x3

1 + x4 dx.

Let u = x4 + 1, so du = 4x3dx. When x = 0, u = 1, and when x = 1, u = 2. Thus,

I =
∫ 2

1

1
u
du = ln(2).

6.6 Change of variables for Double Integrals
Given the difficulty of evaluating multiple integrals, the reader may be wondering if
it is possible to simplify those integrals using a suitable substitution for the variables.
The answer is yes, though it is a bit more complicated than the substitution method
which you learned in single-variable calculus.

Recall that if you are given, for example, the definite integral∫ 2

1
x3√x2 − 1 dx ,

then you would make the substitution

u = x2 − 1
du = 2x dx

which changes the limits of integration

x = 1 −→ u = 0
x = 2 −→ u = 3

so that we get ∫ 2

1
x3√x2 − 1 dx =

∫ 2

1
1
2x

2 · 2x
√
x2 − 1 dx

=
∫ 3

0
1
2(u+ 1)

√
u du

= 1
2

∫ 3

0

(
u3/2 + u1/2

)
du

= 14
√

3
5 .
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Let us take a different look at what happened when we did that substitution, which
will give some motivation for how substitution works in multiple integrals. First, note
that on the interval of integration [1, 2], the function x 7→ x2 − 1 is strictly increasing
and maps [1, 2] onto [0, 3]. Hence it has an inverse function g : [0, 3] → [1, 2], which we
can calculate as

g(u) =
√
u+ 1 .

Then substituting that expression for x into the function f(x) = x3√x2 − 1 gives

f(x) = f(g(u)) = (u+ 1)3/2√u ,

and we see that

dx = g ′(u) du
dx = 1

2(u+ 1)−1/2 du ,

so since

0 = g−1(1)
3 = g−1(2)

then performing the substitution as we did earlier gives∫ 2

1
f(x) dx =

∫ g−1(2)

g−1(1)
f(g(u)) g ′(u) du

=
∫ 3

0
(u+ 1)3/2√u · 1

2(u+ 1)−1/2 du

=
∫ 3

0
1
2(u+ 1)

√
u du

= 14
√

3
5 .

In general, if g : [c, d] → [a, b] is a bijective, differentiable function from an interval
[c, d] onto an interval [a, b] with a = g(c) and b = g(d), then∫ b

a
f(x) dx =

∫ d

c
f(g(u)) g ′(u) du. (6.2)

This is called the change of variable formula for integrals of single-variable functions.
This formula turns out to be a special case of a more general formula which can be used
to evaluate multiple integrals. We will state the formulas for double integrals involving
real-valued functions of two variables next. We will assume that all the functions
involved are continuously differentiable and that the regions and solids involved are
Jordan sets (i.e., have “reasonable” boundaries).

Theorem 6.6 (Change of variables for double integrals). Let D and E be two open
Jordan subsets of R2 and let Φ : E → D be a bijection from E to D. Additionally, it is
assumed that the vector-valued function Φ is of class C1(E) and its Jacobi determinant
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(cf. Definition 5.5) is bounded over E and satisfies

det JΦ(u, v) ̸= 0

for every (u, v) ∈ E. Then, for any continuous and bounded function f : D → R we
have: ∫∫

D
f(x, y)dx dy =

∫∫
E
f(Φ(u, v)) |det JΦ(u, v)| du dv,

where the absolute value of the Jacobian appears in the integral.

Example 6.8. Let us evaluate the double integral∫∫
D
e

x−y
x+y dx dy

over the closed region D = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1}.
First, note that evaluating this double integral without using substitution is proba-

bly impossible, at least in a closed form. By looking at the numerator and denominator
of the exponent of e, we will try the substitution u = x− y and v = x+ y. To use the
change of variables formula, we need to write both x and y in terms of u and v. So
solving for x and y gives x = 1

2(u+v) and y = 1
2(v−u). This gives the map Φ : E → D

as

Φ1(u, v) = 1
2(u+ v)

Φ2(u, v) = 1
2(v − u),

where E = {(u, v) : 0 ⩽ v ⩽ 1, −v ⩽ u ⩽ v}. In Fig. 6.8, we see how the mapping
Φ = (Φ1,Φ2) maps the region E onto D in a one-to-one manner.

x

y

0

x+ y = 1
1

1
D u

v

0

1

−1 1

E

u = vu = −v

x = 1
2(u+ v)

y = 1
2(v − u)

Figure 6.8: The regions D and E

Now we see that

det JΦ(u, v) =
∣∣∣∣∣∣

1
2

1
2

−1
2

1
2

∣∣∣∣∣∣ = 1
2 ,
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so using the horizontal slices method in E, we have∫∫
D

e
x−y
x+y dx dy = 1

2

∫∫
E

e
u
v du dv

= 1
2

∫ 1

0

∫ v

−v
e

u
v du dv

=
∫ 1

0

(
v
2e

u
v

∣∣∣∣u=v

u=−v

)
dv

=
∫ 1

0
v
2(e− e−1) dv

= v2

4 (e− e−1)
∣∣∣∣1
0

= 1
4

(
e− 1

e

)
= e2 − 1

4e .

Example 6.9. We aim to evaluate the following double integral:∫∫
D
ex

2+xy+y2 dx dy

where D = {(x, y) ∈ R2 : x2 + xy + y2 < 1, y > 0}. Given that for every (x, y) ∈ R2:

x2 + xy + y2 =
(
x+ 1

2y
)2

+ 3
4y

2,

we introduce the change of variables u = x + 1
2y and v =

(√
3

2

)
y, which translates to

x = u− 1√
3v and y = 2√

3v. Taking E = {(u, v) ∈ R : u2 + v2 < 1, v > 0}, we obtain a
map Φ : E → D defined by

Φ1(u, v) = u− 1√
3
v

and

Φ2(u, v) = 2√
3
v,

which is a bijection from E to D. Thus, since for all (u, v) ∈ E,

det JΦ(u, v) =
∣∣∣∣∣ 1 − 1√

3
0 2√

3

∣∣∣∣∣ = 2√
3
> 0,

we obtain, thanks to Theorem 6.6, that∫∫
D
ex

2+xy+y2 dx dy = 2√
3

∫∫
E
eu

2+v2 du dv.

Moreover, as the map

Ψ : F = {(r, θ) ∈ R2 : 0 < r < 1, 0 < θ < π} → E

defined by Ψ1(r, θ) = r cos θ and Ψ2(r, θ) = r sin θ (polar coordinates) is an injection
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from F to E and for all (r, θ) ∈ F :

det JΨ(r, θ) =
∣∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣ = r > 0,

we can write, using Theorem 6.5 and Theorem 6.6, that:∫∫
E
eu

2+v2 du dv =
∫∫

F
er

2
r dr dθ =

∫ π

0

(∫ 1

0
rer

2 dr
)

dθ = π

2 (e− 1).

Hence, ∫∫
D
ex

2+xy+y2 dx dy = π√
3

(e− 1).

6.6.1 Polar coordinates
As seen in Example 6.9, the change of variables formula can be used to evaluate double
integrals in polar coordinates.

Recall that in polar coordinates, points in the plane R2 are specified using two
parameters:

1. Radial distance (r): This measures the distance from the point (x, y) to the
origin (0, 0).

2. Polar angle (θ): This angle is measured counterclockwise from the positive
x-axis to the line segment connecting the origin and the point (x, y).

x

y

r

θ

(x, y) = Φ(r, θ)

This representation provides a convenient way to describe circular or radial symmetry
and is particularly useful for analyzing problems involving rotation or circular motion.

In mathematical terms, the change from polar coordinates to Cartesian coordinates
corresponds to a transformation Φ : (0,∞) × [0, 2π) → R2\{(0, 0)}, given by

Φ1(r, θ) = r cos θ and Φ2(r, θ) = r sin θ.
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Note that the Jacobian determinant of this transformation is

det JΦ(r, θ) =
∣∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣∣ = r.

Following from Theorem 6.6, the change of variables in a double integral from Cartesian
to polar coordinates is expressed by the following formula.

Double Integral in Polar Coordinates. We have∫∫
D

f(x, y) dx dy =
∫∫
E

f(r cos θ, r sin θ) r dr dθ , (6.3)

where E is a description of the region D in polar coordinates.

Example 6.10. Find the volume V inside the paraboloid z = x2 + y2 for 0 ≤ z ≤ 1.

y

z

x
0

x2 + y2 = 1
1

Figure 6.9: The paraboloid z = x2 + y2.

The volume can be computed using a double integral,

V =
∫∫
D

(1 − z) dx dy =
∫∫
D

(1 − (x2 + y2)) dx dy,

where D = {(x, y) : x2 + y2 ≤ 1} is the unit disk in R2 (see Fig. 6.9). In polar
coordinates (r, θ), we know that x2 + y2 = r2. So the unit disk D in polar coordiantes
corresponds to the set E = {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}. Thus, changing the
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double integral into polar coordinates gives

V =
∫∫
D

(1 − (x2 + y2)) dx dy

=
∫∫
E

(1 − r2) r dr dθ

=
∫ 2π

0

∫ 1

0
(1 − r2) r dr dθ

=
∫ 2π

0

∫ 1

0
(r − r3) dr dθ

=
∫ 2π

0

(
r2

2 − r4

4

∣∣∣∣r=1

r=0

)
dθ

=
∫ 2π

0
1
4 dθ

= π

2 .

Thus we have V = π
2 .

Let c = (a, b) be an element of R2, r a positive real number, and f : B(c, r) → R
a continuous function. Then,∫∫

B(c,r)
f(x, y) dx dy =

∫∫
B(c,r)

f(x, y) dx dy

=
∫ 2π

0

(∫ r

0
f(a+ r cos θ, b+ r sin θ)r dr

)
dθ

=
∫ r

0

(∫ 2π

0
f(a+ r cos θ, b+ r sin θ)r dθ

)
dr.

Example 6.11 (Double Integral of a Continuous Function over a Closed Annulus).
Let c = (a, b) be an element of R2, r1 < r2 two positive real numbers, and let E be
the open bounded subset of R2 defined by

E =
{
(x, y) ∈ R2 : x = a+ r cos θ, y = b+ r sin θ, r1 < r < r2, 0 < θ < 2π

}
.
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x

y

(a, b)

r1
r2

Then, for any continuous function f : E → R, we have:∫∫
E
f(x, y) dx dy =

∫∫
E
f(x, y) dx dy

=
∫ 2π

0

(∫ r2

r1
f(a+ r cos θ, b+ r sin θ)r dr

)
dθ

=
∫ r2

r1

(∫ 2π

0
f(a+ r cos θ, b+ r sin θ)r dθ

)
dr.

Example 6.12. Find the area enclosed by the circle {(r, θ) : r = 3 cos θ, −π
2 ⩽ θ ⩽ π

2 }
and the cardioid {(r, θ) : r = 1 + cos θ, 0 ⩽ θ ⩽ 2π}.

First, we start by sketching the graphs of the region:

x

y

A2

A1

r = 3 cos θ

r = 1 + cos θ

We can see from the symmetry of the graph that we need to find the points of
intersection. Setting the two equations equal to each other gives

3 cos θ = 1 + cos θ.

The two solutions, corresponding to the two points of intersection, are θ = π/3 and
θ = −π/3. The area above the polar axis consists of two parts, with one part defined
by the cardioid rom θ = 0 to θ = π/3 and the other part defined by the circle from
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θ = π/3 to θ = π/2. By symmetry, the total area is twice the area above the polar
axis. Thus, we have

A = 2
(∫ π/3

0

∫ 1+cos θ

0
1r dr dθ︸ ︷︷ ︸

A1

+
∫ π/2

π/3

∫ 3 cos θ

0
1r dr dθ︸ ︷︷ ︸

A2

)
.

Evaluating each piece separately, we find that

A1 =
∫ π/3

0

∫ 1+cos θ

0
r dr dθ

=
∫ π/3

0

[1
2r

2
]1+cos θ

0
dθ

=
∫ π/3

0

1
2(1 + cos θ)2 dθ

= 1
2

∫ π/3

0
(1 + 2 cos θ + cos2 θ) dθ

= 1
2

[∫ π/3

0
1 dθ + 2

∫ π/3

0
cos θ dθ +

∫ π/3

0
cos2 θ dθ

]

= 1
2

[
π

3 + 2 ·
√

3
2 + 1

2

(
π

3 +
√

3
4

)]
= π

4 + 9
√

3
16 .

A similar calculation reveals that

A2 = 3π
8 − 9

√
3

16 .

This gives that

A = 2A1 + 2A2 = 5
4π.

