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1. i) We obtain the stationary points of the function f by solving the system

Vi) =0 o {;Ej;’i;jﬁ:f;g = =)
y7

The only stationary point of f is therefore (1, %) Since f/.(z,y) =2 and

v () oy (2 y)) (2 0>
det(Hessr(xz,y)) = det| °5°, " i = det =4,
sy to) = (1) ) 0 2
we have that f2,(1,3) = 2 and det(Hessz(1, 3)) > 0 . Therefore f reaches a local minimum at the

point (1, %) Whgz“e it is f(l, %) = —%.
Note: In fact f admits a global minimum in (1,1/2) because, for all (z,y) € R?, f(z,y) =
(@ =12+ (y—5)7°—12~-1=Ff(1,1/2)
ii) The system {fm(w,y) — sin(z) = 0
fy(:an) =6y=20

gives the stationary points (z,y) = (kw,0) with k € Z. Since

det(Hessy(z,y)) = det (_ Coos(x) g) = —6cos(),
we have
—6, k even
det(H km,0)) = '
et(Hesss(km,0)) {6, % odd

The points (km,0) with k& even are therefore saddle points with f(kw,0) = 3. For k odd, the
equality f (km,0) = —cos(km) =1 > 0 implies that f admits local minima at points (km,0) with
f(km,0) =1.

2. i) We solve the system

fa,r(‘r7yaz) = —dxr + 4y =0
fo(x,y,2) = 4o — 10y + 2z =0
fi@,y,2) = 2y — 22 =0

to obtain the only stationary point (0,0,0) (for example, by “adding” the three equations, we
immediately have —4y = 0). Then we compute the determinant of the Hessian Ds(x,y, z) and the
1
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two sub-determinants Dy(z,y, z) and D1 (x,y, z) (this is in fact the first coefficient of the first line):

-4 4 0

Ds(z,y,z) =det| 4 —-10 2 | =-32, Dy(x,y,z) = det 44 24
0 9 _9 4 -10

and  Di(z,y,2) = —4,
hence
D;(0,0,0) = -4 <0, D5(0,0,0) =24>0 and D3(0,0,0) = —32 < 0.

Therefore, the function f has a local maximum at (0,0,0) and f(0,0,0) = 2.

i) Since the function f admits partial derivatives everywhere in D (the interior of D), its absolute
extrema are found among the stationary points in the interior of D or the points on the boundary
of D.

Stationary points in the interior of D:

folxy)= 2z — y — 1=0 _ :
{f;(l‘,y)z o o4 2% — 1=0 = (z,y) = (1,1) € D.

Since

Ds(x,y) = det(Hessy(z,y)) = det<_21 _21> =3>0 and  Di(z,y) = fr(z,y) =2>0,

the point (1,1) is a local minimum of f. Moreover, we have f(1,1) = —1.

On the boundary of D we have:
Note first that the boundary of D is the union of the following three subsets of R?:

{(,0):0<2<3}U{(0,y): 0<y<3}U{(x,3—2):0<xz <3}

2

The evaluation of the function f(z,y) = 2% — 2y + y* — z — y on the boundary gives

1\? 1
f(z,0)=2" -2z (x 2) 1 0<z<3,
1\? 1
FO,9)=v*—y=|y—5) — 7. 0<y<3,
2 4
) 3\ 1
fl,3—2)=3(x*-3x+2)=3 v=5) — | 0<z<3.

The idea now is to look for the extrema of these one-dimensional functions in the specified interval
which are either at the stationary points or at the extremities of the interval (cf. Analysis I). Let
us first use the notation g(z) = f(z,0). Then ¢'(z) =2(z—3)=0 & z=1 and g(3)=—13.
Since ¢"(z) =2 > 0, ¢ has a local minimum at = = % Furthermore, we have ¢(0) = 0 and
g(3) = 6. We therefore have

s f(@.0) = fG.0 =6 and o f0.0) =1 (5.0) =]
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Similarly, we look for the extrema of the functions h(y) = f(0,y) and k(z) = f(z,3 — x). The
function h has exactly the same behavior as ¢ and for k£ we have

Vo =o(-1=0 = o=} k=1
K'(x) =6 >0 (= local minimum), k(0) = k(3) = 6,

so that we obtain

— — i — Ly _1
fax f(0,y) = £(0,3) =6, o, f(0,9)=f(0,3) = -3,
— ) = — — i —x)=f(2.3)=_3
0213§3f(x73 x)_f(370)_f(073)_6a 02223']((%73 .’I?)—f(2,2)— 4
It follows that f admits an absolute minimum at (1, 1) of value f(1,1) = —1 and absolute maximums

at (3,0) and at (0, 3) of values f(3,0) = f(0,3) = 6.

