
Analyse II Kévin Barbieux

Corrigé - Série d’Entrâınement - Topologie, Continuité et

Dérivabilité des Fonctions Multivariables

1 Questions Vrai/Faux

1) Soit f : R2 → R et (x0, y0) ∈ R2 tels que ∂f
∂x (x0, y0) et ∂f

∂y (x0, y0) existent. Alors f est continue en

(x0, y0).

� VRAI � FAUX

Commentaire : contre-exemple:

f : R2 → R

(x, y) 7→

{
1 si x = 0 ou y = 0

0 si x 6= 0 et y 6= 0

Alors ∀t ∈ R, f(t,0)−f(0,0)
t = 0−0

t = 0 donc ∂f
∂x (0, 0) = lim

t→0

f(t,0)−f(0,0)
t existe et vaut 0. De même, ∂f∂y (0, 0)

existe et vaut 0. Pour autant, ∀k ∈ N∗, f( 1
k ,

1
k ) = 0 donc lim

k→∞
f( 1

k ,
1
k ) = 0 6= f(0, 0), donc f n’est pas

continue en (0, 0).

2) Soit f : R2 → R, dérivable en (x0, y0) ∈ R2. Alors

lim
t→0

f(x0 + t, y0)− f(x0 − t, y0)

t
= 2

∂f

∂x
(x0, y0)

� VRAI � FAUX

Commentaire : ∀t ∈ R∗,

f(x0 + t, y0)− f(x0 − t, y0)

t
=
f(x0 + t, y0)− f(x0, y0) + f(x0, y0)− f(x0 − t, y0)

t

=
f(x0 + t, y0)− f(x0, y0)

t
− f(x0 − t, y0)− f(x0, y0)

t

=
f(x0 + t, y0)− f(x0, y0)

t
+
f(x0 − t, y0)− f(x0, y0)

−t

=
f(x0 + t, y0)− f(x0, y0)

t︸ ︷︷ ︸
t→0

→ ∂f
∂x (x0,y0)

+
f(x0 + T, y0)− f(x0, y0)

T︸ ︷︷ ︸
t→0

→ ∂f
∂x (x0,y0)

en posant T = -t dans le second terme (et
t→0

T → 0)

d’où le résultat.
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3) Soit f : R2 → R, dérivable en (x0, y0) ∈ R2 tel que Of(x0, y0) 6= (0, 0). On pose

(u1, u2) =
Of(x0, y0)

‖Of(x0, y0)‖

Alors la dérivée directionnelle de f est minimale dans la direction du vecteur unitaire v = (−u2, u1).

� VRAI � FAUX

Commentaire : f étant dérivable en (x0, y0), la dérivée directionnelle selon un vecteur unitaire e est
donnée par

Df ((x0, y0), e) = 〈Of(x0, y0), e〉

Of(x0, y0) étant un vecteur non-nul, son produit scalaire par un vecteur unitaire e est maximal quand
e est de même direction et de même sens que Of(x0, y0) (c’est-à-dire e = (u1, u2)), et minimal quand e
est de même direction et de sens opposé à Of(x0, y0) (c’est-à-dire e = (−u1,−u2)). Il vaut alors

Df ((x0, y0), (−u1,−u2)) = −‖Of(x0, y0)‖ < 0

Pour le vecteur v donné qui est le vecteur unitaire directement orthogonal à Of(x0, y0), la dérivée direc-
tionnelle est nulle.

Ce résultat avait déjà été évoqué dans la Série 8, Exercice 3, question iii).

4) Soient n ∈ N∗ et E un sous-ensemble de Rn. Alors ∂E ∩
o

E = ∅.

� VRAI � FAUX

Commentaire : Résultat vu en cours.

5) Soient n ∈ N∗ et E un sous-ensemble ouvert de Rn. Alors ∂E = ∅.

� VRAI � FAUX

Commentaire : On a parfois tendance à confondre le fait que la frontière est vide avec le fait qu’elle est
simplement d’intersection vide avec l’ensemble. Exemple: une boule ouverte a pour frontière la sphère
qui la délimite (qui n’est donc pas vide). En revanche, la sphère et la boule ouverte n’ont aucun point
en commun.
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2 Questions à Choix Multiples

1) Soit

F : (R∗+)2 → R× R∗+
(x, y) 7→ (log(

y

x
), 2x2 + 3y)

Alors:

� F n’est pas bijective.

