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1. Since

Ju(x, y, z) =

󰀣
2x z2 cos(yz2) 2yz cos(yz2)

−yx−2 1/x 0

󰀤
,

then

Ju(1, 0, 1) =

󰀣
2 1 0

0 1 0

󰀤
.

2. We apply the chain rule to see that Jg(x, y, z) = Jf (f(x, y, z)) · Jf (x, y, z) and

Jf (x, y, z) =

󰀳

󰁅󰁃
0 2y 0

0 0 2z

2x 0 0

󰀴

󰁆󰁄 .

Thus,

Jf (f(x, y, z)) =

󰀳

󰁅󰁃
0 2z2 0

0 0 2x2

2y2 0 0

󰀴

󰁆󰁄 ,

and

Jg(x, y, z) =

󰀳

󰁅󰁃
0 2z2 0

0 0 2x2

2y2 0 0

󰀴

󰁆󰁄 ·

󰀳

󰁅󰁃
0 2y 0

0 0 2z

2x 0 0

󰀴

󰁆󰁄 =

󰀳

󰁅󰁃
0 0 4z3

4x3 0 0

0 4y3 0

󰀴

󰁆󰁄 .

3. We have {(x, y) ∈ R2 : 0 ≤ x ≤ 1, x3 ≤ y ≤ x1/2} = {(x, y) ∈ R2 : 0 ≤ y ≤ 1, y2 ≤ x ≤ y1/3}.

4.

i) We have
󰁝 2

−1

󰀕󰁝 1

0
cos(x+ y) dx

󰀖
dy =

󰁝 2

−1

󰁫
sin(x+ y)

󰁬x=1

x=0
dy =

󰁝 2

−1

󰀃
sin(1 + y)− sin(y)

󰀄
dy

=
󰁫
− cos(1 + y) + cos(y)

󰁬2
−1

= 1− cos(1) + cos(2)− cos(3) .
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ii) We have
󰁝 1

0

󰀕󰁝 2x

x
ex+y dy

󰀖
dx =

󰁝 1

0

󰁫
ex+y

󰁬y=2x

y=x
dx =

󰁝 1

0

󰀃
e3x − e2x

󰀄
dx =

󰀗
1

3
e3x

󰀘x=1

x=0

−
󰀗
1

2
e2x

󰀘x=1

x=0

=
1

3

󰀃
e3 − 1

󰀄
− 1

2

󰀃
e2 − 1

󰀄
=

1

3
e3 − 1

2
e2 +

1

6
.

5.

i) Using Fubini’s theorem, we have
󰁝

D

√
x+ y dx dy =

󰁝 1

0

󰀕󰁝 2

0

√
x+ y dx

󰀖
dy =

󰁝 1

0

󰀗
2

3
(x+ y)3/2

󰀘x=2

x=0

dy

=

󰁝 1

0

2

3

󰀓
(2 + y)3/2 − y3/2

󰀔
dy =

󰀗
4

15

󰀃
(2 + y)5/2 − y5/2

󰀄󰀘1

0

=
4

15

󰀓
9
√
3− 4

√
2− 1

󰀔
.

ii) Using Fubini’s theorem, we have
󰁝

D

x2y dx dy =

󰁝 2

0

󰀣󰁝 x2

0
x2y dy

󰀤
dx =

󰁝 2

0

󰀗
1

2
x2y2

󰀘y=x2

y=0

dx =

󰁝 2

0

1

2
x6 dx =

󰀗
1

14
x7

󰀘2

0

=
64

7
.

