

EXERCISE SHEET 11

Analysis II-MATH-106 (en) EPFL
 Spring Semester 2024-2025
 May 5, 2025

Exercise 1. Calculate the following triple integrals using either spherical or cylindrical coordinates:

- i) $\iiint_E (x^2 + y^2)xyz \, dV$, where $E = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 4, y \geq 0\}$.
- ii) $\iiint_E 3zxyz \, dV$, where E is the region inside both $x^2 + y^2 + z^2 = 1$ and $z = \sqrt{x^2 + y^2}$.
- iii) $\iiint_E e^{-x^2-z^2}xyz \, dV$, where E is the region between the two cylinders $x^2 + z^2 = 4$, $x^2 + z^2 = 9$ with $1 \leq y \leq 5$ and $z \leq 0$.

Exercise 2. Suppose that E is the region below $z = 4 - xy$ and above the region in the xy -plane defined by $0 \leq x \leq 2$ and $0 \leq y \leq 1$. Calculate the volume of E .

Exercise 3. Determine the center of mass $(\bar{x}, \bar{y}, \bar{z})$ of the domain S represented in Fig. 1 if the mass density is given by $\delta: D \rightarrow \mathbb{R}$ is $\delta(x, y, z) = 4x^2$.

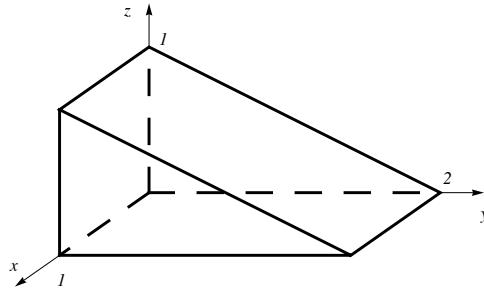


FIGURE 1

Exercise 4. Let $D = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \leq x \leq 1, x^2 \leq y \leq 1, y \leq z \leq 1\}$. Calculate the total mass of D if the mass density $\delta: D \rightarrow \mathbb{R}$ is given by

$$\delta(x, y, z) = z^{7/2} e^{-y^{3/2} z^{3/2}}.$$

Exercise 5. Suppose that $y = y(x)$ is given in the following form. Verify that the function $y(x)$ satisfies the corresponding differential equation in each case:

i) Let $y(x) = \pm\sqrt{e^{\left(\frac{C}{x-1}\right)} - 1}$. Show that this function satisfies the differential equation $y' \frac{2y(x-1)}{y^2 + 1} + \ln(y^2 + 1) = 0$, for respectively, $x > 1$ and $C > 0$; and $x < 1$ and $C < 0$. Then determine the values of C so that $y(2) = -3$ and $y(-\frac{3}{2}) = 2$, respectively.

ii) (Riccati equation) Let $y(x) = x - \frac{2x}{1+xe^{-x}}$. Show that this function satisfies the differential equation $2x^2y' = (x-1)(y^2 - x^2) + 2xy$, for $x > 0$.

Exercise 6. Solve the following differential equations:

- i) $y' = \ln x + \tan x$.
- ii) $y' = \sin x \cdot e^{\cos x}$.
- iii) $y' = 2x\sqrt{x^2 + 16}$.
- iv) $y' = \frac{1}{\sqrt{x-x^2}}$, $y(1/2) = \pi$ (hint: arcsin is involved in the solution).
- v) $y' = |x-2|$, $y(1) = 3$ (hint: find a solution which is defined for all \mathbb{R}).

Exercise 7. Solve the following differential equations:

- i) $y' = y$.
- ii) $y' + 2y = 0$.
- iii) $y' + 2xy = x$.
- iv) $xy' + \frac{y}{x} = e^{1/x}$, $x > 0$.

(Hint: Consider using the method described in Exercise 7.7.)