

EXERCISE SHEET 14 SOLUTIONS

Analysis II-MATH-106 (en) EPFL
 Spring Semester 2024-2025
 May 26, 2025

1.

- i) $y(x) = C_1 \cos(x) + C_2 \sin(x)$
- ii) $y(x) = C_1 \cosh(x) + C_2 \sinh(x)$ or $y(x) = C_1 e^x + C_2 e^{-x}$
- iii) $y(x) = C e^{\lambda x}$

For i) and ii), we can use the characteristic equation. That of i) is $\lambda^2 + 1 = 0$, which admits the conjugate complex roots $\lambda_{1,2} = \pm i$. That of ii) is $\lambda^2 - 1 = 0$, which admits the real roots $\lambda_{1,2} = \pm 1$. Without going through the characteristic equation, we can also see that the functions $\cos(x)$, $\sin(x)$ for iii) and $\cosh(x)$, $\sinh(x)$ and $e^{\pm x}$ for iv) are linearly independent solutions of the given equation.

For iii), it is easy to see that $y(x) = C e^{\lambda x}$ satisfies $y'(x) = \lambda y(x)$. We can also use the integrating factor method for example:

$$\begin{aligned} y' = \lambda y &\Leftrightarrow y' - \lambda y = 0 \Leftrightarrow e^{-\lambda x} y' - e^{-\lambda x} \lambda y = 0 \\ &\Leftrightarrow (e^{-\lambda x} y)' = 0 \Leftrightarrow e^{-\lambda x} y = C \Leftrightarrow y(x) = C e^{\lambda x} \end{aligned}$$

2. To solve these homogeneous equations we use the method with the characteristic equation.

- i) The characteristic equation $3\lambda^2 - 4\lambda + 1 = 0$ admits the real roots $\lambda_1 = 1$ and $\lambda_2 = \frac{1}{3}$, from where one obtains the general solution

$$y(x) = C_1 e^x + C_2 e^{\frac{1}{3}x}, \quad x, C_1, C_2 \in \mathbb{R}.$$

- ii) The characteristic equation $3\lambda^2 - 4\lambda + 2 = 0$ admits conjugate complex roots $\lambda_{1,2} = \frac{2}{3} \pm \frac{\sqrt{2}}{3}i$, hence the general solution becomes

$$y(x) = e^{\frac{2}{3}x} \left(C_1 \cos\left(\frac{\sqrt{2}x}{3}\right) + C_2 \sin\left(\frac{\sqrt{2}x}{3}\right) \right), \quad x, C_1, C_2 \in \mathbb{R}.$$

- iii) The characteristic equation $3\lambda^2 - 4\lambda + \frac{4}{3} = 0$ admits the double root $\lambda = \lambda_1 = \lambda_2 = \frac{2}{3}$. Thus one term of the general solution is $y_1(x) = e^{\frac{2}{3}x}$ but a second term must be found (as it is a second order equation). In the case of a double root for a second-order linear equation, a second linearly independent solution is obtained by multiplying $e^{\lambda_1 x}$ by x : $y_2(x) = x e^{\lambda_1 x}$. Hence the general solution

$$y(x) = (C_1 + C_2 x) e^{\frac{2}{3}x}, \quad x, C_1, C_2 \in \mathbb{R}.$$

3.

i) The characteristic equation of this equation is $\lambda^2 + 2\lambda - 3 = 0$ which admits the roots $\lambda_1 = 1$, $\lambda_2 = -3$.

Thus the general solution of the given equation is

$$y_{\text{hom}}(x) = C_1 e^x + C_2 e^{-3x}.$$

ii) To find a particular solution of the inhomogeneous DE, we set

$$y_{\text{part}} = C_1(x) e^x + C_2(x) e^{-3x}.$$

Reasoning as in exercise 1 above, we see that the functions C_1 and C_2 satisfy the system

$$\begin{cases} C_1'(x) e^x + C_2'(x) e^{-3x} = 0 \\ C_1'(x) e^x - 3C_2'(x) e^{-3x} = 5 \sin(3x) \end{cases}$$

which has the solution

$$\begin{aligned} \begin{pmatrix} C_1'(x) \\ C_2'(x) \end{pmatrix} &= \begin{pmatrix} e^x & e^{-3x} \\ e^x & -3e^{-3x} \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ 5 \sin(3x) \end{pmatrix} = \frac{e^{2x}}{4} \begin{pmatrix} 3e^{-3x} & e^{-3x} \\ e^x & -e^x \end{pmatrix} \begin{pmatrix} 0 \\ 5 \sin(3x) \end{pmatrix} \\ &= \frac{5}{4} \begin{pmatrix} e^{-x} \sin(3x) \\ -e^{3x} \sin(3x) \end{pmatrix}. \end{aligned}$$

So

$$(1) \quad C_1(x) = \frac{5}{4} \int e^{-x} \sin(3x) dx \quad \text{and} \quad C_2(x) = -\frac{5}{4} \int e^{3x} \sin(3x) dx$$

(we don't need integration constants here).

