

Analysis II

Exam

Common part

Spring 2021

Questions

For the **multiple choice** questions, we give

- +3 points if your answer is correct,
- 0 points if you give no answer or more than one,
- 1 if your answer is incorrect.

For the **true/false** questions, we give

- +1 points if your answer is correct,
- 0 points if you give no answer or more than one,
- 1 points if your answer is incorrect.

Part I: multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has **exactly one** correct answer.

Question 1: Consider the subsets

$$A = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \leq 1\} \quad \text{and} \quad B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 > 1\}.$$

Then the nonempty subset $A \cap B \subset \mathbb{R}^3$ is

- open
- bounded
- closed
- non bounded

Question 2: For $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ the function defined by

$$f(x, y, z) = xy + 2yz.$$

Then the maximum and the minimum of f under the constraint $x^2 + y^2 + z^2 - 1 = 0$ are respectively

- $\frac{6}{\sqrt{20}}$ et $-\frac{6}{\sqrt{20}}$
- $\frac{\sqrt{2}}{5}$ et $-\frac{\sqrt{2}}{5}$
- $\frac{\sqrt{5}}{2}$ et $-\frac{\sqrt{5}}{2}$
- $\frac{5}{\sqrt{20}}$ et $-\frac{3}{\sqrt{20}}$

Question 3: Let $f : \mathbb{R}^2 \setminus \{(0, 0)\} \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = \frac{\sin(y^2)}{x^2 + y^2}.$$

Then

- $\lim_{(x,y) \rightarrow (0,0)} f(x, y) = 1$
- $\lim_{(x,y) \rightarrow (0,0)} f(x, y)$ does not exist
- $\lim_{(x,y) \rightarrow (0,0)} f(x, y) = \frac{1}{2}$
- $\lim_{(x,y) \rightarrow (0,0)} f(x, y) = 0$

Question 4: The integral

$$\int_0^1 \left(\int_{\arctan(x)}^{\pi/4} \left(\cos^6(y) + \frac{1}{1+x^2} \right) dy \right) dx$$

equals

- $\frac{\pi^2}{32} - \frac{3}{16}$
- $\frac{\pi^2}{32} + \frac{7}{48}$
- $\frac{\pi^2}{16} + \frac{1}{144}$
- $\frac{\pi^2}{16} + \frac{5}{16}$

Question 5: Let $\mathbf{g} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the function defined by

$$\mathbf{g}(u, v) = (v^2, u - v)^T$$

and let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a function in C^1 such that

$$J_f(x, y) = \begin{pmatrix} -y \sin(x) & \cos(x) + 2y \end{pmatrix}.$$

Then the composition $h = f \circ \mathbf{g} : \mathbb{R}^2 \rightarrow \mathbb{R}$ satisfies

$\frac{\partial h}{\partial v}(1, 0) = 3$ $\frac{\partial h}{\partial v}(1, 0) = -2$ $\frac{\partial h}{\partial v}(1, 0) = -3$ $\frac{\partial h}{\partial v}(1, 0) = 2$

Question 6: The equation of the tangent plane to the surface

$$x^4 + y^4 + z^8 = 3$$

at the point $(1, -1, 1)$ is

<input type="checkbox"/> $x + y + z = 1$	<input type="checkbox"/> $x + y + 2z = 3$
<input type="checkbox"/> $x - y + 2z = 4$	<input type="checkbox"/> $2x - 2y + z = 5$

Question 7: Let $F : (0, +\infty) \rightarrow \mathbb{R}$ be the function defined by

$$F(t) = \int_{t^2}^t \frac{\sin^2(tx)}{x} dx.$$

Then

<input type="checkbox"/> $F'(t) = \frac{2 \sin^2(t^2)}{t} + \frac{\sin^2(t^3)}{t}$	<input type="checkbox"/> $F'(t) = \frac{\sin^2(t^2)}{t} - \frac{2 \sin^2(t^3)}{t} + \sin^2(t^2) - \sin^2(t^3)$
<input type="checkbox"/> $F'(t) = \frac{2 \sin^2(t^2)}{t} - \frac{3 \sin^2(t^3)}{t}$	
<input type="checkbox"/> $F'(t) = \frac{\sin^2(t^2)}{t} - \frac{\sin^2(t^3)}{t}$	

Question 8: Let D be the subset of \mathbb{R}^3 given by

$$D = \{(x, y, z) \in \mathbb{R}^3 : x \geq 0, y \geq 0, z \geq 0, 1 \leq x^2 + y^2 + z^2 \leq 4, x^2 + y^2 \leq z^2\}.$$

