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1. By the properties of the scalar product, we get

󰀂x± y󰀂22 = 〈x± y,x± y〉

= 〈x,x〉+ 〈y,y〉± 〈x,y〉± 〈y,x〉

= 󰀂x󰀂22 + 󰀂y󰀂22 ± 〈x,y〉± 〈y,x〉,
and hence

󰀂x+ y󰀂22 + 󰀂x− y󰀂22 − 2󰀂x󰀂22 − 2󰀂y󰀂22 = 0.

2. For all x,y ∈ E and real number λ, we have:

0 ≤ 〈x− λy,x− λy〉 = 〈x,x〉 − 2λ〈x,y〉+ λ2〈y,y〉.

We minimize the above equation with regard to λ: If y = 0, there is nothing to prove (both two

sides of Cauchy-Schwarz’s inequality are equal to zero). If y ∕= 0, then we have 〈y,y〉 > 0 by the

positivity of the scalar product, and the minimum of this polynomial of degree 2 with regard to λ

is obtained when λ = 〈x,y〉
〈y,y〉 , with which we get

0 ≤ 〈x,x〉 − 〈x,y〉2
〈y,y〉

hence the proof for the Cauchy-Schwarz’s inequality is finished.

3. (a) Note first that we can assume x,y ∕= 0 since otherwise the inequality is trivial (the two

members are equal to zero). By the triangle inequality for the absolute value, we derive the basic

inequality:

(1) |〈x,y〉| =

󰀏󰀏󰀏󰀏󰀏

n󰁛

k=1

xkyk

󰀏󰀏󰀏󰀏󰀏 ≤
n󰁛

k=1

|xk| · |yk|

1
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From this it follows that |〈x,y〉| ≤ 󰀂x󰀂1󰀂y󰀂∞, showing Hölder’s inequality for p = 1, q = ∞.

Let p > 1. By Young’s inequality, for all t > 0 and all k, we have

|xk| · |yk| = |txk| ·
󰀏󰀏t−1yk

󰀏󰀏 ≤ tp |xk|p

p
+

t−q |yk|q

q
,

1

p
+

1

q
= 1.

By summing the above and using (1), we obtain

|〈x,y〉| ≤ tp󰀂x󰀂pp
p

+
t−q󰀂y󰀂qq

q

for all t > 0. Then choose

(2) t =

󰀕
󰀂y󰀂qq
󰀂x󰀂pp

󰀖 1
p+q

in the above, and then we have

|〈x,y〉| ≤
󰀕
1

p
+

1

q

󰀖󰀕
󰀂x󰀂

pq
p+q
p 󰀂y󰀂

pq
p+q
q

󰀖
= 󰀂x󰀂p󰀂y󰀂q.

Comment: In case that one cannot see that picking the value of t in (2) will give the result, there

is another way to continue the solution. Consider the function

f(t) =
tp󰀂x󰀂pp

p
+

t−q󰀂y󰀂qq
q

, t > 0,

and by studying its monotonicity (though its derivative), one can see that f has a global maximum

at the point t0 given by (2).

(b) Non-negativity: 󰀂x󰀂∞ = max1≤k≤n |xk| = 0 if and only if |xk| = 0 for all k which is

equivalent to x = 0.

Homogeneity: For all λ ∈ R and all x ∈ Rn, using the homogeneity of the absolute value, we

have

󰀂λx󰀂∞ = max
1≤k≤n

|λxk| = max
1≤k≤n

|λ| |xk| = |λ| max
1≤k≤n

|xk| = |λ|󰀂x󰀂∞.

Triangle inequality: For all x,y ∈ Rn, using the triangle inequality for the absolute value, we

have

󰀂x+ y󰀂∞ = max
1≤k≤n

|xk + yk| ≤ max
1≤k≤n

|xk|+ |yk|

≤ max
1≤k≤n

|xk|+ max
1≤k≤n

|yk|

= 󰀂x󰀂∞ + 󰀂y󰀂∞.

(c) Non-negativity: 󰀂x󰀂1 =
󰁓n

k=1 |xk| = 0 if and only if |xk| = 0 for all k which is equivalent

to x = 0.
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Homogeneity: For all λ ∈ R and all x ∈ Rn, using the homogeneity of the absolute value, we

have

󰀂λx󰀂1 =
n󰁛

k=1

|λxk| = |λ|
n󰁛

k=1

|xk| = |λ|󰀂x󰀂1.

