EXERCISE SHEET 8 SOLUTIONS

Analysis II-MATH-106 (en) EPFL
Spring Semester 2024-2025
April 7, 2025

1. (i) By the chain rule, we have Jy.q(z,y) = Jr(G(x,y)) - Ja(x,y) (product of matrices)

J¢(u,v,w) = (2u 2v 1), and since G : R? — R3 we have

Ji(G(z,y)) = <2€081‘+28iny —2sinx + 2cosy 1),
—sinz cos Yy

Ja(z,y) = —Ccosx —siny

2cosxcosy —2sinxsiny
—sinz Ccos Yy
Therefore, Jyoq(z,y) = (2 cosxT +2siny —2sinz + 2cosy 1) . —COoST —siny
2cosxcosy —2sinxsiny
= <—2 sinzsiny 2 cosz cos y) .
(ii) To perform the computation directly, first see that (f o G)(x,y) = 2+ 2cosx siny, such that
indeed

Jroc(x,y) = (—2 sin x siny 2cosxcosy> .

i) We verify by a direct calculation that 2% + 32 + 2% = p?. Thus the point (z,y, z) is indeed
on the sphere of radius p.
ii) Write (2,9, 2) = (vV6,v/2, —2v/2) in the form (z,y, 2) = G(p,0, ). We obtain
e 2 =6+2+8=16, p=4,
e cos(f) = (—2v2)/p = —V/2/2,0 € [0,7], 0 = 31 /4,
o cos(p) = V6/(psin(0)) = V6/(4v2/2) = V3/2,
sin(p) = V2/(psin(0)) = v2/(4/2/2) = 1/2, ¢ = /6.

We therefore have p =4, § = 37/4 and ¢ = 7/6.
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iii) For (p,0,¢) € Ry x]0,7[x]0, 27[ the Jacobian matrix of G' becomes

0G1 0G1 0G4
8—p(p’0’(’0) W(Paeﬁp) %(Paeﬁp)

oG oG 0G
Ja(p,0,¢) = 8—:(079,90) a—;(pﬁ,w) a—:(p,e,w)

0G5 0G5 0G3
8—p(/)79,80) W(Pﬂ#’) %(Pﬁ,@)

sin(0) cos(p) pcos(f) cos(p) —psin(f) sin(y)
= | sin(f)sin(¢) pcos(f)sin(p)  psin(f) cos(p)
cos(6) —psin(0) 0

iv) Expanding det(Jg(r, 0, ¢)) (see the matrix above) yields
det(Ja(r, 0, 0)) = cos(6)p? ( cos() sin(6) cos?(¢) + cos(8) sin(6) sin2(¢)>
+ psin(6) p( sin?(6) cos2(¢) + sin?() sin2(¢))
- p2<cos2(9) sin(6) + sin3(0)> = p?sin(0).

v) Again, by using the matrix above, one can show that (Jg)"-Jg = D, where D is the matrix
diagonal whose coefficients on the diagonal are 1, p? and p?sin®(f) (from top to bottom),
the other coefficients being zero. Hence, it follows that (D~!-(Jg)") - Jg = I, and thus
we can simply write (Jg)~' = D71 (Jg)" such that

sin(6) cos(yp) sin(6) sin(¢p) cos(0)
(Ja(p.0.9)" = | ptcos(B)cos(p)  ptcos(d)sin(p) —p~sin(f)
—p~tsin(0)"Lsin(¢) pLsin(6) ! cos(p) 0

3. A first restriction on D is that x # —2 and y # —1/2. To find the transformation G =
H':D— D, we use

x
1) v=gts e T=uy+)
which we substitute in the expression given for u
Yy . (1) _
u= S uz+2)=y & wlRy+l)+2u=y

T +2
u(v + 2)

& 2u=y(1l—-2 & =
uv + 2u = y( uv) T 500’
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provided that 1 — 2uv # 0. Replacing y in the equation on the right in (1), we find

2uv(v + 2) . 2uw(v+2) +v—2uw?  (du+ 1)

1 —2uv 1 —2uv 1 —2uv

so that the two relations

Y T
u = v =
x+2’ 2y + 1’
are equivalent to the two relations
(du+1)v  u(v+2)

T—2uw 'Y 12w’

provided that = # —2, y # —1/2 and uv # 1/2. We can therefore put

Glu,v) = ——5— ((4u+ 1o, u(v + 2)),
and choose
:{xy YER?: x4 2, y# —1/2 and - +2;C(y2y+1)7é1/2}
={(z,y) eR* 12 # -2, y# —1/2 and z+4y+2#0}
And
- {uv )ER?: ‘11“_;1; 29, (”7;237&—1/2 and uv;«él/2}

={(u,v) ER*: v # —2, u# —1/4 and wv #1/2}.

H and G are indeed of class C'! over open sets D and D respectively. The condition z + 4y +2 # 0
has been added so that the calculations above are possible. To ensure that this condition is
unavoidable, in other words, to see that D cannot be expanded, let’s study the determinant of the
Jacobian det(Jg)(z,y) if © # —2 and y # —1/2 (these two conditions are necessary for H to be
defined). We obtain

Yy 1
- 1
Ju(z,y) = (x1+2) IJ;Q
_ X
2y+1 (2y+1)2
and
2zy — (v +2)(2y +1) r+4y+2

det(Jg)(z,y) =

(x+222y+1)2  (2+2)22y+1)
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Since the Jacobian vanishes if z 4+ 4y + 2 = 0, D cannot be enlarged. Indeed, on any open set D

as in the statement, Jg(x,y) is necessarily an invertible matrix, with inverse Jg(H (z,y)).

