

Duration : 144 minutes

Analysis II

Exam

Common part

Spring 2018

Answers

For the **multiple choice** questions, we give

- +3 points if your answer is correct,
- 0 points if you give no answer or more than one,
- 1 if your answer is incorrect.

For the **true/false** questions, we give

- +1 points if your answer is correct,
- 0 points if you give no answer or more than one,
- 1 points if your answer is incorrect.

Part I: multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has **exactly one** correct answer.

Question 1: Consider the subsets

$$A = \{(x, y, z) \in \mathbb{R}^3 : x + y + z \leq 0\} \quad \text{and} \quad B = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}.$$

The nonempty subset $A \cap B \subset \mathbb{R}^3$ is

- open and not bounded
- closed and not bounded
- open and bounded
- closed and bounded

Question 2: Let $D = \{(x, y) \in \mathbb{R}^2 : x \geq 0, |y| \leq \min\{1, 2-x\}\}$. Then the integral

$$\iint_D xy^2 dx dy$$

equals

- $\frac{16}{15}$
- $\frac{2}{15}$
- $\frac{8}{15}$
- $\frac{4}{15}$

Question 3: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = \begin{cases} \frac{y}{2 + \sin\left(\frac{1}{x}\right)} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

Then

- the function f is continuous at every point $(x, y) \neq (0, 0)$
- the function f is continuous at $(0, 0)$
- $\lim_{x \rightarrow 0} f(x, 0) \neq \lim_{y \rightarrow 0} f(0, y)$
- $\frac{\partial f}{\partial x}(0, 0)$ exists but $\frac{\partial f}{\partial y}(0, 0)$ does not exist

Question 4: Let

$$I = \int_0^1 \left(\int_{x^2}^1 \frac{x^{37}}{1 + y^{20}} dy \right) dx.$$

Then

- $I = \left(\frac{\pi}{4}\right)^{10}$
- $I = \frac{\ln(2)}{760}$
- $I = \frac{\ln(2)}{38}$
- $I = \left(\frac{\pi}{2}\right)^{10}$

Question 5: Let $\mathbf{g} : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the function defined by

$$\mathbf{g}(u, v) = (-v, u)^T$$

and let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a function in $C^1(\mathbb{R}^2)$ such that

$$J_f(x, y) = \begin{pmatrix} 3x^2 + y^2 & 2xy + e^y \end{pmatrix}.$$

The function

$$\begin{aligned} h : \mathbb{R}^2 &\longrightarrow \mathbb{R} \\ (u, v) &\longmapsto h(u, v) \end{aligned}$$

defined by $h = f \circ \mathbf{g}$, satisfies

$\frac{\partial h}{\partial u}(0, 1) = -1$ $\frac{\partial h}{\partial v}(0, 1) = -1$ $\frac{\partial h}{\partial v}(0, 1) = -3$ $\frac{\partial h}{\partial u}(0, 1) = -3$

Question 6: Consider the surface

$$S = \{(x, y, z) \in \mathbb{R}^3 : x^4 + y^2 + 4z^2 = 6\}.$$

The equation of the tangent hyperplane to S at $(-1, 1, 1)$ is given by

$4x - 2y - 8z - 14 = 0$ $x - y - 4z + 6 = 0$
 $2x - y - 4z + 7 = 0$ $4x - 2y - 8z + 8 = 0$

Question 7: Let $(x_0, y_0) = (\sqrt{\pi/6}, \sqrt{2\pi/3})$ and let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = \sin(x^2) + \cos(y^2).$$

The equation $f(x, y) = 0$ defines in a neighbourhood of x_0 a function $y = g(x)$ such that $g(x_0) = y_0$ and $f(x, g(x)) = 0$. In addition, one has

$g'(x_0) = \frac{\pi}{2}$ $g'(x_0) = -\frac{\pi}{2}$ $g'(x_0) = \frac{1}{2}$ $g'(x_0) = -\frac{1}{2}$

Question 8: Let $F : \mathbb{R} \rightarrow \mathbb{R}$ be the function defined by

$$F(t) = \int_0^{t^2} e^{tx} dx.$$

Then one has

$F'(1) = 3e^e - e$ $F'(1) = 2e^e - e$ $F'(1) = 4e^e - e$ $F'(1) = e^e - e$

Question 9: The solution $y(x)$ of the differential equation

$$y'(x) + y(x) = x^2 e^{-x}$$

with the initial condition $y(1) = 0$ also satisfies

$y(-2) = -\frac{5}{4}(e^2 - e^{-4})$ $y(-2) = -\frac{1}{4}(e^4 - 13e^{-2})$
 $y(-2) = -3e^2$ $y(-2) = -3e^{-2}$

Question 10 : Let $D = \{(x, y, z) \in \mathbb{R}^3 : 1 \leq x^2 + y^2 + z^2 \leq 4, x \geq 0, y \geq 0, z \leq 0\}$.