For $a \neq 0$, we calculate $\int \sin(3x) e^{ax} dx$ by integrating twice by parts:

$$\begin{aligned} \int \sin(3x) e^{ax} dx &= \frac{1}{a} e^{ax} \sin(3x) - \frac{1}{a} \int 3 \cos(3x) e^{ax} dx \\ &= \frac{1}{a} e^{ax} \sin(3x) - \frac{3}{a^2} e^{ax} \cos(3x) - \frac{3}{a^2} \int 3 \sin(3x) e^{ax} dx, \end{aligned}$$

whence, by isolating the integral,

$$\left(1 + \frac{9}{a^2}\right) \int \sin(3x) e^{ax} dx = \frac{1}{a} e^{ax} \sin(3x) - \frac{3}{a^2} e^{ax} \cos(3x),$$

and finally

$$(2) \quad \int \sin(3x) e^{ax} dx = \frac{e^{ax}}{a^2 + 9} (a \sin(3x) - 3 \cos(3x)).$$

By combining (1) and (2), we find

$$C_1(x) = -\frac{1}{8} e^{-x} (\sin(3x) + 3 \cos(3x)) \quad (a = -1)$$

$$C_2(x) = -\frac{5}{24} e^{3x} (\sin(3x) - \cos(3x)) \quad (a = 3)$$

and so the particular solution is

$$y_{\text{part}}(x) = -\frac{1}{3} \sin(3x) - \frac{1}{6} \cos(3x).$$

iii) The general solution of the equation with second term is therefore

$$y(x) = y_{\text{hom}}(x) + y_{\text{part}}(x) = C_1 e^x + C_2 e^{-3x} - \frac{1}{3} \sin(3x) - \frac{1}{6} \cos(3x), \quad x, C_1, C_2 \in \mathbb{R}.$$

To satisfy the initial conditions we must have

$$\begin{aligned} y(0) &= C_1 + C_2 - \frac{1}{6} = 1 \\ y'(0) &= C_1 - 3C_2 - 1 = -\frac{1}{2} \end{aligned}$$

The solutions to this system are $C_1 = 1$ and $C_2 = \frac{1}{6}$, so that

$$y(x) = e^x + \frac{1}{6} e^{-3x} - \frac{1}{3} \sin(3x) - \frac{1}{6} \cos(3x), \quad x \in \mathbb{R}.$$

4.

i) By differentiating $y_{\text{part}}(x) = C_1(x) \cos(x) + C_2(x) \sin(x)$, we obtain

$$y'_{\text{part}}(x) = C'_1(x) \cos(x) + C'_2(x) \sin(x) - C_1(x) \sin(x) + C_2(x) \cos(x).$$

By asking that

$$C'_1(x) \cos(x) + C'_2(x) \sin(x) = 0,$$

we then obtain $y'_{\text{part}}(x) = -C_1(x) \sin(x) + C_2(x) \cos(x)$ and

$$\tan(x) = y''_{\text{part}}(x) + y_{\text{part}}(x) = -C'_1(x) \sin(x) + C'_2(x) \cos(x).$$

It is therefore sufficient to solve the system of the statement.

ii) Apply the formula

$$y_{\text{part}}(x) = -y_1(x) \int \frac{y_2(x)f(x)}{W[y_1, y_2](x)} dx + y_2(x) \int \frac{y_1(x)f(x)}{W[y_1, y_2](x)} dx,$$

where y_1 and y_2 are two linearly independent solutions of the homogeneous equation, f is the right hand side, the Wronskian $W[y_1, y_2](x)$ is defined by $W[y_1, y_2](x) = y_1(x)y'_2(x) - y'_1(x)y_2(x)$ and the integration constants can be set freely. Here $f(x) = \tan(x)$ and we can choose $y_1(x) =$

$\cos(x)$, $y_2(x) = \sin(x)$. We find $W[y_1, y_2](x) = 1$ and

$$\begin{aligned} y_{\text{part}}(x) &= -y_1(x) \int \frac{y_2(x)f(x)}{W[y_1, y_2](x)} dx + y_2(x) \int \frac{y_1(x)f(x)}{W[y_1, y_2](x)} dx \\ &= -\cos(x) \int \sin(x)f(x)dx + \sin(x) \int \cos(x)f(x)dx \\ &= -\cos(x) \int \frac{\sin^2(x)}{\cos(x)} dx + \sin(x) \int \sin(x)dx \\ &= -\cos(x) \int \frac{(1 - \cos^2(x))}{\cos(x)} dx - \sin(x) \cos(x) \\ &= -\cos(x) \int \frac{1}{\cos(x)} dx. \end{aligned}$$

We complete the calculations as above.