iii) Using Fubini’s theorem, we have
󰁝

D

f(x, y) dx dy = −
󰁝 1

0

󰀕󰁝 x

0
(x2 − 2x− y2 + 2y) dy

󰀖
dx−

󰁝 2

1

󰀕󰁝 2−x

0
(x2 − 2x− y2 + 2y) dy

󰀖
dx

= −
󰁝 1

0

󰀗
(x2 − 2x)y − 1

3
y3 + y2

󰀘y=x

y=0

dx−
󰁝 2

1

󰀗
(x2 − 2x)y − 1

3
y3 + y2

󰀘y=2−x

y=0

dx

∗
= −

󰁝 1

0

󰀕
2

3
x3 − x2

󰀖
dx−

󰁝 2

1

󰀕
2

3
(2− x)3 − (2− x)2

󰀖
dx

= −
󰀗
1

6
x4 − 1

3
x3

󰀘1

0

+

󰀗
1

6
(2− x)4 − 1

3
(2− x)3

󰀘2

1

= −
󰀕
1

6
− 1

3

󰀖
+

󰀕
−1

6
+

1

3

󰀖
=

1

3
.

For the step indicated by ∗ we have rewritten the first term in the second integral as

(x2 − 2x)(2− x) = −x(2− x)2 =
󰀃
(2− x)− 2

󰀄
(2− x)2 = (2− x)3 − 2(2− x)2

to arrive at

(x2 − 2x)(2− x)− 1

3
(2− x)3 + (2− x)2 =

2

3
(2− x)3 − (2− x)2

and thus avoiding the need to expand the polynomials.

6.
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i) In the given order, we traverse D from bottom to top along horizontal lines. Reversing the
order of integration is equivalent to traversing D from left to right along vertical lines. Thus
x varies between 0 and 1 and y varies between 0 and x. We have
󰁝 1

0

󰀕󰁝 1

y
e(x

2) dx

󰀖
dy =

󰁝 1

0

󰀕󰁝 x

0
e(x

2) dy

󰀖
dx =

󰁝 1

0

󰁫
ye(x

2)
󰁬y=x

y=0
dx =

󰁝 1

0
xe(x

2) dx

=

󰀗
1

2
e(x

2)

󰀘1

0

=
e− 1

2
.

ii) We must again reverse the order of integration to be able to calculate this integral, so we
have
󰁝 1

0

󰀣󰁝 1

3
√
y

󰁳
1 + x4 dx

󰀤
dy =

󰁝 1

0

󰀣󰁝 x3

0

󰁳
1 + x4 dy

󰀤
dx =

󰁝 1

0

󰁫
y
󰁳

1 + x4
󰁬y=x3

y=0
dx

=

󰁝 1

0
x3

󰁳
1 + x4 dx =

󰁝 1

0

1

4
4x3(1 + x4)1/2 dx =

󰀗
1

6

󰀃
1 + x4

󰀄3/2
󰀘1

0

=
1

6

󰀓
2
√
2− 1

󰀔
.

7. The points of the domain D satisfy

x ≥ 0, −
√
x ≤ y ≤

√
x and x− 6 ≤ y ≤ x,

that is,

x ≥ 0 and max{−
√
x, x− 6} ≤ y ≤ min{

√
x, x}.

Let’s determine the values of x ≥ 0 such that −
√
x = x− 6 or

√
x = x. For x ≥ 0, we have

x− 6 = −
√
x ⇐⇒ (

√
x)2 +

√
x− 6 = 0 ⇐⇒ (

√
x− 2)(

√
x+ 3) = 0 ⇐⇒ x = 4

and
√
x = x ⇐⇒ x ∈ {0, 1}.

Let’s consider the cases x ∈ [0, 1], x ∈ [1, 4] and x ≥ 4.
For x ∈ [0, 1], we obtain −

√
x ≥ x− 6 and

√
x ≥ x. Hence −

√
x ≤ y ≤ x.

For x ∈ [1, 4], we obtain −
√
x ≥ x− 6 and

√
x ≤ x. Hence −

√
x ≤ y ≤

√
x.

