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1. (i) For m ∈ R, let x → fm(x) be the restriction of f t̀o the line y = mx, that is

fm(x) = (mx− x2)(mx− 2x2) = 2x4 − 3mx3 +m2x2,

f ′
m(x) = 8x3 − 9mx2 + 2m2x, f ′

m(0) = 0,

f ′′
m(x) = 24x2 − 18mx+ 2m2, f ′′

m(0) = 2m2.

So 0 is a local minimum point of fm if m ∕= 0. Moreover, f0(x) = 2x4, such that 0 is also a local

minimum point of f0. Finally the restriction of f to the line x = 0 is the function y2, which also

has a local minimum in 0.

(ii) No, (0, 0) is not a local minimum point of f . Indeed any neighborhood of (0, 0) contains

points where f is smaller than 0 = f(0, 0):

f(t, 32 t
2) = (32 t

2 − t2)(32 t
2 − 2t2) = −1

4 t
4 < 0 for all t ∕= 0.

2. We look for the extrema of f(x, y, z) = z under the constraint

g(x, y, z) = 4x2 + 3y2 + 2yz + 3z2 − 4x− 1 = 0.

let Γ = {(x, y, z) ∈ R3 : g(x, y, z) = 0}, be compact (and non-empty). To verify in particular that

Γ is bounded, let us complete the square for g with respect to x:

g(x, y, z) = 4

󰀕
x− 1

2

󰀖2

+ 3y2 + 2yz + 3z2 − 2

and then the square with respect to y:

g(x, y, z) = 4

󰀕
x− 1

2

󰀖2

+ 3

󰀕
y +

1

3
z

󰀖2

+
8

3
z2 − 2.

Thus, if g(x, y, z) = 0, then

4

󰀕
x− 1

2

󰀖2

+ 3

󰀕
y +

1

3
z

󰀖2

+
8

3
z2 = 2

and Γ is therefore bounded. Since the function f is continuous on R3, the constraint on Γ is also

continuous and, Γ is compact, it attains its maximum and minimum.
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Note that ∇g(x, y, z) = (8x − 4, 6y + 2z, 2y + 6z)⊤ = (0, 0, 0)⊤ ⇔ (x, y, z) =
󰀃
1
2 , 0, 0

󰀄
, but

g
󰀃
1
2 , 0, 0

󰀄
= −2 ∕= 0 and therefore ∇g(x, y, z) does not vanish on Γ.

Let’s apply the Lagrange multipliers method. We now have to find x, y, z,λ ∈ R such that
󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

f ′
x = 0 = λ(8x− 4) (1)

f ′
y = 0 = λ(6y + 2z) (2)

f ′
z = 1 = λ(2y + 6z) (3)

4x2 + 3y2 + 2yz + 3z2 − 4x− 1 = 0 (4)

Observe that λ ∕= 0 because of (3). By (1) we have then x = 1
2 and by (2) we have z = −3y.

Substituting this into (4) gives

0 = 1 + 3y2 − 6y2 + 27y2 − 2− 1 = 24y2 − 2 ⇒ y = ±
√
3

6
.

Thus the candidates for global extremum points are

(x, y, z) ∈
󰀫󰀣

1

2
,−

√
3

6
,

√
3

2

󰀤
,

󰀣
1

2
,

√
3

6
,−

√
3

2

󰀤󰀬

and the maximal and minimal values of z are
√
3
2 and −

√
3
2 ; they are realized at the points󰀓

1
2 ,−

√
3
6 ,

√
3
2

󰀔
and

󰀓
1
2 ,

√
3
6 ,−

√
3
2

󰀔
.