Another method: We solve the system by inverting the matrix :

$$\begin{aligned} \begin{pmatrix} C'_1(x) \\ C'_2(x) \end{pmatrix} &= \begin{pmatrix} \cos(x) & \sin(x) \\ -\sin(x) & \cos(x) \end{pmatrix}^{-1} \begin{pmatrix} 0 \\ \tan(x) \end{pmatrix} \\ &= \frac{1}{\cos(x)^2 + \sin(x)^2} \begin{pmatrix} \cos(x) & -\sin(x) \\ \sin(x) & \cos(x) \end{pmatrix} \begin{pmatrix} 0 \\ \tan(x) \end{pmatrix} = \begin{pmatrix} -\sin(x) \tan(x) \\ \cos(x) \tan(x) \end{pmatrix} \\ &= \begin{pmatrix} \frac{-\sin(x)^2}{\cos(x)} \\ \sin(x) \end{pmatrix} \end{aligned}$$

So we easily get that $C_2(x) = \int \sin(x) dx = -\cos(x)$ (remember that we don't need the integration constants for a particular solution).

To find $C_1(x)$ observe that

$$C_1'(x) = \frac{-\sin(x)^2}{\cos(x)} = \frac{\cos(x)^2 - 1}{\cos(x)} = \cos(x) - \frac{1}{\cos(x)}$$

and so

$$C_1(x) = \sin(x) - \int \frac{1}{\cos(x)} dx.$$

To calculate this last primitive, we set the change of variable $t = \sin(x)$. As we work with $x \in (-\pi/2, \pi/2) \subset \text{Im}(\arcsin)$, we have $x = \arcsin(t) := \varphi(t)$ and $\varphi'(t) = \frac{1}{\sqrt{1-t^2}}$. Moreover

$\cos(x) > 0$ and therefore $\cos(x) = \sqrt{1 - t^2}$. By the formula of the change of variable, we have

$$\begin{aligned}
 \int \frac{1}{\cos(x)} dx &= \int \frac{1}{\cos(\varphi(t))} \varphi'(t) dt = \int \frac{1}{\sqrt{1 - t^2}} \varphi'(t) dt \\
 &= \int \frac{1}{\sqrt{1 - t^2}} \frac{1}{\sqrt{1 - t^2}} dt = \int \frac{1}{1 - t^2} dt = \int \frac{1}{(1+t)(1-t)} dt \\
 &= \int \frac{1}{2} \left(\frac{1}{1+t} + \frac{1}{1-t} \right) dt = \frac{1}{2} \left(\ln(|1+t|) - \ln(|1-t|) \right) \\
 &= \frac{1}{2} \ln \left(\left| \frac{1+t}{1-t} \right| \right) = \frac{1}{2} \ln \left(\left| \frac{1+\sin(x)}{1-\sin(x)} \right| \right) = \frac{1}{2} \ln \left(\left| \frac{(1+\sin(x))^2}{1-\sin(x)^2} \right| \right) \\
 &= \frac{1}{2} \ln \left(\left| \frac{1+\sin(x)}{\cos(x)} \right|^2 \right) = \ln \left(\left| \frac{1+\sin(x)}{\cos(x)} \right| \right)
 \end{aligned}$$

Thus, $C_1(x) = \sin(x) - \ln \left(\left| \frac{1+\sin(x)}{\cos(x)} \right| \right)$ and so

$$\begin{aligned}
 y_{\text{part}}(x) &= C_1(x) \cos(x) + C_2(x) \sin(x) \\
 &= \left[\sin(x) - \ln \left(\left| \frac{1+\sin(x)}{\cos(x)} \right| \right) \right] \cos(x) - \cos(x) \sin(x) \\
 &= -\cos(x) \ln \left(\left| \frac{1+\sin(x)}{\cos(x)} \right| \right).
 \end{aligned}$$

