

## EXERCISE SHEET 8 SOLUTIONS

Analysis II-MATH-106 (en) EPFL

Spring Semester 2024-2025

April 7, 2025

1. (i) By the chain rule, we have  $J_{f \circ G}(x, y) = J_f(G(x, y)) \cdot J_G(x, y)$  (product of matrices)  $J_f(u, v, w) = \begin{pmatrix} 2u & 2v & 1 \end{pmatrix}$ , and since  $G : \mathbb{R}^2 \rightarrow \mathbb{R}^3$  we have  $J_f(G(x, y)) = \begin{pmatrix} 2 \cos x + 2 \sin y & -2 \sin x + 2 \cos y & 1 \end{pmatrix}$ ,

$$J_G(x, y) = \begin{pmatrix} -\sin x & \cos y \\ -\cos x & -\sin y \\ 2 \cos x \cos y & -2 \sin x \sin y \end{pmatrix}.$$

Therefore,  $J_{f \circ G}(x, y) = \begin{pmatrix} 2 \cos x + 2 \sin y & -2 \sin x + 2 \cos y & 1 \end{pmatrix} \cdot \begin{pmatrix} -\sin x & \cos y \\ -\cos x & -\sin y \\ 2 \cos x \cos y & -2 \sin x \sin y \end{pmatrix}$   
 $= \begin{pmatrix} -2 \sin x \sin y & 2 \cos x \cos y \end{pmatrix}.$

(ii) To perform the computation directly, first see that  $(f \circ G)(x, y) = 2 + 2 \cos x \sin y$ , such that indeed

$$J_{f \circ G}(x, y) = \begin{pmatrix} -2 \sin x \sin y & 2 \cos x \cos y \end{pmatrix}.$$

2.

i) We verify by a direct calculation that  $x^2 + y^2 + z^2 = \rho^2$ . Thus the point  $(x, y, z)$  is indeed on the sphere of radius  $\rho$ .

ii) Write  $(x, y, z) = (\sqrt{6}, \sqrt{2}, -2\sqrt{2})$  in the form  $(x, y, z) = G(\rho, \theta, \varphi)$ . We obtain

- $\rho^2 = 6 + 2 + 8 = 16$ ,  $\rho = 4$ ,
- $\cos(\theta) = (-2\sqrt{2})/\rho = -\sqrt{2}/2$ ,  $\theta \in [0, \pi]$ ,  $\theta = 3\pi/4$ ,
- $\cos(\varphi) = \sqrt{6}/(\rho \sin(\theta)) = \sqrt{6}/(4\sqrt{2}/2) = \sqrt{3}/2$ ,
- $\sin(\varphi) = \sqrt{2}/(\rho \sin(\theta)) = \sqrt{2}/(4\sqrt{2}/2) = 1/2$ ,  $\varphi = \pi/6$ .

We therefore have  $\rho = 4$ ,  $\theta = 3\pi/4$  and  $\varphi = \pi/6$ .

iii) For  $(\rho, \theta, \varphi) \in \mathbb{R}_+ \times [0, \pi] \times [0, 2\pi[$  the Jacobian matrix of  $G$  becomes

$$\begin{aligned} J_G(\rho, \theta, \varphi) &= \begin{pmatrix} \frac{\partial G_1}{\partial \rho}(\rho, \theta, \varphi) & \frac{\partial G_1}{\partial \theta}(\rho, \theta, \varphi) & \frac{\partial G_1}{\partial \varphi}(\rho, \theta, \varphi) \\ \frac{\partial G_2}{\partial \rho}(\rho, \theta, \varphi) & \frac{\partial G_2}{\partial \theta}(\rho, \theta, \varphi) & \frac{\partial G_2}{\partial \varphi}(\rho, \theta, \varphi) \\ \frac{\partial G_3}{\partial \rho}(\rho, \theta, \varphi) & \frac{\partial G_3}{\partial \theta}(\rho, \theta, \varphi) & \frac{\partial G_3}{\partial \varphi}(\rho, \theta, \varphi) \end{pmatrix} \\ &= \begin{pmatrix} \sin(\theta) \cos(\varphi) & \rho \cos(\theta) \cos(\varphi) & -\rho \sin(\theta) \sin(\varphi) \\ \sin(\theta) \sin(\varphi) & \rho \cos(\theta) \sin(\varphi) & \rho \sin(\theta) \cos(\varphi) \\ \cos(\theta) & -\rho \sin(\theta) & 0 \end{pmatrix}. \end{aligned}$$