3. Since the partial derivatives of f exist on lo), the absolute extrema are reached at stationary
points in the interior of D or at points on the boundary of D. Since fé = —1 never vanishes on D,
the function f has no stationary points.

Since D is a rectangular parallelepiped parallel to the axes, we can determine the behavior of f
on the boundary of D by examining its partial derivatives. For (z,y,2) € D we have:

fi=2+1>0 = f is strictly increasing in the direction of x
and therefore maximal at x = @ and minimal at x = 0.
fz,/ =-1<0 = f is strictly decreasing in the direction of y

and therefore maximal at y = 0 and minimal at y = b.

fi=2+2>0 = f is strictly increasing in the direction of z
and therefore maximal at z = ¢ and minimal at z = 0.

The function f has its absolute maximum at (a, 0, c) and its absolute minimum at (0, b, 0).
In order to calculate the extremal values of f, we need to find its expression. From the given
partial derivatives, we obtain successively

fals(way7z) =-1 = f(xayv Z) = —y+g(:c,z) = f;(x,y, Z) = g;(I,Z) =z+1
= gz.2)=E+Dr+h(z) = filz,y,z) =+ (z)=2+2

= h(z)=224+C, CeR = g(x,2) =(z+1Dx+22+C
= f(@y,2)=-y+(+z+2:+C

The condition f(0,0,0) = 3 then implies that C' = 3 and f(x,y,2) = (z+ 1)z —y+2z+3. Thus the
absolute maximum of f is f(a,0,c) = a(c+1)+2c+3 and its absolute minimum is f(0,5,0) = 3—b.

Note: We could also have calculated the expression of f from the start but the approach taken
here is more instructive.

4. (i) For a function f of class C, the directional derivative Vy f(a) at point a along the non-zero
vector v is given by

Vivf(a) = (Vf(a),v).
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The given function f is indeed C!. Since

Vf(:c,y,z) = (yz,xz7$y)T and Vf(l, _172) = <_2727 _1)T7

we obtain
Vof(1,-1,2) = (=2,2,-1)7 . (2,-1,2)T = —=8 and V.f(1,-1,2) = —g )

(ii) The slope of f in a in the direction of the unit vector w is given by the directional derivative
along this unit vector, that is, by

Vuf(a) = (Vf(a),u) = (-2,2,-1)T - (sin(6) cos(y), sin(6) sin(go),cos(ﬂ))T
= 2sin(6) (sin(p) — cos(p)) — cos(8) =: g(6, ¢),

where g : [0, 7] x [0, 27[C R? — R.

(iii) We know that at a point where f is differentiable, the slope of the tangent to the graph is
maximal in the direction of the gradient and is equal to the norm of the gradient.

Of course the slope of the tangent to the graph is minimal in the direction opposite to the
gradient and is then equal to the opposite of the norm of the gradient.

At the point a = (1, —1,2), the maximum (minimum) slope is therefore

V1, -1,2)[|=3  (=[IVf1,-12)]=-3).

The corresponding directions are i% = +1(-2,2,—-1). To find the angles (6,¢) €

[0, 7] x [0, 27| we have to solve

sin (@) cos(y) :Fg
sin(f) sin(p) | = i¥ ,
cos(6) T3
that is to say, for the maximal slope,
oo . 2 2V2 :
0 = arccos (—3) = sin(f) =/1—(—3)" = = = cos(p) = —% et sin(p) = %
€027 3 _ _1 3_71'
= = = 0,p) = <arccos< 3) 1 )
and for the minimal slope,
— 1 : _ 1\2 _ 2v2 _ 1 : __ 1
0 = arccos (3) = sin(d) =41/1—(3)" = = = cos(p) = 75 et sin(p) = 7
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The slope of f at a is therefore maximal for the angles (6, ) = (arccos(—%) , 3—7’) and minimal for

(0,¢) = (arccos(3}), %’T) )

