

EXERCISE SHEET 4

Analysis II-MATH-106 (en) EPFL

Spring Semester 2024-2025

March 10, 2025

Exercise 1. Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a function with $f(0,0) = 0$ such that for all $\alpha \in \mathbb{R}$ and all $\beta \in \mathbb{R}$ we have

$$\lim_{t \rightarrow 0} f(\alpha t, \beta t) = 0.$$

Is f is continuous at $(0,0)$? If yes, prove it, otherwise construct a counterexample.

Exercise 2. Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a continuous function. Show that for all $c \in \mathbb{R}$:

- (a) $E = \{\mathbf{x} \in X : f(\mathbf{x}) = c\}$ is closed.
- (b) $F = \{\mathbf{x} \in X : f(\mathbf{x}) \leq c\}$ is closed.
- (c) $G = \{\mathbf{x} \in X : f(\mathbf{x}) < c\}$ is open.

Exercise 3. Study continuity of following functions as a function of $\alpha > 0$.

(a)

$$f(x, y) = \begin{cases} \frac{x^{2\alpha}}{x^2 + y^2}, & \text{if } (x, y) \neq 0 \\ 0, & \text{otherwise.} \end{cases}$$

(b)

$$f(x, y) = \begin{cases} \frac{xy}{(x^2 + y^2)^\alpha}, & \text{if } (x, y) \neq 0 \\ 0 & \text{otherwise.} \end{cases}$$

(Hint: use polar coordinates)

Exercise 4. Find:

$$\lim_{(x,y) \rightarrow (0,0)} \frac{3(x^2 + y^2)}{\sqrt{x^2 + y^2 + 4} - 2}$$

if it exists.

Exercise 5. Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function given by

$$f(x, y) = x^2 + y \sin x + y^2 \cos^2 x.$$

Show that f is partially differentiable and give the gradient of f .

Exercise 6. Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = \begin{cases} (x^2 + y^2) \sin\left(\frac{1}{\sqrt{x^2 + y^2}}\right) & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

Show that f is differentiable at $(0, 0)$.

Exercise 7. Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a function defined by

$$f(x, y) = \begin{cases} \frac{x^2 y}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0). \end{cases}$$

- (i) Show that f is continuous on \mathbb{R}^2 .
- (ii) Show that functions $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ are defined on \mathbb{R}^2 .
- (iii) Show that f is differentiable for all $(x, y) \neq (0, 0)$.
- (iv) Show that f is not differentiable at $(x, y) = (0, 0)$.
- (v) Are the functions $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ continuous at $(x, y) = (0, 0)$?

Exercise 8. Give an example of a function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ such that $\frac{\partial f}{\partial x}(0, 0) = 1$ and $\frac{\partial f}{\partial y}(0, 0) = -1$, but is not differentiable at $(0, 0)$.