

Analysis II

Exam

Common part

Spring 2022

Questions

For the **multiple choice** questions, we give

- +3 points if your answer is correct,
- 0 points if you give no answer or more than one,
- 1 if your answer is incorrect.

For the **true/false** questions, we give

- +1 points if your answer is correct,
- 0 points if you give no answer or more than one,
- 1 points if your answer is incorrect.

Part I: multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has **exactly one** correct answer.

Question 1: The solution $y(x)$ of the differential equation

$$y''(x) + 2y'(x) - 3y(x) = 9x$$

with initial conditions $y(0) = 4$ and $y'(0) = 3$ also satisfies

$y(1) = 2e^3 - 1$ $y(1) = 1 - 2e^3$ $y(1) = 6e - 5$ $y(1) = 5 - 6e$

Question 2: Let $F : \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$F(t) = \int_4^{t^2} e^{tx^2} dx.$$

Then

$F'(2) = 0$ $F'(2) = 4e^{32}$ $F'(2) = e^{32}$ $F'(2) = 2e^{32}$

Question 3: Let $f : \mathbb{R}^2 \setminus \{(0,0)\} \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = \frac{\tan(3x^2 + y^2)}{3x^2 + y^2}.$$

Then

$\lim_{(x,y) \rightarrow (0,0)} f(x, y) = 1$
 $\lim_{(x,y) \rightarrow (0,0)} f(x, y)$ does not exist
 $\lim_{(x,y) \rightarrow (0,0)} f(x, y) = -1$
 $\lim_{(x,y) \rightarrow (0,0)} f(x, y) = 0$

Question 4: Let D be the subset of \mathbb{R}^2 given by

$$D = \{(x, y) \in \mathbb{R}^2 : x \geq 0, y \geq 0, x^2 + y^2 \leq 4\}.$$

Then the integral

$$\iint_D xy^3 dx dy$$

equals

$\frac{8}{3}$ $\frac{16}{3}$ $\frac{16}{5}$ $\frac{8}{5}$

Question 5: The solution $y(x)$ of the differential equation

$$y'(x) = (y(x))^2 \frac{\cos(x)}{(2 + \sin(x))^2}$$

that satisfies the initial condition $y\left(\frac{\pi}{2}\right) = \frac{3}{4}$ also satisfies

$y\left(\frac{\pi}{6}\right) = \frac{1}{4}$ $y\left(\frac{\pi}{6}\right) = \frac{4}{3}$ $y\left(\frac{\pi}{6}\right) = \frac{5}{7}$ $y\left(\frac{\pi}{6}\right) = -\frac{5}{3}$

Question 6: The subset

$$A = \{(x, 0, z) \in \mathbb{R}^3 : x^2 + 5z^2 < 10\} \subset \mathbb{R}^3$$

- is bounded and open
- is bounded and not open
- is not closed and not bounded
- is closed and open

Question 7: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = 3x^2y - x^3 - 3y^4.$$

Then

- (2, 1) is a stationary point for f but is not a local extremum for f
- (2, 1) is a local minimum for f
- (2, 1) is a local maximum for f
- (2, 1) is not a stationary point for f

Question 8: Let $f_1, f_2, \dots, f_m : \mathbb{R}^n \rightarrow \mathbb{R}$ be functions of n variables and let $\mathbf{f} : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be defined by

$$\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x}))^\top \quad \text{for all } \mathbf{x} \in \mathbb{R}^n.$$

Then

- it is possible for f_j to be non-continuous for some $j \in \{1, \dots, m\}$ but for f to still be differentiable
- if the Jacobian matrix of \mathbf{f} exists everywhere, then \mathbf{f} is differentiable
- \mathbf{f} is always differentiable
- if \mathbf{f} is not differentiable, then there exists $j \in \{1, \dots, m\}$ such that f_j is not a function of class C^1

Question 9: Let D be the subset of \mathbb{R}^3 given by

$$D = \{ (x, y, z) \in \mathbb{R}^3 : 0 \leq y \leq x, z \geq 0, 1 \leq x^2 + y^2 + z^2 \leq 9, z^2 \leq x^2 + y^2 \}.$$

