

EXERCISE SHEET 1 SOLUTIONS

Analysis II-MATH-106 (en) EPFL

Spring Semester 2024-2025

February 17, 2025

1. (a) True. This is the statement of l'Hopital's rule.

(b) False. Take, for example, $f(x) = x + \sin x$ and $g(x) = x$. We have $\frac{f'(x)}{g'(x)} = 1 + \cos x$ which has no limit at infinity. However, $\lim_{x \rightarrow +\infty} \frac{f(x)}{g(x)} = \lim_{x \rightarrow +\infty} (1 + \frac{\sin x}{x}) = 1$.

(c) False. Take the counterexample for the preceding question.

(d) True. It follows by applying the mean value theorem to the function

$$h(z) = f(z) - f(x) - \frac{f(y) - f(x)}{g(y) - g(x)}(g(z) - g(x)), \quad z \in [x, y].$$

(e) True. Since g is differentiable on \mathbb{R} , the function $\sin g(x)$ is differentiable on \mathbb{R} . If $g(a) = 0$, then $\sin g(a) = 0$ and we may apply l'Hopital's rule which guarantees the existence of the limit. If $g(a) \neq 0$, then by continuity, the limit is simply $\frac{\sin g(a)}{g(a)}$.

(f) False. Take, for example, $g(x) = x$ and $a = 1$. We have $g(a) = 1 \neq 0$ (note that in this case l'Hopital's rule does not apply). By continuity, the limit is $\frac{\sinh 1}{1} \neq \cosh 1$.

2. (a) False. Since 7 is odd, f admits an inflection point at a .

(b) True. Let $f(x) = a_0 + a_1 x + \cdots + a_n x^n + o(x^n)$ be the Taylor expansion of f to order n at 0. We then have $f(-x) = a_0 - a_1 x + \cdots + (-1)^n a_n x^n + o(x^n)$. Since f is odd and the Taylor expansion is unique, we conclude that $a_{2m} = 0$ for all $0 \leq 2m \leq n$. As $a_k = \frac{f^{(k)}(0)}{k!}$, we obtain the result.

(c) True. This was shown in class.

3. (a)

$$\lim_{x \rightarrow 0} \frac{\sin x}{\ln \left(\frac{1}{1+x} \right)} = \lim_{x \rightarrow 0} \frac{\sin x}{-\ln(1+x)} = \lim_{x \rightarrow 0} \frac{\cos x}{-\frac{1}{1+x}} = -1.$$

(b) For $\alpha > 0$ using l'Hopital's rule

$$\lim_{x \rightarrow 0^+} x^\alpha \ln x = \lim_{x \rightarrow 0^+} \frac{\ln x}{\frac{1}{x^\alpha}} = \lim_{x \rightarrow 0^+} \frac{\frac{1}{x}}{-\frac{\alpha x^{\alpha-1}}{x^{2\alpha}}} = \lim_{x \rightarrow 0^+} -\frac{1}{\alpha} x^\alpha = 0.$$

(c) By a (long and) direct calculation using l'Hopital's rule

$$\lim_{x \rightarrow 1} \frac{\arctan\left(\frac{1-x}{1+x}\right)}{x-1} = \lim_{x \rightarrow 1} \frac{-\frac{1}{1+x^2}}{1} = -\frac{1}{2}.$$

Alternatively, we write $y = \frac{1-x}{1+x}$, so $x-1 = \frac{-2y}{1+y}$ and

$$\lim_{x \rightarrow 1} \frac{\arctan\left(\frac{1-x}{1+x}\right)}{x-1} = \lim_{y \rightarrow 0} \frac{-(y+1) \arctan y}{2y} = \lim_{y \rightarrow 0} \frac{-\arctan y - \frac{y+1}{1+y^2}}{2} = -\frac{1}{2}.$$

(d) Using truncated Taylor expansions we have that $\sinh x = x + O(x^3)$ and $\ln(1+y) = y + O(y^2)$, and so

$$\lim_{x \rightarrow 0} \frac{\ln(1+x^2)}{\sinh^2 x} = 1.$$

(e) Since $\ln((x-1)^2) \rightarrow -\infty$ as $x \rightarrow 1$ and the functions of the numerator are bounded, it follows that

$$\lim_{x \rightarrow 1} \frac{\cos\left(\frac{\pi x}{2}\right) \sin(x-1)}{\ln((x-1)^2)} = 0.$$

(f) Since $e^{\frac{1}{x}}$ goes to infinity as $x \rightarrow 0^+$ and all the other terms are bounded, we have that

$$\lim_{x \rightarrow 0^+} \frac{\cos x - \cos \frac{1}{x}}{e^x - e^{\frac{1}{x}}} = 0.$$

