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Analyse II — Série 10

Exercice 1. (Approximation de Taylor dans R3)

Soit f: D — R, D C R?® ouvert, une fonction de classe C? et soit (g, yo, 20) € D. Donner les
développements limités i) linéaire et i) quadratique de f au voisinage de (o, Yo, 20)-

Exercice 2. (Approximation de Taylor)

Déterminer le polynéme de Taylor d’ordre n de la fonction f au voisinage du point donné.

i) flz,y) =2y +2zy+3y* —dz+1, n=2, (z0,%0) = (0,0)
it) f(x,y,z) =e* 4+ ysinh(z), n=2, (20, Yo, 20) = (0,0,0)
iti) f(z,y) =3zy +2* —y+5r—3, n=1, (w0, 40) = (1,—2)
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i) flz,y) = (cos(x))*™", n=1, (20, 0) = (%, 7)
Pour i), vérifier que I'erreur R(z,y) satisfait lim, ) (0,0 % =0.

Exercice 3. (Approximation de Taylor, méthode DL)

Si f : R™ — R est une fonction composée f(z) = g(h(z)) telle que g : I — R est une fonction
d’une seule variable, et h(Z) : R™ — R est un polynome, alors pour trouver le développement
limité de f autour du point a il est convenable d’utiliser le développement limité de la fonction
g = g(t) autour du point ty = h(a), et puis de remplacer t = h(Z).

Calculer le polynome de Taylor d’ordre 2 de la fonction f au voisinage du point donné par la
formule de Taylor pour les fonctions de plusieurs variables et par la méthode DL, et comparer
les résultats.

2) f(xa Y, Z) = 62$Z+y 5 (l‘o, Yo, ZO) = (07 07 O)
it) fz,y) =sin(2z +y?), (0, y0) = (1,1)

Exercice 4. (Points stationnaires)

Pour les fonctions f: R? — R données ci-dessous, étudier la nature du point stationnaire (0, 0).
Astuce: si le déterminant de la matrice hessienne est zéro, essayer de déterminer la nature du
point stationnaire a partir de la définition du maximum (minimum) local.

i) flz,y) =2"+y° i) flz,y) =2"—y° i) f(r,y) =—2*+y?
w) f(r,y) =—2*—y? v) f(z,y) = 2" +y* vi) f(z,y) =a* —y*
vii) f(x,y) =2%+9° viii) f(z,y) = —zt —y?

Exercice 5. (Points stationnaires des fonctions de 2 variables)

i) Diagonaliser la matrice A = (_62 _32)

1 Ex. 6 et 7 au verso.



it) Soit f:R? — R donnée par la formule f(z,y) = 3z* — 2zy + 3y, Vérifier que (0,0) est
le seul point stationnaire de f et que la matrice hessienne de f au point (0,0) est donnée
par la matrice A dans 7). Quelle est la nature du point stationnaire (0,0)?

i) Soit (u,v)T = OT(z,y)T le changement de variables effectué par la matrice orthogonale O
des vecteurs propres de A trouvée dans 7). Exprimer la fonction f(z,y) par rapport aux
variables (u,v) et déduire la nature de son point stationnaire (0,0).

i) Calculer les coordonnées (u,v)” = OT(x,y)" correspondant aux vecteurs propres de la

matrice hessienne pour la fonction f(z,y) = 4xy autour de son unique point stationnaire
et en déduire sa nature.
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Démontrez les propositions suivantes. Essayez d’écrire votre argument avec clarté et concision,
sous forme de phrases completes:
Exercice 6. (Nombres de Fibonacci, méthode carrée)

Soient { f,, }nen les nombres de Fibonacci: fo =0, f1 =1, et fr12 = fn + fny1 pour tout n € N.

i) Démontrer par la méthode carrée que pour tout m,n € N on a
fm+n+1 = fnfm + fn+1fm+1'

i1) Utiliser (a) pour démontrer que pour tout ¢t € N, k£ > 1 on a

Sk = ferrSe + e froa
En déduire que f;, divise fy pour tout £k > 1, ¢t > 1.

Exercice 7. (Nombres de Fibonacci, méthode diagonale). Démontrez la méme proposition
par la méthode diagonale suivant les étapes indiquées.

Soient { f,, }nen les nombres de Fibonacci: fo =0, fi =1, et f,12 = fi + fny1 pour tout n € N.
Alors pour tout m,n € N on a

fm+n+1 = fnfm + fn+1fm+1~
i) Démontrez que P(n,0) est vraie pour tout n € N.
it) Démontrez que pour tout m,n € N P(n + 1, m) implique P(n,m + 1).

i11) En déduisez que P(n,m) est vraie pour tout n,m € N.