Triangle inequality: For all x, y ∈ Rn, using the triangle inequality for the absolute value, we

have

󰀂x+ y󰀂1 =
n󰁛

k=1

|xk + yk| ≤
n󰁛

k=1

|xk|+ |yk|

= 󰀂x󰀂 󰀂1+󰀂y󰀂1.

4. (a) S = {(x, y) ∈ R2 : 0 ≤ y < (1 + x2)e−|x|} is neither open nor closed:

• For any x ∈ R, we have that the point (x, 0) is not in the interior of S. To see this, for any

ε > 0, we have that (x− ε/2,−ε/2) ∕∈ S, hence B((x, 0), ε) ∕⊂ S.

• One way to see that S is not closed is by proving that the point (0, 1), which clearly does

not belong in S, is a boundary point of S. One quick way to show this is by considering

the sequence ((0, 1− 1
n))n∈N which converges to (0, 1).

The set T = {(x, y) ∈ R2 : 1 < x2 + 4y2 < 4} is open but not closed:

• For any (a, b) ∈ T , the open ball B((a, b), r) with 2r < min(2 −
√
a2 + 4b2,

√
a2 + 4b2 − 1)

is contained in T .

• To show that it is not closed just argue that the point (0, 1) is a boundary point that is not

in T .

Q is neither open nor closed: By a result from the course Analyse I, the set Q is dense in R.
Between two real numbers there always exists a rational number and vice versa (see also exercises

Analyse I, chapter 1). Hence, all point of Q is a boundary point. So

◦
Q= ∅, ∂Q = Q = R.

(b)
◦
S= {(x, y) ∈ R2 : 0 < y < (1 + x2)e−|x|}: In (a), we saw that R × {0} is disjoint from the

interior of S, hence it suffices to show that any point (x, y) with 0 < y < (1 + x2)e−|x| belongs in

the interior of S. Let f(x) = (1 + x2)e−|x|, x ∈ R. Let (a, b) with 0 < b < f(a). Then:

• there exists δ1 > 0 such that ]b− δ1, b+ δ1[⊂]0, f(a)[, and

• by continuity of f , there exists δ2 > 0 such that for any x ∈]a − δ2, a + δ2[, we have

f(x) > b+ δ1.
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Therefore, by picking ε = min(δ1, δ2) > 0, we have that

B((a, b), ε) ⊂ {(x, y) ∈ R2 : 0 < y < (1 + x2)e−|x|}.

∂S = {(x, y) ∈ R2 : y = 0 or y = (1 + x2)e−|x|} = (R × {0}) ∪ (R × f(R)): It is not hard to

check that any point (x, y) with y = 0 or y = f(x) is a boundary point and all other points are not

(either using open balls or using convergence of sequences).

Finally, S = S ∪ ∂S = {(x, y) ∈ R2 : 0 ≤ y ≤ (1 + x2)e−|x|}.
Similarly, for T we have:

◦
T= T

∂T = {(x, y) ∈ R2 : x2 + 4y2 = 1 orx2 + 4y2 = 4}

T = {(x, y) ∈ R2 : 1 ≤ x2 + 4y2 ≤ 4}.

The interior, boundary and closure of Q are calculated in (a).

(c)

Area(S) =

󰁝 ∞

−∞

󰀃
1 + x2

󰀄
e−|x|dx = 2

󰁝 ∞

0

󰀃
1 + x2

󰀄
e−|x|dx = 2Γ(1) + 2Γ(3) = 6.

The boundary of T is given by the two ellipses E(1, 1/2) and E(2, 1). Note that E(1, 1/2) ⊂
E(2, 1). So

Area(T ) = 2π − π

2
=

3π

2
.

5. (a) The sequence ((0, 3 + 1
n , 0))n∈N belongs in the set C, but its limit (0, 3, 0) does not.

(b) C is not open: The point (0, 5, 0) ∈ C and for any ε > 0 the open ball with center (0, 5, 0)

and radius is not contained in C.