The integral

$$\iiint_D \frac{xyz}{\sqrt{x^2 + y^2 + z^2}} dx dy dz$$

equals

$-\frac{31}{40}$

0

$-\frac{4}{5}$

$-\frac{31}{30}$

Question 11 : Let $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y, z) = x^2 + y^2 + 3z^2 - 5xy.$$

Then

- (0, 0, 0) is a local maximum of f
- (0, 0, 0) is a local minimum of f
- (0, 0, 0) is not a local extremum of f
- (0, 0, 0) is not a stationary point of f

Question 12 : Let $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < \frac{1}{4}\}$ and let $f : D \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = \frac{1}{1 - x + y + xy}.$$

Then the Taylor polynomial of order two of f at the point (0, 0) is:

- $p_2(x, y) = 1 + x - y + x^2 - 4xy + y^2$
- $p_2(x, y) = 1 + x - y + x^2 - 2xy + y^2$
- $p_2(x, y) = 1 + x - y + x^2 - xy + y^2$
- $p_2(x, y) = 1 + x - y + x^2 - 3xy + y^2$

Question 13 : The solution $y(x)$ of the differential equation

$$y'(x) + 6x^5(y(x))^2 = 0$$

with the initial condition $y(1) = \frac{1}{3}$ also satisfies

$y(\sqrt{2}) = \frac{1}{3e^7}$

$y(\sqrt{2}) = -\frac{13}{24}$

$y(\sqrt{2}) = -\frac{1}{4}$

$y(\sqrt{2}) = \frac{1}{10}$

Question 14: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = \begin{cases} \frac{x^3 - xy}{\sqrt{x^2 + y^2}} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

Then

- f is differentiable at $(0, 0)$, but f is not in $C^1(\mathbb{R}^2)$
- the partial derivatives $\frac{\partial f}{\partial x}(0, 0)$ and $\frac{\partial f}{\partial y}(0, 0)$ do not exist
- the partial derivatives $\frac{\partial f}{\partial x}(0, 0)$ and $\frac{\partial f}{\partial y}(0, 0)$ exist, but f is not differentiable at $(0, 0)$
- f is in $C^1(\mathbb{R}^2)$

Question 15: The solution $u(t)$ of the differential equation

$$u''(t) - 2u'(t) + 5u(t) = 17 \sin(2t)$$

with the initial conditions $u(0) = 1$ and $u'(0) = 1$ also satisfies

- $u(\pi) = 4 - 3e^\pi$
- $u(\pi) = 4$
- $u(\pi) = -4 + 5e^\pi$
- $u(\pi) = 4 - 4e^\pi$

Question 16: Let $\mathbf{f} : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ be the function defined by

$$\mathbf{f}(x, y, z) = \left((1 + x^2)^y, y^2 + x \right)^T.$$

The Jacobian matrix of \mathbf{f} evaluated at $(x, y, z) \in \mathbb{R}^3$ is

- $J_{\mathbf{f}}(x, y, z) = \begin{pmatrix} (1 + x^2)^{y-1} 2xy & (1 + x^2)^y \ln(1 + x^2) & 0 \\ 1 & 2y & 0 \end{pmatrix}$
- $J_{\mathbf{f}}(x, y, z) = \begin{pmatrix} (1 + x^2)^{y-1} 2xy & (1 + x^2)^y \ln(1 + x^2) 2x \\ 1 & 2y \\ 0 & 0 \end{pmatrix}$
- $J_{\mathbf{f}}(x, y, z) = \begin{pmatrix} (1 + x^2)^{y-1} 2xy & (1 + x^2)^y \ln(1 + x^2) \\ 1 & 2y \end{pmatrix}$
- $J_{\mathbf{f}}(x, y, z) = \begin{pmatrix} (1 + x^2)^{y-1} 2xy & (1 + x^2)^y \ln(1 + x^2) 2x & 0 \\ 1 & 2y & 0 \end{pmatrix}$

