

EXERCISE SHEET 4 SOLUTIONS

Analysis II-MATH-106 (en) EPFL

Spring Semester 2024-2025

March 10, 2025

1. f is not continuous at $(0, 0)$. One counterexample is

$$f(x, y) = \begin{cases} 0, & \text{if } y = 0 \text{ or } |y| > x^2 \\ 1, & \text{otherwise.} \end{cases}$$

Then f is a well-defined function on \mathbb{R}^2 with $f(0, 0) = 0$. Let $\alpha, \beta \in \mathbb{R}$. If both are zero, then $f(\alpha t, \beta t) = f(0, 0) = 0$. If either $\alpha = 0$ or $\beta = 0$, then also $f(\alpha t, \beta t) = 0$. Finally, if $\alpha, \beta \neq 0$, then we have $f(\alpha t, \beta t) = 0$ for $|t| < \beta/\alpha^2$. Thus, for all $\alpha, \beta \in \mathbb{R}$, we have

$$\lim_{t \rightarrow 0} f(\alpha t, \beta t) = 0.$$

However, f is not continuous at $(0, 0)$. Let $y = x^2$. Then $f(x, x^2) = 1$ for all $x \neq 0$, thus

$$\lim_{x \rightarrow 0} f(x, x^2) = 1.$$

2. (a) If E is empty, then E is closed. If E is not empty, then for all adherent points \mathbf{x} of E and for all sequences $(\mathbf{x}_n)_n$ of elements of E that converges to \mathbf{x} : $f(\mathbf{x}_n) = c$ for all n and by continuity of f

$$c = \lim_{n \rightarrow \infty} f(\mathbf{x}_n) = f(\mathbf{x})$$

hence $\mathbf{x} \in E$.

(b) For F it is the same idea (replace “ $= c$ ” by “ $\leq c$ ”).

(c) The set G is the complementary set of the closed set $\{\mathbf{x} \in \mathbb{R}^n : f(\mathbf{x}) \geq c\}$, hence it is open.

3. (a)

$$f(x, y) = \begin{cases} \frac{x^{2\alpha}}{x^2 + y^2}, & \text{if } (x, y) \neq 0 \\ 0, & \text{otherwise.} \end{cases}$$

For $(x, y) \neq (0, 0)$ the denominator is non-zero and f is a combination of continuous functions. Therefore for all $\alpha > 0$, $f(x, y)$ is continuous $\forall (x, y) \neq (0, 0)$. We check the continuity at $(x, y) = (0, 0)$. Using polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ we have

$$\lim_{(x,y) \rightarrow (0,0)} \frac{x^{2\alpha}}{x^2 + y^2} = \lim_{r \rightarrow 0} \frac{r^{2\alpha} \cos^{2\alpha} \theta}{r^2}$$

The value of the limit depends on α :

- case $\alpha > 1$: The limit is 0 because $|r^{2\alpha} \cos^{2\alpha} \theta| \leq |r^{2\alpha}| \rightarrow 0$
- case $\alpha = 1$: The value of the limit is $1 \cdot \cos \theta$
- case $0 < \alpha < 1$: The limit is $+\infty$ if $\cos \theta \neq 0$ and the limit is 0 if $\cos \theta = 0$.

So f is continuous on \mathbb{R}^2 if $\alpha > 1$ and is continuous on $\mathbb{R}^2 \setminus (0, 0)$ when $0 < \alpha \leq 1$.

(b)

$$f(x, y) = \begin{cases} \frac{xy}{(x^2 + y^2)^\alpha}, & \text{if } (x, y) \neq 0 \\ 0 & \text{otherwise.} \end{cases}$$

For $(x, y) \neq (0, 0)$ the denominator is non-zero and f is a combination of continuous functions. Therefore for all $\alpha > 0$, $f(x, y)$ is continuous $\forall (x, y) \neq (0, 0)$. We check the continuity at $(x, y) = (0, 0)$. Using polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ we have

$$\lim_{(x,y) \rightarrow (0,0)} \frac{xy}{(x^2 + y^2)^\alpha} = \lim_{r \rightarrow 0} r^{2(1-\alpha)} \cos \theta \sin \theta$$

The value of the limit depends on α :

- $\alpha = 1$: the limit is $\cos \theta \sin \theta$.
- $0 < \alpha < 1$: the limit is 0.
- $\alpha > 1$: depending on θ it can be 0, $+\infty$ and $-\infty$.

So f is continuous on \mathbb{R}^2 if $0 < \alpha < 1$ and is continuous on $\mathbb{R}^2 \setminus (0, 0)$ when $\alpha \geq 1$.

4.

$$\begin{aligned} & \lim_{(x,y) \rightarrow (0,0)} \frac{3(x^2 + y^2)}{\sqrt{x^2 + y^2 + 4} - 2} \\ &= \lim_{(x,y) \rightarrow (0,0)} \frac{3(x^2 + y^2) (\sqrt{x^2 + y^2 + 4} + 2)}{x^2 + y^2} \\ &= \lim_{(x,y) \rightarrow (0,0)} 3 (\sqrt{x^2 + y^2 + 4} + 2) = 12. \end{aligned}$$

5. The function is partially differentiable since polynomials and trigonometric functions are differentiable.

$$\nabla f(x, y) = \begin{pmatrix} 2x + y \cos x - 2y^2 \sin x \cos x \\ \sin x + 2y \cos^2 x \end{pmatrix}$$

Note that $f(0, 1) = 1$ and

$$\nabla f(0, 1) = \begin{pmatrix} 1 \\ 2 \end{pmatrix}.$$

6. Let $r = \sqrt{x^2 + y^2}$, $r \geq 0$. f is differentiable at $(0, 0)$ and $d_0 f(x, y) = 0$ since

$$\lim_{r \rightarrow 0^+} \frac{f(x, y) - f(0, 0)}{r} = \lim_{r \rightarrow 0} r \sin \left(\frac{1}{r} \right) = 0$$

If $(x, y) \neq (0, 0)$ the function f is partially differentiable (even differentiable) and noting that f is radially symmetric:

$$\begin{aligned} \frac{\partial f(x, y)}{\partial x} &= \frac{x}{r} (2r \sin r^{-1} - \cos r^{-1}) \\ \frac{\partial f(x, y)}{\partial y} &= \frac{y}{r} (2r \sin r^{-1} - \cos r^{-1}) \end{aligned}$$

These functions don't have any limits when $(x, y) \rightarrow (0, 0)$ (because of $\cos r^{-1}$).