4. (a) $f(x) = xe^{-x^2}$ is of class C^∞ with

$$f'(x) = (1 - 2x^2) e^{-x^2} \quad f''(x) = -2x(3 - 2x^2) e^{-x^2}.$$

Stationary points: $x_1 = -\frac{\sqrt{2}}{2}$ (strict local minimum, $f(x_1) = -\frac{\sqrt{2}}{2}e^{-\frac{1}{2}}$) and $x_2 = \frac{\sqrt{2}}{2}$ (strict local maximum, $f(x_2) = \frac{\sqrt{2}}{2}e^{-\frac{1}{2}}$). These are in fact global extrema since

$$\lim_{x \rightarrow \pm\infty} f(x) = 0.$$

Inflexion points: $x = 0$ and $x = \pm\frac{\sqrt{6}}{2}$.

(b) On the boundary $f(-1) = f(3) = 0$ and

$$\lim_{x \rightarrow \pm\infty} f(x) = \infty$$

More precisely, one observes that

$$\lim_{n \rightarrow -\infty} f(x) - (1 - x) = 0 \quad \lim_{n \rightarrow \infty} f(x) - (x - 1) = 0$$

so that there are asymptotes $y = 1 - x$ when $x \rightarrow -\infty$ and $y = x - 1$ when $x \rightarrow +\infty$.

f is of class C^∞ on the open set $]-\infty, -1] \cup [3, \infty[$ with

$$f'(x) = \frac{x-1}{\sqrt{(x+1)(x-3)}} \quad f''(x) = \frac{-4}{(\sqrt{(x+1)(x-3)})^3}.$$

f is strictly monotonic and strictly concave on its domain.

5. (a) We note that $f(x) = \exp(x \ln x - x)$ and so $f'(x) = (\ln x)f(x)$. Hence $x = 1$ is the unique stationary point of the function f as $f(x) > 0$ and $\ln x$ is strictly increasing.

(b) f has a strict local minimum at $x = 1$ since $f'(x) < 0$ if $x < 1$ and $f'(x) > 0$ if $x > 1$. The truncated Taylor expansion of order 4 at this point is given by

$$f(x) = e^{-1} \left(1 + \frac{1}{2}(x-1)^2 - \frac{1}{6}(x-1)^3 + \frac{5}{24}(x-1)^4 \right).$$

(c) Note that we can rewrite a^b as $e^{b \ln a}$ using this trick we can write $f(x)$ as

$$f(x) = e^{x \ln x - x}$$

Since $g(x) = e^x$ is a continuous function, we have

$$\lim_{x \rightarrow 0^+} e^{x \ln x - x} = e^{\lim_{x \rightarrow 0^+} (x \ln x - x)}$$

We saw in **Exercise 3** (b) that $\lim_{x \rightarrow 0^+} x \ln x = 0$ so

$$\lim_{x \rightarrow 0^+} f(x) = e^0 = 1$$

By l'Hopital's rule (one may verify the required conditions are satisfied) we get

$$\begin{aligned} \lim_{x \rightarrow 0^+} \frac{f(x) - 1}{x \ln x} &= \lim_{x \rightarrow 0^+} \frac{f'(x)}{1 + \ln x} = \lim_{x \rightarrow 0^+} \frac{(\ln x)f(x)}{1 + \ln x} = \left(\lim_{x \rightarrow 0^+} \frac{\ln x}{1 + \ln x} \right) \left(\lim_{x \rightarrow 0^+} f(x) \right) \\ &= \left(\lim_{x \rightarrow 0^+} \frac{\frac{1}{x}}{x} \right) \left(\lim_{x \rightarrow 0^+} f(x) \right) = 1. \end{aligned}$$

6. (a) By the change of variable $s = \sqrt{t}$, i.e., $t = s^2$,

$$\int_0^{+\infty} e^{-\sqrt{t}} dt = \int_0^{+\infty} 2s e^{-s} ds = 2\Gamma(2) = 2,$$

where Γ denotes the Gamma function.

(b)

$$\int_1^{+\infty} \frac{\ln t}{t^3} dt = \frac{1}{2} \int_1^{+\infty} \ln t (-t^{-2})' dt = \frac{1}{2} \int_1^{+\infty} \frac{1}{t^3} dt = \frac{1}{4}.$$

(c)

$$\int_0^{+\infty} \frac{\arctan t}{1+t^2} dt = \frac{\arctan^2 t}{2} \Big|_0^{\infty} = \frac{\pi^2}{8}.$$

7. (a) The integral converges if $\alpha < 1$ and diverges otherwise.
(b) The integral converges if $\alpha > 1$ and diverges otherwise.