iv) Expanding  $\det(J_G(r, \theta, \varphi))$  (see the matrix above) yields

$$\begin{aligned} \det(J_G(r, \theta, \varphi)) &= \cos(\theta) \rho^2 \left( \cos(\theta) \sin(\theta) \cos^2(\phi) + \cos(\theta) \sin(\theta) \sin^2(\phi) \right) \\ &\quad + \rho \sin(\theta) \rho \left( \sin^2(\theta) \cos^2(\phi) + \sin^2(\theta) \sin^2(\phi) \right) \\ &= \rho^2 \left( \cos^2(\theta) \sin(\theta) + \sin^3(\theta) \right) = \rho^2 \sin(\theta). \end{aligned}$$

v) Again, by using the matrix above, one can show that  $(J_G)^\top \cdot J_G = D$ , where  $D$  is the matrix diagonal whose coefficients on the diagonal are  $1$ ,  $\rho^2$  and  $\rho^2 \sin^2(\theta)$  (from top to bottom), the other coefficients being zero. Hence, it follows that  $(D^{-1} \cdot (J_G)^\top) \cdot J_G = I$ , and thus we can simply write  $(J_G)^{-1} = D^{-1} \cdot (J_G)^\top$  such that

$$(J_G(\rho, \theta, \varphi))^{-1} = \begin{pmatrix} \sin(\theta) \cos(\varphi) & \sin(\theta) \sin(\varphi) & \cos(\theta) \\ \rho^{-1} \cos(\theta) \cos(\varphi) & \rho^{-1} \cos(\theta) \sin(\varphi) & -\rho^{-1} \sin(\theta) \\ -\rho^{-1} \sin(\theta) \cos(\varphi) & \rho^{-1} \sin(\theta) \sin(\varphi) & 0 \end{pmatrix}.$$

3. A first restriction on  $D$  is that  $x \neq -2$  and  $y \neq -1/2$ . To find the transformation  $G = H^{-1}: \tilde{D} \rightarrow D$ , we use

$$(1) \quad v = \frac{x}{2y+1} \quad \Leftrightarrow \quad x = v(2y+1)$$

which we substitute in the expression given for  $u$

$$\begin{aligned} u = \frac{y}{x+2} &\quad \Leftrightarrow \quad u(x+2) = y \quad \stackrel{(1)}{\Leftrightarrow} \quad uv(2y+1) + 2u = y \\ &\quad \Leftrightarrow \quad uv + 2u = y(1 - 2uv) \quad \Leftrightarrow \quad y = \frac{u(v+2)}{1-2uv}, \end{aligned}$$

provided that  $1 - 2uv \neq 0$ . Replacing  $y$  in the equation on the right in (1), we find

$$x = \frac{2uv(v+2)}{1-2uv} + v = \frac{2uv(v+2) + v - 2uv^2}{1-2uv} = \frac{(4u+1)v}{1-2uv},$$

so that the two relations

$$u = \frac{y}{x+2}, \quad v = \frac{x}{2y+1},$$

are equivalent to the two relations

$$x = \frac{(4u+1)v}{1-2uv}, \quad y = \frac{u(v+2)}{1-2uv},$$

provided that  $x \neq -2$ ,  $y \neq -1/2$  and  $uv \neq 1/2$ . We can therefore put

$$G(u, v) = \frac{1}{1-2uv} \left( (4u+1)v, u(v+2) \right),$$

and choose

$$\begin{aligned} D &= \left\{ (x, y) \in \mathbb{R}^2 : x \neq -2, y \neq -1/2 \text{ and } \frac{xy}{(x+2)(2y+1)} \neq 1/2 \right\} \\ &= \left\{ (x, y) \in \mathbb{R}^2 : x \neq -2, y \neq -1/2 \text{ and } x+4y+2 \neq 0 \right\} \end{aligned}$$