6.7 Triple and Multiple integrals

The purpose of this section is to extend Riemann integrals to real-valued functions in n
real variables for arbitrarily large n. We already treated the case n = 2 in Section 6.1,
where we discusses that the double integral

∫∫
R f(x, y) dx dy of a function f(x, y) in two

variables over a closed rectangle R = [a, b] × [c, d] corresponds to the volume “under”
the surface z = f(x, y) and “over” the rectangle R.

Now suppose n is an arbitrary positive integer. A subset P of Rn is called a closed
box (or sometimes also an n-dimensional closed hyperrectangle), if it can be written in
the form

P = [a1, b1] × . . .× [an, bn]

where a1 < b1, a2 < b2, . . . , an < bn are 2n real numbers. Given a real-valued function
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f : P → R, the multiple integral∫
· · ·

∫
P
f(x1, . . . , xn) dx1 · · · dxn (6.4)

corresponds to the hypervolume “under” the hypersurface z = f(x1, x2, . . . , xn) and
“over” the box P .

To properly define the expression (6.4), we use Riemann sums, just as we did in
the n = 1 and n = 2 cases. We can partition the box P into smaller boxes. This is
achieved by dividing each interval [ai, bi] into ki equidistant subintervals, yielding a
grid of hyperrectangles Pi1,i2,...,in over the region P . Let ∆xi = bi−ai

ki
denote the width

of the subintervals of the interval [ai, bi].
To construct the Riemann sum, we select a sample point (x∗

i1 , x
∗
i2 , . . . , x

∗
in) within

each Pi1,i2,...,in . A conventional choice is a corner point, but any point within the
hyperrectangle suffices. Then for each Pi1,i2,...,in , we compute the hypervolume of the
thin hyperrectangular solid above it by multiplying the function value at the sample
point (x∗

i1 , x
∗
i2 , . . . , x

∗
in) by the hypervolume of the region Pi1,i2,...,in , which is ∆x1 ·∆x2 ·

. . . ·∆xn. Summing all such hypervolumes yields an approximation of the hypervolume
under the hypersurface z = f(x1, x2, . . . , xn) over the box P .

Definition 6.6 (Triple integral). Let P = [a1, b1] × [a2, b2] × [a3, b3] be a box in R3

and f : P → R a function. If the limit∫∫∫
P
f(x, y, z) dx dy dz

= lim
k1→∞

k1∑
i1=1

lim
k2→∞

k2∑
i2=1

lim
k3→∞

k3∑
i3=1

f(x∗
i1 , x

∗
i2 , x

∗
i3) · ∆x1 · ∆x2 · ∆x3

exists then we say that f(x, y, z) is Riemann integrable over P . In this case, the
number

∫∫∫
P f(x, y, z) dx dy dz is called the triple integral of f(x, y, z) over the box

P = [a1, b1] × [a2, b2] × [a3, b3].

Definition 6.7 (Multiple integral). Let P = [a1, b1] × . . . × [an, bn] be a box in Rn

and f : P → R a function. If the limit∫
· · ·

∫
P
f(x1, . . . , xn) dx1 · · · dxn

= lim
k1→∞

k1∑
i1=1

· · · lim
kn→∞

kn∑
in=1

f(x∗
i1 , x

∗
i2 , . . . , x

∗
in) · ∆x1 · ∆x2 · . . . · ∆xn

exists then we say that f(x1, . . . , xn) is Riemann integrable over P . In this case, the
number

∫
·· ·
∫
P f(x1, . . . , xn) dx1 · · · dxn is called the multiple integral of f(x1, . . . , xn)

over the box P = [a1, b1] × . . .× [an, bn].

For continuous functions, we can break down the multi-dimensional integral into
a sequence of one-dimensional integrals, and one can do so in any order. This makes
calculating complicated integrals in multiple dimensions much more manageable by
breaking them down into simpler steps.
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Theorem 6.7 (Fubini’s theorem for triple integrals). Let P = [a, b]× [c, d]× [e, f ] be a
closed box in R3 and f : P → R a continuous function. Then f is Riemann integrable
over P and ∫∫∫

P
f(x, y, z) dx dy dz =

∫ f

e

(∫ d

c

(∫ b

a
f(x, y, z) dx

)
dy

)
dz

=
∫ d

c

(∫ f

e

(∫ b

a
f(x, y, z) dx

)
dz

)
dy

=
∫ d

c

(∫ b

a

(∫ f

e
f(x, y, z) dz

)
dx

)
dy

=
∫ f

e

(∫ b

a

(∫ d

c
f(x, y, z) dy

)
dx

)
dz

=
∫ b

a

(∫ f

e

(∫ d

c
f(x, y, z) dy

)
dz

)
dx

=
∫ b

a

(∫ d

c

(∫ f

e
f(x, y, z) dz

)
dy

)
dx.

Example 6.13. Let us evaluate the triple integral∫∫∫
R

(xy + z) dx dy dz

over the box R = [0, 1] × [0, 2] × [0, 3]. We have∫∫∫
R

(xy + z) dx dy dz =
∫ 3

0

∫ 2

0

∫ 1

0
(xy + z) dx dy dz

=
∫ 3

0

∫ 2

0

(
1
2x

2y + xz
∣∣∣∣x=1

x=0

)
dy dz

=
∫ 3

0

∫ 2

0

(
1
2y + z

)
dy dz

=
∫ 3

0

(
1
4y

2 + yz
∣∣∣∣y=2

y=0

)
dz

=
∫ 3

0
(1 + 2z) dz

= z + z2
∣∣∣∣3
0

= 12.

Theorem 6.8 (Fubini’s theorem for multiple integrals). Let P = [a1, b1]×. . .×[an, bn]
be a closed box in Rn and f : P → R a continuous function. Then f is Riemann
integrable over P and∫

· · ·
∫
P
f(x1, . . ., xn) dx1 · · · dxn

=
∫ bn

an

(∫ bn−1

an−1

(
. . .

(∫ b1

a1
f(x1, . . . , xn) dx1

)
. . .

)
dxn−1

)
dxn.
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Moreover, the order of integration does not affect the value of the multiple integral,
and one can rearrange the individual integrals in any order.

6.8 Multiple Integrals over general regions

Let S be a bounded subset of Rn, where n is any positive integer. Since S is a bounded
region, it can be enclosed in a hyperrectangle R = [a1, b1] × . . . × [an, bn] in Rn. To
integrate a function f : S → R over the region S, we define a new function F : R → R
with domain R by

F (x) =
f(x) if x ∈ S,

0 if x ∈ R\S,
(6.5)

where x = (x1, x2, ..., xn).

Definition 6.8. We say that f : S → R is integrable over the region S ⊆ Rn if the
function F , as defined in (6.5), is integrable over the hyperrectangle R.

Properties of multiple integrals: Suppose f : S → R and g : S → R are integrable
over the region S ⊆ Rn. Then the multiple integral has the following properties:

1. Linearity: For all α, β ∈ R we have∫
· · ·

∫
S
(αf + βg) dx1 · · · dxn = α

∫
· · ·

∫
S
f dx1 · · · dxn + β

∫
· · ·

∫
S
g dx1 · · · dxn.

2. Monotonicity: If f(x) ⩽ g(x) for all x ∈ S then∫
· · ·

∫
S
f dx1 · · · dxn ⩽

∫
· · ·

∫
S
g dx1 · · · dxn.

3. Positivity: If f(x) ⩾ 0 then∫
· · ·

∫
S
f dx1 · · · dxn ⩾ 0.

Moreover, if S is open and f is continuous then∫
· · ·

∫
S
f dx1 · · · dxn = 0 if and only if f(x) = 0 for all x ∈ S.

4. Triangle inequality:∣∣∣∣∫ · · ·
∫
S
f dx1 · · · dxn

∣∣∣∣ ⩽ ∫
· · ·

∫
S

|f | dx1 · · · dxn.

6.9 Computing Triple Integrals

A more complicated case of a triple integral is where S is a solid which is bounded
below by a surface z = g1(x, y), bounded above by a surface z = g2(x, y), y is bounded
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between two curves h1(x) and h2(x), and x varies between a and b. Then∫∫∫
S

f(x, y, z) dx dy dz =
∫ b

a

∫ h2(x)

h1(x)

∫ g2(x,y)

g1(x,y)
f(x, y, z) dz dy dx . (6.6)

Notice in this case that the first iterated integral will result in a function of x and y
(since its limits of integration are functions of x and y), which then leaves you with a
double integral of a type that we learned how to evaluate in Section 6.5. There are, of
course, many variations on this case (for example, changing the roles of the variables
x, y, z), so as you can probably tell, triple integrals can be quite tricky.

Example 6.14. Let S denote the solid in the first octant underneath the plane x +
y + z = 1, see Fig. 6.10. Let us evaluate the triple integral∫∫∫

S
(x+ y + z) dz dy dx

over S.

y

z

x

x+ y + z = 1

Figure 6.10: A depiction of the solid in the first octant underneath the plane x+y+z =
1.

First, we observe that S = {(x, y, z) : 0 < x < 1, 0 < y < 1−x, 0 < z < 1−x−y}.
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Thus we have∫∫∫
S
(x+ y + z) dz dy dx =

∫ 1

0

∫ 1−x

0

∫ 1−x−y

0
(x+ y + z) dz dy dx

=
∫ 1

0

∫ 1−x

0

(
(x+ y)z + 1

2z
2
∣∣∣∣z=1−x−y

z=0

)
dy dx

=
∫ 1

0

∫ 1−x

0

(
(x+ y)(1 − x− y) + 1

2(1 − x− y)2
)
dy dx

=
∫ 1

0

∫ 1−x

0

(
1
2 − xy − 1

2x
2 − 1

2y
2
)
dy dx

=
∫ 1

0

(
1
2y − 1

2xy
2 − 1

2x
2y − 1

6y
3
∣∣∣∣y=1−x

y=0

)
dx

=
∫ 1

0

(
1
6x

3 − 1
2x+ 1

3

)
dx

= 1
24x

4 − 1
4x

2 + 1
3x

∣∣∣∣1
0

= 1
8 .

Note that the volume V of a solid in R3 is given by

V =
∫∫∫
S

1 dx dy dz. (6.7)

Since the function being integrated is the constant 1, the above triple integral reduces
to a double integral of the types that we considered in the previous section if the solid
is bounded below and above by surfaces z = g1(x, y) and z = g2(x, y), respectively,
with y bounded between two curves h1(x) and h2(x), and x varies between a and b.
Then

V =
∫∫∫
S

1 dx dy dz =
∫ b

a

∫ h2(x)

h1(x)

∫ g2(x,y)

g1(x,y)
1 dz dy dx

=
∫ b

a

∫ h2(x)

h1(x)
(g2(x, y) − g1(x, y)) dy dx.

Example 6.15. Find the volume of the solid S bounded by the three coordinate
planes, bounded above by the plane x + y + z = 2, and bounded below by the plane
x+ y − z = 0.

The volume is trapped between the upper plane z = 2 − x− y and the lower plane
z = x+ y. Thus the limits for z are

x+ y ⩽ z ⩽ 2 − x− y. (6.8)

Note that (6.8) can only hold if x + y ⩽ 2 − x − y, which is equivalent to y ⩽ 1 − x.
Together with the assumption y ⩾ 0, we obtain the limits for y,

0 ⩽ y ⩽ 1 − x. (6.9)
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Finally, (6.9) implies x ⩽ 1, which together with x ⩾ 0 gives the limits for x,

0 ⩽ x ⩽ 1. (6.10)

Combining (6.8), (6.9), and (6.10), we can describe the solid S as

S = {(x, y, z) : 0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ 1 − x, x+ y ⩽ z ⩽ 2 − x− y}.

Hence

Volume(S) =
∫∫∫

S
1 dx dy dz

=
∫ 1

0

∫ 1−x

0

∫ 2−x−y

x+y
1 dz dy dx

=
∫ 1

0

∫ 1−x

0
(2 − 2x− 2y) dy dx

=
∫ 1

0

2y − 2xy − y2
∣∣∣∣∣
y=1−x

y=0

 dx

=
∫ 1

0

(
2(1 − x) − 2x(1 − x) − (1 − x)2

)
dx

=
∫ 1

0
(x− 1)2 dx

= 1
3 .

6.10 Change of Variables for Triple Integrals
Theorem 6.9. Suppose Φ : E → D is a bijection from an open bounded region E to
an open bounded region D. Additionally, it is assumed that Φ is of class C1(E) and
its Jacobi determinant is bounded over E and satisfies

det JΦ(u, v, w) ̸= 0

for every (u, v, w) ∈ E. Then, for any continuous and bounded function f : D → R we
have: ∫∫∫

D
f(x, y, z) dx dy dz =

∫∫
E
f(Φ(u, v, w)) |det JΦ(u, v, w)| du dv dw,

where the absolute value of the Jacobian appears in the integral.

