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Analyse II — Série 11

Exercice 1. (Extremums, R?)
Déterminer les points stationnaires des fonctions f: R? — R suivantes et étudier leur nature.
i) f(z,y) =2+ 3y* + cos(x) it) f(x,y) = 2% —y® + 2% + 22y + ¢?

iit) f(z,y) = —32% + zy* — y*

Exercice 2. (Extremums, R?)
Déterminer les points stationnaires des fonctions f: R? — R suivantes et étudier leur nature.

i) f(x,y,2) = =222 —5y? — 22 +4ay+2yz+2 it) f(x,y,2) = 22%—3w22 +y3+322 -3y +4

Exercice 3. (Extremums absolus, R?)
Déterminer les extremums absolus de la fonction f: D — R définie par
i) flmy)=2"—ay+y’—x—y, ot D={(z,y):2>0,y=>0, z+y<3}

i) f(z,y) =22% — a2y +2y* — 62 — 6y, ou D={(r,y):y >0, 22 +y> <32}

Indication: Le polyndéme qui apparaitra admet aussi des racines entieres.

Exercice 4. (Extremums absolus, R?)

Soit f : R® — R une fonction de classe C* telle que
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Déterminer les extremums absolus de f sur le domaine

D={(z,y,2) :0<2<a,0<y<b,0<2<¢}, ouabc>0,

sachant que f(0,0,0) = 3.

Exercice 5. (Application a la géométrie)

Trouver le point P(x,y) a l'intérieur du triangle ABC' pour lequel le produit des distances aux
droites d’équations =0, y=0 et z+y=a (a>0) est maximale.

1 Ex. 6, 7 et 8 au verso.



X+y=a
P(X,y)
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Exercice 6. (Fonctions implicites)

Vérifier que I'équation F(z,y) = 0 définit implicitement une fonction y = f(z) dans un voisi-
nage de 0 et calculer la dérivée f'(0).

i) F(x,y) =22° — 2%y* + 2> + 30 — 2

it) F(x,y) = ze¥ + ye® + 2
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Exercice 7. (Cyclicité de la trace)

Démontrez les propositions suivantes. Essayez d’écrire votre argument avec clarté et concision,
sous forme de phrases completes:

i) Soit n > 2 et A, B deux matrices n x n réelles. Démontrez que Tr(AB) = Tr(BA).

i1) Soient A, B, C trois matrices 2 x 2 réelles. Démontrez par contre-exemple qu’en général
Tr(ABC) # Tr(BAC).

iii) Soit n > 2 et A, B, C trois matrices n x n réelles. Démontrez que Tr(ABC') = Tr(CAB).

Exercice 8. (Critere de Sylvester, n = 2.)

Soit
ros
M=
une matrice symétrique réelle, et \;, Ay ses valeurs propres. On a démontré au cours 19 que
i) A1 >0,A >0« detM > 0,r > 0.

i) A1 et Ag sont de signes opposés < detM < 0.

Démontrez la propositions suivante: \; < 0, Ay < 0 < detM > 0,7 < 0.



