
Altaf

_MBotBMBg§mg§ʰM☆FF§on tour de la
, b)

.

Ex fix, y ) = e-
✗+4+1 f : R'→ IR de classe 0

.

Trower le polynéme de Taylor def dirdre 2 am tour de (0,11--6,6) .

¥ = - e-
✗+7" ' /µ, ,=

- e
' ;¥y=4ye-✗+42+11 ,,,=,4e3 ; 8¥ = e-

✗ +%" '/µ , ,,
= e3
;

0¥, = 4 e-
✗+4" '

+ (4yK4y) e-
✗+4" ' / µ

,
,
= 20 e3 ; 8¥; =

- 4y e-
✗

+4+11,,, ,=
- 4e ?

RfCon) = e3 + f-e) ✗ +4e3 (y - 1) + { (e3 ✗7-21-40) ✗(y - 1) + 2081-1-15) =

= ¢ (1- ✗ +44 - 1) + { × ' -4×4- 1) + 104 -D)
.

Il exist une autre méthede i calculatepolyñome de Taylor en utilisant les DL
Ehs factions dune scale variable .



f.(×, y) = e-
✗ +24+1

= e-
✗ +2(4-1)+15+1

= e-
✗ +24--112+44 -0+2+1=23 é×+4-Hg+p2¥- =

-169-

= e3 (1+5+1-25 + .

. . . ) = @[1- + C- ✗ +44-11+24 -B) +1-21×2+164-15-8×4 - d)] =
DL pour
% autour de 5- 0 d.ordre 2 Iles autres terma sont dordre ≥ 3)

=P (1- ✗+44- 1) +1-2×2 -1104--15-4×4 -d) = Patio, , le meine quiavant.

Cas n =3
. f- lxiyiz ) autour de G. b. c) E E CIR ? fonchon declasse C

'

• + 1-4-61
.gg;¥,) ; F'11-1=8*-87--1%-7

- -%÷ -1¥ - %÷ ; F- fogg. "" l:
"

¥,) -

- fi
"

⇒ F'(o) = ¥-6,6, c) (x -a) + ¥19b, c) - ly - b) + ¥6, b. c)G- c) . . .
.

F-
"

(o)
.

Exercise : écrire le polynime de Taylor de ftp.zjdordre2autourde 6. b. c)
flay,z)=fflÉ+ . .

. .

+ { (8%6.44-4-a)
"

+ ftp.la.b.cky-bj-i?zf-la.b.c)k--c5+2#-oylx-aYy-b)+28Y--ozly-bKz- c)+28¥#-akz -d) +

t-ECHH.x.H-ca.ae#PfG.bX



2 Methods
. 4) La formate de '

Taylor enplusieurs variables .

-170 -

(2) Utilise les direloppements limit's cornus d.Analyse 1 .
Ex

. fix,y)=ˢ% ontour de G. 1) dordre 2
.

Méthode 1
.

direct mais fastidious : 8¥ 10,11
,
¥10,4; 9¥10,D: 8¥10. D; ᵈ¥oy 10,1) .

Méthode 2
.
niecessite un traitementsoigneux et la maitrise de DL .

f- ix. y) = ˢYx antour de 10,1)
.

f- = ¥14T =

1I - .
. . ; ¥× = 1- ✗ +✗ 2- . . .

DL dondre 2 en G- 1) et × .

formale

sin (✗ + 1- It - 1) +G-B- .
.

. ) = sin / 1- +x-I-hjp-j.lt?..)--n.gah1gf+cos1sjTy---s.n1
(1- ¥ .

. ) * cost - (s) ←DL diordre 2 en s
.

B. flat) = ( I - ✗ + ✗2) 11h1 (1-11×-4--1) + ly - + cost (x - 4--11+-6-114] orion ne relient que =

des Ternes d 'ordre ≤ 2
= (I -✗+ ✗2) (sin 1 (1-1-2×2 - I -4-117×4 -D) +- cost (x-G - 1) +(y-114] = enxetcy -D

= Sir 141-1-2×2- { (t-14-1×(-1-1) - ✗+ ✗2) + Cos 1- (x - ly - 1) + G- IT- ✗ 2 + ✗(y -d) =

± smh + ✗ (cost - sin 1) - ly- 1) 651-1×41-2141 - cos1) +G- 1) Taos 1-1-21in1) + ✗ ly-1)(an 1- + cos1) .



54.8
.

Extrema dune foncton de pluisieurs variables . -171-

Déf Soit f : É IR
.

Alers

a- c- E- est un point stationnaive defÉ> Tlflñ)=(¥×,lñ) .
. . 8¥ (a-1) = 0

.