Question 17: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined by

$$f(x, y) = x^3 y^3$$

and let $g(x, y) = x^4 + 16y^4 - 32$. Then, under the constraint $g(x, y) = 0$,

- the function f attains its minimum at a single point
- the function f attains its maximum at $(\sqrt[4]{7}, \sqrt{5}/2)$
- the function f attains its maximum at exactly 4 points
- the function f attains its minimum at $(-2, 1)$

Question 18 : The limit $\lim_{(x,y) \rightarrow (0,0)} \left(\frac{x^2y}{x^2+y^2} + \frac{xy^3}{x^2+y^6} \right)$

vaut 1

vaut 2

n'existe pas

vaut 0

Part II: true/false questions

For each question, mark the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

Question 19: Let $D \subset \mathbb{R}^n$ be a nonempty subset, closed and bounded and $f : D \rightarrow \mathbb{R}$ a continuous function, then

$$-\int_D |f(\mathbf{x})| d\mathbf{x} \leq \int_D f(\mathbf{x}) d\mathbf{x} \leq \int_D |f(\mathbf{x})| d\mathbf{x}$$

TRUE FALSE

Question 20: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a continuous function and $(\mathbf{a}_k)_{k \geq 1}$ a sequence in \mathbb{R}^n such that

$$\lim_{k \rightarrow +\infty} \mathbf{a}_k = \mathbf{a} \in \mathbb{R}^n.$$

If $\lim_{k \rightarrow +\infty} f(\mathbf{a}_k) = 1$, then $\lim_{\mathbf{x} \rightarrow \mathbf{a}} f(\mathbf{x}) = 1$.

TRUE FALSE

Question 21: Let E be a subset of \mathbb{R}^n and let \bar{E} be its closure. If $E = \bar{E}$, then the boundary of E is empty.

TRUE FALSE

Question 22: If y_1 and y_2 are two solutions on a nonempty open interval $I \subset \mathbb{R}$ of the differential equation $y'(x) - \cos(y(x)) = 0$, then $y_1 + y_2$ is also a solution of this equation on I .

TRUE FALSE

Question 23: If $\mathbf{a} \in \mathbb{R}^n$ is a local minimum of the function $f : \mathbb{R}^n \rightarrow \mathbb{R}$, then \mathbf{a} is a local maximum of the function $g : \mathbb{R}^n \rightarrow \mathbb{R}$ defined by $g(\mathbf{x}) = -f(\mathbf{x})$.

TRUE FALSE

Question 24: Let $\mathbf{f} : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a function and let $\mathbf{a} \in \mathbb{R}^n$. If the partial derivatives $\frac{\partial f_i}{\partial x_j}(\mathbf{a})$ exist for all $i \in \{1, \dots, m\}$ and $j \in \{1, \dots, n\}$, then \mathbf{f} is differentiable at \mathbf{a} .

TRUE FALSE

Question 25: Let $D = \{(x, y, z) \in \mathbb{R}^3 : x^2 \leq 1 + y^2 + z^2\}$. If $f : D \rightarrow \mathbb{R}$ is a continuous function on D , then f is bounded.

TRUE FALSE

Question 26: Let $(\mathbf{u}_k)_{k \geq 1}$ and $(\mathbf{v}_k)_{k \geq 1}$ be two sequences in \mathbb{R}^n .

If $(\mathbf{u}_k + \mathbf{v}_k)_{k \geq 1}$ is a convergent sequence, then $(\mathbf{u}_k)_{k \geq 1}$ and $(\mathbf{v}_k)_{k \geq 1}$ converge also.

TRUE FALSE

Question 27: If $D = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$, then $\iint_D e^{x^2} dx dy \leq \pi e$.

TRUE FALSE

Question 28: Let $(\mathbf{x}_k)_{k \geq 1}$ be a sequence in \mathbb{R}^n such that $\|\mathbf{x}_k\| = 1$ for all $k \geq 1$.

Then there exists $\mathbf{x} \in \mathbb{R}^n$ such that $\|\mathbf{x}\| = 1$ and $\lim_{k \rightarrow +\infty} \mathbf{x}_k = \mathbf{x}$.

TRUE FALSE