The integral

$$\iiint_D \frac{z^2}{\sqrt{x^2 + y^2 + z^2}} dx dy dz$$

equals

<input type="checkbox"/> $\int_1^2 \left(\int_0^{\pi/4} \left(\int_0^{\pi/2} r^3 \cos^2(\theta) \sin(\theta) d\varphi \right) d\theta \right) dr$	<input type="checkbox"/> $\int_1^4 \left(\int_0^{\pi/4} \left(\int_{\pi/4}^{\pi/2} r^3 \cos^2(\theta) \sin(\theta) d\varphi \right) d\theta \right) dr$
<input type="checkbox"/> $\int_1^2 \left(\int_0^{\pi/2} \left(\int_{\pi/4}^{\pi/2} r^3 \sin(\theta) d\varphi \right) d\theta \right) dr$	
<input type="checkbox"/> $\int_1^2 \left(\int_0^{\pi/2} \left(\int_0^{\pi/2} r \cos^2(\theta) d\varphi \right) d\theta \right) dr$	

Question 9: The solution $y(x)$ of the differential equation

$$\cos(x)y'(x) + \sin(x)y(x) = \cos^2(x)$$

that satisfies the initial condition $y(0) = 2$ also satisfies

$y\left(\frac{\pi}{3}\right) = \sqrt{3} + \frac{\pi\sqrt{3}}{6}$

$y\left(\frac{\pi}{3}\right) = 1 - \frac{\pi}{6}$

$y\left(\frac{\pi}{3}\right) = 1 + \frac{\pi}{6}$

$y\left(\frac{\pi}{3}\right) = -\sqrt{3} + \frac{\pi\sqrt{3}}{6}$

Question 10: Let D be the subset of \mathbb{R}^2 given by

$$D = \{(x, y) \in \mathbb{R}^2 : 0 \leq y \leq x, x^2 + y^2 \leq 4\}.$$

Then the integral

$$\iint_D xy^2(x^2 + y^2) dx dy$$

equals

$\frac{32\sqrt{2}}{21}$

$\frac{2^{12}\sqrt{2}}{7}$

$\frac{8\sqrt{2}}{9}$

$\frac{2^8}{21}$

Question 11: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = \cos(x + y) \cos(x - y).$$

The second order Taylor polynomial for f around $(0, 0)$ is

$p_2(x, y) = 1 - x^2 - y^2 - 2xy$

$p_2(x, y) = 1 + x^2 + y^2$

$p_2(x, y) = 1 - x^2 - y^2$

$p_2(x, y) = 1 + x^2 + y^2 - 2xy$

Question 12: Let $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y, z) = zy^5 + 4e^{z-x} - 2.$$

The equation $f(x, y, z) = 0$ defines in a neighbourhood of $(x, y) = (2, -1)$ a function $z = g(x, y)$ which satisfies $g(2, -1) = 2$ and $f(x, y, g(x, y)) = 0$ as well as

$\frac{\partial g}{\partial y}(2, -1) = \frac{3}{10}$

$\frac{\partial g}{\partial y}(2, -1) = \frac{10}{3}$

$\frac{\partial g}{\partial y}(2, -1) = -\frac{3}{10}$

$\frac{\partial g}{\partial y}(2, -1) = -\frac{10}{3}$

Question 13: Let $a \in (0, +\infty)$ be fixed and let $y(x)$ be the solution of the differential equation

$$y'(x) = \left(a + \frac{x}{a}\right) y(x)$$

satisfying the initial condition $y(0) = 1$. Then

$y(2) - y(-2) = e^{2a} - e^{-2a}$

$y(2) - y(-2) = 0$

$y(2)y(-2) = e^{4/a}$

$y(2)y(-2) = e^{4a}$

Question 14: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = \begin{cases} \sqrt{|xy|} \sin(\sqrt{x^2 + y^2}) & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

Then

- the function f is differentiable at $(0, 0)$
- the function f is continuous at $(0, 0)$ but is not continuous on \mathbb{R}^2
- the partial derivatives $\frac{\partial f}{\partial x}(0, 0)$ and $\frac{\partial f}{\partial y}(0, 0)$ exist, but f is not differentiable at $(0, 0)$
- the function f is not continuous at $(0, 0)$

Question 15: The solution $u(x)$ of the differential equation

$$u''(x) + 9u(x) = \sin(3x)$$

with initial conditions $u(0) = \frac{\pi}{6}$ and $u'(0) = -\frac{1}{6}$ also satisfies