4. We have that f(u,v) = g(ve~?*,u?e~,u) and then f(1,0) = g(0,1,1). Then applying the
chain rule we have

(%(1,0),2—5(1,00 =V f(1,0)

= Vg(0,1,1) - J(1,0)

O(ve—2v) ‘ O(ve—2v) ‘
ou (1,0) ov (1,0)
89 89 89 8(u267”) a(u2e—v)
_ _(0,1,1),—(0,1,1),_(0,1,1)) | o oy |
(am y 0z o) (1,0) o) (1,0)
W‘(LO) v ‘(1,0)
hence
af dg O(ve 2w dg O(u?e™? dg o(u
M :a—(O,l,l)-—(a ) +a—(0,1,1)~—(8 ) +8—(0,1,1)‘—(§)
Yl 9 vl 9Y vl 97 “ol,0)
= @(0 1,1) - (—2ve_2u) + @(O 1,1) - (2ue™) + @(0 1,1)-1
8.%' ) ) (1,0) 8y b b (170) az b b
dg dg
=2-—-2(0,1,1 —(0,1,1).
ay(o’ ’ )+8z(0’ 1)

5. We have f(u,v) = g(u+v,u—v) and f(1,1) = g(2,0). Thus applying the chain rule we have

(2 0) =Jp(1,1) =J4(2,0) - Ip(1,1)

0 2
~(%E2,0) 522,00 (1 1
%20 %e0) 1 1

o1 dg1 dg1 dg1
—(2 —(2 —(2,0) — =—(2
(705,20 Z@0-5 00
92 92 92 g2
—=(2 —=(2 —=(2,0) — ==(2
S0+ 2220 G220 - 200
By solving the equations occurring from the above equality we obtain that
091 dg1 dg2 dg2
—(2,0)=—=—(2,0)=1, —(2,0)=1, —(2,0)=-1.
8$( 70) 8y( 70) b 8x( 70) ) 8y( 70)
6. The electric field of a charge @ is given by
B(z,y,2) = ——aor s e

T @222t T (@2 + 42 + 22)3/2 2 T (@2 + 12 + 2232
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Consider the function
eqQ

f(z,y,2) = ——F———
( ) VarZ 4+ y? + 22

and then we calculate

g(x 2)=—eQ | — 3(2% + 9% +2%) 12 (22) — eQu
o ' Y 72 + y2 + 22 ($2 + y2 + 22)3/2’
and similarly
of eQy of eQz

a—y(m,y,z) = (22 + 42 + 22)3/2 a(x,y, 2) = (22 + y2 + 22)3/2

Then it follows that E = V f, hence E is conservative with potential function f.

7. (a) Since F is conservative then there exists a function f : R — R such that F = V f. Thus,

_of _9f

P_asc’ Oy

Q

and then

or _ 0 (of\ _ &f _ & _ 9 (9f\_9Q
oy Oy \dx) 0Oydx Oxdy Ox \dy) Ox’

(b)
i) F(z,y) = (2rsin(2y) — 3y?)e1 + (2 — 6xy + 322 cos(2y))ez and we have that

92z sin(2y) — 3y?)
y

02—6 32 2
= 4z cos(2y) — 6y, ( xy—g 2~ cos(2y)) = —6y + 6x cos(2y)
x

and since these are not equal, in view of (a), F is not conservative.
ii) G(z,y) = (2 — 62y + y3)e1 + (2% — 8y + 32y?)ez and we have that

(2 — 6zy + v°)
oy

d(x? — 8y + 3xy?)
ox

= —6x+3y2, 2

= 2z + 6y

and since these are not equal, in view of (a), G is not conservative.

8. We set g1(z,y, 2) = 4z — 3y — 9, go(z,y,2) = 2% + 22 — 9. We have Vg, (z,y,2) = (4,—3,0)
and Vgo(x,y,2) = (22,0, 22), which are linearly independent for any (z,y,2) € R3. We apply the

method of Lagrange multipliers and we start with the equation

vf(xagh Z) = /\1V91(9U7ya Z) + )\QVQQ('Ta y,Z),
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which gives us the following system of equations

(6m =4\ + 229
1=-3\
0=2z)\
dr—3y =9
224 22=9
The second equation gives A\ = —% and the third one gives z = 0 or Ay = 0.

e If z =0, then from the third equation we get x = +3 and then from the fourth one we get
y=1 (forz =3) or y=—7 (for z = -3).

e If Ao = 0, then, using that \; = —%, the first equation gives x = —% and then the fourth
one gives y = —% and the fifth one gives z = isf\;@.

Hence, we have found the following potential absolute extrema:

(=3,-7,0), (3,1,0), <_3 _§9._§!§§>, (_2 _§2§z@§>.

9> 27’ 9 9" 277 9
Calculating the value of f at these points we find that f (—%, —g—?, —%@) = —g—‘;’ is the minimum

and f(3,1,0) = 28 is the maximum.

9. We apply the method of Lagrange multipliers. We set g(z,y) = 22 +y? — 4 and then we have
to look for the extrema of f on the compact set E = {(x,y) € R?: g(x,y) < 0}.
We have that
of

a5 =0 — 8x =0 — z=0
=0 20y = 0 y=0

hence the only critical point is (0,0) and then we only have to determine the points (x,y) such that

g(z,y) =0 and Vg(z,y) = 0. This gives the following system of equations:

8r = 2 \x

From the first equation we get x =0 or A = 4.

e If x = 0, then the third equation gives y = £2.
e If A\ =4, then the second equation gives y = 0.
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Thus we have to check the value of f at the following four points: (0,2), (0,—-2), (2,0), (—2,0). We
have that
f(0,0)=0

F(2,0) = f(-2,0) =16 =
£(0,2) = 40

£(0,0) = 0 is the minimum
£(0,2) = 40 is the maximum.