And

$$\begin{aligned} \tilde{D} &= H(D) = \left\{ (u, v) \in \mathbb{R}^2 : \frac{(4u+1)v}{1-2uv} \neq -2, \frac{u(v+2)}{1-2uv} \neq -1/2 \text{ and } uv \neq 1/2 \right\} \\ &= \left\{ (u, v) \in \mathbb{R}^2 : v \neq -2, u \neq -1/4 \text{ and } uv \neq 1/2 \right\}. \end{aligned}$$

$H$  and  $G$  are indeed of class  $C^1$  over open sets  $D$  and  $\tilde{D}$  respectively. The condition  $x+4y+2 \neq 0$  has been added so that the calculations above are possible. To ensure that this condition is unavoidable, in other words, to see that  $D$  cannot be expanded, let's study the determinant of the Jacobian  $\det(J_H)(x, y)$  if  $x \neq -2$  and  $y \neq -1/2$  (these two conditions are necessary for  $H$  to be defined). We obtain

$$J_H(x, y) = \begin{pmatrix} -\frac{y}{(x+2)^2} & \frac{1}{x+2} \\ \frac{1}{2y+1} & -\frac{2x}{(2y+1)^2} \end{pmatrix}$$

and

$$\det(J_H)(x, y) = \frac{2xy - (x+2)(2y+1)}{(x+2)^2(2y+1)^2} = -\frac{x+4y+2}{(x+2)^2(2y+1)^2}.$$

Since the Jacobian vanishes if  $x + 4y + 2 = 0$ ,  $D$  cannot be enlarged. Indeed, on any open set  $D$  as in the statement,  $J_H(x, y)$  is necessarily an invertible matrix, with inverse  $J_G(H(x, y))$ .

4. We have that  $f(u, v) = g(v e^{-2u}, u^2 e^{-v}, u)$  and then  $f(1, 0) = g(0, 1, 1)$ . Then applying the chain rule we have

$$\begin{aligned} \left( \frac{\partial f}{\partial u}(1, 0), \frac{\partial f}{\partial v}(1, 0) \right) &= \nabla f(1, 0) \\ &= \nabla g(0, 1, 1) \cdot \mathbf{J}_h(1, 0) \\ &= \left( \frac{\partial g}{\partial x}(0, 1, 1), \frac{\partial g}{\partial y}(0, 1, 1), \frac{\partial g}{\partial z}(0, 1, 1) \right) \cdot \begin{pmatrix} \frac{\partial(v e^{-2u})}{\partial u} \Big|_{(1,0)} & \frac{\partial(v e^{-2u})}{\partial v} \Big|_{(1,0)} \\ \frac{\partial(u^2 e^{-v})}{\partial u} \Big|_{(1,0)} & \frac{\partial(u^2 e^{-v})}{\partial v} \Big|_{(1,0)} \\ \frac{\partial(u)}{\partial u} \Big|_{(1,0)} & \frac{\partial(u)}{\partial v} \Big|_{(1,0)} \end{pmatrix}, \end{aligned}$$

hence

$$\begin{aligned} \frac{\partial f}{\partial u} \Big|_{(1,0)} &= \frac{\partial g}{\partial x}(0, 1, 1) \cdot \frac{\partial(v e^{-2u})}{\partial u} \Big|_{(1,0)} + \frac{\partial g}{\partial y}(0, 1, 1) \cdot \frac{\partial(u^2 e^{-v})}{\partial u} \Big|_{(1,0)} + \frac{\partial g}{\partial z}(0, 1, 1) \cdot \frac{\partial(u)}{\partial u} \Big|_{(1,0)} \\ &= \frac{\partial g}{\partial x}(0, 1, 1) \cdot (-2v e^{-2u}) \Big|_{(1,0)} + \frac{\partial g}{\partial y}(0, 1, 1) \cdot (2u e^{-v}) \Big|_{(1,0)} + \frac{\partial g}{\partial z}(0, 1, 1) \cdot 1 \\ &= 2 \frac{\partial g}{\partial y}(0, 1, 1) + \frac{\partial g}{\partial z}(0, 1, 1). \end{aligned}$$