Two examples of change of variables for triple integrals are transitioning from
Cartesian coordinates to cylindrical coordinates and from Cartesian coordinates to
spherical coordinates.

6.10.1 Cylindrical Coordinates
Cylindrical coordinates are a three-dimensional coordinate system where a point (x, y, z)
in R3 space is described by three quantities:
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1. Radial distance from the z-axis (r): This represents the shortest distance
from the point to the z-axis. It is a non-negative real number.

2. Polar angle (θ): Also called the azimuthal angle, this angle is measured in the
xy-plane counterclockwise from the positive x-axis to the projection of the point
onto the xy-plane. It ranges from 0 to 2π.

3. Height (z): The third coordinate remains the same as in Cartesian coordinates
and measures the height above or below the xy-plane.

x

y

z

(x, y, z) = Φ(r, θ, z)

r

z

θ

The conversion from Cartesian coordinates (x, y, z) to cylindrical coordinates (r, θ, z)
is given by a transformation Φ : (0,∞) × [0, 2π) × R → R3\{(0, 0, 0)} defined as

Φ1(r, θ, z) = r cos(θ)
Φ2(r, θ, z) = r sin(θ)
Φ3(r, θ, z) = z

Cylindrical coordinates are particularly useful for describing objects with cylindrical
symmetry, and for simplifying triple integrals involving rotational symmetry or cylin-
drical shapes.

The Jacobian determinant of Φ is

det JΦ(r, θ, z) =

∣∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0

0 0 1

∣∣∣∣∣∣∣ = r.

Thus, in light of Theorem 6.9, the change of variables in a triple integral from Cartesian
to cylindrical coordinates is as follows.

Triple Integral in Cylindrical Coordinates. We have∫∫∫
D

f(x, y, z) dx dy dz =
∫∫∫
E

f(r cos θ, r sin θ, z) r dr dθ, dz ,
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where E is a description of the region D in cylindrical coordinates.

In particular, if R ∈ (0,+∞), h1 < h2 are two real numbers, and D is the cylinder
defined by

D = {(x, y) ∈ R3 : x2 + y2 < R2, h1 < z < h2},

then, for any continuous and bounded function f : D → R, we have:∫∫∫
D
f(x, y, z) dx dy dz =

∫ 2π

0

(∫ h2

h1

(∫ R

0
f(r cos θ, r sin θ, z)r dr

)
dz

)
dθ

This equality remains valid even if the order of integration is permuted. In particular,

Volume(D) =
∫∫∫

D
dx dy dz =

∫ 2π

0

(∫ h2

h1

(∫ R

0
r dr

)
dz

)
dθ = πR2(h2 − h1).

Example 6.16. Let D be the solid bounded below by the xy-plane, above by the
sphere x2 +y2 +z2 = 4 and on the sides by the cylinder x2 +y2 = 1 (see Example 6.16).

Let us use cylindrical coordinates to tackle this problem. Note that the equation
for the sphere is

x2 + y2 + z2 = 4 or r2 + z2 = 4,

and the equation for the cylinder is

x2 + y2 = 1 or r2 = 1.

Thus, the solid D expressed in cylindrical coordinates corresponds to the set

E = {(r, θ, z)|0 ⩽ z ⩽
√

4 − r2, 0 ⩽ r ⩽ 1, 0 ⩽ θ ⩽ 2π}.
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Hence the integral for the volume is

Volume(D) =
∫∫∫

D
1 dx dy dz

=
∫∫∫

E
r dr dz dθ

=
∫ θ=2π

θ=0

∫ r=1

r=0

∫ z=
√

4−r2

z=0
r dz dr dθ

=
∫ θ=2π

θ=0

∫ r=1

r=0

(
rz

∣∣∣∣z=
√

4−r2

z=0

)
dr dθ

=
∫ θ=2π

θ=0

∫ r=1

r=0

(
r
√

4 − r2
)
dr dθ

=
∫ 2π

0

(8
3 −

√
3
)
dθ

= 2π
(8

3 −
√

3
)
.

6.10.2 Spherical Coordinates

Spherical coordinates are a three-dimensional coordinate system where a point in space
is described using the following three quantities:

1. Radial distance from the origin (r): This represents the distance from the
origin to the point. It is a non-negative real number.

2. Polar angle (θ): Also known as the azimuthal angle, this angle is measured in
the xy-plane counterclockwise from the positive x-axis to the projection of the
point. It ranges from 0 to 2π.

3. Elevation Angle (ϕ): Also known as the zenith angle, this angle is measured
from the positive z-axis to the point. It ranges from 0 (the positive z-axis) to π
(the negative z-axis).
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x

y

z

r

(x, y, z) = Φ(r, θ, ϕ)

θ

ϕ

The conversion from spherical coordinates (r, θ, ϕ) to Cartesian coordinates (x, y, z)
is given by the transformation Φ : (0,∞) × [0, 2π) × (0, π) → R3\{(0, 0, z) : z ∈ R}
defined as

Φ1(r, θ, ϕ) = r sin(ϕ) cos(θ)
Φ2(r, θ, ϕ) = r sin(ϕ) sin(θ)
Φ3(r, θ, ϕ) = r cos(ϕ).

Spherical coordinates are particularly useful for describing objects with spherical sym-
metry, such as spheres, and for simplifying calculations involving spherical shapes or
symmetrical distributions of points in space.

The Jacobian determinant of Φ is

det JΦ(r, θ, ϕ) =

∣∣∣∣∣∣∣
sin(ϕ) cos(θ) −r sin(ϕ) sin(θ) −r cos(ϕ) cos(θ)
sin(ϕ) sin(θ) r sin(ϕ) cos(θ) −r cos(ϕ) sin(θ)

cos(ϕ) 0 r sin(ϕ)

∣∣∣∣∣∣∣ = r2 sinϕ.

By Theorem 6.9, the change of variables in a triple integral from Cartesian to spherical
coordinates is as follows.

Triple Integral in Spherical Coordinates. We have∫∫∫
D

f(x,y, z) dx dy dz

=
∫∫∫
E

f(r sin(ϕ) cos(θ), r sin(ϕ) sin(θ), r cos(ϕ)) r2 sin(ϕ) dr dθ, dϕ ,

where E is a description of the region D in spherical coordinates.
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Using spherical coordinates, we can easily compute the volume of a ball in R3, i.e.,

Volume(B(0, r0)) =
∫∫∫

B(0,r0)
dx dy dz

=
∫ 2π

0

(∫ π

0

(∫ r0

0
r2 sinϕ dr

)
dϕ
)
dθ

= 4πr3
0

3 .

Example 6.17. Let us evaluate the triple integral
∫∫∫

E 16z dx dy dz where E is the
upper half of the sphere x2 + y2 + z2 = 1. Since we are integrating over the upper half
of a sphere, it is beneficial to use spherical coordinates to evaluate this integral. The
description of E in shperical coordinates is

E = {(r, θ, ϕ) : 0 ⩽ r ⩽ 1, 0 ⩽ θ ⩽ 2π, 0 ⩽ ϕ ⩽
π

2 }.

The integral is then:∫∫∫
E

16z dx dy dz =
∫ π

2

0

∫ 2π

0

∫ 1

0
r2 sinϕ · (16r cosϕ) dr dθ dϕ

=
∫ π

2

0

∫ 2π

0

∫ 1

0
8r3 sin(2ϕ) dr dθ dϕ

=
∫ π

2

0

∫ 2π

0
2 sin(2ϕ) dθ dϕ

=
∫ π

2

0
4π sin(2ϕ) dϕ

= −2π cos(2ϕ)
∣∣∣∣∣∣

π
2

0

= 4π

Example 6.18. Let us find
∫∫∫

D zx dx dy dz where D is inside both x2 + y2 + z2 = 4
and the cone (pointing upward) that makes an angle of π

3 with the negative z-axis and
has x ⩽ 0.

First, we need to determine the limits of integration. The region D is basically an
upside-down ice cream cone that has been cut in half so that only the portion with
x ⩽ 0 remains. Therefore, because we are inside a portion of a sphere of radius 2 we
must have:

0 ⩽ r ⩽ 2

For ϕ we need to be careful. The problem statement says that the cone makes an
angle of π

3 with the negative z-axis. However, remember that ϕ is measured from the
positive z-axis. Therefore, the first angle, as measured from the positive z-axis, that
will “start” the cone will be ϕ = 2π

3 and it goes to the negative z-axis. Therefore, we



132 CHAPTER 6. MULTIPLE INTEGRALS

get the following limits for ϕ:
2π
3 ⩽ ϕ ⩽ π

Finally, for θ we can use the fact that we are also told that x ⩽ 0. This means we are
to the left of the y-axis and so the range of θ must be:

π

2 ⩽ θ ⩽
3π
2

In summary, we have found a description of the set D in polar coordinates, given by

E = {(r, θ, ϕ) : 0 ⩽ r ⩽ 2, π2 ⩽ θ ⩽
3π
2 ,

2π
3 ⩽ ϕ ⩽ π}.

Now that we have the limits we can evaluate the integral in spherical coordinates:∫∫∫
D
z x dx dy dz =

∫∫∫
E

(r cosϕ) (r sinϕ cos θ) r2 sinϕ dr dθ dϕ

=
∫ π

2π
3

∫ 3π
2

π
2

∫ 2

0
(r cosϕ) (r sinϕ cos θ) r2 sinϕ dr dθ dϕ

=
∫ π

2π
3

∫ 3π
2

π
2

∫ 2

0
r4 cosϕ sin2 ϕ cos θ dr dθ dϕ

=
∫ π

2π
3

∫ 3π
2

π
2

32
5 cosϕ sin2 ϕ cos θ dθ dϕ

=
∫ π

2π
3

−64
5 cosϕ sin2 ϕ dϕ

= −64
15 sin3 ϕ

∣∣∣∣π2π
3

= 8
√

3
5 .

Example 6.19 (Volume of an Ellipsoid). Let a, b, c be three positive real numbers,
and D be the ellipsoid defined by

D =
{

(x, y, z) ∈ R3 : x
2

a2 + y2

b2 + z2

c2 < 1
}

.
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a

b c

We can calculate the volume of D using a triple integral. We have

Volume(D) =
∫∫∫

D
1 dx dy dz

=
∫ a

−a

∫ b
√

1−x2/a2

−b
√

1−x2/a2

∫ c
√

1−x2/a2−y2/b2

−c
√

1−x2/a2−y2/b2
1 dz

 dy
 dx

=
∫ a

−a

∫ b
√

1−x2/a2

−b
√

1−x2/a2
2c
√

1 − x2

a2 − y2

b2 dy
 dx

=
∫ a

−a

(∫ π/2

−π/2
2bc

(
1 − x2

a2

)
cos2 θdθ

)
dx,

where in the last step we have used the substitution y = b
√

1 − x2

a2 sin θ. We can now
separate the two integrals and get∫ a

−a

(∫ π/2

−π/2
2bc

(
1 − x2

a2

)
cos2 θdθ

)
dx = 2bc

(∫ a

−a

(
1 − x2

a2

)
dx
)

·
(∫ π/2

−π/2
cos2 θdθ

)

= 4πabc
3 .

Example 6.20 (Volume of the Sphere in Rn). Let r be a positive real number and de-
note by Vn(r) the volume of the sphereBn(0, r) =

{
(x1, . . . , xn) ∈ Rn :

√
x2

1 + . . .+ x2
n < r

}
.

Since V2(r) = πr2 and V3(r) = 4π
3 r

3, it appears that Vn(r) = αnr
n with αn ∈ (0,+∞).
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Indeed, assume the result is true for an integer n ⩾ 2. Then,

Vn+1(r) =
∫
Bn+1(0,r)

· · ·
∫

−r
dx1 . . . dxn+1

=
∫ r

Bn(0,
√
r2−x2

n+1)

(∫
1
. . . dxn

)
dxn+1

=
∫ r

−r
αn
(
r2 − x2

n+1

)n/2
dxn+1

=
∫ π/2

−π/2
αnr

n+1 cosn+1 θ dθ (with xn+1 = r sin θ)

=
(∫ π/2

−π/2
αn cosn+1 θ dθ

)
· rn+1 = αn+1r

n+1.

Since the result is true for n = 2, we have demonstrated by induction that for every
integer n ⩾ 2, a positive real number αn can be associated such that Vn(r) = αnr

n.
Moreover, for every n ⩾ 3, we have:

αn = αn−1 ·
∫ π/2

−π/2
cosn θ dθ.