The integral

$$\iiint_D \frac{\sqrt{x^2 + y^2}}{x^2 + y^2 + z^2} dx dy dz$$

equals

- $\int_1^3 \left(\int_0^{\pi/4} \left(\int_0^{\pi/4} r \sin^2(\theta) d\varphi \right) d\theta \right) dr$
- $\int_1^3 \left(\int_{\pi/4}^{\pi/2} \left(\int_0^{\pi/4} r \sin^2(\theta) d\varphi \right) d\theta \right) dr$
- $\int_1^3 \left(\int_0^{\pi/4} \left(\int_{\pi/4}^{\pi/2} r \sin^2(\theta) d\varphi \right) d\theta \right) dr$
- $\int_1^3 \left(\int_0^{\pi/2} \left(\int_0^{\pi/2} r \sin^2(\theta) d\varphi \right) d\theta \right) dr$

Question 10: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = \begin{cases} \frac{x \sin(|y|)}{\sqrt{3x^2 + y^2}} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

Then the directional derivative for f at $(0, 0)$ in the direction of the vector $\mathbf{v} = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right)^T$

- does not exist
- is $\frac{1}{2}$
- is 0
- is $\frac{1}{2\sqrt{2}}$

Question 11: The solution $y(x)$ of the differential equation

$$y'(x) - \frac{4}{x} y(x) = x^4 + x^2$$

that satisfies the initial condition $y(1) = -2$ also satisfies

- $y(2) = 32$
- $y(2) = 8$
- $y(2) = -8$
- $y(2) = -16$

Question 12: Let (\mathbf{a}_n) be the sequence of elements in \mathbb{R}^3 defined by

$$\mathbf{a}_n = \left(2 + \frac{1}{n}, \frac{(-1)^n}{n}, \frac{3n^2 - n + 1}{2n^2 + e^n + 1} \right)^T, \quad \text{for each } n \in \{1, 2, 3, \dots\}.$$

Then

- the sequence is not bounded
- the sequence converges to $(2, 0, \frac{3}{2})$
- the sequence is bounded but does not converge
- the sequence converges to $(2, 0, 0)$

Question 13: The integral

$$\int_0^1 \left(\int_{\sqrt{y}}^1 \cos(x^3) dx \right) dy$$

equals

- $\frac{1}{3} (1 - \sin(1))$
- $\sqrt{\sin(1)}$
- $\frac{1}{3} \sin(1)$
- $\frac{1}{3} \sqrt{\sin(1)}$

Question 14: Let $D = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 < \frac{1}{4} \right\}$ and let $f : D \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = \frac{\ln(1 + x + y)}{1 + x - y}.$$

The second order Taylor polynomial for f around $(0, 0)$ is

- $p_2(x, y) = x + y - \frac{3}{2}x^2 + \frac{1}{2}y^2 - xy$
- $p_2(x, y) = x + y - \frac{1}{2}x^2 - \frac{1}{2}y^2 - xy$
- $p_2(x, y) = x + y + \frac{3}{2}x^2 - \frac{3}{2}y^2 + xy$
- $p_2(x, y) = x + y + \frac{1}{2}x^2 - \frac{3}{2}y^2 - xy$

Question 15: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = xy^2$$

and let $g(x, y) = 2x^2 + y^2 - 6$. Then, under the constraint $g(x, y) = 0$,

- the minimum of f is -8
- the minimum of f is -2
- the minimum of f is -6
- the minimum of f is -4

Question 16: Let $\mathbf{g} : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ be the function defined by

$$\mathbf{g}(x, y, z) = (x^2 + y^2 + 1, yz)^T$$

and let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a function in $C^1(\mathbb{R}^2)$ such that

$$J_f(u, v) = \begin{pmatrix} \frac{2}{u} + 2v & 2u \end{pmatrix}.$$

Then the composition $h = f \circ \mathbf{g} : \mathbb{R}^3 \rightarrow \mathbb{R}$ satisfies:

$\frac{\partial h}{\partial y}(-1, 0, 1) = 4$

$\frac{\partial h}{\partial y}(-1, 0, 1) = 0$

$\frac{\partial h}{\partial y}(-1, 0, 1) = -2$

$\frac{\partial h}{\partial y}(-1, 0, 1) = 2$

Question 17: Let $D = \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0\}$ and let $f : D \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = 2x^y - y^x - 1.$$

The equation $f(x, y) = 0$ implicitly defines a function $y = g(x)$ in a neighborhood of $x = 1$ which satisfies $g(1) = 1$ and $f(x, g(x)) = 0$. The value of $g'(1)$ is then

