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1. i) We obtain the stationary points of the function f by solving the system

∇f(x, y) = 0 ⇔
󰀫
f ′
x(x, y) = 2x− 2 = 0

f ′
y(x, y) = 2y − 1 = 0

⇒ (x, y) =
󰀃
1, 12

󰀄
.

The only stationary point of f is therefore
󰀃
1, 12

󰀄
. Since f ′′

xx(x, y) = 2 and

det(Hessf (x, y)) = det

󰀕
f ′′
xx(x, y) f ′′

xy(x, y)
f ′′
yx(x, y) f ′′

yy(x, y)

󰀖
= det

󰀕
2 0
0 2

󰀖
= 4,

we have that f ′′
xx(1,

1
2) = 2 and det(Hessf (1,

1
2)) > 0 . Therefore f reaches a local minimum at the

point (1, 12) where it is f
󰀃
1, 12

󰀄
= −1

4 .

Note: In fact f admits a global minimum in (1, 1/2) because, for all (x, y) ∈ R2, f(x, y) =
(x− 1)2 + (y − 1

2)
2 − 1

4 ≥ −1
4 = f(1, 1/2).

ii) The system 󰀫
fx(x, y) = − sin(x) = 0

fy(x, y) = 6y = 0

gives the stationary points (x, y) = (kπ, 0) with k ∈ Z. Since

det(Hessf (x, y)) = det

󰀕
− cos(x) 0

0 6

󰀖
= −6 cos(x) ,

we have

det(Hessf (kπ, 0)) =

󰀫
−6, k even

6, k odd

The points (kπ, 0) with k even are therefore saddle points with f(kπ, 0) = 3. For k odd, the
equality f ′′

xx(kπ, 0) = − cos(kπ) = 1 > 0 implies that f admits local minima at points (kπ, 0) with
f(kπ, 0) = 1.

2. i) We solve the system
󰀻
󰀿

󰀽

f ′
x(x, y, z) = −4x + 4y = 0
f ′
y(x, y, z) = 4x − 10y + 2z = 0
f ′
z(x, y, z) = 2y − 2z = 0

to obtain the only stationary point (0, 0, 0) (for example, by “adding” the three equations, we
immediately have −4y = 0). Then we compute the determinant of the Hessian D3(x, y, z) and the
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two sub-determinants D2(x, y, z) and D1(x, y, z) (this is in fact the first coefficient of the first line):

D3(x, y, z) = det

󰀳

󰁃
−4 4 0
4 −10 2
0 2 −2

󰀴

󰁄 = −32, D2(x, y, z) = det

󰀕
−4 4
4 −10

󰀖
= 24

and D1(x, y, z) = −4,

hence

D1(0, 0, 0) = −4 < 0, D2(0, 0, 0) = 24 > 0 and D3(0, 0, 0) = −32 < 0.

Therefore, the function f has a local maximum at (0, 0, 0) and f(0, 0, 0) = 2.

ii) Since the function f admits partial derivatives everywhere in D̊ (the interior ofD), its absolute
extrema are found among the stationary points in the interior of D or the points on the boundary
of D.

Stationary points in the interior of D:
󰀝

f ′
x(x, y) = 2x − y − 1 = 0
f ′
y(x, y) = −x + 2y − 1 = 0

⇒ (x, y) = (1, 1) ∈ D̊.

Since

D2(x, y) = det(Hessf (x, y)) = det

󰀕
2 −1
−1 2

󰀖
= 3 > 0 and D1(x, y) = f ′′

xx(x, y) = 2 > 0 ,

the point (1, 1) is a local minimum of f . Moreover, we have f(1, 1) = −1.

On the boundary of D we have:

Note first that the boundary of D is the union of the following three subsets of R2:

{(x, 0) : 0 ≤ x ≤ 3} ∪ {(0, y) : 0 ≤ y ≤ 3} ∪ {(x, 3− x) : 0 ≤ x ≤ 3}.

The evaluation of the function f(x, y) = x2 − xy + y2 − x− y on the boundary gives

f(x, 0) = x2 − x =

󰀕
x− 1

2

󰀖2

− 1

4
, 0 ≤ x ≤ 3 ,

f(0, y) = y2 − y =

󰀕
y − 1

2

󰀖2

− 1

4
, 0 ≤ y ≤ 3 ,

f(x, 3− x) = 3(x2 − 3x+ 2) = 3

󰀥󰀕
x− 3

2

󰀖2

− 1

4

󰀦
, 0 ≤ x ≤ 3 .

