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Analyse II — Série 9

Exercice 1. (Laplacien)
Soit f : R? — R une fonction de classe C? et soit la fonction f : R? — R définie par

F(u,0) = f(o(w,0),y(u,0)  oi {53@5'

: . Pf  Of :
Exprimer le laplacien Af = —= + —= par rapport aux variables u et v.

oxr?  0y?

Exercice 2. (Changement de coordonnées)

Soit D C R? et soit H: D — R? le changement de coordonnées défini par (u,v) = H(x,y) avec

u=az*+ 2y, v=-L .

NG

i) Trouver le domaine D et 'image D de H. Calculer la transformation inverse G: D — D
ainsi que sa matrice jacobienne Jg(u,v) et évaluer cette derniere en (u,v) = H(x,y).

it) Calculer (Jp(z, y))_1 et comparer avec le résultat de 7). L’égalité obtenue est-elle vraie
en général?

Exercice 3. (Laplacien en coordonnées polaires)
0*f  O*f

Soit f : R? — R une fonction de classe C?. Exprimer le laplacien Af = —% + —=
ox?  Oy?

par rapport

aux coordonnées polaires r et p ou

{2

Exercice 4. (Coordonnées sphériques)
Soit G: R% x [0, 7] x [0,27[ — R*\ {0} le changement de coordonnées défini par (z,y,z) =
G(p, 0, p) avec
x = psin(f) cos(yp)
y = psin(0) sin(p)
z = pcos(d)
i) Vérifier que (z,y, 2) = G(p, 8, p) se trouve sur la sphere de rayon p pour tout 0 et .

ii) Calculer la matrice jacobienne Ji de G et son déterminant.

1 Ex. 5 et 6 au verso.



iii) Soit f : R — R une fonction de classe C! telle que la fonction composée f o G ne
dépend que de p. Exprimer le gradient V f = (%, g—i, %) par rapport aux coordonnées
sphériques.

Exercice 5. Soit g : R? — R? une fonction de classe C"! telle que ¢g(1,1) = (1,1) et sa matrice
Jacobienne est donnée par l'expression si-dessous pour tout (z,y) € R2 Trouver la valeur
g(—1,2) et les domaines E C R? ot la fonction g est localement bijective.

i)
i = (5 )

2 2
nean=( 42,

Exercice 6. (Dérivées d’intégrales avec parametre)

i)

Pour les fonctions F': |1, 00— R définies ci-dessous, calculer la dérivée F'(t).

)P = /2 %(ii)(w)dx W) F(t) = /t log(a? + 1) da
Vi ta®
i) F(t) = /1 —
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Exercice 7. (Récurrence sur deux variables)

Démontrez la proposition suivante par récurrence sur deux variables (méthode carrée). Essayez
d’écrire votre argument avec clarté et concision, sous forme de phrases compléetes:

Soient { f,, }nen les nombres de Fibonacci: fo =0, fi =1, et f,12 = fi + fny1 pour tout n € N,
et {l,}nen les nombres de Lucas: o = 2,01 = 1, et l,,4 0 = l,, + l,,41 pour tout n € N. Alors pour
tout m,n € Non a

1
frman = D) (fmln +lmfn) -
Exercice 8. (Récurrence sur deux variables)

Choisissez la méthode et démontrez la proposition:
Soient { f,, }nen les nombres de Fibonacci, et {l,},en les nombres de Lucas: Iy = 2,13 = 1, et
lyro =l + 1,41 pour tout n € N. Alors pour tout n € Net tout k e N: k <nona

fn+k + (_1)kfn—k = lkfn



