

Exercise Sheet 9

Analysis II-MATH-106 (en) EPFL

Spring Semester 2024-2025

April 14, 2025

Exercise 1. Given $D = \{(x, y, z) \in \mathbb{R}^3 : x \neq 0\}$. Let $\mathbf{u} : D \rightarrow \mathbb{R}^2$ be the function defined by

$$\mathbf{u}(x, y, z) = (x^2 + 1 + \sin(yz^2), y/x)^T.$$

The the Jocabian matrix $J_{\mathbf{u}}(1, 0, 1)$ is

A. $\begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 0 & 0 \end{pmatrix}$ B. $\begin{pmatrix} 2 & 2 \\ 0 & 1 \end{pmatrix}$ C. $\begin{pmatrix} 2 & 2 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$ D. $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

Exercise 2. Let $f : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be the function defined by

$$\mathbf{f}(x, y, z) = (y^2, z^2, x^2)^T.$$

Then the Jocabian matrix of the composition $\mathbf{g} = \mathbf{f} \circ \mathbf{f}$ at (x, y, z) is

A. $J_{\mathbf{g}}(x, y, z) = \begin{pmatrix} 0 & 4y^2z & 0 \\ 0 & 0 & 4xz^2 \\ 4x^2y & 0 & 0 \end{pmatrix}$ B. $J_{\mathbf{g}}(x, y, z) = \begin{pmatrix} 0 & 4x^3 & 0 \\ 0 & 0 & 4y^3 \\ 4x^3 & 0 & 0 \end{pmatrix}$
 C. $J_{\mathbf{g}}(x, y, z) = \begin{pmatrix} 0 & 0 & 4z^3 \\ 4x^3 & 0 & 0 \\ 0 & 4y^3 & 0 \end{pmatrix}$ D. $J_{\mathbf{g}}(x, y, z) = \begin{pmatrix} 0 & 0 & 4yz \\ 4zx & 0 & 0 \\ 0 & 4xy & 0 \end{pmatrix}$

Exercise 3. Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a continuous function. Then

A. $\int_0^1 \int_{x^3}^{\sqrt{x}} f(x, y) dy dx = \int_0^1 \int_{y^2}^{y^{1/3}} f(x, y) dx dy$ B. $\int_0^1 \int_{x^3}^{\sqrt{x}} f(x, y) dy dx = \int_0^1 \int_{y^{1/3}}^{y^2} f(x, y) dx dy$
 C. $\int_0^1 \int_{x^3}^{\sqrt{x}} f(x, y) dy dx = \int_0^{\sqrt{x}} \int_{y^2}^{y^{1/3}} f(x, y) dx dy$ D. $\int_0^1 \int_{x^3}^{\sqrt{x}} f(x, y) dy dx = \int_0^1 \int_0^{y^{1/3}} f(x, y) dx dy$

Exercise 4. Calculate the following integrals:

$$\text{i) } \int_{-1}^2 \left(\int_0^1 \cos(x+y) dx \right) dy \quad \text{ii) } \int_0^1 \left(\int_x^{2x} e^{x+y} dy \right) dx.$$

Exercise 5. Compute the double integral $\int_D f(x, y) dx dy$ in the following cases:

i) $f(x, y) = \sqrt{x+y}$, $D = \{(x, y) : 0 \leq x \leq 2, 0 \leq y \leq 1\}$.

ii) $f(x, y) = x^2 y$, $D = \{(x, y) : 0 \leq y \leq x^2, 0 \leq x \leq 2\}$.

iii) $f(x, y) = |(x-y)(x+y-2)|$, $D = \{(x, y) : 0 \leq y \leq x, x+y-2 \leq 0\}$.

Exercise 6. Calculate the following integrals:

i) $\int_0^1 \left(\int_y^1 e^{x^2} dx \right) dy$.

ii) $\int_0^1 \left(\int_{\sqrt[3]{y}}^1 \sqrt{1+x^4} dx \right) dy$.

Exercise 7. Calculate the area of the domain $D = \{(x, y) : y^2 \leq x, x-6 \leq y \leq x\}$.

Exercise 8. Calculate the following double integrals:

i) $\iint_D y e^{y^2-4x} xy$, where $D = [0, 2] \times [0, \sqrt{8}]$.

ii) $\iint_D x(y-1) xy$, where D is the region bounded by $y = 1 - x^2$, $y = x^2 - 3$.

iii) $\iint_D 5x^3 \cos(y^3) xy$, where D is the region bounded by $y = 2$, $y = \frac{x^2}{4}$ and the y -axis.

Exercise 9. Determine the volume of the region formed by the intersection of the two cylinders $x^2 + y^2 = 4$ and $x^2 + z^2 = 4$.

Exercise 10. Calculate the area of the parallelogram shown below first without and then with a change of variables. Does a change of variables seem useful to you in this case?

