

Duration : 144 minutes

Analysis II

Exam

Common part

Spring 2017

Questions

For the **multiple choice** questions, we give

- +3 points if your answer is correct,
- 0 points if you give no answer or more than one,
- 1 if your answer is incorrect.

For the **true/false** questions, we give

- +1 points if your answer is correct,
- 0 points if you give no answer or more than one,
- 1 points if your answer is incorrect.

Part I: multiple choice questions

For each question, mark the box corresponding to the correct answer. Each question has **exactly one** correct answer.

Question 1: The solution $y(x)$ of the differential equation

$$y'(x) + 3x^2 y(x) = -6x^2 e^{-x^3}$$

for $x \in \mathbb{R}$ with the initial condition $y(1) = 0$ satisfies

$y(0) = 2$ $y(0) = -2$ $y(0) = e^2 - 1$ $y(0) = 1 - e^{-2}$

Question 2: Let $\gamma : [3, 8] \rightarrow \mathbb{R}^2$ be the curve defined as

$$\gamma(t) = \left(3t, 2t^{3/2}\right)^T.$$

The length of the curve is:

45 540 38 3

Question 3: Let $f : D \rightarrow \mathbb{R}$ be the function defined as

$$f(x, y) = \ln(4 - (x + y)^2),$$

where $D \subset \mathbb{R}^2$ is the biggest subset of \mathbb{R}^2 where $f(x, y)$ is well defined. Then

the set D is neither closed nor bounded
 the set D is bounded but not closed
 the set D is closed and bounded
 the set D is closed but not bounded

Question 4: Let $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ be the function defined as

$$f(x, y, z) = (1 + x) y^2 |z|^3.$$

Then the directional derivative of f at the point $(0, 1, 1)$ in the direction of the vector $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^T$ is equal to

$2\sqrt{3}$ $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)^T$ -4 6

Question 5: Let the function $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ and the vector field $\mathbf{v} : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be defined as

$$f(x, y, z) = x^2 + y^2 + z^2 \quad \text{et} \quad \mathbf{v}(x, y, z) = \left(\frac{1}{2}x^2, \frac{1}{2}y^2, \frac{1}{2}z^2\right)^T.$$

Then, the function

$$g = \operatorname{div}(f \mathbf{v}) - f \operatorname{div}(\mathbf{v})$$

satisfy for all $(x, y, z) \in \mathbb{R}^3$

$g(x, y, z) = f(x^2, y^2, z^2)$
 $g(x, y, z) = x^3 + y^3 + z^3$
 $g(x, y, z) = 2\langle \nabla f, \mathbf{v} \rangle(x, y, z), \text{ where } \langle \cdot, \cdot \rangle \text{ is the canonical scalar product on } \mathbb{R}^3$
 $g(x, y, z) = f(x, y, z)$

Question 6: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined as

$$f(x, y) = \begin{cases} \frac{x^5 + xy^4}{(x^2 + y^2)^2} & \text{if } (x, y) \neq (0, 0), \\ 0 & \text{if } (x, y) = (0, 0). \end{cases}$$

Then

- f is not continuous at $(0, 0)$
- $\frac{\partial f}{\partial x}(0, 0)$ and $\frac{\partial f}{\partial y}(0, 0)$ exist but f is not differentiable at $(0, 0)$
- f is of class $C^1(\mathbb{R}^2)$
- f is continuous at $(0, 0)$, but $\frac{\partial f}{\partial x}(0, 0)$ and $\frac{\partial f}{\partial y}(0, 0)$ do not exist

Question 7: The solution $u(t)$ of the differential equation

$$u''(t) + 2u'(t) + u(t) = e^{-t}$$

for $t \in \mathbb{R}$ with the initial conditions $u(0) = 1$ and $u'(0) = 0$ satisfies

<input type="checkbox"/> $u(-1) = \frac{1}{2}e$	<input type="checkbox"/> $u(-1) = \frac{5}{2}e$
<input type="checkbox"/> $u(-1) = e^{-1} - e^2 + \frac{1}{2}e^{-1}$	<input type="checkbox"/> $u(-1) = -\frac{1}{2}e - e^{-1}$

Question 8: Let $D = \{(x, y) \in \mathbb{R}^2 : 3 \leq x^2 + y^2 \leq 4, x \geq 0, -x \leq y \leq x\}$.

