EXERCISE SHEET 7 SOLUTIONS

Analysis II-MATH-106 (en) EPFL
Spring Semester 2024-2025
March 31, 2025

1. (i) For m € R, let © — f,,(z) be the restriction of f to the line y = maz, that is
fm(z) = (mz — 22)(mx — 22?) = 22* — 3ma® + m22?,
fr(z) = 823 — 9ma? + 2m2x, f,(0) =0,

I (z) = 2422 — 18max + 2m?, f/(0) = 2m2.

So 0 is a local minimum point of f,, if m # 0. Moreover, fo(z) = 2x*, such that 0 is also a local
minimum point of fy. Finally the restriction of f to the line = 0 is the function 2, which also
has a local minimum in 0.

(ii) No, (0,0) is not a local minimum point of f. Indeed any neighborhood of (0,0) contains
points where f is smaller than 0 = f(0,0):

f(t,38%) = 32 =) (3t> —2t?) = —3t* < O for all t # 0.

2. We look for the extrema of f(z,y,2) =z under the constraint

g(z,y,2) = 42 + 3y> + 2yz + 322 — 4z — 1 = 0.

let T' = {(x,9,2) € R®: g(x,y, z) = 0}, be compact (and non-empty). To verify in particular that

I" is bounded, let us complete the square for g with respect to x:

1 2
g(w,y72)=4<x—§) +3y> +2yz + 322 — 2

and then the square with respect to y:

( ) =4 ! 2+3 i 2+82 2
9z, y,z) = x 5 Y 32 SZ .

1\?2 1\? 8
4z —= - —22=2
(m 2) +3(y+3z> +3z

and T is therefore bounded. Since the function f is continuous on R3, the constraint on I is also

Thus, if g(z,y, z) = 0, then

continuous and, I' is compact, it attains its maximum and minimum.
1
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Note that Vg(z,y,2) = (8z — 4,6y + 22,2y + 62)" = (0,0,0)" & (z,y,2) = (3,0,0), but
g (%,0, 0) = —2 # 0 and therefore Vg(z,y, z) does not vanish on T'.
Let’s apply the Lagrange multipliers method. We now have to find z,y, z, A € R such that

fh=0= A8 —4) (1)
f?; =0= N6y + 2z) (2)
fi=1= X2y +62) (3)
40 +3y* +2yz + 322 —do — 1 =0 (4)
Observe that A # 0 because of (3). By (1) we have then 2 = 3 and by (2) we have z = —3y.

Substituting this into (4) gives

E

0=1+32—6y2+27> —2—-1=24y> - 2= y=+~——.

Thus the candidates for global extremum points are

SR e )
9 2762 )0\2 6 2

% and — Y3 they are realized at the points

and the maximal and minimal values of z are 5

(1-7.) wa (1F.-4)

3. (i) We look for the extrema of the function f(z,y) = 2®+y> under the constraint g(z,y) =
ot +y* —32=0. Let T' = {(=,y) € R? : g(x,y) = 0} be a compact set. Since f : R? — R is
continuous on R?, the constraint f|r is continuous and therefore f|r attains its global maximum
and minimum on the compact I' (non empty). Note that Vg(z,y,z) = (42°,4y*)T = (0,0)" <
(z,y) = (0,0), but that ¢(0,0) # 0 and therefore Vg(z,y) # (0,0)" for all (x,y) satisfying g(x,y) =
0. we can therefore introduce a Lagrange multiplier A € R. Taking into account the equation

Vf(z,y) = AVg(x,y), we obtain the system for the unknowns x, y, A

322 =4)ad o 22 (3 -4 x) =0 (1)
3y2 = 4\y® < % (3 —4)\y) =0 (2)
eyt —32=0 (3)
From (1) and (2) we find several solutions:
(1) & x=0 or )\a::% and (2) & y=0or )\yzz

o If z =y =0, (3) is not satisfied, therefore impossible.
e If z = 0, then (3) implies that y = ++v/32 = £2+/2. Then there exists a value of A which
satisfies (2).
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e If y = 0, then x = +2+/2 and (1) can be satisfied.
e If none of the variables are zero, then z = y = 2 by (1) and (2). By (3) it follows that

et 2t —32=0, r=+2, (z,y) = £(2,2).
Candidates for global extremum points are
(z,) € {(0,2V2),(0,~22), (2¢/2,0), (~2¥/2,0), (2,2), (-2, -2) }
and we have the following table

(l’,y) ‘(072\4/5) <07_2\4/§) (2\4/570) (_2\4/570) (2?2) (_27_2)

f(:c,y)‘ §.23/4 _g.23/4 g.234 _g.234 16 —16

Since 23/4 < 2, the maximum value of f is 16, attained at (2,2), and the minimum value is —16,
attained at (—2,—2).

(ii) Let g(x,y,2) = 2% + y> + 22 — 4 for (x,y,2) € R? and the closed ball E = {(z,y,2) € R3:
g(z,y,2) < 0}. The boundary of E is given by the set {(x,y,2) € R : g(z,y,2z) = 0}. Note that
we have Vg(z,y,2) = (22,2y,22)" = (0,0,0)T & z=y=2=0, but ¢(0,0,0) = —4 # 0 and
therefore Vg # (0,0,0)T on the boundary of E. We start by finding the extrema of f in E. The

stationary points of f satisfy
fi=2r-2=0
fo=2y+2=0 = (x,y,2) = (1, -1, %) is the only stationary point
[i=22-1=0

which is indeed an interior point of E because 12 + (—1)2 + (%)2 =2 <4

To find the extrema of f on the boundary of E, let’s apply the Lagrange multipliers method.
We have to find z,y, z, A\ € R such that