- $u(\pi) = 0$
- $u(\pi) = \frac{\pi - 1}{6}$
- $u(\pi) = \frac{\pi}{6}$
- $u(\pi) = \frac{1}{6}$

Question 16: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = \begin{cases} \frac{xy^4}{x^4 + y^8} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

Then the directional derivative for f at $(0, 0)$ in the direction of the vector $\mathbf{v} = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)^T$

- is $\frac{9}{2}$
- is $\frac{3}{4}$
- does not exist
- is 0

Question 17: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = x^3 + 2y^3 + 3x^2y + 3xy^2 - x - 2y.$$

Then

- $(-2/\sqrt{3}, 1/\sqrt{3})$ is a local extremum for f
- f has exactly two stationary points
- f does not have a local maximum
- f admits at least one local maximum and at least one local minimum

Question 18: Let $(\mathbf{a}_n)_{n \in \mathbb{N}}$ be the sequence of elements in \mathbb{R}^2 defined by

$$\mathbf{a}_n = \left(\cos\left(\frac{n\pi}{2}\right), \sin\left(\frac{n\pi}{4}\right) \right)^T$$

for each $n \in \mathbb{N}$. Then

- the subsequence $(\mathbf{a}_{2k+1})_{k \in \mathbb{N}}$ converges
- the subsequence $(\mathbf{a}_{4k+1})_{k \in \mathbb{N}}$ converges
- the subsequence $((-1)^k \mathbf{a}_{4k+1})_{k \in \mathbb{N}}$ converges
- the subsequence $((-1)^k \mathbf{a}_{2k+1})_{k \in \mathbb{N}}$ converges

Part II: true/false questions

For each question, mark the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

Question 19: Let $D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 1\}$. Then

$$\iiint_D \frac{z}{x^2 + y^2 + z^2 + 1} dx dy dz \geq \frac{\pi}{8}.$$

TRUE FALSE

Question 20: Let

$$D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\} \quad \text{and} \quad E = D \setminus \{(0, 0)\}.$$

There exists a continuous function $f : E \rightarrow \mathbb{R}$ which is unbounded.

TRUE FALSE

Question 21: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a function such that $\nabla f(1, 0) = (2, -1)^T$.

If $\nabla_v f(1, 0) = 1$ for $v = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)^T$, then f is not differentiable at $(1, 0)$.

TRUE FALSE

Question 22: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a continuous function and let $U \subset \mathbb{R}^n$ be nonempty and open. Then the set $f(U)$ is open.

TRUE FALSE

Question 23: Let $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ be a function of class C^2 and let $a \in \mathbb{R}^3$ a stationnary point of f . If the three eigenvalues of the hessian matrix $\text{Hess}_f(a)$, λ_1 , λ_2 and λ_3 , satisfy

$$\lambda_1 + \lambda_2 + \lambda_3 = 2 \quad \text{and} \quad \lambda_1 \lambda_2 \lambda_3 = -1,$$

then a is not a local extremum of f .

TRUE FALSE

Question 24: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a function of class C^1 . If $\nabla f(1, -1) = (0, 0)^T$, then $(1, -1) \in \mathbb{R}^2$ is a local extremum for f .

TRUE FALSE

Question 25: Let $F : \mathbb{R}^3 \rightarrow \mathbb{R}$ be a differentiable function at $(x_0, y_0, z_0) \in \mathbb{R}^3$ and let $g : \mathbb{R} \rightarrow \mathbb{R}^3$ be a differentiable function at $t_0 \in \mathbb{R}$ such that $g(t_0) = (x_0, y_0, z_0)^T$. If there exists $c \in \mathbb{R}$ such that

$$F(g(t)) = c \quad \text{for each } t \in \mathbb{R},$$

then the scalar product of vectors $\nabla F(x_0, y_0, z_0)$ and $g'(t_0)$ is zero.

TRUE FALSE

Question 26 : Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a function for which the partial derivatives $\frac{\partial f}{\partial x}(0, 0)$ and $\frac{\partial f}{\partial y}(0, 0)$ exist. If $\frac{\partial f}{\partial x}(0, 0) = 0$ and $\frac{\partial f}{\partial y}(0, 0) = 0$, then f is continuous at the point $(0, 0)$.

TRUE FALSE

Question 27 : Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a function of class C^3 . If $p_2(x, y) = 2 + x^2 + 2y^2$ is the second order Taylor polynomial of f around $(0, 0)$, then $\nabla f(0, 0) = (0, 0)^T$.

TRUE FALSE

Question 28 : Let A and B be nonempty subsets of \mathbb{R}^n . Then $\partial(A \cup B) = \partial A \cup \partial B$.

TRUE FALSE