The idea now is to look for the extrema of these one-dimensional functions in the specified interval
which are either at the stationary points or at the extremities of the interval (cf. Analysis I). Let
us first use the notation g(x) = f(x, 0) . Then g′(x) = 2

󰀃
x− 1

2

󰀄
= 0 ⇔ x = 1

2 and g
󰀃
1
2

󰀄
= −1

4 .

Since g′′(x) = 2 > 0 , g has a local minimum at x = 1
2 . Furthermore, we have g(0) = 0 and

g(3) = 6 . We therefore have

max
0≤x≤3

f(x, 0) = f(3, 0) = 6 and min
0≤x≤3

f(x, 0) = f

󰀕
1

2
, 0

󰀖
= −1

4
.
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Similarly, we look for the extrema of the functions h(y) = f(0, y) and k(x) = f(x, 3 − x). The
function h has exactly the same behavior as g and for k we have

k′(x) = 6
󰀃
x− 3

2

󰀄
= 0 ⇔ x = 3

2 , k
󰀃
3
2

󰀄
= −3

4 ,

k′′(x) = 6 > 0 (⇒ local minimum), k(0) = k(3) = 6,

so that we obtain

max
0≤y≤3

f(0, y) = f(0, 3) = 6 , min
0≤y≤3

f(0, y) = f
󰀃
0, 12

󰀄
= −1

4 ,

max
0≤x≤3

f(x, 3− x) = f(3, 0) = f(0, 3) = 6 , min
0≤x≤3

f(x, 3− x) = f
󰀃
3
2 ,

3
2

󰀄
= −3

4 .

It follows that f admits an absolute minimum at (1, 1) of value f(1, 1) = −1 and absolute maximums
at (3, 0) and at (0, 3) of values f(3, 0) = f(0, 3) = 6.

3. Since the partial derivatives of f exist on D̊, the absolute extrema are reached at stationary
points in the interior of D or at points on the boundary of D. Since f ′

y = −1 never vanishes on D,
the function f has no stationary points.

Since D is a rectangular parallelepiped parallel to the axes, we can determine the behavior of f
on the boundary of D by examining its partial derivatives. For (x, y, z) ∈ D we have :

f ′
x = z + 1 > 0 ⇒ f is strictly increasing in the direction of x

and therefore maximal at x = a and minimal at x = 0.

f ′
y = −1 < 0 ⇒ f is strictly decreasing in the direction of y

and therefore maximal at y = 0 and minimal at y = b.

f ′
z = x+ 2 > 0 ⇒ f is strictly increasing in the direction of z

and therefore maximal at z = c and minimal at z = 0.

The function f has its absolute maximum at (a, 0, c) and its absolute minimum at (0, b, 0).
In order to calculate the extremal values of f , we need to find its expression. From the given

partial derivatives, we obtain successively

f ′
x(x, y, z) = −1 ⇒ f(x, y, z) = −y + g(x, z) ⇒ f ′

x(x, y, z) = g′x(x, z) = z + 1

⇒ g(x, z) = (z + 1)x+ h(z) ⇒ f ′
z(x, y, z) = x+ h′(z) = x+ 2

⇒ h(z) = 2z + C, C ∈ R ⇒ g(x, z) = (z + 1)x+ 2z + C

⇒ f(x, y, z) = −y + (z + 1)x+ 2z + C

The condition f(0, 0, 0) = 3 then implies that C = 3 and f(x, y, z) = (z+1)x−y+2z+3. Thus the
absolute maximum of f is f(a, 0, c) = a(c+1)+2c+3 and its absolute minimum is f(0, b, 0) = 3−b .

Note: We could also have calculated the expression of f from the start but the approach taken
here is more instructive.

4. (i) For a function f of class C1, the directional derivative ∇vf(a) at point a along the non-zero
vector v is given by

∇vf(a) = 〈∇f(a),v〉 .
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The given function f is indeed C1. Since

∇f(x, y, z) = (yz, xz, xy)T and ∇f(1,−1, 2) = (−2, 2,−1)T ,

we obtain

∇vf(1,−1, 2) = (−2, 2,−1)T · (2,−1, 2)T = −8 and ∇ef(1,−1, 2) = −8

3
.