22 — 2 =2\z (1)
2y +2 =2y (2)
2z —-1=2\z (3)
4y +22—-4=0 (4)
Since A # 1 (otherwise (1) to (3) are not satisfied), we can divide by 1 — A to get from (1) to (3)
1 1 1
TTiox YTTiox fTau-y
which we then substitute into (4) to get
(1—2/\)2+4(1i)\)2_420 & (1—/\)2:1% & 1—)\:iz



4 EXERCISE SHEET 7 SOLUTIONS

4 4 2 4 4 2
Thus we have 1 =—=, y1==, 2z1=—= and m2:§, ygz—g, 22:§.
We calculate the values of f that are the potential extrema on E
1 44 2 4 4 2
(r.y.2) | (1L-13) (-3.4.-3) (3.-3.3)
7
f(a:ayaz) -3 % _14_3
Thus the minimum of f on F is —%, attained at (1, -1, %), and the maximum is ‘1—5, attained at
44 2
(-3.3.-3).
4. We have

3
/3t dt = 5t? + 1, /—4e_t dt =4e '+ ¢y and /1%2 dt = 43 + ¢,

for some c1, c2, ¢z € R, hence v(t) = (3t2+c1,4e ' +c9,4t3+c3)T and using that v(0) = (0,1, -3)7T,
we have ¢y =0, cg = —3 and c3 = —3. Therefore,

3 T
v(t) = (§t2,4e_t — 3,483 — 3) .

Similarly, we find

1 T
r(t) = (§t3 —5,—4e™t — 3t +6,t* — 3t — 3) .

5 Consider two open intervals I and J, and functions

Iy JxI—R,
| @) = fla),

and a,b: I — R, all of class C'. Suppose that Im(a) C J and Im(b) C .J, and let

b(t)
(1) F(t) = o f(z,t) dx

for t € I. Then F is of class C! and its derivative is

b o

o o (x,t)dz .

) F(8) = F(6(0).8) ¥(0) ~ F(a®).6) - (0) + |
Now we will apply the above to the questions at hand

i) We have
2"+ sin(x) @) 4 sin(x)

e =" = m@ ¢ Ubecldtecd).
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a(t) = 2 and b(t) = 3 with a,b € C(]1, 00]). Since the bounds are constant, the right-hand side of
(2) consists only of the integral and we have for all ¢ €]1, c0]

n(x : =3
F,(t):/?’é '@ + sin(z) dx:/“”n(ﬂf)dw:/gxtdx: el B e
9 O In(z) o In(x) 2 t+1 t+1

r=2

ii) We have f(xz,t) =In(z? +t*) € C' (R x]1,00[), a(t) =t and b(t) = t* with a,b € C*(]1, o0])
. The bounds depend on t. We have

F’(t)zln((t2)2+t2>-@—ln(tg—l—tz)-%—l-/t gt(ln(x +1%)) d

.7
_ 2 (42 _ 2
=2tln(¢* (t* + 1)) ln(2t)+/t el

x=t2

t2
1 2t
Since 2t / —5——5 dr = | — arctan (£> = 2arctan(t) — T , we finally have
¢ Te+t t t 2

x=t

F'(t) =2tIn (£*(t* + 1)) — In (2t°) + 2arctan(t) — -

6. These functions are again of the form (1).

i) Here we have f(z,t) = M € C1(]0,00[ x]0,00[), a(t) = vt and b(t) =  with
a,b e C1(]0,). So

Pt - sin (cos (t7)) d G) _ sin(cos(tv/%)) ‘g(\/%) +/1/tg (Sin(cos(tx))) i

- a\t) V& dt i ot x
: 3/2)) 1/t
= _sinfcos(1)) _ sin(cos(t +/ cos (cos(tx)) (— sin(tx)) dx
¢ Vi
__sin(cos(1))  sin(cos( t3/2 + sin(cos(tx)) a=1/t B _3sin(cos(t3/2))
N t - 2t

1:3
i) For f(z,t) = £~ € C(]0,00[ x]0,00[ ,), a(t) =1 and b(t) = V/f with a,b € C*(]0,00]),
only the upper bound depends on ¢ so that the term in f(a(t),t) does not appear.

3 3
d [, Vi g [t
) [ (5 ) e
12 d

2 =
:e_.1t2/3+/”xzem3dxzzi+ 1w

Jt 3 1 3t 3t

1

3t

=1
t2
t2_t> lem 1<2t2_t)
(e e +3t 3 e e .

X

=1
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3,2

i) Let f(z,y) = xfij—/gﬁ for (x,y) # (0,0). Then
302

hmf(:v O)_ilg%x‘l S —il_r)r%)()—()
while 6 o

1 1

hm f(y?,y) = lim & =lim = = —.

y—>0y8 + 98 3502 2

Therefore the limit does not exist.
ii) Consider
4 4 ‘v|

for (z,y) # (0,0) and g(u,v) = T2

f(z,y) = PR for (u,v) # (0,0).

Then f(z,y) = £g(z?,y*) for all (z,y) # (0,0).
Now check that  lim  g(u,v) = 0. We have, for all (u,v) # (0,0),

(u,v)—(0,0)
(u, )12/ (u, v)

0<g(u,v) < 2 V| (u,v)

with  lim  {/||(u,v)|| = 0. The squeeze theorem ensures that  lim  g(u,v) = 0. As
(u,v)—(0,0) (u,v)—(0,0)
such
lim z,y) = lim g%y = lim g(u,v)=0
(2,y)—(0,0) 17z 9)l (2,y)—(0,0) ( ) (u,v)—(0,0) (u.0)

and so  lim xz,y) = 0.
(wyy)—>(070)f( v)