5. We have  $f(u, v) = g(u + v, u - v)$  and  $f(1, 1) = g(2, 0)$ . Thus applying the chain rule we have

$$\begin{aligned} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} &= \mathbf{J}_f(1, 1) = \mathbf{J}_g(2, 0) \cdot \mathbf{J}_h(1, 1) \\ &= \begin{pmatrix} \frac{\partial g_1}{\partial x}(2, 0) & \frac{\partial g_1}{\partial y}(2, 0) \\ \frac{\partial g_2}{\partial x}(2, 0) & \frac{\partial g_2}{\partial y}(2, 0) \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \\ &= \begin{pmatrix} \frac{\partial g_1}{\partial x}(2, 0) + \frac{\partial g_1}{\partial y}(2, 0) & \frac{\partial g_1}{\partial x}(2, 0) - \frac{\partial g_1}{\partial y}(2, 0) \\ \frac{\partial g_2}{\partial x}(2, 0) + \frac{\partial g_2}{\partial y}(2, 0) & \frac{\partial g_2}{\partial x}(2, 0) - \frac{\partial g_2}{\partial y}(2, 0) \end{pmatrix}. \end{aligned}$$

By solving the equations occurring from the above equality we obtain that

$$\frac{\partial g_1}{\partial x}(2, 0) = \frac{\partial g_1}{\partial y}(2, 0) = 1, \quad \frac{\partial g_2}{\partial x}(2, 0) = 1, \quad \frac{\partial g_2}{\partial y}(2, 0) = -1.$$

6. The electric field of a charge  $Q$  is given by

$$\mathbf{E}(x, y, z) = \frac{\varepsilon Q x}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{e}_1 + \frac{\varepsilon Q y}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{e}_2 + \frac{\varepsilon Q z}{(x^2 + y^2 + z^2)^{3/2}} \mathbf{e}_3.$$

Consider the function

$$f(x, y, z) = -\frac{\varepsilon Q}{\sqrt{x^2 + y^2 + z^2}}$$

and then we calculate

$$\frac{\partial f}{\partial x}(x, y, z) = -\varepsilon Q \left( -\frac{\frac{1}{2}(x^2 + y^2 + z^2)^{-1/2}(2x)}{x^2 + y^2 + z^2} \right) = \frac{\varepsilon Q x}{(x^2 + y^2 + z^2)^{3/2}},$$

and similarly

$$\frac{\partial f}{\partial y}(x, y, z) = \frac{\varepsilon Q y}{(x^2 + y^2 + z^2)^{3/2}}, \quad \frac{\partial f}{\partial z}(x, y, z) = \frac{\varepsilon Q z}{(x^2 + y^2 + z^2)^{3/2}}.$$

Then it follows that  $\mathbf{E} = \nabla f$ , hence  $\mathbf{E}$  is conservative with potential function  $f$ .

7. (a) Since  $\mathbf{F}$  is conservative then there exists a function  $f : \mathbb{R} \rightarrow \mathbb{R}$  such that  $\mathbf{F} = \nabla f$ . Thus,

$$P = \frac{\partial f}{\partial x}, \quad Q = \frac{\partial f}{\partial y}$$

and then

$$\frac{\partial P}{\partial y} = \frac{\partial}{\partial y} \left( \frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left( \frac{\partial f}{\partial y} \right) = \frac{\partial Q}{\partial x}.$$

(b)

i)  $\mathbf{F}(x, y) = (2x \sin(2y) - 3y^2)\mathbf{e}_1 + (2 - 6xy + 3x^2 \cos(2y))\mathbf{e}_2$  and we have that

$$\frac{\partial(2x \sin(2y) - 3y^2)}{\partial y} = 4x \cos(2y) - 6y, \quad \frac{\partial(2 - 6xy + 3x^2 \cos(2y))}{\partial x} = -6y + 6x \cos(2y)$$

and since these are not equal, in view of (a),  $\mathbf{F}$  is not conservative.

ii)  $\mathbf{G}(x, y) = (2 - 6xy + y^3)\mathbf{e}_1 + (x^2 - 8y + 3xy^2)\mathbf{e}_2$  and we have that

$$\frac{\partial(2 - 6xy + y^3)}{\partial y} = -6x + 3y^2, \quad \frac{\partial(x^2 - 8y + 3xy^2)}{\partial x} = 2x + 6y^2$$

and since these are not equal, in view of (a),  $\mathbf{G}$  is not conservative.