3. (i) We look for the extrema of the function f(x, y) = x3+ y3 under the constraint g(x, y) =

x4 + y4 − 32 = 0 . Let Γ = {(x, y) ∈ R2 : g(x, y) = 0} be a compact set. Since f : R2 → R is

continuous on R2, the constraint f |Γ is continuous and therefore f |Γ attains its global maximum

and minimum on the compact Γ (non empty). Note that ∇g(x, y, z) = (4x3, 4y3)⊤ = (0, 0)⊤ ⇔
(x, y) = (0, 0), but that g(0, 0) ∕= 0 and therefore ∇g(x, y) ∕= (0, 0)⊤ for all (x, y) satisfying g(x, y) =

0. we can therefore introduce a Lagrange multiplier λ ∈ R. Taking into account the equation

∇f(x, y) = λ∇g(x, y), we obtain the system for the unknowns x, y,λ
󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

3x2 = 4λx3 ⇔ x2(3− 4λx) = 0 (1)

3y2 = 4λy3 ⇔ y2(3− 4λy) = 0 (2)

x4 + y4 − 32 = 0 (3)

From (1) and (2) we find several solutions :

(1) ⇔ x = 0 or λx =
3

4
and (2) ⇔ y = 0 or λy =

3

4

• If x = y = 0, (3) is not satisfied, therefore impossible.

• If x = 0, then (3) implies that y = ± 4
√
32 = ±2 4

√
2. Then there exists a value of λ which

satisfies (2).



EXERCISE SHEET 7 SOLUTIONS 3

• If y = 0, then x = ±2 4
√
2 and (1) can be satisfied.

• If none of the variables are zero, then x = y = 3
4λ by (1) and (2). By (3) it follows that

x4 + x4 − 32 = 0, x = ±2, (x, y) = ±(2, 2).

Candidates for global extremum points are

(x, y) ∈
󰁱
(0, 2

4
√
2), (0,−2

4
√
2), (2

4
√
2, 0), (−2

4
√
2, 0), (2, 2), (−2,−2)

󰁲

and we have the following table

(x, y) (0, 2 4
√
2) (0,−2 4

√
2) (2 4

√
2, 0) (−2 4

√
2, 0) (2, 2) (−2,−2)

f(x, y) 8 · 23/4 −8 · 23/4 8 · 23/4 −8 · 23/4 16 −16

Since 23/4 < 2, the maximum value of f is 16, attained at (2, 2), and the minimum value is −16,

attained at (−2,−2).

(ii) Let g(x, y, z) = x2 + y2 + z2 − 4 for (x, y, z) ∈ R3 and the closed ball E = {(x, y, z) ∈ R3 :

g(x, y, z) ≤ 0}. The boundary of E is given by the set {(x, y, z) ∈ R3 : g(x, y, z) = 0}. Note that

we have ∇g(x, y, z) = (2x, 2y, 2z)⊤ = (0, 0, 0)⊤ ⇔ x = y = z = 0 , but g(0, 0, 0) = −4 ∕= 0 and

therefore ∇g ∕= (0, 0, 0)⊤ on the boundary of E. We start by finding the extrema of f in E̊. The

stationary points of f satisfy
󰀻
󰁁󰁁󰀿

󰁁󰁁󰀽

f ′
x = 2x− 2 = 0

f ′
y = 2y + 2 = 0

f ′
z = 2z − 1 = 0

⇒ (x, y, z) =

󰀕
1,−1,

1

2

󰀖
is the only stationary point

which is indeed an interior point of E because 12 + (−1)2 +
󰀃
1
2

󰀄2
= 9

4 < 4.

To find the extrema of f on the boundary of E, let’s apply the Lagrange multipliers method.

We have to find x, y, z,λ ∈ R such that
󰀻
󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰀽

2x− 2 = 2λx (1)

2y + 2 = 2λy (2)

2z − 1 = 2λz (3)

x2 + y2 + z2 − 4 = 0 (4)

Since λ ∕= 1 (otherwise (1) to (3) are not satisfied), we can divide by 1− λ to get from (1) to (3)

x =
1

1− λ
, y = − 1

1− λ
, z =

1

2(1− λ)

which we then substitute into (4) to get

2

(1− λ)2
+

1

4(1− λ)2
− 4 = 0 ⇔ (1 − λ)2 =

9

16
⇔ 1 − λ = ±3

4
.
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Thus we have x1 = −4

3
, y1 =

4

3
, z1 = −2

3
and x2 =

4

3
, y2 = −4

3
, z2 =

2

3
.