(ii) The slope of f in a in the direction of the unit vector u is given by the directional derivative
along this unit vector, that is, by

∇uf(a) = 〈∇f(a),u〉 = (−2, 2,−1)T ·
󰀃
sin(θ) cos(ϕ), sin(θ) sin(ϕ), cos(θ)

󰀄T

= 2 sin(θ)
󰀃
sin(ϕ)− cos(ϕ)

󰀄
− cos(θ) =: g(θ,ϕ) ,

where g : [0,π]× [0, 2π[⊂ R2 → R.
(iii) We know that at a point where f is differentiable, the slope of the tangent to the graph is

maximal in the direction of the gradient and is equal to the norm of the gradient.
Of course the slope of the tangent to the graph is minimal in the direction opposite to the

gradient and is then equal to the opposite of the norm of the gradient.
At the point a = (1,−1, 2), the maximum (minimum) slope is therefore

󰀂∇f(1,−1, 2)󰀂 = 3
󰀃
− 󰀂∇f(1,−1, 2)󰀂 = −3

󰀄
.

The corresponding directions are ± ∇f(1,−1,2)
󰀂∇f(1,−1,2)󰀂 = ±1

3(−2, 2,−1) . To find the angles (θ,ϕ) ∈
[0,π]× [0, 2π[ we have to solve

󰀳

󰁃
sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

󰀴

󰁄 =

󰀳

󰁃
∓2

3
±2

3
∓1

3

󰀴

󰁄 ,

that is to say, for the maximal slope,

θ = arccos
󰀃
−1

3

󰀄 θ∈[0,π]⇒ sin(θ) =

󰁴
1−

󰀃
−1

3

󰀄2
=

2
√
2

3
⇒ cos(ϕ) = − 1√

2
et sin(ϕ) = 1√

2

ϕ∈[0,2π[⇒ ϕ =
3π

4
⇒ (θ,ϕ) =

󰀕
arccos

󰀕
−1

3

󰀖
,
3π

4

󰀖

and for the minimal slope,

θ = arccos
󰀃
1
3

󰀄
⇒ sin(θ) =

󰁴
1−

󰀃
1
3

󰀄2
=

2
√
2

3
⇒ cos(ϕ) = 1√

2
et sin(ϕ) = − 1√

2

⇒ ϕ =
7π

4
⇒ (θ,ϕ) =

󰀕
arccos

󰀕
1

3

󰀖
,
7π

4

󰀖



EXERCISE SHEET 6 SOLUTIONS 5

The slope of f at a is therefore maximal for the angles (θ,ϕ) =
󰀃
arccos

󰀃
−1

3

󰀄
, 3π4

󰀄
and minimal for

(θ,ϕ) =
󰀃
arccos

󰀃
1
3

󰀄
, 7π4

󰀄
.

5. Since the gradient of f(x, y) = 4xy is ∇f(x, y) =

󰀕
4y
4x

󰀖
, the unique stationary point of f is

(0, 0) and we have H := Hessf (0, 0) =

󰀕
0 4
4 0

󰀖
. What’s more

󰀕
0 4
4 0

󰀖󰀕
1
1

󰀖
=

󰀕
4
4

󰀖
and

󰀕
0 4
4 0

󰀖󰀕
−1
1

󰀖
=

󰀕
4
−4

󰀖
,

which shows that 4 and −4 are eigenvalues and we can choose the corresponding (normalized)
eigenvectors 󰀕

1/
√
2

1/
√
2

󰀖
and

󰀕
−1/

√
2

1/
√
2

󰀖
.

For U , we can choose the following matrix whose columns are the two normalized eigenvectors:

U =
1√
2

󰀕
1 −1
1 1

󰀖
,

It is useful to remember that, U being orthogonal, implies that U−1 = U⊤ . Hence

(󰂏)

󰀕
x
y

󰀖
= U

󰀕
x̄
ȳ

󰀖
,

󰀕
x̄
ȳ

󰀖
= U⊤

󰀕
x
y

󰀖
=

1√
2

󰀕
1 1
−1 1

󰀖󰀕
x
y

󰀖
=

1√
2

󰀕
x+ y
−x+ y

󰀖
.

Let’s check that U satisfies the statement of the problem. As U−1HU =

󰀕
4 0
0 −4

󰀖
:= D, it follows

that

f(x, y) =
1

2

󰀃
x y

󰀄
H

󰀕
x
y

󰀖
(󰂏)
=

1

2

󰀃
x̄ ȳ

󰀄
U⊤HU

󰀕
x̄
ȳ

󰀖

=
1

2

󰀃
x̄ ȳ

󰀄
D

󰀕
x̄
ȳ

󰀖
=

1

2

󰀃
4x̄2 − 4ȳ2

󰀄
= f̄(x̄, ȳ)

and we have indeed that

f̄(x̄, ȳ) =
1

2

󰀃
4x̄2 − 4ȳ2

󰀄
.