� F est bijective et ∀(u, v) ∈ R× R∗+, F−1(u, v) = (

√
9e2u + 8v

4
,

√
9e2u + 8v

4
eu).

� F est bijective et ∀(u, v) ∈ R× R∗+, F−1(u, v) = (
−3eu −

√
9e2u + 8v

4
,
−3eu −

√
9e2u + 8v

4
eu).

� F est bijective et ∀(u, v) ∈ R× R∗+, F−1(u, v) = (
−3eu +

√
9e2u + 8v

4
,
−3eu +

√
9e2u + 8v

4
eu).

Commentaire : Pour vérifier si la fonction F est bijective, prenons (u, v) dans l’ensemble d’arrivée
(ici R×R∗+). Si nous parvenons à trouver un unique couple (x, y) ∈ (R∗+)2 tel que F (x, y) = (u, v), alors
non seulement nous aurons démontré la bijectivité de F , mais en plus nous aurons l’expression de sa
réciproque.

(u, v) = F (x, y)⇔

{
u = log( yx )

v = 2x2 + 3y

⇔

{
y = xeu

2x2 + 3eux− v = 0

La seconde équation est du second degré en x, son discriminant est 9e2u + 8v. Ses solutions sont donc

x1 =
−3eu −

√
9e2u + 8v

4
et x2 =

−3eu +
√

9e2u + 8v

4

Or
√

9e2u + 8v ≥
√

9e2u = 3eu, car v ∈ R∗+, donc x1 ≤ 0. On doit donc rejeter x1 car le premier
argument de F doit être strictement positif. Il s’en suit que pour (x, y) ∈ (R∗+)2 et (u, v) ∈ R× R∗+,

(u, v) = F (x, y)⇔

{
x = −3eu+

√
9e2u+8v

4

y = −3eu+
√

9e2u+8v
4 eu

Le système a une unique solution, donc F est bijective et l’expression de sa réciproque est donnée par la
solution du système.
Une autre méthode pour vérifier si la fonction est bijective est de calculer le déterminant de sa matrice
Jacobienne. Si det(JF (p̄)) 6= 0, la fonction F est bijective dans un voisinage du point p̄. Ici nous avons

det(JF (x, y)) =

∣∣∣∣ − 1
x

1
y

4x 3

∣∣∣∣ = − 3

x
− 4x

y
=

1

xy

(
−3y − 4x2

)
,

ce qui est negatif pour tout (x, y) ∈ (R∗+)2. Donc F est bijective sur (R∗+)2.
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2) Soit D ⊂ R2 le plus grand sous-ensemble de R2 sur lequel f : (x, y) 7→ arcsin(xy) est définie. Alors D
est:

� ni fermé, ni borné

� fermé, non borné

� borné, non fermé

� compact

Commentaire : La fonction arcsin est définie sur [−1, 1]. Le domaine D de définition de f est donc

D =
{

(x, y) ∈ R2/− 1 ≤ xy ≤ 1
}

D est le domaine représenté ci-dessous.

-10

-5

 0

 5

 10

-10 -5  0  5  10

y

x

Domaine de f

D est fermé. En effet, sa frontière est l’union des graphiques des fonctions x 7→ 1
x et x 7→ − 1

x . Un point
(x, y) appartenant à l’un de ces deux graphiques vérifie soit y = 1

x , soit y = − 1
x , c’est-à-dire xy = 1 ou

xy = −1. Un tel point (x, y) est donc dans D. Ceci prouve que D contient sa frontière et donc qu’il est
fermé.

D est non borné car pour R ∈ R∗+ quelconque, le point (2R, 1
2R ) est au-delà de la boule de rayon R

centrée à l’origine, mais malgré tout dans D car 2R 1
2R = 1.
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3) Soit

f : R2 → R

(x, y) 7→

{
x2(x+1)−y2(y−1)

x2+y2 si (x, y) 6= (0, 0)

1 si (x, y) = (0, 0)

Alors:

� f n’est pas continue en (0, 0).

� f est continue, non dérivable en (0, 0).

� f est dérivable, non C 1 en (0, 0).

� f est C 1 en (0, 0).