We calculate the values of f that are the potential extrema on E

(x, y, z)
󰀃
1,−1, 12

󰀄 󰀃
−4

3 ,
4
3 ,−

2
3

󰀄 󰀃
4
3 ,−

4
3 ,

2
3

󰀄

f(x, y, z) −7
2

35
4 −13

4

Thus the minimum of f on E is −7
2 , attained at

󰀃
1,−1, 12

󰀄
, and the maximum is 35

4 , attained at󰀃
−4

3 ,
4
3 ,−

2
3

󰀄
.

4. We have
󰁝

3t dt =
3

2
t2 + c1,

󰁝
−4e−t dt = 4e−t + c2 and

󰁝
12t2 dt = 4t3 + c3,

for some c1, c2, c3 ∈ R, hence v(t) = (32 t
2+c1, 4e

−t+c2, 4t
3+c3)

T and using that v(0) = (0, 1,−3)T,

we have c1 = 0, c2 = −3 and c3 = −3. Therefore,

v(t) =

󰀕
3

2
t2, 4e−t − 3, 4t3 − 3

󰀖T

.

Similarly, we find

r(t) =

󰀕
1

2
t3 − 5,−4e−t − 3t+ 6, t4 − 3t− 3

󰀖T

.

5 Consider two open intervals I and J , and functions

f :

󰀫
J × I → R,
(x, t) → f(x, t),

and a, b : I → R, all of class C1. Suppose that Im(a) ⊂ J and Im(b) ⊂ J , and let

(1) F (t) =

󰁝 b(t)

a(t)
f(x, t) dx

for t ∈ I. Then F is of class C1 and its derivative is

(2) F ′(t) = f
󰀃
b(t), t

󰀄
· b′(t)− f

󰀃
a(t), t

󰀄
· a′(t) +

󰁝 b(t)

a(t)

∂f

∂t
(x, t) dx .

Now we will apply the above to the questions at hand

i) We have

f(x, t) =
xt + sin(x)

ln(x)
=

et ln(x) + sin(x)

ln(x)
∈ C1

󰀃
]1,∞[× ]1,∞[

󰀄
,



EXERCISE SHEET 7 SOLUTIONS 5

a(t) = 2 and b(t) = 3 with a, b ∈ C1(]1,∞[). Since the bounds are constant, the right-hand side of

(2) consists only of the integral and we have for all t ∈]1,∞[

F ′(t) =

󰁝 3

2

∂

∂t

󰀣
et ln(x) + sin(x)

ln(x)

󰀤
dx =

󰁝 3

2

xt ln(x)

ln(x)
dx =

󰁝 3

2
xt dx =

󰀗
xt+1

t+ 1

󰀘x=3

x=2

=
3t+1 − 2t+1

t+ 1
.

ii) We have f(x, t) = ln(x2+ t2) ∈ C1
󰀃
R× ]1,∞[

󰀄
, a(t) = t and b(t) = t2 with a, b ∈ C1(]1,∞[)

. The bounds depend on t. We have

F ′(t) = ln
󰀓󰀃

t2
󰀄2

+ t2
󰀔
·
d
󰀃
t2
󰀄

dt
− ln

󰀃
t2 + t2

󰀄
· d(t)
dt

+

󰁝 t2

t

∂

∂t

󰀃
ln(x2 + t2)

󰀄
dx

= 2t ln
󰀃
t2
󰀃
t2 + 1

󰀄󰀄
− ln

󰀃
2t2

󰀄
+

󰁝 t2

t

2t

x2 + t2
dx .