We now propose to calculate the αn. For this purpose, consider the sequence (βn)
defined by

βn =
∫ π/2

−π/2
cosn θ dθ = 2

∫ π/2

0
cosn θ dθ.

It is known from Exercise 7.5.4 that for every integer n ⩾ 2:

βn = n− 1
n

βn−2;

which implies, since β0 = π and β1 = 2, that for every n ∈ N∗,

βnβn−1 = 2π
n

.

From this result, we deduce that for every integer n ⩾ 4:

αn = 2π
n
αn−2.

Finally, since α2 = π and α3 = 4π
3 , we find that for every integer n ⩾ 2:

αn =


2π
n

· 2π
n−2 · . . . · 2π

2 if n is even
2π
n

· 2π
n−2 · . . . · 2π

3 · 2 if n is odd.

6.11 Center of Mass in R2

Suppose R is a region in R2 hat represents a thin, flat plate (or lamina), and assume
the density of this plate is a continuous function δ = δ(x, y) of the coordinates (x, y)
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of points in R. The the mass of plate R is the double integral of the density function
δ(x, y) over R, i.e.,

M = Mass(R) =
∫∫
R

δ(x, y) dx dy.

The coordinates (x̄, ȳ) of the center of mass of R are given by

x̄ = My

M
and ȳ = Mx

M
, (6.11)

where

My =
∫∫
R

xδ(x, y) dx dy , and Mx =
∫∫
R

yδ(x, y) dx dy. (6.12)

a b

x

y

0

y = f(x)

R
(x̄, ȳ)

The quantities Mx and My are called the moments (or first moments) of the region
R about the x-axis and y-axis, respectively. In the special case where the density
function δ(x, y) is a constant function on the region R, the center of mass (x̄, ȳ) is
called the centroid of R.

Example 6.21. Find the center of mass of the region R = {(x, y) : 0 ≤ x ≤ 1, 0 ≤
y ≤ 2x2}, if the density function at (x, y) is δ(x, y) = x+ y.

0

y = 2x2

R

1
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The region R is shown above. The mass of R is

M =
∫∫
R

δ(x, y) dx dy

=
∫ 1

0

∫ 2x2

0
(x+ y) dy dx

=
∫ 1

0

xy + y2

2

∣∣∣∣∣∣
y=2x2

y=0

 dx

=
∫ 1

0
(2x3 + 2x4) dx

= x4

2 + 2x5

5

∣∣∣∣∣∣
1

0

= 9
10 .

The moments are

Mx =
∫∫
R

yδ(x, y) dx dy My =
∫∫
R

xδ(x, y) dx dy

=
∫ 1

0

∫ 2x2

0
y(x+ y) dy dx =

∫ 1

0

∫ 2x2

0
x(x+ y) dy dx

=
∫ 1

0

xy2

2 + y3

3

∣∣∣∣∣∣
y=2x2

y=0

 dx =
∫ 1

0

x2y + xy2

2

∣∣∣∣∣∣
y=2x2

y=0

 dx

=
∫ 1

0
(2x5 + 8x6

3 ) dx =
∫ 1

0
(2x4 + 2x5) dx

= x6

3 + 8x7

21

∣∣∣∣∣∣
1

0

= 5
7 = 2x5

5 + x6

3

∣∣∣∣∣∣
1

0

= 11
15 ,

so the center of mass (x̄, ȳ) is given by

x̄ = My

M
= 11/15

9/10 = 22
27 , ȳ = Mx

M
= 5/7

9/10 = 50
63 .

Note how this center of mass is a little further towards the upper corner of the region
R than when the density is uniform (it is easy see that for a uniform density we have
(x̄, ȳ) =

(
3
4 ,

3
5

)
). This makes sense since the density function δ(x, y) = x+ y increases

as (x, y) approaches that upper corner.

6.12 Center of Mass in R3

The formulas for the center of mass of a region in R2 can be generalized to a solid S
in R3. Let S be a solid with a continuous mass density function δ(x, y, z) at any point
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(x, y, z) in S. Then the center of mass of S has coordinates (x̄, ȳ, z̄), where

x̄ = Myz

M
, ȳ = Mxz

M
, z̄ = Mxy

M
, (6.13)

where

M =
∫∫∫
S

δ(x, y, z) dx dy dz ,

is the mass of S, and

Myz =
∫∫∫
S

xδ(x, y, z) dx dy dz ,

Mxz =
∫∫∫
S

yδ(x, y, z) dx dy dz ,

Mxy =
∫∫∫
S

zδ(x, y, z) dx dy dz.

In this case, Myz, Mxz and Mxy are called the moments (or first moments) of S around
the yz-plane, xz-plane and xy-plane, respectively.

Example 6.22. Find the center of mass of the solid S = {(x, y, z) : z ≥ 0, x2 + y2 +
z2 ≤ a2}, if the density function at (x, y, z) is δ(x, y, z) = 1.

y

z

x

a

(x̄, ȳ, z̄)

a

The solid S is just the upper hemisphere inside the sphere of radius a centered at the
origin. Since the density function is a constant and S is symmetric about the z-axis,
it is clear that x̄ = 0 and ȳ = 0, so we need only find z̄. We have

M =
∫∫∫
S

δ(x, y, z) dx dy dz =
∫∫∫
S

1 dx dy dz = Volume(S).

But since the volume of S is half the volume of the sphere of radius a, which we know
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is 4πa3

3 , we conclude M = 2πa3

3 . And

Mxy =
∫∫∫
S

zδ(x, y, z) dx dy dz

=
∫∫∫
S

z dx dy dz , which in spherical coordinates is

=
∫ 2π

0

∫ π/2

0

∫ a

0
(r cosϕ) r2 sinϕ dr dϕ dθ

=
∫ 2π

0

∫ π/2

0
sinϕ cosϕ

(∫ a

0
r3 dr

)
dϕ dθ

=
∫ 2π

0

∫ π/2

0
a4

4 sinϕ cosϕ dϕ dθ

=
∫ 2π

0

∫ π/2

0
a4

8 sin 2ϕ dϕ dθ (since sin 2ϕ = 2 sinϕ cosϕ)

=
∫ 2π

0

(
−a4

16 cos 2ϕ
∣∣∣∣ϕ=π/2

ϕ=0

)
dθ

=
∫ 2π

0
a4

8 dθ

= πa4

4 .

I conclusion, we have

z̄ = Mxy

M
=

πa4

4
2πa3

3

= 3a
8 .

Thus, the center of mass of S is (x̄, ȳ, z̄) =
(
0, 0, 3a

8

)
.



Chapter 7

Ordinary Differential Equations

7.1 Introduction to First Order Differential Equa-
tions

Definition 7.1 (First Order Differential Equation). Let I ⊆ R be an open interval
and F : I × R → R a continuous function in two variables. An equation of the form

y′(x) = F (x, y(x)) (7.1)

is called a first order differential equation.

If J is an open sub-interval of I, then a function y : J → R of class C1(J) is
called a solution to this differential equation if y′(x) = F (x, y(x)) holds for all x ∈ J .
Sometimes we refer to y also as a solution on J to emphasize that the domain of y is
different (i.e. smaller) than the domain of the differential equation.

In differential equations, it is common to write the function y(x) without explicitly
denoting its dependence on the variable x. This is known as the standard notation
for differential equations. Using this notation, the first-order differential equation
introduced in (7.1) becomes

y′ = F (x, y), (7.2)

where now it is implicitly understood that y is a function of x. In this context, we
refer to y as the dependent variable, and to x as the independent variable. Sometimes,
we will use t instead of x for the independent variable and u, v, or w instead of y for
the dependent variable.

Example 7.1. Here are some examples of first order differential equations:

139
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Equation Solution

y′ = 2x y = x2 + c, c ∈ R

y′ = −y y = c e−x, c ∈ R

tu′(t) + u(t) = 2t u(t) = t+ 1
t

y′ = 1
2(y2 − 1) y = 1+ex

1−ex

Definition 7.2 (First Order Initial Value Problem). Let I ⊆ R be an open interval,
F : I × R → R a continuous function, and (x0, y0) ∈ I × R. A first order initial value
problem consists of two equations, a first order differential equation and an equation
called the initial condition:

y′ = F (x, y)︸ ︷︷ ︸
differential equation

and y(x0) = y0︸ ︷︷ ︸
initial condition

.

The point (x0, y0) is called the initial value, and the purpose of the initial condition is
to specify the value of the solution to the differential equation at the initial value.

Given an open sub-interval J of I with x0 ∈ J , a function y : J → R is called a
solution to this initial value problem if it is a solution to the differential equation y′ =
F (x, y) and additionally the graph of y goes through the point (x0, y0). Occasionally,
we will also refer to y as a solution on J to stress that the domain of y is equal to J
and not I.

7.2 Antiderivatives as Differential Equations
The simplest type of differential equation are equations of the form

y′ = f(x) (7.3)

where f : (a, b) → R is a continuous function. Recall the Fundamental Theorem of
Calculus, which says that the function

F (x) =
∫ x

a
f(t) dt

is continuously differentiable on (a, b), it is an antiderivative of f , which means

F ′(x) = f(x),

and all antiderivaties of f are of the form F (x) + c for c ∈ R. This allows us to
completely describe all solutions to the differential equation (7.3).

Theorem 7.1. Let f : (a, b) → R be a continuous function. The set of solutions to
the differential equation

y′ = f(x)
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is precisely the set of all antiderivatives of f , i.e., all functions of the form y(x) =∫ x
a f(t) + c for c ∈ R.

Corollary 7.1. Given (x0, y0) ∈ (a, b) × R, the initial value problem

y′ = f(x) and y(x0) = y0

has a unique solution given by y(x) =
∫ x
x0
f(t) dt+ y0.

Example 7.2. A baseball is thrown upward from a height of 3 meters above Earth’s
surface with an initial velocity of 10 m/s, and the only force acting on it is gravity.
The ball has a mass of 0.15 kg at Earth’s surface. Find the velocity v(t) of the baseball
at t seconds after the throw.

The differential equation that applies in this situation is

v′(t) = −g,

where g = 9.8 m/s2. The initial condition is v(0) = v0, where v0 = 10 m/s. Therefore,
the initial-value problem is

v′(t) = −9.8 m/s2 and v(0) = 10 m/s.

In light of Corollary 7.1, there exists a unique solution to this intial value problem and
it is given by

v(t) =
∫ t

0
v′(t) dt+ v0.

Since v′(t) = −9.8 and v0 = 10, we get v(t) = −9.8t+ 10.

7.3 A Toy Example

Consider an open interval I ⊆ R and a continuous function p : I → R. We aim to
determine all solutions u : I → R to the differential equation

u′(t) + p(t)u(t) = 0.

This equation is classified both as a first order separable differential equation and as a
first order linear differential equation. We will discuss first order separable differential
equations and first order linear differential equation in more detail in the upcoming
sections.

Method 1: To solve the equation u′(t) + p(t)u(t) = 0, assume u : I → R is a
solution and choose t0 ∈ I. Furthermore, assume that u does not vanish at any point
in I. Then, for every t ∈ I,

u′(t)
u(t) = −p(t) =⇒ (ln |u(t)|)′ = −p(t) =⇒ ln |u(t)| = −

∫ t

t0
p(s) ds+ C,
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where a ∈ R is a constant. Thus, it is necessary that |u(t)| = eae
−
∫ t

t0
p(s) ds and finally

that u : I → R takes the form

u(t) = ce
−
∫ t

t0
p(s) ds

, t ∈ J, (7.4)

where c ∈ R\{0} is a non-zero constant. Conversely, we can verify that for any
constant c ∈ R\{0} and any t0 ∈ I, the function defined by (7.4) is a solution to the
differential equation. Indeed,

u′(t) = ce
−
∫ t

t0
p(s) ds

(
−
∫ t

t0
p(s) ds

)′
= ce

−
∫ t

t0
p(s) ds(−p(t)) = −p(t)u(t).

Moreover, when c = 0 the function u given by (7.4) vanishes throughout I and is also
a solution.

Method 2: The first method does not exclude the possibility of a solution that
vanishes at some point in I. To complete the discussion, let us assume again that
u : I → R is a solution and choose t0 ∈ J , but this time we allow solutions u that may
vanish at some points in I. Then, for every t ∈ I,

e
∫ t

t0
p(s) ds

u′(t) + e
∫ t

t0
p(s) ds

p(t)u(t) = 0,

=⇒
(
e
∫ t

t0
p(s) ds

u(t)
)′

= 0,
(7.5)

and therefore, there exists a constant c ∈ R such that e
∫ t

t0
p(s) ds

u(t) = c. We conclude
that also in this case the solution u(t) takes the form (7.4). This second method
provides a complete resolution. Indeed, letting q(t) = e

∫ t

t0
p(s) ds, the second method

exploids the fact that the two differential equations

u′(t) + p(t)u(t) = 0
(u(t)q(t))′ = 0

are equivalent, by which we mean that they have the same solutions. Since every
solution to our differetnial equation is of the form

u(t) = ce
−
∫ t

t0
p(s) ds

, t ∈ I, c real constant, (7.6)

we say that (7.6) is the general solution. It follows that the initial value problem

u′(t) + p(t)u(t) = 0 and u(t0) = u0

has a unique solution given by

u(t) = u0e
−
∫ t

t0
p(s) ds

, t ∈ I.