Commentaire : Par un changement de variables vers les coordonnées polaires, nous obtenons

f(x, y) = cos2(ϕ)(r cos(ϕ) + 1)− sin2(ϕ)(r sin(ϕ)− 1) = r(cos3(ϕ)− sin3(ϕ)) + 1

D’où

|f(x, y)− f(0, 0)| = r| cos3(ϕ)− sin3(ϕ)| ≤ 2r︸︷︷︸
r→0
→0

Donc f est continue en (0, 0).

Si f est dérivable en (0, 0), on doit avoir

lim
(x,y)→(0,0)

f(h, k)− f(0, 0)− 〈Of(0, 0), (h, k)〉√
h2 + k2

= 0

Commençons par vérifier l’existence et calculer les dérivées partielles de f en (0, 0). ∀t 6= 0,

f(t, 0)− f(0, 0)

t
=

t2(t+1)
t2 − 1

t
=

t→0
1→ 1

Donc ∂f
∂x (0, 0) existe et vaut 1. De même, ∂f∂y (0, 0) existe et vaut -1. Alors,

f(h, k)− f(0, 0)− 〈Of(0, 0), (h, k)〉√
h2 + k2

=

h2(h+1)−k2(k−1)
h2+k2 − 1− (h− k)

√
h2 + k2

=
h2(h+ 1)− k2(k − 1)− h2 − k2 − (h− k)(h2 + k2)

(h2 + k2)
3
2

=
kh2 − hk2

(h2 + k2)
3
2

En particulier pour (h, k) = (− 1
n ,

1
n ),

kh2 − hk2

(h2 + k2)
3
2

=
2
n3

2
3
2

n3

=

n→+∞

1√
2
→ 1√

2
6= 0

ce qui prouve que f n’est pas dérivable en (0, 0).
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4) Soit

f : R∗ × R→ R

(x, y) 7→ arctg(
y

x
)

Le plan tangent au graphique de f en (1,
√

3, f(1,
√

3)) a pour équation:

�

√
3

4
x− 1

4
y + z =

π

3

� − 1

4
x+

√
3

4
y + z =

π

3
+

1

2

�

√
3

4
x− 1

4
y + z =

π

6

� − 1

4
x+

√
3

4
y + z =

π

3

Commentaire : f(1,
√

3) = arctg(
√

3) = π
3 , et les dérivées partielles de f sont

∂f

∂x
(x, y) = − y

x2

1

1 + ( yx )2
= − y

x2 + y2
donc

∂f

∂x
(1,
√

3) = −
√

3

4

∂f

∂y
(x, y) =

1

x

1

1 + ( yx )2
=

x

x2 + y2
donc

∂f

∂x
(1,
√

3) =
1

4

L’équation du plan tangent recherché est donc

z =
π

3
+

〈
(−
√

3

4
,

1

4
), (x− 1, y −

√
3)

〉
soit encore

√
3

4
x− 1

4
y + z =

π

3
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5) Soient f : R3 → R une fonction dérivable et

g : R3 →R3

(u, v, w) 7→(x(u, v, w), y(u, v, w), z(u, v, w))

= (euvw, u+ 3v + 2w, v2 + w2)

On pose f̄ = f ◦ g. Alors:

�
∂f

∂y
(1, 1, 1) =

∂f̄

∂v
(1, 1, 1) +

∂f̄

∂w
(1, 1, 1)

�
∂f

∂y
(e, 6, 2) =

∂f̄

∂v
(1, 1, 1)− ∂f̄

∂w
(1, 1, 1)

�
∂f

∂x
(e, 6, 2) =

∂f̄

∂u
(1, 1, 1) +

∂f̄

∂v
(1, 1, 1)

�
∂f

∂y
(1, 1, 1) = e

∂f̄

∂u
(1, 1, 1) + 3

∂f̄

∂v
(1, 1, 1) + 2

∂f̄

∂w
(1, 1, 1)

Commentaire : Nous savons que

Jf̄ (u, v, w) = Jf (g(u, v, w))Jg(u, v, w)

On commence par calculer la matrice Jacobienne de g:

Jg(u, v, w) =

vweuvw uweuvw uveuvw

1 3 2
0 2v 2w


La relation entre les Jacobiennes se réécrit donc:

(
∂f̄
∂u (u, v, w) ∂f̄

∂v (u, v, w) ∂f̄
∂w (u, v, w)

)
=
(
∂f
∂x (g(u, v, w)) ∂f

∂y (g(u, v, w)) ∂f
∂z (g(u, v, w))