7. On the open set $\mathbb{R}^2 \setminus \{(0, 0)\}$, f admits partial derivatives (cf Analysis I). They are continuous because written using the continuous functions $(x, y) \rightarrow x$ and $(x, y) \rightarrow y$ and operations that preserve continuity. In our case, the only possible problematic point is therefore $(0, 0)$.

(i) The function is continuous at any point of $\mathbb{R}^2 \setminus \{(0, 0)\}$ (the composition of continuous functions gives continuous functions). For $(x, y) \neq (0, 0)$,

$$0 \leq |f(x, y)| \leq \frac{\|(x, y)\|^3}{x^2 + y^2} = \|(x, y)\|.$$

But $\lim_{(x, y) \rightarrow (0, 0)} \|(x, y)\| = 0$ and therefore, by the squeeze theorem $\lim_{(x, y) \rightarrow (0, 0)} |f(x, y)| = 0$. From where $\lim_{(x, y) \rightarrow (0, 0)} f(x, y) = 0$. As $f(0, 0) = 0$, f is also continuous at $(0, 0)$.

(ii) The functions $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are well-defined on $\mathbb{R}^2 \setminus \{(0, 0)\}$. At $(0, 0)$ we have:

$$\frac{\partial f}{\partial x}(0, 0) = \lim_{x \rightarrow 0} \frac{f(x, 0) - f(0, 0)}{x} = \lim_{x \rightarrow 0} \frac{0 - 0}{x} = 0,$$

$$\frac{\partial f}{\partial y}(0, 0) = \lim_{y \rightarrow 0} \frac{f(0, y) - f(0, 0)}{y} = \lim_{y \rightarrow 0} \frac{0 - 0}{y} = 0.$$

(iii) The function f has continuous partial derivatives on the open set $\mathbb{R}^2 \setminus \{(0,0)\}$, hence, f is differentiable for $(x,y) \neq 0$.

(iv) Suppose that f is differentiable at $(x,y) = (0,0)$, then

$$f(x,y) = f(0+x, 0+y) = f(0,0) + \frac{\partial f}{\partial x}(0,0) x + \frac{\partial f}{\partial y}(0,0) y + r(x,y)$$

with $\lim_{(x,y) \rightarrow (0,0)} \frac{r(x,y)}{\|(x,y) - (0,0)\|} = 0$. Since $f(0,0) = \frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$, we have that

$$\frac{r(x,y)}{\|(x,y)\|} = \frac{f(x,y)}{\sqrt{x^2 + y^2}} = \frac{x^2 y}{(x^2 + y^2) \sqrt{x^2 + y^2}}.$$

However,

$$\lim_{x \rightarrow 0^+} \frac{r(x,x)}{\|(x,x)\|} = \lim_{x \rightarrow 0^+} \frac{x^3}{2\sqrt{2}x^3} = \frac{1}{2\sqrt{2}} \neq 0,$$

contradicts our starting assumption.

(v) The functions $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ cannot both be continuous in $(0,0)$ because otherwise the function f would be differentiable at $(0,0)$, which is not the case (cf. (iv)).

To see this directly, consider for instance

$$\frac{\partial f}{\partial x}(x,y) = \frac{2xy}{x^2 + y^2} - \frac{2x^3y}{(x^2 + y^2)^2}$$

and

$$\lim_{x \rightarrow 0} \frac{\partial f}{\partial x}(x,x) = \frac{1}{2} \neq 0 = \frac{\partial f}{\partial x}(0,0).$$

8. Let

$$f(x,y) = \begin{cases} x - y + \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0), \end{cases}$$

whose partial derivatives at $(0,0)$ are:

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \rightarrow 0} \frac{f(x,0) - f(0,0)}{x} = \lim_{x \rightarrow 0} \frac{x - 0 + \frac{x \cdot 0}{x^2 + 0^2} - 0}{x} = \lim_{x \rightarrow 0} 1 = 1,$$

$$\frac{\partial f}{\partial y}(0,0) = \lim_{y \rightarrow 0} \frac{f(0,y) - f(0,0)}{y} = \lim_{y \rightarrow 0} \frac{0 - y + \frac{0 \cdot y}{0^2 + y^2} - 0}{y} = \lim_{y \rightarrow 0} (-1) = -1.$$

The function f is not differentiable at $(0,0)$ because it is not even continuous in $(0,0)$. In particular

$$\lim_{x \rightarrow 0} f(x,x) = \lim_{x \rightarrow 0} \left(x - x + \frac{x \cdot x}{x^2 + x^2} \right) = \lim_{x \rightarrow 0} \frac{1}{2} = \frac{1}{2} \neq f(0,0).$$

In fact the limit $\lim_{(x,y) \rightarrow (0,0)} f(x, y)$ doesn't even exist because

$$\lim_{x \rightarrow 0} f(x, x) = \frac{1}{2} \neq 0 = \lim_{x \rightarrow 0} f(x, 0).$$