For x ≥ 4, we obtain −
√
x ≤ x− 6 and

√
x ≤ x. Where x− 6 ≤ y ≤

√
x. Such a y exists if and

only if x− 6 ≤
√
x. However, for x ≥ 4,

x− 6 =
√
x ⇐⇒ (

√
x)2 −

√
x− 6 = 0 ⇐⇒ (

√
x+ 2)(

√
x− 3) = 0 ⇐⇒ x = 9

and thus, we only need to consider x ∈ [4, 9] in the third case.
In summary,

D = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, −
√
x ≤ y ≤ x} ∪ {(x, y) ∈ R2 : 1 ≤ x ≤ 4, −

√
x ≤ y ≤

√
x}

∪ {(x, y) ∈ R2 : 4 ≤ x ≤ 9, x− 6 ≤ y ≤
√
x}.
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The area of D is therefore
󰁝󰁝

D

dx dy =

󰁝 1

0

󰀕󰁝 x

−
√
x
dy

󰀖
dx+

󰁝 4

1

󰀣󰁝 √
x

−
√
x
dy

󰀤
dx+

󰁝 9

4

󰀣󰁝 √
x

x−6
dy

󰀤
dx

=

󰁝 1

0

󰀃
x+

√
x
󰀄
dx+

󰁝 4

1
2
√
x dx+

󰁝 9

4

󰀃√
x− x+ 6

󰀄
dx

=

󰀗
1

2
x2 +

2

3
x3/2

󰀘1

0

+

󰀗
4

3
x3/2

󰀘4

1

+

󰀗
2

3
x3/2 − 1

2
x2 + 6x

󰀘9

4

=

󰀕
1

2
+

2

3

󰀖
+

󰀕
32

3
− 4

3

󰀖
+

󰀕
18− 81

2
+ 54

󰀖
−

󰀕
16

3
− 8 + 24

󰀖
=

62

3
.

8.

i) We have
󰁝󰁝

D

yey
2−4xx.y. =

󰁝 2

0

󰁝 √
8

0
yey

2−4xy.x. =
󰁝 2

0

󰁝 √
8

0

∂

∂y

󰀕
1

2
ey

2−4x

󰀖
y.x.

=

󰁝 2

0

󰀕
1

2
ey

2−4x

󰀖 󰀏󰀏󰀏󰀏

√
8

0

x. =
1

2

󰁝 2

0
(e8−4x − e−4x)x.

=
1

2

󰀕
−1

4
e8−4x +

1

4
e−4x

󰀖 󰀏󰀏󰀏󰀏
2

0

=
1

8
(e8 + e−8 − 2).

ii) By solving the equation 1 − x2 = x2 − 3, we see that the curves y = 1 − x2, y = x2 − 3

meet at the points (±
√
2,−1), and for any x ∈ [−

√
2,
√
2], we have 1− x2 ≥ x2 − 3. Thus,

D = {(x, y) ∈ R2 : −
√
2 ≤ x ≤

√
2, x2 − 3 ≤ y ≤ 1− x2}. Therefore, we have

󰁝󰁝

D

x(y − 1)x.y. =
󰁝 √

2

−
√
2
x

󰁝 x2−1

x2−3
(y − 1)y.x. =

󰁝 √
2

−
√
2
x

󰀕
1

2
y2 − y

󰀖 󰀏󰀏󰀏󰀏
x2−1

x2−3

x.

=

󰁝 √
2

−
√
2

󰀕
1

2
x(1− x2)2 − 1

2
x(x2 − 3)2 − x(1− x2) + x(x2 − 3)

󰀖
x.

=

󰁝 √
2

−
√
2
(4x3 − 8x)x. = (x4 − 4x2)

󰀏󰀏󰀏
√
2

−
√
2
= 0.

iii) As we did in ii), we find that D = {(x, y) ∈ R2 : 0 ≤ y ≤ 2, 0 ≤ x ≤ 2
√
y}. Thus, we have

󰁝󰁝

D

5x3 cos(y3)x.y. =
󰁝 2

0
cos(y3)

󰁝 2
√
y

0
5x3x.y. =

󰁝 2

0
cos(y3)

󰀕
5

4
x4

󰀖 󰀏󰀏󰀏󰀏
2
√
y

0

y.

=

󰁝 2

0
20y2 cos(y3)y. =

󰀕
20

3
sin(y3)

󰀖 󰀏󰀏󰀏󰀏
2

0

=
20

8
sin(8).