Déf f:[→ R admit un maximin) local anpoint a- c- E sie existed>Otdque
max : f-1×-1 ≤ flay
min : fix ) ≥f(a-,

Pour tout FEEABCA;D .

Ext
. f- (x ,y)=X2ty Ex2

. fix,y)=✗2

7fHy)=(2x,2y)|µµ=J = Offer7ft,Y)= (2×10)/10,8) points stationnaires
point statonnaire

ft,H=x4y2

← min local
[

min local points stationnaira
point stationhaire
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Proposition . (condition necessaire pour an exrtremum local) .

Soit f : E- → IR une fonction admeltantnn extremism local acepoint a- c-E,
et teh

que 8¥, (E) existent V-i-t.in .

A- hors a- estun point stationnaive defk-sxfla-t.co)
.

Dém : Soit gi (x)
= f- (a. .

.

- ai- i. × , air . . . an) . Alors Tf(a) exist ⇒gi G) estdénvable
en ai -- ✗ et admet un extremism local en apoint ⇒ /Analyse I] ⇒g!Caito -9¥. (E) .

Le meine pour chaque i -- i . . . n ⇒ Pf(a-7--0 .

☒,

Remarque . (c) La réciprogue est fausse : 17/-6-1=0# fadmetnn extremism
local en F-a-

.

E-✗ 3
. f-(xx) = x2 _ y2 ⇒ 7 f- (xx) = ( 2x , -2y)|µµ=J ⇒ 10,01 est un point stationnaive

f-(xx) = ✗ 2-y2

¥T*→=point stationnoire
pas un extremism local .



(2) Meine si f (F) admit un min Imax) local le long de toute droitepassantpara, -173 -

ula n' implique pas que fait admetun min Imax) local en a-.
froir Example 13.4.3 dans FDZ])

.
flx,y) = (y -✗44-2×2) antour de 10,0)

.

Déf. a- c- E est un point critique def : E-→ IR si
- ou bien a- est un point stationnaive
- on bien an moms une des dénrées particles n'exist pas en I= a- .

Si a- c- E est un point de min Imax) local = > a- est un point critique .

7hm
.

(condition suffisante pour un extremism localdef: E- → IR en a- c-E) .
Soit f : E-→ IR une fonchon de classe c

'

sur E. a- c- Eunpointstationnaire : ☐f-G)=J
.

'

8¥ :¥* . . .
. 8¥o×

.et soit Hessfta) =

: ¥I.8¥.in. . .
.

. ?¥i



di > O ti - 174-

Alors : - Si touts les valuers
propres

de Hessflé) sontpositives ⇒ min linen a-
hi<O ti

- Si toutes les valuers
propres de Hessflat sont negatives ⇒ max loc en a-

-Sil
ya des rakers

propres négiatmeetpi Ives ⇒ a- n'estpas un point
d'extremam local

.

Remarque s. Hessflat = 4-lessflat )" (puisque feelE) ⇒ Fhm de Schwartz )

⇒ Hessflat est diagonalsable oil
'aide divine mafia orthogonal 0.

Hessflat = 0DO
'T
oi D=

[ ×
, hi C- IR

0-1 = •

'

. )✗
n

Done il exist un changement de variables lineare orthogonal 6, . . -✗a)→(x . . .%)
tel
que

la matric tkssienne deviant diagonal , avec di .
.

.

in C-R
Ses rakers

propres .

D= Hessf¢. .

.%)
'



Alers par
la formate de Taylor on pent écrire (supp ◦ sons que fest declasse G) .
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f- (F) - flat = £ (d. (x - a.)HolyiaÑ+ .
. .int/-an))-E(lly--aHJ

⇒ si × ,
> 0

,
iz > 0

. .

in > 0 ⇒f- (F) - f- (E) ≥0pour tout y dans un voisinage de a-
⇒ a- est un point de min loc def

⇒ si di 0
,
b. < 0 . . . dn<0 ⇒ft ) - f-(a) ≤ 0 ⇒ a- est unpoint de maxloc def .

⇒ si Fi ,j Eels que
di > O et Xj -0 ⇒ a- n'estpas un extremism local

.

HI Cas n=2
.

Les conditions die Théoréme sur la ma trice Hessylé)
sont equivalents aux conditions suirantes :

soit Hess
,
E) = 48¥ 8¥o¥ , = [

s

¥, :* s d-
← notation

(a) I , > 0.dz > 0 ⇔ dit Huy /a-I > O et r > 0 .

(b) d. < 0 ,
Kuo ⇔ det Hessflat > O et r< 0 .

(c) h ,
> 0

,
hi 0

on Xiao
,
× , > 0

<⇒ dettlessg.la) < 0.

- ÷ .

.

demonstration laprochaine fois .