In Method 1, we solved the differential equation using an approach called “sepa-
ration of variables”, which is the method used for solving separable differential equa-
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tions. We will learn the general theory behind this method in the upcoming section.
In Method 2, we multiplied the left side of the differential equation u′ + pu = 0 by
the function e

∫ t

t0
p(s) ds, which is called an integrating factor. This method is used for

solving linear differential equations and we will explore this approach in more detail
later too.

7.4 Maximal solutions to Differential Equations
Definition 7.3 (Maximal Solution to Differential Equation). Let I ⊆ R be an open
interval, F : I ×R → R a continuous function, and consider the first order differential
equation

y′(x) = F (x, y(x)). (7.7)

We say that a solution y : Jmax → R on an open interval Jmax ⊆ I is a maximal solution
to the differential equation (7.7) if it is not a restriction of any other solution whose
domain is a larger interval than Jmax. In this context, we refer to the open interval
Jmax as the maximal interval corresponding to the maximal solution y.
Definition 7.4 (Maximal Solution to Initial Value Problem). Let I ⊆ R be an open
interval, F : I×R → R a continuous function, and consider the first order initial value
problem

y′(x) = F (x, y(x)) and y(x0) = y0 (7.8)

for (x0, y0) ∈ I × R. We say that a solution y : Jmax → R on an open interval
Jmax ⊆ I is a maximal solution to this initial value problem if it is a maximal solution
to the differential equation y′(x) = F (x, y(x)) that also solves the initial value problem
y(x0) = y0.
Example 7.3. Let I ⊆ R be an open interval and consider the differential equation

u′(t) + p(t)u(t) = 0,

where p : I → R is a continuous function. As we have seen in Section 7.3, all solutions
to this equation are of the form

u(t) = ce
−
∫ t

t0
p(s) ds

,

where c ∈ R, and the domain of these solutions is the same as the domain of p(t). Hence
all these solutions are maximal solutions and the maximal interval always equals I.

Clearly, it is not possible for the maximal interval Jmax of a maximal solution to
be bigger than the interval I, the domain of the differential equation. As we have
seen in Example 7.3, it is possible that the maximal interval Jmax coincides with the
interval I. However, this is not always the case. For an example where the maximal
intervals Jmax of the maximal solutions are strictly smaller than the domain interval I,
see Example 7.7 below.
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7.5 First Order Separable Differential Equations
Definition 7.5. A differential equation in the form

y′h(y) = g(x) (7.9)

where g : I1 → R is a continuous function over the open interval I1, and h : I2 → R
is a continuous function over the open interval I2, is called a (first order) separable
differential equation.

The name “separable” comes from the fact that the expression on the right side
only involves the dependent variable y whereas the expression on the left side only
involves the independent variable x, so the variables are separated from one another
on different sides of the equation. Any first order differential equation that can we
rearranged such that the variables are separated is a first order separable differential
equation, see items 2 and 3 in the following example.
Example 7.4 (Examples of separable differential equations).

1. In Section 7.2 we discussed differential equations of the form y′ = f(x). Any such
differential equation is clearly separable because it has the form y′h(y) = g(x).
Indeed,

y′ = f(x) with
g(x) = f(x),
h(y) = 1.

2. The differential equation y′ + y2 cos(2t) = 0 is separable, since it can be written
as

y′

y2 = − cos(2t) with
g(t) = − cos(2t),
h(y) = 1

y2 .

3. In Section 7.3 we discussed differential equations of the form u′(t)+p(t)u(t) = 0.
Any differential equation of this form is separable, because it can we written as

u′(t)
u(t) = −p(t) with

g(t) = −p(t),
h(y) = 1

u(t) .

4. The equation y′ = ey + cos(t) is not separable.
5. Consider the differential equation y′ = ay + b(t), where a ∈ R\{0} and b(t) is

a continuous function. If b(t) is non-constant then this differential equation is
not separable. On the other hand, if b(t) = b is constant then the differential
equation is separable, because we can write it as

y′

ay + b
= 1 with

g(t) = 1,
h(y) = 1

ay+b .

Method of Separation of Variables: To solve a separable differential equation,
we us the method of separation of variables. We start by expressing y′ = dy

dx
in Leibniz
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notation and rewrite the equation in differential form as

h(y) dy = g(x) dx.

Then we integrate both sides of the equation and obtain an integral equation of the
form ∫

h(y) dy =
∫
g(x) dx.

If H(y) is an antiderivative of h(y) and G(x) is an antiderivative of g(x), then we find
that

H(y) = G(x) + c,

where c is a constant. This last equation defines y implicitly as a function of x. In
some cases, we may be able to solve for y in terms of x and thus find the solution to
the differential equation, but this is not always possible.
Definition 7.6. Let H : I2 → R and G : I1 → R be continuous functions and c ∈ R.
If J is a open sub-interval of I1, then we say that a function y : J → I2 is a solution
to the implicit (functional) equation

H(y) = G(x) + c

if H(y(x)) = G(x) holds for all x ∈ J .

Theorem 7.2. Suppose g : I1 → R and h : I2 → R are continuous functions, and J is
an open sub-interval of I1. A function y : J → I2 of class C1(J) is a solution on J to
the differential equation

y′h(y) = g(x)

if and only if it is a solution on J to the implicit equation

H(y) = G(x) + c

for some c ∈ R, where G : I1 → R and H : I2 → R are antiderivatives of g and h,
respectively. In the case that the function H is invertible on the set {G(x)+c : x ∈ J},
the solution to the differential equation can be given in explicit form as

y(x) = H−1(G(x) + c).

Finding Explicit Solutions to Seperable Equations. Needless to say, we
prefer explicit solutions over implicit solutions. Unfortunately, Theorem 7.2 tells
us that our capability to find explicit solutions depends on whether H(y), the
antiderivative of h(y), is invertible. In practice, there are three possible scenarios
that can occur:

• The inverse function H−1 can be found algebraically by solving for the input
variable in terms of the output variable. See Example 7.5 for an illustration
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of this case.
• The inverse function H−1 cannot be expressed in a closed algebraic form.

See Example 7.6 for a separable differential equation of this nature.
• The function H has multiple branches, leading to multiple inverse functions.

In this case each inverse function leads to an explicit solution for the differ-
ential equation. See Example 7.7 for an instance where this occurs.

Example 7.5. Let us solve the differential equation

y′ = x2

y2 .

Using the method of separation of variables, we separate the variables, write the equa-
tion in terms of differentials, and integrate both sides:

y2 dy = x2 dx∫
y2 dy =

∫
x2 dx

1
3y

3 = 1
3x

3 + C,

where C is an arbitrary constant. Note that the function H(y) = 1
3y

3 is invertible on all
of R, and tts inverse function can be found through elementary algebraic manipulations
by expressing the input variable in terms of the output variable. After completing this
process, we get that the inverse function of H(y) = 1

3y
3 is H−1(y) = 3

√
3y. This means

we get the solution to the differential equation in explicit form as

y(x) = 3
√
x3 + 3C.

We could leave the solution like this or we could write it in the form

y = 3
√
x3 +K,

where K = 3C (since C is an arbitrary constant).

Example 7.6. Let us solve the differential equation

y′ = 6x2

2y + cos y .

This is a separable differential equation. Thus, using Theorem 7.2, we see that all the
solutions to this differential equation are given by solutions to the implicit equation

y2 + sin y = 2x3 + c,

where c ∈ R is a constant. This gives the general solution implicitly. In this case it’s
impossible express y explicitly as a function of x in a closed algebraic from, so we keep
the implicit solution.
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Example 7.7. Consider the differential equation

y′ = − xy

ln y .

This is a separable differential equation, so we can separate the variables and find an
implicit solution. Indeed, we have

ln y
y

dy = −x dx

2ln y
y

dy = −2x dx∫
2ln y
y

dy = −
∫

2x dx

ln(y)2 = −x2 + c, c ∈ R.

Note that the function H : (0,∞) → (0,∞), H(y) = ln(y)2, is not invertible on its
entire domain, but it can be split into two branches such that it becomes invertible on
each branch. The two branches are

H : (0, 1) → (0,∞), H(y) = ln(y)2,

H : (1,∞) → (0,∞), H(y) = ln(y)2.

This leads to two inverse functions, one for each branch, given by

H−1 : (0,∞) → (0, 1), H−1(y) = e−√
y,

H−1 : (0,∞) → (1,∞), H−1(y) = e
√
y.

The reader can check that both of these functions are indeed inverse functions of H,
simply by verifying that H(H−1(y)) = y is true for both of them. Thus for every c > 0
we get two explicit solutions to the differential equation, which are

y : (−
√
c,

√
c) → R, y(x) = e

√
c−x2

,

y : (−
√
c,

√
c) → R, y(x) = e−

√
c−x2

.

In fact, these are maximal solutions (cf. Definition 7.3) and the corresponding maximal
intervals are (−

√
c,

√
c).

Corollary 7.2. With the same notation as in Theorem 7.2. Let (x0, y0) ∈ I1 × I2.
Then y : J → I2 is a solution to the initial value problem

y′h(y) = g(x) and y(x0) = y0

if and only if it is a solution to the implicit equation

H(y) = G(x) −G(x0) +H(y0).

In the case that the function H is invertible on the set {G(x)−G(x0)+H(y0) : x ∈ J},
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the solution to the initial value problem can be given in explicit form as

y(x) = H−1(G(x) −G(x0) +H(y0)).

Example 7.8. Consider the initial value problem:
u′(t)
u2(t) = 1 and u(0) = u0 ̸= 0.

This differential equation is separable, because one may choose I1 = R and I2 =
(0,+∞) or I2 = (−∞, 0), depending on whether u0 > 0 or u0 < 0, and define g : R → R
and h : I1 → R by

h(u) = 1
u2 and g(t) = 1.

Since this is a separable differential equation, the solutions are given by the implicit
equation

− 1
u(t) = t+ c, c ∈ R.

Under the assumption t + c ̸= 0, this can be turned into an explicit equation and we
get

u(t) = − 1
c+ t

, c ∈ R.

The initial condition u(0) = u0 is satisfied when c = − 1
u0

and hence

u(t) = u0

1 − u0t
.

The maximal solutions to the initial value problem can then be described asu(t) = u0
1−u0t

with maximal interval t ∈ (−∞, 1
u0

), if u0 > 0,
u(t) = u0

1−u0t
with maximal interval t ∈ ( 1

u0
,∞), if u0 < 0.

This example shows that, in general, the maximal interval can also depend on the
domain of h.

1
u0

u0 > 0

t

u(t)

1
u0

u0 < 0

t

u(t)
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Theorem 7.3 (Existence and uniqueness theorem). With the same notation as in
Theorem 7.2 and Corollary 7.2, consider the initial value problem

y′h(y) = g(x) and y(x0) = y0.

If h(y0) ̸= 0 then there exists an open interval Jmax containing x0 and a function
y : Jmax → I2 such that y is a maximal solution to the above initial value problem.
Moreover, this solution is unique in the sense that if J̃ is another open interval con-
taining x0 and ỹ : J̃ → I2 is another solution to the above initial value problem then
J̃ ⊆ Jmax and y(x) = ỹ(x) holds for all x ∈ J̃ .

The next example shows that if the condition h(y0) ̸= 0 in Theorem 7.3 is not
satisfied then the initial value problem might not have any solutions at all.

Example 7.9 (Non-existence of solution). The initial value problem

u(t)u′(t) = 1 and u(0) = 0

admits no solution. Indeed, if a solution u : J → R would exist over a certain open
interval J containing t = 0, it would lead to the contradiction 0 = 0·u′(0) = u(0)u′(0) =
1. Although u(t) =

√
2t is a solution to the differential equation on (0,+∞), t = 0 is

not in the domain of definition of this solution.

In contrast to Example 7.9, the next example shows that if the condition h(y0) ̸= 0
in Theorem 7.3 is not satisfied then there might be solutions, but they might not be
unique.

Example 7.10 (Non-uniqueness of solution). Consider the initial value problem

u(t)u′(t) = t and u(0) = 0.