)vweuvw uweuvw uveuvw

1 3 2
0 2v 2w


En particulier pour (u, v, w) = (1, 1, 1), et sachant que g(1, 1, 1) = (e, 6, 2),

(
∂f̄
∂u (1, 1, 1) ∂f̄

∂v (1, 1, 1) ∂f̄
∂w (1, 1, 1)

)
=
(
∂f
∂x (e, 6, 2) ∂f

∂y (e, 6, 2) ∂f
∂z (e, 6, 2)

)e e e
1 3 2
0 2 2


A ce stade, dans un problème ouvert (sans réponse proposée), on inverserait la matrice Jacobienne de g
et on obtiendrait les dérivées de f en fonction de celles de f̄ . Cependant, avec les réponses proposées,
nous pouvons écarter immédiatement la première et la dernière qui font intervenir les dérivées partielles
de f en un autre point que (e, 6, 2). En réécrivant l’égalité matricielle précédente, nous obtenons:

∂f̄

∂u
(1, 1, 1) = e

∂f

∂x
(e, 6, 2) +

∂f

∂y
(e, 6, 2)

∂f̄

∂v
(1, 1, 1) = e

∂f

∂x
(e, 6, 2) + 3

∂f

∂y
(e, 6, 2) + 2

∂f

∂z
(e, 6, 2)

∂f̄

∂w
(1, 1, 1) = e

∂f

∂x
(e, 6, 2) + 2

∂f

∂y
(e, 6, 2) + 2

∂f

∂z
(e, 6, 2)

et nous pouvons voir directement, en soustrayant la troisième ligne à la deuxième, que
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∂f

∂y
(e, 6, 2) =

∂f̄

∂v
(1, 1, 1)− ∂f̄

∂w
(1, 1, 1)

sans avoir à inverser la matrice Jacobienne de g.

6) On considère une fonction f : R2 → R de classe C 1 dont la courbe de niveau 0 est représentée
ci-dessous.

f(x,y) =
       0

-2 -1.5 -1 -0.5  0  0.5  1  1.5  2

x

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

y

Soient p1 = (−1, 0) et p2 = (0, 0). Alors la courbe de niveau 0 de f définit implicitement, localement, y
comme fonction de x:

� ni en p1, ni en p2.

� en p1, mais pas en p2.

� en p2, mais pas en p1.

� en p1 et en p2.

Commentaire : Cette question vise à apprécier la compréhension géométrique que vous avez du
théorème des fonctions implicites. La fonction F est de classe C 1 et F (p1) = F (p2) = 0 (ce qui traduit
simplement le fait que p1 et p2 appartiennent à la courbe de niveau 0 de F ). La seule hypothèse qu’il
reste à vérifier est que ∂F

∂y 6= 0, autrement dit que la tangente à la courbe n’est pas verticale. C’est bien
le cas en p2, mais pas en p1.

On aurait pu poser la question en donnant l’expression de F , en l’occurrence pour ce graphique F (x, y) =
xey + y + x2, mais posée ainsi, la question est instructive sur l’approche physique des choses.
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7) Soit

F (t) =

∫ t2

1√
3

arctg(tx)

x
dx.

Alors F ′(1) vaut:

�
π

12

�
π

2

�
5π

12

�
7π

12

Commentaire : Posons f(x, t) = arctg(tx)
x . Alors

F ′(t) = 2tf(t2, t) +

∫ t2

1√
3

∂f

∂t
(x, t)dx

= 2t
arctg(t3)

t2
+

∫ t2

1√
3

1

1 + (tx)2
dx

Nous sommes capables de calculer l’intégrale, mais la question demande simplement F ′(1), donc nous
pouvons d’emblée nous simplifier la tâche et prendre t = 1.

F ′(1) = 2
π

4
+

∫ 1

1√
3

1

1 + x2
dx

=
π

2
+ [arctg(x)]11√

3

=
π

2
+
π

4
− π

6

=
7π

12

3 Questions plus difficiles

Les questions suivantes sont d’un niveau plus relevé que le niveau moyen attendu des questions de
l’examen final.
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1**) Soit f : R2 → R de classe C 1 telle que ∀(x, y) ∈ R2, ∂f∂x (x, y) = ∂f
∂y (x, y). Alors f(−1, 1) = f(1,−1).

