

EXERCISE SHEET 10

Analysis II-MATH-106 (en) EPFL

Spring Semester 2024-2025

April 28, 2025

Exercise 1. Calculate the following double integrals:

i) $\iint_D (6x - 3y) \, d\mathbf{y}$, where D is the parallelogram formed by $(2, 0), (5, 3), (6, 7), (3, 4)$, by applying the transformation $x = \frac{1}{3}(v - u)$, $y = \frac{1}{3}(4v - u)$.

ii) $\iint_D xy^3 \, d\mathbf{y}$, where D is the region bounded by $xy = 1$, $xy = 3$, $y = 2$, $y = 6$, by applying the transformation $x = \frac{v}{6u}$, $y = 2u$.

Exercise 2. i) Evaluate the double integral

$$\iint_D x^3 y^3 \, d\mathbf{y},$$

where D is the domain in the first quadrant bounded by the curves $x^2 + y^2 = 5$, $x^2 + y^2 = 9$, $x^2 - y^2 = 1$ and $x^2 - y^2 = 4$. Sketch the four curves and the domain of integration D .

ii) Sketch the domain $D = \{(x, y) : 0 \leq x \leq y \leq 4x, 1 \leq xy \leq 2\}$ and calculate the double integral

$$\iint_D x^2 y^2 \, d\mathbf{y}.$$

iii) Evaluate the double integral

$$\iint_D xy^3 \, d\mathbf{y},$$

where

$$D = \{(x, y) \in \mathbb{R}^2 : 1 \leq x^2 + y^2 \leq 4, y \leq 0, x \leq 0\}.$$

Exercise 3. Calculate the following double integrals:

i) $\int_0^3 \int_{-\sqrt{9-x^2}}^0 e^{x^2+y^2} \, d\mathbf{y}$.

ii) $\iint_D (4xy - 7) \, d\mathbf{y}$, where $D = \{(x, y) \in \mathbb{R}^2 : x, y \geq 0, x^2 + y^2 \leq 2\}$.

Exercise 4. Calculate the following triple integrals:

i) $\int_0^1 \int_0^{z^2} \int_0^{\sqrt{\frac{\pi}{2}}} xy \cos(x^2) \, d\mathbf{z}$

ii) $\iint\limits_E 6z^2xyz$, where E is the region below $4x + y + 2z = 10$ in the first octant.

iii) $\iint\limits_E yzxyz$, where E is the region bounded by $x = 2y^2 + 2z^2 - 5$ and $x = 1$.

Exercise 5. Calculate the following triple integrals:

i) $\int_0^3 \int_0^4 \int_{\frac{y}{2}}^{\frac{y}{2}+1} \left(x + \frac{z}{3}\right) xyz$, using the transformation $u = \frac{2x-y}{2}$, $v = \frac{y}{2}$, $w = \frac{z}{3}$.

ii) $\iint\limits_E (x^2y + 3xyz)xyz$, by transforming the region

$$E = \{(x, y, z) \in \mathbb{R}^3 : 1 \leq x \leq 2, 0 \leq xy \leq 2, 0 \leq z \leq 1\}$$

into a rectangular parallelepiped with volume 6.