This problem has two solutions for the same initial condition, namely u(t) = t and
u(t) = −t. We conclude that even though solutions exist, they are not unique.

Example 7.11. Let n ⩾ 2 be an integer, I1 ⊆ R an open interval, I2 = (0,∞),
(t0, u0) ∈ I1 × I2, and g : I1 → R a continuous function. Consider the separable initial
value problem

u′(t)
un(t) = g(t) and u(t0) = u0.

In view of Theorem 7.2, the solution to the above differential equation is given by the
solution to the implicit equation

u−n+1(t)
−n+ 1 =

∫ t

t0
g(s) ds+ c.

Since u(t) ∈ I2 = (0,∞) and −n+ 1 < 0, we have
∫ t
t0
g(s) ds+ c < 0. Hence,

u(t) =
(

(1 − n)
(
c+

∫ t

t0
g(s) ds

)) 1
1−n

.
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For the initial condition u(t0) = u0 > 0, we thus necessarily obtain

u(t) =
(
u1−n

0 + (1 − n)
∫ t

t0
g(s) ds

) 1
1−n

= u0

(
1 + (1 − n)un−1

0

∫ t

t0
g(s) ds

) 1
1−n

, (7.10)

with u1−n
0 + (1 −n)

∫ t
t0
g(s) ds > 0. Conversely, under the encountered restrictions, the

unique maximal solution u : Jmax → I2 is thus

u(t) = u0 ·
(

1 + (1 − n)un−1
0

∫ t

t0
g(s) ds

) 1
1−n

,

where Jmax is the largest sub-interval of {t ∈ I1 : 1 + (1 − n)un−1
0

∫ t
t0
g(s) ds > 0}

containing t0. Consequently, one can verify that if Jmax = (a, b) for a, b ∈ R ∪ {±∞}
and a ̸= −∞ (respectively b ̸= +∞) then

lim
t→a+

u(t) = +∞ (respectively lim
t→b−

u(t) = +∞ ).

Remark 7.1. The case I2 = (−∞, 0) and u0 < 0 is handled analogously.

7.6 First Order Homogeneous Differential Equa-
tions

Occasionally, a differential equation may not initially be separable, but it can be
converted into a separable equation by altering the unknown function. This situation
arises with a class of differential equations termed Euler homogeneous equations.
Definition 7.7. An Euler homogeneous equation is a first order differential equation
of the form

u′(t) = F

(
u(t)
t

)
(7.11)

where F : I → R is a continuous function on an open interval I in R.
Any function of the from H(t, u) = F (u

t
) that depends only on the quotient y

t
is

scale invariant. This means that it does not change under the transformation u → cu
and t → ct, i.e.,

H (cu, ct) = H (u, t) .

For this reason, the differential equations above are also called scale invariant equa-
tions.

Scale invariant functions are a particular case of homogeneous functions, which we
define now.
Definition 7.8. A real-valued function N : R2 → R is called homogeneous of degree
n if it satisfies N(cx, cy) = cnN(x, y) for all c ∈ R.
Example 7.12 (Examples of homogeneous functions of various degrees).
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1. Any function of the form N(x, y) = F (y
t
) is homogeneous of degree 0. This fact

underlines the connection between homogeneous functions and Euler homoge-
neous differential equations.

2. The function N(x, y) = x+ 4y is homogeneous of degree 1.
3. The function N(x, y) = xy is homogeneous of degree 2.
4. A “real-life” example of a homogeneous function is the energy of a thermody-

namic system, such as a gas in a bottle. The energy E of a fixed amount of
gas is a function of the gas entropy S and the gas volume V . Such energy is a
homogeneous function of degree one, i.e., E(cS, cV ) = cE(S, V ) for all c ∈ R.

Euler homogeneous differential equations often arise from differential equations of
the from

N(t, y(t))y′(t) +M(t, y(t)) = 0,

where both N and M are homogeneous functions of the same degree. Indeed, we can
rewrite this differential equations as

y′(t) = −M(t, y)
N(t, y) .

If we now define

F (x) = −M(1, x)
N(1, x)

then we see that −M(t,y)
N(t,y) = F (y

t
) and hence the above differential equation is equivalent

to

y′(t) = F
(
y(t)
t

)
,

which is Euler homogeneous.

Theorem 7.4. If the functions N : R2 → R and M : R2 → R are homogeneous of the
same degree, then the differential equation

N(t, y)y′ +M(t, y) = 0

is Euler homogeneous as it is equivalent to the differential equation

y′ = F
(
y

t

)
where F (x) = −M(1,x)

N(1,x) .

Our next aim is to discuss how to solve Euler homogeneous differential equations.

The Substitution Method: To solve homogeneous differential equations, we will
use the substitution method to transform them into separable differential equations.
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The substitution that we will utilize is given by the equation

u(t) = tv(t). (7.12)

Differentiation this equation gives the substitution for u′(t):

u′(t) = v(t) + tv′(t). (7.13)

Taking (7.12) and (7.13) and substituting them into (7.11), we obtain a new equivalent
differential equation,

v(t) + tv′(t) = F (v(t)).

Provided that, for every x ∈ I we have F (x) ̸= x, we can rearrange this new differential
equation and get

1
F (v(t)) − v(t)v

′(t) = 1
t
.

We have now arrived at a separable differential equation, which we already know how
to solve it.

Theorem 7.5. Let I be an open interval in R not containing 0 and suppose F : I → R
is a continuous function satisfying F (x) ̸= x for all x ∈ I. A function v : J → R is a
solution to the separable differential equation

1
F (v(t)) − v(t)v

′(t) = 1
t

if and only if u : J → R defined by u(t) = tv(t) is a solution to the Euler homogeneous
equation

u′(t) = F

(
u(t)
t

)
.

Remark 7.2. The original homogeneous equation for the function u is transformed
into a separable equation for the unknown function v = u

t
. One solves for v, in implicit

or explicit form, and then transforms back to u = tv.

Corollary 7.3. Let I be an open interval in R not containing 0 and suppose F : I → R
is a continuous function satisfying F (x) ̸= x for all x ∈ I. Let (t0, u0) ∈ I × R. A
function v : J → R is a solution to the separable initial value problem

1
F (v(t)) − v(t)v

′(t) = 1
t

and v(t0) = u0

t0

if and only if u : J → R defined by u(t) = tv(t) is a solution to the Euler homogeneous
initial value problem

u′(t) = F

(
u(t)
t

)
and u(t0) = u0.
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Example 7.13. Let us find all solutions y of the differential equation y′ = t2+3y2

2ty .
According to Theorem 7.4, the equation is Euler homogeneous, since

M(ct, cy) = c2t2 + 3c2y2

2(ct)(cy) = c2(t2 + 3y2)
c2(2ty) = t2 + 3y2

2ty = M(t, y).

Note that if F (x) = 1+3x2

2x then

F
(
y

t

)
=

1 + 3
(
y
t

)2

2
(
y
t

) = t2 + 3y2

2ty ,

so we can rewrite the equation as

y′ = F
(
y

t

)
.

Now we introduce the change of functions v = y
t
, and hence

y′ = 1 + 3v2

2v .

Since y = tv, then y′ = v + tv′, which implies

v + tv′ = 1 + 3v2

2v =⇒ tv′ = 1 + 3v2

2v − v = 1 + 3v2 − 2v2

2v = 1 + v2

2v .

We obtained the separable equation

v′ = 1
t

(
1 + v2

2

)
.

We rewrite and integrate it,
2v

1 + v2v
′ = 1

t
=⇒

∫ 2v
1 + v2dv =

∫ 1
t
dt+ c0.

The substitution u = 1 + v2 implies du = 2vv′dv, so∫ du

u
=
∫ dt

t
+ c0 =⇒ ln(u) = ln(t) + c0 =⇒ u = eln(t)+c0 .

But u = eln(t)ec0 , so denoting c1 = ec0 , then u = c1t. So, we get

1 + v2 = c1t =⇒ 1 +
(
y

t

)2
= c1t =⇒

(
y

t

)2
= c1t− 1 =⇒ y(t) = ±t

√
c1t− 1.

Example 7.14. Consider the initial value problem

y′ = x3

y3 + y

x
, x > 0, and y(1) = −2.

The function M(x, y) = x3

y3 + y
x

is homogeneous of order 0, which implies that we are
dealing with an Euler homogeneous differential equation. Thus, we use the substitution
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y(x) = xv(x) to turn the given Euler homogeneous equation into a separable equation.
Using

y(x) = xv(x) and y′(x) = v(x) + xv′(x),

we get

v + xv′ = 1
v3 + v ⇐⇒ v′v3 = 1

x
.

Integrating both sides yields the implicit equation

v4

4 = ln(x) + c, c ∈ R.

The function v 7→ v4

4 has two branches on which it is invertible, the left branch (−∞, 0)
and the right branch (0,∞). Each branch leads to a solution,

v : (e−c,∞) → (−∞, 0), v(x) = − 4
√

4 ln(x) + 4c;

v : (e−c,∞) → (0,+∞), v(x) = 4
√

4 ln(x) + 4c.

Using y(x) = xv(x), we obtain the general solutions to the initial differential equation,

y : (e−c,∞) → (−∞, 0), y(x) = −x 4
√

4 ln(x) + 4c;

y : (e−c,∞) → (0,+∞), y(x) = x 4
√

4 ln(x) + 4c.

It remains to take into consideration the initial condition

y(1) = −2.

Since the y-value at the initial condition is negative, we must be in the left branch
corresponding to the co-domain (−∞, 0). This means we use y(x) = −x 4

√
4 ln(x) + 4c

and not y(x) = x 4
√

4 ln(x) + 4c to solve this inital value problem. Using the initial
condition y(1) = −2, we determine that c = 4. Thus, the unique (and maximal)
solution to the initial value problem is

y : (e−4,∞) → (−∞, 0), y(x) = −x 4
√

4 ln(x) + 16.

7.7 First Order Linear Differential Equations
Definition 7.9. Let I ⊆ R be an open interval and let a : I → R and b : I → R be
continuous functions. A differential equation of the form

y′(t) = a(t)y(t) + b(t) (7.14)

is called a (first order) linear differential equation. The equation (7.14) above:
(i) is homogeneous if the source function b(t) = 0 for all t ∈ I;
(ii) is inhomogeneous if the source function b(t) ̸= 0 for some t ∈ I;
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(iii) has constant coefficient if a(t) = a for some constant a ∈ R and for all t ∈ I;
(iv) has variable coefficient if a(t) is a non-constant function on I;

The name “linear” derives from the fact that the equation is a linear polynomial
in the dependent variable y (i.e., it resembles the equation of a line y 7→ ay + b). In
accordance with this analogy, linear differential equations exhibit behavior reminiscent
of the behavior of linear functions in algebra.

Case in point is the principle of superposition, which asserts that linear combina-
tions1 of solutions to linear differential equations are again solutions to linear differ-
ential equations. This implies that solutions can be combined and scaled to produce
new solutions, simplifying the analysis of such differential equations and allowing for
systematic methods of producing solutions.

Theorem 7.6 (Principal of Superposition). Let I be an open interval in R, let
a, b1, b2 : I → R be three continuous functions and suppose the two functions y1, y2 : I →
R are respective solutions to the two linear differential equations

y′(t) = a(t)y(t) + b1(t) and y′(t) = a(t)y(t) + b2(t).

Then for any c1, c2 ∈ R the function y : I → R defined by

y(t) = c1y1(t) + c2y2(t)

is a solution to the linear differential equation

y′(t) = a(t)y(t) + c1b1(t) + c2b2(t).

The Integrating Factor Method: To solve linear differential equations, we
use what is called the integrating factor method. Let A : I → R be an anitderivative
of a(t). The integrating factor associated to the linear differential equation

y′(t) = a(t)y(t) + b(t) (7.15)

is the function e−A(t). Multiplying both sides of (7.15) by the integrating factor and
rearranging, we obtain the equivalent differential equation

e−A(t)y′(t) − e−A(t)a(t)y(t)︸ ︷︷ ︸
product rule

= e−A(t)b(t). (7.16)

We notice that the left hand side equals the derivative of e−A(t)y(t) due to the product
rule for differentiation. This means (7.16) can be simplified as(

e−A(t)y(t)
)′

= e−A(t)b(t). (7.17)

1In physics and other sciences, the expression ‘superposition’ is often used as a synonym to ‘linear
combination’.
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Letting t0 be an arbitrary point in the interval I and integrating both sides of (7.17),
we obtain

e−A(t)y(t) =
∫ t

t0
e−A(s)b(s) ds+ c, c ∈ R.