Then the integral

$$\iint_D (x^2 - y^2) \, dx \, dy$$

is equal to

<input type="checkbox"/> $\frac{7}{4}$	<input type="checkbox"/> $\frac{175}{4}$	<input type="checkbox"/> $\frac{175\pi}{8}$	<input type="checkbox"/> $\frac{7\pi}{8}$
--	--	---	---

Question 9: Let D be the region of \mathbb{R}^3 bounded by the four planes $x = 0, y = 0, z = 0$ and $x + y + z = 1$. Then the integral

$$\iiint_D \sin(x + y + z) \, dx \, dy \, dz$$

is equal to

<input type="checkbox"/> $\frac{1}{2} \cos(1)$	<input type="checkbox"/> $\sin(1) + 1$
<input type="checkbox"/> 1	<input type="checkbox"/> $\frac{1}{2} \cos(1) + \sin(1) - 1$

Question 10 : Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a continuous function and let

$$I = \int_0^1 \left(\int_{-\sqrt{y}}^0 f(x, y) dx \right) dy + \int_1^{\sqrt{2}} \left(\int_{-\sqrt{2-y^2}}^0 f(x, y) dx \right) dy.$$

Then

$I = \int_{-1}^0 \left(\int_{-\sqrt{2-x^2}}^{-x^2} f(x, y) dy \right) dx$

$I = \int_{-1}^1 \left(\int_{x^2}^{\sqrt{2-x^2}} f(x, y) dy \right) dx$

$I = \int_{-1}^0 \left(\int_{x^2}^{\sqrt{2-x^2}} f(x, y) dy \right) dx$

$I = \int_0^1 \left(\int_{x^2}^{\sqrt{2-x^2}} f(x, y) dy \right) dx$

Question 11 : Let $\mathbf{f} : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ be the function defined as

$$\mathbf{f}(x, y, z) = (x^2 y + e^{yz}, yz + x)^T.$$

The Jacobian matrix of \mathbf{f} evaluated at $(x, y, z) \in \mathbb{R}^3$ is

$\begin{pmatrix} 2xy & x^2 + ze^{yz} & ye^{yz} \\ 2zy & z & y \end{pmatrix}$

$\begin{pmatrix} 2xy & x^2 + ze^{yz} & ye^{yz} \\ 1 & z & y \end{pmatrix}$

$\begin{pmatrix} 2xy & 2zy \\ x^2 + ze^{yz} & z \\ ye^{yz} & y \end{pmatrix}$

$\begin{pmatrix} 2xy & 1 \\ x^2 + ze^{yz} & z \\ ye^{yz} & y \end{pmatrix}$

Question 12 : The solution $u(t)$ of the differential equation

$$u'(t) + (u(t))^2 \sin(t) = 0$$

for $t \in \mathbb{R}$ with the initial condition $u(0) = \frac{1}{4}$ satisfies

$u(\pi) = \frac{1}{4e^2}$

$u(\pi) = \frac{1}{2}$

$u(\pi) = \frac{e^2}{4}$

$u(\pi) = \frac{1}{6}$

Question 13 : The function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined as

$$f(x, y) = x^4 - 4x^3 + 3x^2 + 2xy - y^2$$

has

three saddle points

one saddle point, one local minimum and one local maximum

two saddle points and one local minimum

two saddle points and one local maximum

Question 14: Consider $D = \{(u, v) \in \mathbb{R}^2 : u + v \neq 0\}$ and the function $f : D \rightarrow \mathbb{R}$ defined as

$$f(u, v) = \ln(u^2 + 2uv + v^2).$$

Let $\mathbf{g} : \mathbb{R}^2 \rightarrow D$ be a differentiable function such that $\mathbf{g}(0, 3) = (0, -3)^T$ and

$$J_{\mathbf{g}}(0, 3) = \begin{pmatrix} -9 & 0 \\ -3 & 3 \end{pmatrix},$$

where $J_{\mathbf{g}}$ is the Jacobian matrix of \mathbf{g} . If $h = f \circ \mathbf{g}$, then

- $\nabla h(0, 3) = (6, 0)^T$
- $\nabla h(0, 3) = (8, -2)^T$
- $\nabla h(0, 3) = (0, 6)^T$
- $\nabla h(0, 3) = (0, 0)^T$

Question 15: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be the function defined as

$$f(x, y) = \frac{2x}{x^2 + y^2}$$

and let

$$p_2(x, y) = a_0 + a_1(x - 1) + a_2(y + 1) + a_3(x - 1)^2 + a_4(x - 1)(y + 1) + a_5(y + 1)^2,$$

where $a_0, a_1, a_2, a_3, a_4, a_5 \in \mathbb{R}$, be the second order Taylor polynomial of f at the point $(1, -1)$.