9. Solving x2 + z2 = 4, we get z = ±
√
4− x2, thus the volume above the xy-plane is
󰁝󰁝

D

󰁳
4− x2x.y.
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and then the full volume V is

2

󰁝󰁝

D

󰁳
4− x2x.y. ,

where D is the region determined by x2 + y2 = 4. That is, D = {(x, y) ∈ R2 : − 2 ≤ x ≤
2, −

√
4− x2 ≤ y ≤

√
4− x2}. Therefore,

V = 2

󰁝 2

−2

󰁳
4− x2

󰁝 √
4−x2

−
√
4−x2

1y.x. = 4

󰁝 2

−2
(4− x2)x. = 4

󰀕
4x− x3

3

󰀖 󰀏󰀏󰀏󰀏
2

−2

=
128

3
.

10. The equations of the straight lines delimiting the parallelogram D are given in Fig. 1.

y=
1

2
x+

1

2

  y=
1

2
x+2

y=2x-1

y=2x-7

1 2 3 4 5 6 7 x

1

2

3

4

5

y

Figure 1

We divide the domain into three sub-domains by cutting along the vertical lines x = 2 and x = 5.
So the area of the parallelogram is

󰁝󰁝

D

dx dy =

󰁝 2

1

󰀣󰁝 2x−1

1
2
x+ 1

2

dy

󰀤
dx+

󰁝 5

2

󰀣󰁝 1
2
x+2

1
2
x+ 1

2

dy

󰀤
dx+

󰁝 6

5

󰀣󰁝 1
2
x+2

2x−7
dy

󰀤
dx

=

󰁝 2

1

󰀕
3

2
x− 3

2

󰀖
dx+

󰁝 5

2

3

2
dx+

󰁝 6

5

󰀕
−3

2
x+ 9

󰀖
dx

=
3

2

󰀣󰀕
1

2
x2 − x

󰀖 󰀏󰀏󰀏󰀏
2

1

+ x
󰀏󰀏󰀏
5

2
+

󰀕
−1

2
x2 + 6x

󰀖 󰀏󰀏󰀏󰀏
6

5

󰀤
=

3

2
· 4 = 6 .

To calculate the area of D by a change of variables, we effectively try to transform D into a
square—a shape of which we understand the area very well—and use the properties of this trans-
formation to compute the area of D. As such, it is useful to re-express the equations of the lines as
follows : 2x− y = 1 , 2x− y = 7 and x− 2y = −1 , x− 2y = −4 . We then define a map H such
that (u, v) = H(x, y) with 󰀻

󰀿

󰀽
u = 2x− y = H1(x, y)

v = x− 2y = H2(x, y)
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Now set 󰁨D = [1, 7] × [−4,−1]. We see that the image of D̊ under H is 󰁨̊D =]1, 7[×] − 4,−1[ and

H : D̊ → 󰁨̊D is bijective. The Jacobian matrix of H and its determinant are

JH(x, y) =

󰀣
∂xH1(x, y) ∂yH1(x, y)

∂xH2(x, y) ∂yH2(x, y))

󰀤
=

󰀣
2 −1

1 −2

󰀤
and det

󰀃
JH(x, y)

󰀄
= −3 .

Let G = H−1 : 󰁨̊D → D̊ be the inverse transformation such that (x, y) = G(u, v). The Jacobian of
G is calculated from JH(x, y) :

det
󰀃
JG(u, v)

󰀄
=

󰀥
1

det
󰀃
JH(x, y)

󰀄
󰀦

(x,y)=G(u,v)

= −1

3
.

The area of the parallelogram is then
󰁝󰁝

D

dx dy =

󰁝󰁝

D̊

dx dy =

󰁝󰁝

󰁨̊D

󰀏󰀏det
󰀃
JG(u, v)

󰀄󰀏󰀏 du dv =

󰁝 7

1

󰀕󰁝 −1

−4

1

3
du

󰀖
dv =

1

3
· 3 · 6 = 6 .

The result is obviously the same as before. But we have seen that it is faster to use an adequate
change of variables.