$g'(1) = -2$

$g'(1) = 2$

$g'(1) = 0$

$g'(1) = -1$

Question 18: Let S be the surface

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + 2xz = 4\}$$

and let $z_0 \in \mathbb{R}$ be such that $(1, 1, z_0) \in S$. Then

the equation of the tangent plane to S at the point $(1, 1, z_0)$ is $2x + 2y + 2z - 6 = 0$

the equation of the tangent plane to S at the point $(1, 1, z_0)$ is $2x + y + z - 4 = 0$

the value of z_0 is not unique

the equation of the tangent plane to S at the point $(1, 1, z_0)$ is $2z - 4x - 2y + 8 = 0$

Part II: true/false questions

For each question, mark the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

Question 19: Let $f : U \rightarrow \mathbb{R}$ be a function defined on an open set $U \subset \mathbb{R}^n$ and let $\mathbf{x}_0 \in U$. If $\nabla f(\mathbf{x}_0) = \mathbf{0}$, then \mathbf{x}_0 is a local extremum for f .

TRUE FALSE

Question 20: Let A and B be two nonempty subsets of \mathbb{R}^n . If A is a closed set and B is an open set, then the set $C = \{\mathbf{x} \in B : \mathbf{x} \notin A\}$ is an open set.

TRUE FALSE

Question 21: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a function and $\mathbf{a} \in \mathbb{R}^n$ be such that $f(\mathbf{a}) = 1$. Let $(\mathbf{a}_k)_{k \geq 1}$ be a sequence in \mathbb{R}^n that converges to \mathbf{a} . If $\lim_{k \rightarrow \infty} f(\mathbf{a}_k) = 1$, then f is continuous at \mathbf{a} .

TRUE FALSE

Question 22: Let A be a nonempty subset of \mathbb{R}^3 such that $A \neq \mathbb{R}^3$.

If the boundary ∂A is bounded, then A is bounded.

TRUE FALSE

Question 23: If the partial derivatives $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$ exist, then the directional derivative $\nabla_{\mathbf{v}} f(0,0)$ exists and is equal to the scalar product of $\nabla f(0,0)$ with \mathbf{v} , for all $\mathbf{v} \in \mathbb{R}^2$ such that $\sqrt{v_1^2 + v_2^2} = 1$.

TRUE FALSE

Question 24: Let $f : U \rightarrow \mathbb{R}$ be a function defined on an open set $U \subset \mathbb{R}^n$ and let $\mathbf{x}_0 \in U$ be such that the partial derivatives $\frac{\partial f}{\partial x_j}$ exist in a neighborhood of \mathbf{x}_0 for all $j \in \{1, \dots, n\}$.

If $\lim_{\mathbf{x} \rightarrow \mathbf{x}_0} \frac{\partial f}{\partial x_j}(\mathbf{x}) = \frac{\partial f}{\partial x_j}(\mathbf{x}_0)$ for all $j \in \{1, \dots, n\}$, then f is continuous at \mathbf{x}_0 .

TRUE FALSE

Question 25: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a function and let $\mathbf{a} \in \mathbb{R}^n$. If the directional derivatives $\nabla_{\mathbf{v}} f(\mathbf{a})$ exist and are continuous in a neighborhood of \mathbf{a} for all \mathbf{v} , then the function f is differentiable at \mathbf{a} .

TRUE FALSE

Question 26: Let $D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 1\}$. Then

$$\iiint_D \frac{1}{x^2 + y^2 + z^2 + 1} dx dy dz \geq \frac{2\pi}{3}.$$

TRUE FALSE

Question 27: Let $E \subset \mathbb{R}^n$ be a closed subset and let $f : E \rightarrow \mathbb{R}$ be a continuous function. If f is bounded and obtains its global maximum on E , then E is bounded.

TRUE FALSE

Question 28: Let $F : \mathbb{R}^3 \rightarrow \mathbb{R}$ be a differentiable function. Let $S = \{\mathbf{x} \in \mathbb{R}^3 : F(\mathbf{x}) = 0\}$ be the level surface of value 0 of F . If $\mathbf{a}, \mathbf{b} \in S$ are such that the tangent planes to S at \mathbf{a} and \mathbf{b} are parallel, then $\nabla F(\mathbf{a}) = \nabla F(\mathbf{b})$.

TRUE FALSE