Finally, isolating the term y(t) we obtain the general solution to (7.15) as

y(t) = ceA(t) + eA(t)
∫ t

t0
e−A(s)b(s) ds, c ∈ R.

Theorem 7.7. Let I ⊆ R be an open interval, t0 any element of I, and a : I → R and
b : I → R two continuous functions. The solutions y : I → R to the linear differential
equation

y′(t) = a(t)y(t) + b(t)

are given by

y(t) = ceA(t)

︸ ︷︷ ︸
homogeneous

part

+ eA(t)
∫ t

t0
e−A(s)b(s) ds︸ ︷︷ ︸

inhomogeneous part

, (7.18)

where A : I → R is an antiderivative of a(t) and c is any real number.

Remark 7.3. Here are some important observations regarding Theorem 7.7.
(a) The solutions provided in (7.18) are all maximal solutions with maximal interval I.
(b) Note that the expression

∫ t
t0
e−A(s)b(s) in (7.18) describes an antiderivative of the

function e−A(t)b(t). We can replace it by any other antiderivative of e−A(t)b(t).
Thus, instead of (7.18), we could have also written

y(t) = ceA(t) + eA(t)D(t),

where D : I → R is an antiderivative of e−A(t)b(t).
(c) The solution in (7.18) is comprised of two components. The first part ceA(t) is

called the homogeneous part of the solution, and it is actually the general solution
to the homogeneous linear differential equation

y′(t) = a(t)y(t). (7.19)

The second part eA(t) ∫ t
t0
e−A(s)b(s) ds is called the inhomogenous part. It corre-

sponds to the solution in (7.18) where c = 0, so it is one particular solution to
the inhomogeneous linear differential equation

y′(t) = a(t)y(t) + b(t). (7.20)

This means that if we have one particular solution to the inhomogeneous linear
differential equation (7.20) then we can obtain all solutions by adding all the solu-
tions to the corresponding homogeneous linear differential equation (7.19). This
is in line with the Principal of Superposition (see Theorem 7.6), which tells us that
the general solution to the inhomogeneous linear differential equation is obtained
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by taking the general solution of the homogeneous linear differential equation
and adding to it a particular solution to the inhomogeneous linear differential
equation.

Example 7.15. Let us find all solutions y to the differential equation

y′(t) = 3
t
y + t5, t > 0.

This is a linear differential equation with variable coefficient a(t) = 3
t

and source
function b(t) = t5. To determine all solutions, we start by finding the antiderivative
of a(t):

A(t) =
∫

3
s
ds = 3 ln(t).

Thus, the integrating factor for the linear differential equation at hand equals

e−A(t) = e−3 ln(t) = 1
t3
.

Next, we need to find an antiderivative for e−A(t)b(t), i.e.,

D(t) =
∫
e−A(s)b(s) ds =

∫ s5

s3 ds =
∫
s2 ds = t3

3 .

It now follows from Theorem 7.7 (and part (b) of Remark 7.3) that the general solution
to the given differential equation is

y(t) = ceA(t) + eA(t)D(t) = ct3 + t6

3 .

where c is an arbitrary constant.

Corollary 7.4. Let I ⊆ R be an open interval, and a : I → R and b : I → R two
continuous functions. For any (t0, y0) ∈ I × R, the initial value problem

y′(t) = a(t)y(t) + b(t) and y(t0) = y0

has a unique solution given by

y(t) = y0e
A(t)−A(t0) + eA(t)

∫ t

t0
e−A(s)b(s) ds,

where A : I → R is an antiderivative of a(t).

Example 7.16. A 50 liter tank of pure water has a brine mixture with a concentration
of 2 grams per liter entering at the rate of 5 liters per minute (see Fig. 7.1.) At the
same time, the well-mixed contents drain out at the rate of 5 liters per minute. Find
the amount of salt in the tank at time t.

In all such problems, one assumes for simplicity that the solution is well mixed at
each instant of time. Let x(t) be the amount of salt at time t. Then the rate at which
the salt in the tank increases is due to the amount of salt entering the tank less than
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Figure 7.1: Illustration of 50 liter tank with brine mixture.

leaving the tank. To figure out these rates, one notes that dx
dt

has units of grams per
minute. The amount of salt entering per minute is given by the product of the entering
concentration times the rate at which the brine enters. This gives the correct units:

(2 grams/liter) × (5 liters/minute) = 10 grams/minute.

Similarly, one can determine the rate out as(
x

50grams/liter
)

× (5 liters/minute) = x

10 grams/minute.

Thus, we have the initial value problem
dx

dt
= 10 − x

10 and x(0) = 0,

which involves a first order linear differential equation. The integrating factor is ex/10,
leading to the general solution

x(t) = 100 + Ae−t/10.

Using the initial condition, one finds the particular solution

x(t) = 100
(
1 − e−t/10

)
.

Often one is interested in the long-time behavior of a system. In this case, we have that
limt→∞ x(t) = 100 grams. This makes sense because 2 grams per liter enter during
this time to eventually leave the entire 50 liters with this concentration. Thus,

50 liters × 2 grams/liter
50 liters = 100 grams.

Example 7.17. Find the solution to the initial value problem

ty′ = −2y + 4t2, t > 0, and y(1) = −2.
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First, we rewrite the equation as

y′ = −2
t
y + 4t,

and we notice that the differential equation is linear with variable coefficient a(t) = −2
t

and source function b(t) = 4t. Thus the integrating factor is

e−A(t) = e2 ln(t) =
(
eln(t)

)2
= t2,

where A(t) = −2 ln(t) is an antiderivative of a(t). Multiplying both sides of the
differential equation with the integrating factor and rearranging, we get

y′ = −2
t
y + 4t

=⇒ y′ + 2
t
y = 4t

=⇒ t2
(
y′ + 2

t
y
)

= t2(4t)
=⇒ y′t2 + 2ty = 4t3

=⇒ (yt2)′ = 4t3

=⇒ yt2 = t4 + c, c ∈ R.

=⇒ y = t+ c

t2
, c ∈ R.

Thus, the general solution to the differential equation is

y(t) = t+ c

t2
, c ∈ R, t > 0.

If we now consider the initial condition y(1) = −2, then we see that c = −3 and hence
the specific solution to the initial value problem is

y(t) = t− 3
t2
, t > 0.

7.8 The Bernoulli Equation
In 1696, Jacob Bernoulli solved what is now known as the Bernoulli differential equa-
tion. This is a first-order nonlinear differential equation.

Definition 7.10. A Bernoulli differential equation is an equation of the form

u′(t) = p(t)u(t) + q(t)un(t), (7.21)

where p, q : I → R are two continuous functions defined on an open interval I ⊆ R and
n is an integer strictly greater than one.

The Bernoulli equation is special in the following sense: it is a nonlinear differential
equation that can be transformed into a linear differential equation. We now explain
this method in more detail.
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The Substitution Method: To transform the Bernoulli equation, which is
nonlinear, into a linear equation, we use the substitution v(t) = u(t)−(n−1). Afterwards,
we can solve the linear equation for v using the integrating factor method. The last
step is to transform back to u(t) = v(t)− 1

(n−1) .

Divide the Bernoulli equation by u(t)n to obtain

u′(t)
u(t)n = p(t)

u(t)n−1 + q(t).

Introduce the new unknown v(t) = u(t)−(n−1) and compute its derivative,

v′(t) = −(n− 1)u(t)−nu′(t) =⇒ − v′(t)
n− 1 = u(t)′

u(t)n .

If we substitute v(t) = u(t)−(n−1) and −v′(t)
n−1 = u(t)′

u(t)n into the Bernoulli equation, we
get

− v′(t)
n− 1 = p(t)v(t) + q(t)

which is a linear differential equation because it can be rearranged as

v′(t) = −(n− 1)p(t)v(t) − (n− 1)q(t).

Theorem 7.8. Let p, q : I → R be two continuous functions defined on an open
interval I ⊆ R and let n ⩾ 2 be an integer. A function u : J → (0,+∞) (respectively
u : J → (−∞, 0)) is a solution to the Bernoulli differential equation

u′(t) = p(t)u(t) + q(t)un(t)

if and only if the function v(t) = u(t)−(n−1) is a solution to the linear differential
equation

v′(t) = −(n− 1)p(t)v(t) − (n− 1)q(t).

Remark 7.4. Note that Theorem 7.8 only allows us to find solutions to Bernoulli
differential equations when the co-domain of the solution is either (0,+∞) or (−∞, 0).
If there exist solutions whose range is not entirely contained in either (0,+∞) or
(−∞, 0), then the method provided by Theorem 7.8 will not detect this solution. For
instance, the zero function, i.e., the function u : R → R satisfying u(t) = 0 for all
t ∈ R, is a solution to every Bernoulli differential equation but completely overlooked
by this method.

Corollary 7.5 (Maximal solutions to Bernoulli equations). Assume p, q : I → R are
continuous functions on an open interval I ⊆ R and consider the Bernoulli differential
equation

u′(t) = p(t)u(t) + q(t)un(t). (7.22)
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Let v : I → R be a solution to the linear differential equation

v′(t) = −(n− 1)p(t)v(t) − (n− 1)q(t).

The set {t ∈ I : v(t) > 0}, if non-empty, is a disjoint union of open intervals J+
max,1 ∪

J+
max,2 ∪ . . ., and for each such interval J+

max,i we have:

(i) if n is even then the function u : J+
max,i → (0,+∞) defined as u(t) = v(t)− 1

n−1 is
a maximal solution to (7.22) with maximal interval J+

max,i;
(ii) if n is odd then the functions u+ : J+

max,i → (0,+∞) and u− : J+
max,i → (−∞, 0)

defined as u±(t) = ±v(t)− 1
n−1 are maximal solutions to (7.22) with maximal

interval J+
max,i.

Similarly, the set {t ∈ R : v(t) < 0}, if non-empty, is a disjoint union of open
intervals J−

max,1 ∪ J−
max,2 ∪ . . ., and for each such interval J−

max,i we have:

(i) if n is even then the function u : J+
max,i → (−∞, 0) defined as u(t) = v(t)− 1

n−1

is a maximal solution to the Bernoulli differential equation (7.22) with maximal
interval J−

max,i;
(ii) if n is odd then the interval J−

max,i supports no solutions to (7.22).

Aside from the trivial solution u(t) = 0 for all t ∈ I, the above describes all maximal
solutions to he Bernoulli differential equation (7.22).

Example 7.18. Let us find every nonzero solution of the differential equation

y′ = y + 2y5.

This is a Bernoulli equation for n = 5. Divide the equation by y5,
y′

y5 = 1
y4 + 2.

Introduce the function v = 1
y4 and its derivative v′ = −4

(
y′

y5

)
, into the differential

equation above,

−v′

4 = v + 2 =⇒ v′ = −4v − 8 =⇒ v′ + 4v = −8.

The last equation is a linear differential equation for the function v. This equation
can be solved using the integrating factor method. Multiply the equation by e4t, then

e4tv′ + 4e4tv = −8e4t =⇒
(
e4tv

)′
= −8e4t =⇒ e4tv = −2e4t + c.

We obtain that v = ce−4t − 2. Since v = 1
y4 ,

1
y4 = ce−4t − 2 =⇒ y(t) = ± 1

(ce−4t − 2)
1
4
.
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Thus, for c ⩽ 0 we obtain no solution, but for each c > 0 we obtain two solutions,

y :
(
−∞, 1

4 ln
(
c
2

))
→ (0,+∞), y(t) = 1

(ce−4t − 2)
1
4
,

y :
(
−∞, 1

4 ln
(
c
2

))
→ (−∞, 0), y(t) = − 1

(ce−4t − 2)
1
4
.

These are maximal solutions with maximal intervals (−∞, 1
4 ln ( c2)).

Example 7.19. Consider the Bernoulli equation

u′(t) + 2tu(t) = et
2
u2(t),

for the initial condition u(0) = 2. Divide both sides of the equation by u2(t) to obtain

u′(t)
u2(t) + 2t

u(t) = et
2
.

By making the substitution v(t) = 1
u(t) , we get the following linear differential equation

for v:

v′(t) = 2tv(t) − et
2
,

for the initial condition v(0) = 1
u(0) = 1

2 . In view of Corollary 7.4, the solution to this
initial value problem is given by

v(t) = 1
2e
t2 −

∫ t

0
et

2−s2
es

2
ds︸ ︷︷ ︸

v0eA(t)−A(t0)+
∫ t

t0
eA(t)−A(s)b(s) ds

= 1
2e
t2 − tet

2
.

Reversing the substitution, using u(t) = 1
v(t) , yields the expression for u(t):

u(t) = 1
1
2e
t2 − tet2

= 2e−t2

1 − 2t .