5. Since the gradient of f(z,y) = 4zy is Vf(z,y) = (ji) , the unique stationary point of f is

0 4
4 0

(30) ()= ) = (o) (3)=(4):

which shows that 4 and —4 are eigenvalues and we can choose the corresponding (normalized)

eigenvectors
1/ V2 and -1/ V2
1/v/2 1/Vv2 )"
For U, we can choose the following matrix whose columns are the two normalized eigenvectors:
1 /1 -1
7= 500,
It is useful to remember that, U being orthogonal, implies that U~! = U . Hence
x z T T (T 1 1 1)(36) 1<x+y)
* =U(_),(_)=U = — =— .
™ <y> <y> <y> <y> ﬂ(—l J\y)  v2\—z+y

4 0
0 —4

(0,0) and we have H := Hess(0,0) = < ) What’s more

Let’s check that U satisfies the statement of the problem. As U"'HU = (
that

> = D, it follows

1 *) 1 T T
= — = _ H
fan =36 i (3) 23 E noiav(F)
1 T 1 T
= 5 (g> 5 433 —4y ) f(z,9)
and we have indeed that )
@) = 3 (42% - 457).

What’s more

fey) =5 <4(”“"j§y)2—4 (‘wgy)) =y~ ()

(Note that expanding (x +y)% — (—z + y)? yields 4xy.) From this expression for f, it is easy to see
that (0,0) is a saddle point of f. We can also see this by noticing that det(Hessf(0,0)) = —16 < 0.

2 2 2p 2
6. (a) (i) Let F(x,y) = (2) + (%) . We have VF(p,q) = (a_g’ b—g) and then the tangent line

is given by the equation

r—p 2p 2q r—p pl‘ p2 qy q2
VF ) — 0 e ) — .
(p,9) (?J - Q) 0 (aQ’ 62> (y - CI> 0 a2 a2 b2 b2 0
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2 2
Using that (]—9) + (Q) = 1, we obtain that
a b

. pr  qy
(51) . ; b_2 — ]_
(ii) Exactly as before, we can find that the equation of the tangent line is
, prqy
(52) : ﬁ — b_2 =1.
(b) (i) The line (e1) is parallel to the horizontal axes if and only if p = 0. Moreover, the point

2 2
(p,q) = (0,¢q) belongs to the ellipse (2) + (%) = 1, thus, ¢ = £b. Therefore, the set of points

whose tangent is parallel to the horizontal axes is {(0, —b), (0,b)} and the tangent line takes the
form y = —b (for the point (0, —b)) and y = b (for the point (0,b)).
(ii) The line (e1) is parallel to the horizontal axes if and only if p = 0. The point (0, q) belongs
2 2
in the hyperbola (2) — (%) = 1, hence ¢> = —b?, which implies that ¢ = b = 0, yielding

a contradiction. Therefore, there is not tangent lines to the hyperbola that are parallel to the
horizontal axes.

7. Let F(z,y,2) = 222 — 20%y + y?2. Evaluating F at point (1,1, z9) we have
F(1,1,20) =0 & 22-242=0 & z=1or z=-2.
The equation of the tangent plane to the surfance F(z,y,z) = 0 at the point (zo, yo, 20) is
(x — 20,y — Yo, 2 — zo)T - VF(z0,y0,20) = 0.

Since

VF(z,y,2) = (0:F(x,y, 2), OyF (x,y,2), 0, F(z,y, 2:))T = (22 — dxy, —222 + 2z, 2xz + y2)T ,
we have for the point (zg,yo,20) = (1,1,1)

VF(1,1,1) = (=3,0,3)"

and the equation of the tangent plane is

r—1 -3
y—=1]-1 0 |=0 & =3-1)+0y—-1)+3>:zx-1)=0 & z—2=0.
z—1 3

For (z¢,v0, 20) = (1,1, —2) we have
VF(1,1,-2) = (0,—6,-3)"

and the equation of the tangent plane is

z—1 0
y—1]--6]=0 < 0x—-1)—-6(y—1)—3(2+2)=0 < 2y+2z=0.
z+2 -3

8. For t € R, consider (z,y, z) = (27t3,1/t2,1/t), which satisfies the constraint xyz = 27. As
. 31 /42 o 3, 4=2 | 4—1\ _
t_l)lrinoof(27t 1/t2.1/t) = lim 272+t +t7") = +oo,
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f does not reach a global extremum under the constraint xyz — 27 = 0.
Note. The set {(z,y,2) € R® : zyz — 27 = 0} is closed but not bounded. It is therefore not
compact.