Since 2t

󰁝 t2

t

1

x2 + t2
dx =

󰀗
2t

t
arctan

󰀓x
t

󰀔󰀘x=t2

x=t

= 2arctan(t)− π

2
, we finally have

F ′(t) = 2t ln
󰀃
t2(t2 + 1)

󰀄
− ln

󰀃
2t2

󰀄
+ 2arctan(t)− π

2
.

6. These functions are again of the form (1).

i) Here we have f(x, t) = sin(cos(tx))
x ∈ C1

󰀃
]0,∞[× ]0,∞[

󰀄
, a(t) =

√
t and b(t) = 1

t with

a, b ∈ C1( ]0,∞[). So

F ′(t) =
sin

󰀃
cos

󰀃
t1t
󰀄󰀄

1
t

· d

dt

󰀕
1

t

󰀖
− sin(cos(t

√
t))√

t
· d

dt

󰀃√
t
󰀄
+

󰁝 1/t

√
t

∂

∂t

󰀕
sin(cos(tx))

x

󰀖
dx

= −sin(cos(1))

t
− sin(cos(t3/2))

2t
+

󰁝 1/t

√
t

cos (cos(tx)) (− sin(tx)) dx

= −sin(cos(1))

t
− sin(cos(t3/2))

2t
+

󰀗
sin(cos(tx))

t

󰀘x=1/t

x=
√
t

= −3 sin(cos(t3/2))

2t
.

ii) For f(x, t) = etx
3

x ∈ C1( ]0,∞[× ]0,∞[ , ), a(t) = 1 and b(t) = 3
√
t with a, b ∈ C1( ]0,∞[ ),

only the upper bound depends on t so that the term in f(a(t), t) does not appear.

F ′(t) =
etx

3

x

󰀏󰀏󰀏󰀏󰀏
x= 3√t

· d

dt

󰀓
3
√
t
󰀔
+

󰁝 3√t

1

∂

∂t

󰀣
etx

3

x

󰀤
dx

=
et

2

3
√
t
· 1
3
t−2/3 +

󰁝 3√t

1
x2etx

3
dx =

1

3

et
2

t
+

󰀗
1

3t
etx

3

󰀘x= 3√t

x=1

=
1

3t

󰀓
et

2 − et
󰀔
+

1

3

et
2

t
=

1

3t

󰀓
2et

2 − et
󰀔
.
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7.

i) Let f(x, y) =
x3y2

x4 + y8
for (x, y) ∕= (0, 0). Then

lim
x→0

f(x, 0) = lim
x→0

x3 · 02
x4 + 08

= lim
x→0

0 = 0,

while

lim
y→0

f(y2, y) = lim
y→0

y6y2

y8 + y8
= lim

y→0

1

2
=

1

2
.

Therefore the limit does not exist.

ii) Consider

f(x, y) =
x4y

x4 + y8
for (x, y) ∕= (0, 0) and g(u, v) =

u2 4
󰁳

|v|
u2 + v2

for (u, v) ∕= (0, 0).

Then f(x, y) = ±g(x2, y4) for all (x, y) ∕= (0, 0).

Now check that lim
(u,v)→(0,0)

g(u, v) = 0. We have, for all (u, v) ∕= (0, 0),

0 ≤ g(u, v) ≤
||(u, v)||2 4

󰁳
||(u, v)||

u2 + v2
= 4

󰁳
||(u, v)||

with lim
(u,v)→(0,0)

4
󰁳

||(u, v)|| = 0. The squeeze theorem ensures that lim
(u,v)→(0,0)

g(u, v) = 0. As

such

lim
(x,y)→(0,0)

|f(x, y)| = lim
(x,y)→(0,0)

g(x2, y4) = lim
(u,v)→(0,0)

g(u, v) = 0

and so lim
(x,y)→(0,0)

f(x, y) = 0.


