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Analyse I — Série 13

Exercice 1. (Intégration sur un pavé fermé)

Calculer I'intégrale / / yY 3 dz dy en intégrant d’abord

(1) par rapport a x (1) par rapport a y.

Comparer les résultats.

Exercice 2. (Intégrales doubles)

Calculer les intégrales suivantes et esquisser leur domaine d’intégration :
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Exercice 3. (Intégration sur un domaine)

Calculer I'intégrale double / f(z,y)dxdy et esquisser le domaine d’intégration D si
D

i) flz,y) =Vr+y, D={(z,y):0<2<2 0<y<1}
i) f(z,y) =2y, D={(r,y):0<y<z? 0<z<2}
ii) flz,y)=|@-y)la+y—-2)], D={(z,y):0<sy<wz r+y-2<0}

Exercice 4. (Théoréeme de Fubini)

Evaluer les intégrales suivantes et esquisser leur domaine d’intégration :
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Exercice 5. (Décomposition du domaine)

Esquisser le domaine D = {(z,y) : y?> <, z — 6 <y < x} et calculer son aire.

Exercice 6. (Changement de variables)

Soient les domaines D, E C R? et f: D — R une fonction intégrable. Soient G: £ — D et
H: D — E des applications bijectives telles que G = H~! et notons

G(u,v) = (G1(u,v), Ga(u, v)) et H(z,y) = (Hi(z,y), Ha(z,y)).

L’intégrale de f sur D est alors (cf. cours)
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est la matrice Jacobienne de G.

1 Ex. 7 au verso.



i) Dans le cas des coordonnées polaires sur R? \ {(0,0)}, définir 'application G et calculer
son Jacobien. Calculer aussi le Jacobien de H.

ii) Calculer 'aire du secteur circulaire Cg, de rayon R > 0 et d’angle o par une intégrale
double.

it1) Calculer I'aire de la région

E={(z,y) eR* : =Bz <y <V3z, (z—-1)72+y* <1}

Exercice 7. (Comparaison de méthodes)

Calculer I'aire du parallélogramme représenté ci-dessous d’abord sans et ensuite avec change-
ment de variables. Un changement de variables vous semble-t-il utile dans ce cas?

Ya

Si
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Exercice 8. (Méthodes de démonstration)

Pour chacune des propositions suivantes, choisissez la méthode convenable. Démontrez la
proposition. Essayez d’écrire votre argument avec clarté et concision, sous forme de phrases
completes:

i) Soit m > 2 un nombre naturel qui n’est pas premier. Alors n admet un diviseur premier
p tel que p < /n.

it) Soit M l'’ensemble des nombres naturels qui s’écrivent en utilisant seulement les chiffres
0 et 2. Par exemple, 20, 22,202, 2222000 € M. Démontrez que pour tout n € N* il existe
m € M divisible par n.

iii) Soient {f,}nen les nombres de Fibonacci: fo = 0, f1 = 1, fuie = fu + for1 pour tout
n € N. Démontrer que pour tout n € N

e () - (59)

iv) Soient {f,}nen les nombres de Fibonacci: fo = 0, f1 = 1, fuio = fu + far1 pour tout
n € N | et {l,}nen les nombres de Lucas: [y = 2,1; = 1, et l,.9 = l,, + L1 pour tout
n € N. Alors pour tout m € Net tout n € N: n <mon a