5. First method: Since $y_1(x) = \frac{1}{x}$ is a solution of the homogeneous equation we are looking for a second solution linearly independent of the homogeneous equation by setting

$$y(x) = C(x) \cdot \frac{1}{x}$$

(method of variation of constants). We get, by substituting

$$y' = C' \frac{1}{x} - C \frac{1}{x^2}, \quad y'' = C'' \frac{1}{x} - 2C' \frac{1}{x^2} + 2C \frac{1}{x^3}$$

in the homogeneous equation $x^2 y'' + 3xy' + y = 0$, the differential equation

$$\begin{aligned}
 xC'' - 2C' + 2C \frac{1}{x} + 3C' - 3C \frac{1}{x} + C \frac{1}{x} &= 0 \\
 \Leftrightarrow xC'' + C' &= 0 \Leftrightarrow xu' + u = 0,
 \end{aligned}$$

where $u := C'$. This is a first order equation for u . By separating the variables we find $u(x) = \frac{1}{x}$ and therefore, since $x > 0$, $C(x) = \ln(x)$. A second solution of the homogeneous problem is therefore $y_2(x) = \frac{1}{x} \ln(x)$ (we don't need integration constants here). The general solution of the homogeneous problem is therefore

$$y_h(x) = C_1 \frac{1}{x} + C_2 \frac{1}{x} \ln(x), \quad x > 0, C_1, C_2 \in \mathbb{R}.$$

We use the method of variation of constants to obtain a particular solution of the inhomogeneous differential equation

$$y'' + \frac{3}{x}y' + \frac{1}{x^2}y = \frac{2+x^2}{x^2}, \quad x > 0.$$

Reasoning as in exercise 1 above, we get the system

$$\begin{pmatrix} \frac{1}{x} & \frac{1}{x} \ln(x) \\ -\frac{1}{x^2} & -\frac{1}{x^2} \ln(x) + \frac{1}{x^2} \end{pmatrix} \begin{pmatrix} C'_1(x) \\ C'_2(x) \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{2+x^2}{x^2} \end{pmatrix}.$$

The determinant (this is the Wronskian) is

$$-\frac{1}{x^3} \ln(x) + \frac{1}{x^3} + \frac{1}{x^3} \ln(x) = \frac{1}{x^3}$$

and so

$$\begin{pmatrix} C'_1(x) \\ C'_2(x) \end{pmatrix} = x^3 \begin{pmatrix} -\frac{1}{x^2} \ln(x) + \frac{1}{x^2} & -\frac{1}{x} \ln(x) \\ \frac{1}{x^2} & \frac{1}{x} \end{pmatrix} \begin{pmatrix} 0 \\ \frac{2+x^2}{x^2} \end{pmatrix}$$

Which gives

$$\begin{aligned} C'_1(x) &= -\ln(x)(2+x^2) \\ C'_2(x) &= 2+x^2 \end{aligned}$$

and so

$$\begin{aligned} C_1(x) &= - \int \ln(x)(2+x^2) dx \\ &= -\ln(x) \left(2x + \frac{1}{3}x^3 \right) + \int \left(2 + \frac{1}{3}x^2 \right) dx \\ &= -\ln(x) \left(2x + \frac{1}{3}x^3 \right) + \left(2x + \frac{1}{9}x^3 \right) \\ C_2(x) &= 2x + \frac{1}{3}x^3 \end{aligned}$$

(here we can set the integration constants) and we get for the particular solution

$$\begin{aligned} y_p(x) &= C_1(x)y_1(x) + C_2(x)y_2(x) \\ &= -\ln(x) \left(2 + \frac{1}{3}x^2 \right) + \left(2 + \frac{1}{9}x^2 \right) + \ln(x) \left(2 + \frac{1}{3}x^2 \right) \\ &= 2 + \frac{1}{9}x^2. \end{aligned}$$

The general solution of the equation is therefore

$$\begin{aligned} y(x) &= y_p(x) + y_h(x) \\ &= 2 + \frac{1}{9}x^2 + C_1 \frac{1}{x} + C_2 \frac{1}{x} \ln(x), \quad x > 0, C_1, C_2 \in \mathbb{R}. \end{aligned}$$