What’s more

f(x, y) =
1

2

󰀣
4

󰀕
x+ y√

2

󰀖2

− 4

󰀕
−x+ y√

2

󰀖2
󰀤

= (x+ y)2 − (−x+ y)2 .

(Note that expanding (x+ y)2 − (−x+ y)2 yields 4xy.) From this expression for f , it is easy to see
that (0, 0) is a saddle point of f . We can also see this by noticing that det(Hessf (0, 0)) = −16 < 0.

6. (a) (i) Let F (x, y) =
󰀓x
a

󰀔2
+
󰀓y
b

󰀔2
. We have ∇F (p, q) =

󰀕
2p

a2
,
2q

b2

󰀖
and then the tangent line

is given by the equation

∇F (p, q) ·
󰀕
x− p
y − q

󰀖
= 0 ⇐⇒

󰀕
2p

a2
,
2q

b2

󰀖
·
󰀕
x− p
y − q

󰀖
= 0 ⇐⇒ px

a2
− p2

a2
+

qy

b2
− q2

b2
= 0.
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Using that
󰀓p
a

󰀔2
+

󰀓y
b

󰀔2
= 1, we obtain that

(ε1) :
px

a2
+

qy

b2
= 1.

(ii) Exactly as before, we can find that the equation of the tangent line is

(ε2) :
px

a2
− qy

b2
= 1.

(b) (i) The line (ε1) is parallel to the horizontal axes if and only if p = 0. Moreover, the point

(p, q) = (0, q) belongs to the ellipse
󰀓x
a

󰀔2
+

󰀓y
b

󰀔2
= 1, thus, q = ±b. Therefore, the set of points

whose tangent is parallel to the horizontal axes is {(0,−b), (0, b)} and the tangent line takes the
form y = −b (for the point (0,−b)) and y = b (for the point (0, b)).

(ii) The line (ε1) is parallel to the horizontal axes if and only if p = 0. The point (0, q) belongs

in the hyperbola
󰀓x
a

󰀔2
−

󰀓y
b

󰀔2
= 1, hence q2 = −b2, which implies that q = b = 0, yielding

a contradiction. Therefore, there is not tangent lines to the hyperbola that are parallel to the
horizontal axes.

7. Let F (x, y, z) = xz2 − 2x2y + y2z. Evaluating F at point (1, 1, z0) we have

F (1, 1, z0) = 0 ⇔ z20 − 2 + z0 = 0 ⇔ z0 = 1 or z0 = −2 .

The equation of the tangent plane to the surfance F (x, y, z) = 0 at the point (x0, y0, z0) is

(x− x0, y − y0, z − z0)
⊤ ·∇F (x0, y0, z0) = 0.

Since

∇F (x, y, z) = (∂xF (x, y, z), ∂yF (x, y, z), ∂zF (x, y, z))⊤ =
󰀃
z2 − 4xy, −2x2 + 2yz, 2xz + y2

󰀄⊤
,

we have for the point (x0, y0, z0) = (1, 1, 1)

∇F (1, 1, 1) = (−3, 0, 3)⊤

and the equation of the tangent plane is
󰀳

󰁃
x− 1
y − 1
z − 1

󰀴

󰁄 ·

󰀳

󰁃
−3
0
3

󰀴

󰁄 = 0 ⇔ −3(x− 1) + 0(y − 1) + 3(z − 1) = 0 ⇔ x− z = 0 .

For (x0, y0, z0) = (1, 1,−2) we have

∇F (1, 1,−2) = (0,−6,−3)⊤

and the equation of the tangent plane is
󰀳

󰁃
x− 1
y − 1
z + 2

󰀴

󰁄 ·

󰀳

󰁃
0
−6
−3

󰀴

󰁄 = 0 ⇔ 0(x− 1)− 6(y − 1)− 3(z + 2) = 0 ⇔ 2y + z = 0 .

8. For t ∈ R, consider (x, y, z) = (27t3, 1/t2, 1/t), which satisfies the constraint xyz = 27. As

lim
t→±∞

f(27t3.1/t2.1/t) = lim
t→±∞

󰀃
27t3 + t−2 + t−1

󰀄
= ±∞,
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f does not reach a global extremum under the constraint xyz − 27 = 0.
Note. The set {(x, y, z) ∈ R3 : xyz − 27 = 0} is closed but not bounded. It is therefore not

compact.


