

EXERCISE SHEET 8

Analysis II-MATH-106 (en) EPFL

Spring Semester 2024-2025

April 7, 2025

Exercise 1. Let $G : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ be defined by $G(x, y) = (\cos(x) + \sin(y), -\sin(x) + \cos(y), 2\sin(x)\cos(y))^\top$ and $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ be defined by $f(u, v, w) = u^2 + v^2 + w$.

- (i) Compute $J_{f \circ G}$ via matrix products, that is, exploit the chain rule.
- (ii) Compute $J_{f \circ G}$ directly by substituting G in f .

Exercise 2. Suppose that G is the map that corresponds to a change of coordinates to spherical coordinates,¹ that is, use G to express (x, y, z) in spherical coordinates.

- i) Verify that $(x, y, z) = G(\rho, \theta, \varphi)$ lies on the sphere of radius ρ for all θ and φ .
- ii) Write the point $(x, y, z) = (\sqrt{6}, \sqrt{2}, -2\sqrt{2})$ in spherical coordinates.
- iii) Compute the Jacobian matrix J_G of G for $\rho > 0$, $\theta \in]0, \pi[$ et $\varphi \in]0, 2\pi[$.
- iv) Compute the Jacobian $\det(J_G)$ of G .
- v) Noting that $(J_G)^\top \cdot J_G$ is a diagonal matrix, determine the inverse matrix $(J_G)^{-1}$.

Exercise 3. Let $D \subset \mathbb{R}^2$ and define $H : D \rightarrow \mathbb{R}^2$ by $(u, v) = H(x, y) = (H_1(x, y), H_2(x, y))$ with

$$H_1(x, y) = \frac{y}{x+2}, \quad H_2(x, y) = \frac{x}{2y+1}.$$

Determine the largest possible open set D such that the following conditions are satisfied:

- $H : D \rightarrow \mathbb{R}^2$ is injective,
- H is of class C^1 ,
- the image $\tilde{D} = H(D)$ is an open subset of \mathbb{R}^2 ,
- the inverse function $G = H^{-1} : \tilde{D} \rightarrow D$ is also of class C^1 .

¹Hint: the function $G : \mathbb{R}_+ \times [0, \pi] \times [0, 2\pi[\rightarrow \mathbb{R}^3 \setminus \{0\}$ is defined by

$$G(\rho, \theta, \varphi) = (G_1(\rho, \theta, \varphi), G_2(\rho, \theta, \varphi), G_3(\rho, \theta, \varphi)),$$

where

$$x = G_1(\rho, \theta, \varphi) = \rho \sin(\theta) \cos(\varphi),$$

$$y = G_2(\rho, \theta, \varphi) = \rho \sin(\theta) \sin(\varphi),$$

$$z = G_3(\rho, \theta, \varphi) = \rho \cos(\theta).$$

Explicitly compute the inverse function G .

Hint 1: Try computing the inverse function $G = H^{-1}$ first. Then use the above conditions to determine the appropriate domain D .

Hint 2: You may use the following fact: A continuously differentiable function is locally invertible near a point if the determinant of its Jacobian at that point is non-zero..

Exercise 4. Let $g : \mathbb{R}^3 \rightarrow \mathbb{R}$, $(x, y, z) \mapsto g(x, y, z)$ be a C^1 function, $h : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ given by $h(u, v) = (ve^{-2u}, u^2e^{-v}, u)$ and define $f = g \circ h$. Prove that

$$\frac{\partial f}{\partial u}(1, 0) = 2\frac{\partial g}{\partial y}(0, 1, 1) + \frac{\partial g}{\partial z}(0, 1, 1).$$

Exercise 5. Let $g : \mathbb{R}^2 \rightarrow \mathbb{R}^2$, $g(x, y) = (g_1(x, y), g_2(x, y))$ be a C^1 function, $h : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ given by $h(u, v) = (u + v, u - v)$ and define $f = g \circ h$. If

$$\mathbf{J}_f(1, 1) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix},$$

then calculate $\frac{\partial g_1}{\partial x}(2, 0)$, $\frac{\partial g_1}{\partial y}(2, 0)$, $\frac{\partial g_2}{\partial x}(2, 0)$ and $\frac{\partial g_2}{\partial y}(2, 0)$.

Exercise 6. Prove that the electric field \mathbf{E} of a charge Q (see Example 5.8 in the lecture notes) is conservative.

Exercise 7. (a) Let $\mathbf{F}(x, y) = P(x, y)\mathbf{e}_1 + Q(x, y)\mathbf{e}_2$ be a conservative vector field. Show that

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}.$$

(b) Use part (a) to show that the following vector fields are not conservative:

- i) $\mathbf{F}(x, y) = (2x \sin(2y) - 3y^2)\mathbf{e}_1 + (2 - 6xy + 3x^2 \cos(2y))\mathbf{e}_2$.
- ii) $\mathbf{G}(x, y) = (2 - 6xy + y^3)\mathbf{e}_1 + (x^2 - 8y + 3xy^2)\mathbf{e}_2$.

Exercise 8. Find the maximum and minimum values of $f(x, y, z) = 3x^2 + y$, under the constraints $4x - 3y = 9$, $x^2 + z^2 = 9$.

Exercise 9. Find the maximum and minimum values of $f(x, y) = 4x^2 + 10y^2$ under the constraint $x^2 + y^2 \leq 4$.