Second method: applications of formulas. The differential equation is written

$$y'' + \frac{3}{x}y' + \frac{1}{x^2}y = \frac{2}{x^2} + 1, \quad x > 0.$$

Since $y_1(x) = \frac{1}{x}$ for $x > 0$ is a particular solution of the homogeneous equation, a second linearly independent solution is obtained by the formula

$$y_2(x) = y_1(x) \int \frac{e^{-P(x)}}{y_1^2(x)} dx,$$

where $P(x) = \int \frac{3}{x} dx = 3 \ln(|x|) = \ln(x^3)$ (we can freely set the integration constants here). We find

$$y_2(x) = \frac{1}{x} \int \frac{1/x^3}{1/x^2} dx = \ln(x)/x.$$

A particular solution for the inhomogeneous equation is given by the formula

$$y_{\text{part}}(x) = -y_1(x) \int \frac{y_2(x)f(x)}{W[y_1, y_2](x)} dx + y_2(x) \int \frac{y_1(x)f(x)}{W[y_1, y_2](x)} dx,$$

where $f(x) = \frac{2}{x^2} + 1$, the Wronskian $W[y_1, y_2]$ is defined by $W[y_1, y_2](x) = y_1(x)y_2'(x) - y_1'(x)y_2(x)$ and the integration constants can be set freely. We find

$$W[y_1, y_2](x) = \frac{1}{x} \frac{1 - \ln(x)}{x^2} + \frac{1}{x^2} \frac{\ln(x)}{x} = \frac{1}{x^3}$$

and

$$\begin{aligned} y_{\text{part}}(x) &= -y_1(x) \int \frac{y_2(x)f(x)}{W[y_1, y_2](x)} dx + y_2(x) \int \frac{y_1(x)f(x)}{W[y_1, y_2](x)} dx \\ &= -\frac{1}{x} \int x^3 \frac{\ln(x)}{x} \left(\frac{2}{x^2} + 1 \right) dx + \frac{\ln(x)}{x} \int x^3 \frac{1}{x} \left(\frac{2}{x^2} + 1 \right) dx \\ &= -\frac{1}{x} \int 2 \ln(x) dx - \frac{1}{x} \int x^2 \ln(x) dx + \frac{\ln(x)}{x} \int (2 + x^2) dx \\ &\stackrel{p.p.}{=} -\frac{1}{x} \left(2x \ln(x) - \int 2x \frac{1}{x} dx \right) - \frac{1}{x} \left(\frac{x^3}{3} \ln(x) - \int \frac{x^3}{3} \cdot \frac{1}{x} dx \right) + \frac{\ln(x)}{x} \left(2x + \frac{x^3}{3} \right) \\ &= -2 \ln(x) + 2 - \frac{x^2 \ln(x)}{3} + \frac{x^2}{9} + 2 \ln(x) + \frac{x^2 \ln(x)}{3} \\ &= 2 + \frac{x^2}{9}. \end{aligned}$$

So the general solution is

$$y(x) = 2 + \frac{1}{9}x^2 + C_1 \frac{1}{x} + C_2 \frac{1}{x} \ln(x), \quad x > 0, C_1, C_2 \in \mathbb{R}.$$

6. First method: look for a second solution u_2 of the differential equation linearly independent of u_1 , of the form $u_2(t) = C(t)u_1(t) = C(t)t$. We obtain $u_2'(t) = C'(t)t + C(t)$ and $u_2''(t) = C''(t)t + 2C'(t)$. By substitution, this gives

$$\begin{aligned} (C''t + 2C') + \frac{1}{t}(C't + C) - \frac{1}{t^2}Ct &= 0 \\ \Leftrightarrow tC'' + 3C' &= 0 \Leftrightarrow C'' + \frac{3}{t}C' = 0, \end{aligned}$$

which is a first-order differential equation for the unknown function C' . The integrating factor is the exponential of any fixed primitive of $\frac{3}{t}$, for example $e^{3\ln(|t|)} = t^3$ (because $t > 0$). So

$$C'' + \frac{3}{t}C' = 0 \Leftrightarrow t^3C'' + 3t^2C' = 0 \Leftrightarrow (t^3C')' = 0.$$

By setting $t^3C' = 1$, we obtain

$$C'(t) = \frac{1}{t^3}$$

and we can choose $C(t) = -\frac{1}{2t^2}$. So $u_2(t) = -\frac{1}{2t}$.

Second method: apply the formula

$$u_2(t) = u_1(t) \int \frac{e^{-P(t)}}{u_1^2(t)} dt,$$

where P is any fixed primitive of the function $p(t) = 1/t$, for example $P(t) = \ln(|t|) = \ln(t)$ (because $t > 0$). Moreover, one can freely fix the integration constant. From where $u_2(t) = t \int \frac{1/t}{t^2} dt = t \frac{-1}{2t^2} = -\frac{1}{2t}$.