

EXERCISE SHEET 5

Analysis II-MATH-106 (en) EPFL

Spring Semester 2024-2025

March 17, 2025

Exercise 1. Determine the equation of the tangent plane to the surface $\{(x, y, z) \in \mathbb{R}^3 : z = x^3y + x^2 + y^2\}$ at the point $(1, 1, 3) \in \mathbb{R}^3$.

Exercise 2. Determine the equation of the tangent hyperplane to the surface

$$S = \{(x, y, z) \in \mathbb{R}^3 : -2\cos(\pi x) + x^2y + 3e^{xz} + yz = 23\}$$

at the point $(3, 2, 0) \in \mathbb{R}^3$.

Exercise 3. For $x \in \mathbb{R}$ and $t > 0$ we consider the function $f(x, t)$ defined by

$$f(x, t) = \frac{1}{\sqrt{4\pi t}} \exp\left(-\frac{x^2}{4t}\right)$$

(a) Show that f verifies the heat equation, i.e.,

$$\frac{\partial f}{\partial t}(x, t) - \frac{\partial^2 f}{\partial x^2}(x, t) = 0.$$

(b) Let $g(x, y, t)$ be given by $g(x, y, t) = f(x, t)f(y, t)$. Calculate

$$\frac{\partial g}{\partial t}(x, y, t) - \frac{\partial^2 g}{\partial x^2}(x, y, t) - \frac{\partial^2 g}{\partial y^2}(x, y, t).$$

Exercise 4. Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ by a function defined by

$$f(x, y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0). \end{cases}$$

Calculate $\frac{\partial^2 f}{\partial y \partial x}(0, 0)$ and $\frac{\partial^2 f}{\partial x \partial y}(0, 0)$. Is $\frac{\partial^2 f}{\partial x \partial y}$ continuous at $(0, 0)$?

Exercise 5. Prove that the determinant of Hessian matrix of the function $f: \mathbb{R}^2 \rightarrow \mathbb{R}$ given by $f(x, y) = e^x \sin y$ does not depend on the variable y .

Exercise 6. Determine the Taylor polynomial of order n of function f around the given point.

- i) $f(x, y) = x^2y + 2xy + 3y^2 - 5x + 1, \quad n = 2, \quad (x_0, y_0) = (0, 0).$
- ii) $f(x, y, z) = e^x + y \sinh(z), \quad n = 2, \quad (x_0, y_0, z_0) = (0, 0, 0).$
- iii) $f(x, y) = (\cos(x))^{\frac{1}{2} + \sin(y)}, \quad n = 1, \quad (x_0, y_0) = \left(\frac{\pi}{3}, \frac{\pi}{6}\right).$
- iv) $f(x, y, z) = e^{2xz+y}, \quad n = 2, \quad (x_0, y_0, z_0) = (0, 0, 0).$

For i), verify that the error is of order $d^2 \cdot \varepsilon(x, y)$, where $d = \sqrt{x^2 + y^2}$.

Exercise 7. Apply the chain rule to calculate the partial derivatives of the functions:

- (i) $f :]1, \infty[\rightarrow \mathbb{R}, f(t) = (\ln t)^{\sin t}.$
- (ii) $f : \mathbb{R}^2 \rightarrow \mathbb{R}, f(x, y) = e^{-(x \sin(y))^2}.$