8. We set  $g_1(x, y, z) = 4x - 3y - 9$ ,  $g_2(x, y, z) = x^2 + z^2 - 9$ . We have  $\nabla g_1(x, y, z) = (4, -3, 0)$  and  $\nabla g_2(x, y, z) = (2x, 0, 2z)$ , which are linearly independent for any  $(x, y, z) \in \mathbb{R}^3$ . We apply the method of Lagrange multipliers and we start with the equation

$$\nabla f(x, y, z) = \lambda_1 \nabla g_1(x, y, z) + \lambda_2 \nabla g_2(x, y, z),$$

which gives us the following system of equations

$$\begin{cases} 6x = 4\lambda_1 + 2x\lambda_2 \\ 1 = -3\lambda_1 \\ 0 = 2z\lambda_2 \\ 4x - 3y = 9 \\ x^2 + z^2 = 9 \end{cases}.$$

The second equation gives  $\lambda_1 = -\frac{1}{3}$  and the third one gives  $z = 0$  or  $\lambda_2 = 0$ .

- If  $z = 0$ , then from the third equation we get  $x = \pm 3$  and then from the fourth one we get  $y = 1$  (for  $x = 3$ ) or  $y = -7$  (for  $x = -3$ ).
- If  $\lambda_2 = 0$ , then, using that  $\lambda_1 = -\frac{1}{3}$ , the first equation gives  $x = -\frac{2}{9}$  and then the fourth one gives  $y = -\frac{89}{27}$  and the fifth one gives  $z = \pm \frac{5\sqrt{29}}{9}$ .

Hence, we have found the following potential absolute extrema:

$$(-3, -7, 0), (3, 1, 0), \left(-\frac{2}{9}, -\frac{89}{27}, -\frac{5\sqrt{29}}{9}\right), \left(-\frac{2}{9}, -\frac{89}{27}, \frac{5\sqrt{29}}{9}\right).$$

Calculating the value of  $f$  at these points we find that  $f\left(-\frac{2}{9}, -\frac{89}{27}, -\frac{5\sqrt{29}}{9}\right) = -\frac{85}{27}$  is the minimum and  $f(3, 1, 0) = 28$  is the maximum.

**9.** We apply the method of Lagrange multipliers. We set  $g(x, y) = x^2 + y^2 - 4$  and then we have to look for the extrema of  $f$  on the compact set  $E = \{(x, y) \in \mathbb{R}^2 : g(x, y) \leq 0\}$ .

We have that

$$\begin{cases} \frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0 \end{cases} \iff \begin{cases} 8x = 0 \\ 20y = 0 \end{cases} \iff \begin{cases} x = 0 \\ y = 0 \end{cases}$$

hence the only critical point is  $(0, 0)$  and then we only have to determine the points  $(x, y)$  such that  $g(x, y) = 0$  and  $\nabla g(x, y) = 0$ . This gives the following system of equations:

$$\begin{cases} 8x = 2\lambda x \\ 20y = 2\lambda y \\ x^2 + y^2 = 4 \end{cases}$$

From the first equation we get  $x = 0$  or  $\lambda = 4$ .

- If  $x = 0$ , then the third equation gives  $y = \pm 2$ .
- If  $\lambda = 4$ , then the second equation gives  $y = 0$ .

Thus we have to check the value of  $f$  at the following four points:  $(0, 2)$ ,  $(0, -2)$ ,  $(2, 0)$ ,  $(-2, 0)$ . We have that

$$\begin{cases} f(0, 0) = 0 \\ f(2, 0) = f(-2, 0) = 16 \\ f(0, 2) = 40 \end{cases} \implies \begin{cases} f(0, 0) = 0 \text{ is the minimum} \\ f(0, 2) = 40 \text{ is the maximum.} \end{cases}$$