Thus, the solution to the initial value problem is

u : (−∞, 1
2) → (0,+∞), u(t) = 2e−t2

1 − 2t .

This is a maximal solution with maximal interval (−∞, 1
2).

Example 7.20. Consider the differential equation
dy

dx
− 3
x
y = x2y4.

This is a Bernoulli differential equation, since in can be written in the standard
Bernoulli form

dy

dx
= p(x)y + q(x)yn
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with p(x) = 3
x
, q(x) = x2, and n = 4. Make the substitution v = y1−n = y−3, so that

dv

dx
= −3y−4 dy

dx
=⇒ y−4 dy

dx
= −1

3
dv

dx

Divide the original equation by y4:

y−4 dy

dx
− 3
x
y−3 = x2

Substitute v = y−3:

−1
3
dv

dx
− 3
x
v = x2

Multiply through by −3:
dv

dx
+ 9
x
v = −3x2

This is a linear ODE in v. The integrating factor is

e
∫

9
x
dx = x9.

Multiply both sides by x9, we get

x9 dv

dx
+ 9x8v = −3x11 =⇒ d

dx
(x9v) = −3x11.

Integrate both sides,

x9v =
∫

−3x11dx = − 3
12x

12 + C = −1
4x

12 + C,

and solve for v,

v = x−9
(

−1
4x

12 + C
)

= −1
4x

3 + Cx−9.

Recall v = y−3, so

y−3 = −1
4x

3 + Cx−9 =⇒ y(x) =
(

−1
4x

3 + Cx−9
)−1/3

.

Final answer:

y(x) =
(

−1
4x

3 + Cx−9
)−1/3
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7.9 Second Order Linear Differential Equations

Definition 7.11. Let I ⊆ R be an open interval and let a0, a1, b : I → R be continuous
functions. A differential equation of the form

y′′(t) = a1(t)y′(t) + a0(t)y(t) + b(t) (7.23)

coefficients source function

is called a second order linear differential equation. The equation (7.23) above:

(i) is homogeneous if the source function b(t) = 0 for all t ∈ I;
(ii) is inhomogeneous if the source function b(t) ̸= 0 for some t ∈ I;
(iii) has constant coefficient if a0(t) = a0 and a1(t) = a1 for some constants a0, a1 ∈ R

and for all t ∈ I;
(iv) has variable coefficient if either a0(t) or a1(t) is a non-constant function on I;

Example 7.21. The famous Schrödinger equation in Quantum Mechanics, in one
space dimension, stationary, is:

− ℏ2

2mψ′′ + V (x)ψ = Eψ,

where ψ is the wave function of a particle (i.e., the probability density of finding
the particle at the position x), m is the mass of the particle, V (x) is the potential
energy function, E is the total energy, and ℏ is the reduced Planck constant (i.e., the
Planck constant divided by 2π). It is an example of a second order homogeneous linear
differential equation with variable coefficients.

Theorem 7.9 (Principal of Superposition). Let I be an open interval in R, let
a0, a1, b1, b2 : I → R be continuous functions and suppose the two functions y1, y2 : I →
R are respective solutions to the two linear differential equations

y′′(t) = a1(t)y′(t) + a0(t)y(t) + b1(t) and y′′(t) = a1(t)y′(t) + a0(t)y(t) + b2(t).

Then for any c1, c2 ∈ R the function y : I → R defined by

y(t) = c1y1(t) + c2y2(t)

is a solution to the linear differential equation

y′′(t) = a1(t)y′(t) + a0(t)y(t) + c1b1(t) + c2b2(t).

Theorem 7.10 (IVP Existence and Uniqueness Theorem). Let I ⊆ R be an open
interval and let a0, a1, b : I → R be continuous functions. For all (t0, y0, y1) ∈ I×R×R
there is a unique solution y : I → R of the initial value problem:

y′′(t) = a1(t)y′(t) + a0(t)y(t) + b(t) and y(t0) = y0, y′(t0) = y1.



7.10. SECOND ORDER HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS165

7.10 Second Order Homogeneous Linear Differen-
tial Equations

In this section we specifically discuss second order homogeneous linear differential
equations, that is, equations of the form

y′′(t) = a1(t)y′(t) + a0(t)y(t), (7.24)

where a0, a1 : I → R are continuous functions on an open interval I ⊆ R.
Definition 7.12. Two solution y1, y2 : I → R to the homogeneous equation (7.24) are:

(i) called linearly dependent if there exists a constant c ∈ R such that y1(t) = cy2(t)
holds for all t ∈ I.

(ii) called linearly independent if they are not linearly dependent.
A consequence of Theorem 7.10 is that the differential equation (7.24) has at least

two linearly independent solutions. Indeed, let y1 be a solution to the IVP with
y(t0) = 1 and y′(t0) = 1, and y2 a solution to the IVP with y(t0) = 1 and y′(t0) = 2;
these two solutions cannot be linearly dependent, because if y1 and y2 were linearly
dependent then

y1(t0) = y2(t0) = y′
1(t0) = 1 =⇒ y′

2(t0) = 1.

Instead of 1 and 2, we could have chosen any other pair of distinct non-zero numbers.
The next theorem tells us that it cannot be more than that and hence every second
order homogeneous linear differential equation with variable coefficients has exactly
two linearly independent solutions. Moreover, using the principle of superposition,
all solutions can be produced via linear combinations of the two linearly independent
ones.

Theorem 7.11. Let I be an open interval of R, a0, a1 : I → R two continuous func-
tions, and y1, y2 : I → R two linearly independent solutions of the differential equation

y′′(t) = a1(t)y′(t) + a0(t)y(t)

Then the set of all solutions to the differential equation is given by the two parameter
family of functions

y(t) = c1y1(t) + c2y2(t) with c1, c2 ∈ R. (7.25)

By definition, the expression of (7.25) is called the general solution of the differential
equation.

7.11 The Wronskian
We now introduce a function that provides important information about the linear de-
pendency of two functions u1, u2 and is named after the polish scientist Josef Wronski.
Definition 7.13 (The Wronskian). Let I be an open interval of R. If u1, u2 : I → R
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are two functions of class C1(I) then the function W [u1, u2] : I → R defined by

W [u1, u2] (t) = u1(t)u′
2(t) − u′

1(t)u2(t)

is called the Wronskian of u1 and u2.

Remark 7.5. The Wronskian is a determinant formed by arranging the functions
u1, u2 and their derivatives into a matrix:

W [u1, u2] (t) =
∣∣∣∣∣u1(t) u2(t)
u′

1(t) u′
2(t)

∣∣∣∣∣ = u1(t)u′
2(t) − u′

1(t)u2(t).

For this reason, the Wronskian is sometimes also called the Wronskian determinant.

Our next goal is to demonstrate Abel’s Identity, which states that the Wronskian
of two solutions of a second-order homogeneous linear differential equation satisfies
its own first-order homogeneous linear differential equation. This leads to a useful
description of all such Wronskians.

Suppose y1, y2 : I → R are two solutions to the homogeneous linear differential
equation (7.24) and consider their Wronskian W [y1, y2] = y1y

′
2 − y′

1y2. If we take the
derivative of the Wronskian then we see that

W [y1, y2]′ = d

dt
W [y1, y2] = HHHy′

1y
′
2 + y1y

′′
2 − y′′

1y2 − HHHy′
1y

′
2 = y1y

′′
2 − y′′

1y2.

Using that both y1 and y2 satisfy (7.24), we obtain

W [y1, y2]′ = y1y
′′
2 − y′′

1y2 = y1(a1(t)y′
2 + a0(t)y2) − (a1(t)y′

1 + a0(t)y1)y2

= a1(t)y1y
′
2 + XXXXXa0(t)y1y2 − a1(t)y′

1y2 + XXXXXa0(t)y1y2

= a1(t)y1y
′
2 − a1(t)y′

1y2

= a1(t)W [y1, y2].

In conclusion, we have found that the Wronskian satisfies the first order homogeneous
linear differential equation

W [y1, y2]′ = a1(t)W [y1, y2]. (7.26)

Since we already know how to solve such equations (cf. Theorem 7.7), we deduce that
the Wronskian is equal to W [y1, y2](t) = ceA1(t) where A1 : I → R is an antiderivative
of a1(t) and c is a real number.

Theorem 7.12 (Abel’s Identity). Let I be an open interval of R and a0, a1 : I → R
two continuous functions. If y1, y2 : I → R are two solutions of the differential equation

y′′(t) = a1(t)y′(t) + a0(t)y(t)

then the Wronskian W [y1, y2] satisfies the differential equation Eq. (7.26) and hence

W [y1, y2](t) = ceA1(t)

where A1 : I → R is an antiderivative of a1(t) and c is a real number.
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If two functions u1, u2 are linearly dependent then their Wronskian W [u1, u2] is
constant equal to zero. While the reverse implication of this statement is not true
in general, it follows from Abel’s Identity that it is true when the two functions are
solutions to a second order homogeneous linear differential equation.

7.12 Search for Linearly Independent Solutions to
Homogeneous Equation

For first order homogeneous linear differential equations it is always possible to find
solutions using the integrating factor method. When it comes to second order ho-
mogeneous linear differential equation, we know from Theorem 7.11 that it suffices
to find two linearly independent solutions to obtain all solutions. Unfortunately, in
general, there is no single method that allows us to find linearly independent solutions
to (7.24). However, if we already know one non-zero solution then there is a method
that allows us to turn this one solution into two linearly independent solutions. This
method is based on Abel’s identity and is explained next.

Method of Reduction of Order: If we already know one solution to a second
order homogeneous linear differential equation then with the help of Abel’s identity
for the Wronskian, the task of finding a second solution reduces to solving a first order
homogeneous linear differential equation. This method is called reduction of order,
because we reduce a second-order equation to first-order equation when one solution
is already known.

Suppose y1 : I → R is a non-zero solution to the homogeneous linear differential
equation (7.24). We know from Theorem 7.12 that any other solution y2 must satisfy

y1y
′
2 − y′

1y2 = ceA1(t)

where A1 : I → R is an antiderivative of a1(t) and c ∈ R. Note that for any c ̸= 0, y2 is
a solution if and only if c−1y2 is a solution. Thus, replacing y2 with c−1y2 if necessary,
we can assume without loss of generality that c = 1 and hence

y1y
′
2 − y′

1y2 = eA1(t).

Since y1 is known, the above is a first order inhomogenous linear differential equation
in y2, which we know how to solve due to Theorem 7.7. Indeed, if we invoke formula
(7.18) with c = 0 then we get a second solution in the form

y2(t) = y1(t)
∫ t

t0

eA1(s)

y2
1(s) ds,

where t0 ∈ I is arbitrary. Since the function eA1(s)

y2
1(s) is non-zero, its antiderviatives

are non-constant, which implies that y2 and y1 cannot be linearly dependent. The
following theorem summarizes our findings.
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Theorem 7.13. Let I be an open interval of R and a0, a1 : I → R two continuous
functions. Suppose y1 : I → R is a non-zero solution to the homogeneous linear differ-
ential equation

y′′(t) = a1(t)y′(t) + a0(t)y(t)

then for any t0 ∈ I the function

y2(t) = y1(t)
∫ t

t0

eA1(s)

y2
1(s) ds,

is a second solution. Moreover, the two solutions y1 and y2 are linearly independent.

Example 7.22. Let us find all solutions to

t2y′′ + 2ty′ − 2y = 0, t < 0,

given that y1(t) = t is a solution.
First, let us rearrange the differential equation to get

y′′ = −2
t
y′ + 2

t2
y.

When written in this form, we can see that this is a second order homogeneous lin-
ear differential equation with coefficients a1(t) = −2

t
and a0(t) = 2

t2
. Thanks to

Theorem 7.11, the set of all solutions to this differential equation is obtained by su-
perpositions of two linearly independent solution. Since one solution is already given,
it suffices to find a second solution that is linearly independent from the first. By
Theorem 7.13, this second solution is given by

y2(t) = y1(t)
∫ t

t0

eA1(s)

y2
1(s) ds.

Using t0 = 1, y2
1(t) = t2 and A1(t) = −2 ln(−t), where A1(t) denotes an antiderivative2

of a1(t), we get

y2(t) = t
∫ t

1

1
s4 ds = t

3 − 1
3t2 .

Thus, we have two linearly independent solutions y1(t) = t and y2(t) = t
3 − 1

3t2 , and
hence the general solution is given by linear combinations of these two solutions, which
can be written as

y(t) = c1t+ c2
1
t2
, c1, c2 ∈ R.

2Recall that the antiderivative of 1
t is given by∫ 1
t
dt =

{
ln(t) + c if t > 0,
ln(−t) + c if t < 0.
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