The coefficient a_4 is equal to

- $a_4 = 2$
- $a_4 = -1$
- $a_4 = 1$
- $a_4 = -2$

Question 16: Let $f : \mathbb{R}^3 \rightarrow \mathbb{R}$ be the function defined as

$$f(x, y, z) = (x - z)^2 + y^2$$

and let $g(x, y, z) = x^2 + y^2 + z^2 - 4$. Then, under the constraint $g(x, y, z) = 0$,

- the function f attains its maximum in exactly one point
- the function f attains its minimum in exactly one point
- the function f attains its maximum in $(\sqrt{2}, 0, -\sqrt{2})$
- the function f is not bounded

Question 17: Consider the following limits

$$(A) \lim_{(x,y) \rightarrow (0,0)} \frac{x^3 y^2}{x^4 + y^8}, \quad (B) \lim_{(x,y) \rightarrow (0,0)} \frac{x^4 y}{x^4 + y^8}.$$

Then

- the two limits do not exist
- the limit (A) exists but the limit (B) does not exist
- the two limits exist
- the limit (B) exists but the limit (A) does not exist

Question 18 : The set

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + \frac{1}{2} y^2 + \frac{1}{4} z^2 = 4 \right\}$$

is the graph of a differentiable function in the neighborhood of the point $\mathbf{p} = (-1, 2, -2) \in S$.

The equation of the tangent plane to S at \mathbf{p} is:

$x + y + z - 3 = 0$

$x + y + z + 1 = 0$

$2x - 2y + z + 8 = 0$

$x + y + z - 1 = 0$

Part II: true/false questions

For each question, mark the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

Question 19: Let $(\mathbf{u}_n)_{n \geq 1}$, with $\mathbf{u}_n = (x_n, y_n, z_n) \in \mathbb{R}^3$, be a divergent sequence. Then $(x_n)_{n \geq 1}$ is a divergent sequence in \mathbb{R} .

TRUE FALSE

Question 20: Let $D = \mathbb{R}^2 \setminus \{(0, 0)\}$ and $f : D \rightarrow \mathbb{R}$ be a continuous function on D such that $\lim_{t \rightarrow 0} f(t, t) = 1$. Then $\lim_{t \rightarrow 0} f(t, 0) = 1$ and $\lim_{t \rightarrow 0} f(0, t) = 1$.

TRUE FALSE

Question 21: Let $D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \leq 1\}$ and $f : D \rightarrow \mathbb{R}$ be a function. If f is not bounded on D , then f is not continuous on D .

TRUE FALSE

Question 22: Let $\mathbf{f} : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ and $\mathbf{g} : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be two differentiable functions. Then for all $\mathbf{p} \in \mathbb{R}^3$ the Jacobian matrices of \mathbf{f} , \mathbf{g} , and $\mathbf{f} + \mathbf{g}$ satisfy

$$J_{\mathbf{f} + \mathbf{g}}(\mathbf{p}) = J_{\mathbf{f}}(\mathbf{p}) + J_{\mathbf{g}}(\mathbf{p}).$$

TRUE FALSE

Question 23: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a function such that its directional derivative at the point $\mathbf{p} \in \mathbb{R}^n$ exists in the direction of every unitary vector $\mathbf{v} \in \mathbb{R}^n$. Then f is differentiable at \mathbf{p} .

TRUE FALSE

Question 24: Let $y(x)$ be a solution of the second order linear inhomogeneous differential equation $y''(x) + x^2 y'(x) = 4$. Then for all $C \in \mathbb{R}$, the function $y_1(x) = y(x) + C$ is also a solution of this differential equation.

TRUE FALSE

Question 25: Let $f : \mathbb{R}^n \rightarrow \mathbb{R}$ be a function of class $C^2(\mathbb{R}^n)$. Then f is differentiable on \mathbb{R}^n .

TRUE FALSE

Question 26: Let $\mathbf{g} : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be a differentiable function. Then the composite function $\mathbf{f} = \mathbf{g} \circ \mathbf{g}$ is differentiable, and for all $\mathbf{p} \in \mathbb{R}^3$, the Jacobian matrices of \mathbf{f} and \mathbf{g} satisfy

$$\det J_{\mathbf{f}}(\mathbf{p}) = (\det J_{\mathbf{g}}(\mathbf{p}))^2.$$

TRUE FALSE

Question 27: Let $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ be a continuous function. Then

$$\int_0^1 \left(\int_0^1 f(x, y) dy \right) dx \leq \int_0^2 \left(\int_0^2 f(x, y) dy \right) dx.$$

TRUE FALSE

Question 28: Let $\mathbf{f} : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be a function of class $C^2(\mathbb{R}^3)$. Then for every point $\mathbf{p} \in \mathbb{R}^3$, the Jacobian matrix $J_{\mathbf{f}}(\mathbf{p})$ is a symmetric matrix.

TRUE FALSE