� VRAI � FAUX

Commentaire : Le fait que ∀(x, y) ∈ R2, ∂f∂x (x, y) = ∂f
∂y (x, y) signifie que le gradient, quand il n’est

pas nul, est dans la direction décrite par le vecteur directeur (1, 1). On peut donc avoir l’intuition que
les courbes de niveau de f , qui doivent être orthogonales au gradient, sont les droites de pente -1. En
l’occurrence, les points (−1, 1) et (1,−1) sont tous les deux sur la droite d’équation y = −x, qui est de
pente -1. On peut donc avoir l’intuition que cette proposition est vraie.
Nous pouvons confirmer cette intuition par le calcul. Soit

g : R→ R
t 7→ f(t,−t)

Alors g est dérivable sur R et ∀t ∈ R,

g′(t) =
∂f

∂x
(t,−t)− ∂f

∂y
(t,−t) = 0 d’après l’hypothèse

Donc g est une fonction constante sur R. En particulier, g(−1) = g(1), d’où f(−1, 1) = f(1,−1).

2*) On considère la fonction g : R2 → R dont le graphique est représenté par la figure ci-dessous. Alors
les dérivées partielles de g existent en (0, 0).

z = g(x,y)

-8 -6 -4 -2  0  2  4  6  8
x

-8
-6

-4
-2

 0
 2

 4
 6

 8

y

-10

-5

 0

 5

 10
z

� VRAI � FAUX

Commentaire : La fonction est ”pointue” en (0, 0). Si on coupait ce graphique par le plan xz, on
aurait un graphique s’apparentant à une fonction valeur absolue. Cette dernière n’est pas dérivable en
0 car ses dérivées à droite et à gauche ne sont pas égales. Pour les mêmes raisons, g n’a pas de dérivée
partielle par rapport à x en (0, 0). Il en va de même pour la dérivée partielle en y.
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3*) Soit

f : R2\{(0, 0)} → R

(x, y) 7→ 1

9

x6 + 3x4y2 + 3x2y4 + y6

tg(x2 + y2)− (x2 + y2)

Alors:

� f n’est pas prolongeable par continuité en (0, 0).

� f est prolongeable par continuité en (0, 0) avec la valeur 0.

� f est prolongeable par continuité en (0, 0) avec la valeur
1

3
.

� f est prolongeable par continuité en (0, 0) avec la valeur 1.

Commentaire : On reconnâıt au numérateur l’identité

x6 + 3x4y2 + 3x2y4 + y6 = (x2 + y2)3

Ainsi, en posant r = x2 +y2, on a
(x,y)→(0,0)
r → 0 et le problème revient à déterminer l’existence et, le cas échéant,

la valeur de

lim
r→0

1

9

r3

tg(r)− (r)

La solution la plus simple est d’utiliser le développement limité de tg au voisinage de 0:

tg(r) = r +
1

3
r3 + or→0(r3)

Alors
1

9

r3

tg(r)− (r)
=

1

9

r3

1
3r

3 + o(r3)
r→0

→ 1

3

Si l’on ne connâıt pas par cœur le développement limité de tg, on peut également utiliser la règle de
Bernouilli-l’Hospital:

lim
r→0

1

9

r3

tg(r)− (r)
= lim
r→0

1

9

3r2

tg2(r)

= lim
r→0

1

3

r2

sin2(r)
cos2(r)

= lim
r→0

1

3
(

r

sin(r)
)2︸ ︷︷ ︸

r→0
→1

cos2(r)︸ ︷︷ ︸
r→0
→1

r→0

→ 1

3
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4*) Soit

f : R2\{(0, 0)} → R

(x, y) 7→ 2
x6 + 3x4y2 + 3x2y4 + y6

x6 + y6

Alors:

� f n’est pas prolongeable par continuité en (0, 0).

� f est prolongeable par continuité en (0, 0) avec la valeur 0.

� f est prolongeable par continuité en (0, 0) avec la valeur 1.

� f est prolongeable par continuité en (0, 0) avec la valeur 2.

Commentaire : De même que pour la question 3), on peut simplifier le numérateur et étudier
l’existence de la limite en (0, 0) de

f(x, y) = 2
(x2 + y2)3

x6 + y6

En l’occurrence, ∀k ∈ N∗,

f(
1

k
, 0) = 2

k→+∞
→ 2

Mais

f(
1

k
,

1

k
) = 2

( 2
k2 )3

2
k6

= 8
k→+∞
→ 8
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