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Analyse II — Série 8

Exercice 1. (Dérivée directionnelle et dérivabilité)
Soit la fonction f: R* — R définie par
2

o) = e @900

0, ($,y) :(070)

et soit € = (cos(p),sin(yp)), ¢ € [0,27[ un vecteur unitaire.

i) Calculer Df((0,0),ée).
i1) La fonction f(z,y) est-elle dérivable en (0,0)?

Exercice 2. (Dérivée directionnelle)
Soit la fonction f: R? — R définie par
2

o) Ay @000

0, (:E,y):(0,0)

et soit € = (u,v) un vecteur unitaire. Calculer D f((0,0),ée).

Exercice 3. (Pente extrémale)

Soit la fonction f(x,y,2) = zyz et soit le point py = (1, -1, 2).
i) Trouver la dérivée directionnelle de f en po suivant le vecteur v = 3(2,—1,2).

i1) Soit @ un vecteur unitaire exprimé en coordonnées sphériques, c.-a-d.

u = (sin(#) cos(p), sin() sin(e), cos(f)).
Calculer la pente de f en py suivant le vecteur u en fonction de (6, ¢).

iii) Trouver les valeurs de 6 et ¢ pour lesquelles la pente de f en py est maximale (respec-
tivement minimale).

Exercice 4. (Deuxieémes dérivées partielles)

Soit la fonction f:R? — R définie par

1 Ex. 5, 6, 7 et 8 au verso.



82
(0,0) et %(O7 0). La fonction f est-elle de classe C* sur R??
1oy

0% f
Oyox

Calculer

Exercice 5. (Dérivée en chaine)

Calculer la dérivée de la fonction
fi]1, 00l R, £+ f(t) = In(t)®
i) comme dérivée de la fonction d’une seule variable

i) en utilisant que f(t) = (g o h)(t) avec g(x,y) = ¥ et h(t) = (In(t),sin(t)).

Exercice 6. (Matrice jacobienne d'une fonction composée)

i) Soit f: R? — R? donnée par f(z,y) = (zy, * —y)T. Trouver la matrice jacobienne de la
fonction composée f o f: R? — R2

ii) Soient g : R? — R3 donnée par g(z,y) = (ye®, ze?, sin(x —y))7,

et h: R® — R? donnée par h(u,v,w) = (vw, w?* —v)T.
Trouver les matrices jacobiennes des fonctions composées Jyoq(, y) €t Jyon(u, v, w).
Quel est le determinant de la matrice Jyop(u, v, w)?
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Exercice 7. (Démonstrations par récurrence)

Démontrez les propositions suivantes par récurrence. Essayez d’écrire votre argument avec
clarté et concision, sous forme de phrases completes:

i) Soient {f,}nen+ les nombres de Fibonacci: fi = fo = 1, et fhy0 = fu + for1 pour tout
n € N*. Alors pour tout n > 2 naturel, le nombre de Fibonacci f, est égal au nombre
des suites de 1’s et 2s telles que la somme d’éléments de chaque suite est (n — 1).
Exemple: n = 5. Les suites avec a; € {1,2} telles que la somme ) .a; = 4 sont les
suivantes:

{1,1,1,1}, {1,1,2}, {1,2,1}, {2,1,1}, {2,2}.

Le nombre des suites satisfaisant les conditions est 5 = f5.

it) (Récurrence forte). Tout nombre naturel positif n > 1 est une somme des puissances
distinctes de 2:
n=2M42k 4 2k

ou k1 < ke < ... < k, sont des entiers naturels distincts. Astuce: Pour construire la
récurrence considérez le plus grand k naturel tel que 2F <n + 1.

Exercice 8. (Vrai /Faux /Peut-étre)

Soit P(n) une proposition telle que pour tout n naturel, P(n) implique P(n + 3). Pour chaque
des propositions suivantes, décidez si elle est (a) toujours vraie, (b) toujours fausse (¢) peut
étre vraie ou fausse.

i) P(0) est fausse et P(n) est vraie pour tout n > 1.
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1 n) est vraie pour tout n < 80 et fausse pour tout n > 81.

i 9) implique P(3(n + 3)) pour tout n naturel.
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P
P(n) est fausse pour tout n < 66 et vraie pour tout n > 69.
P

v 3n) est vraie et P(3n + 1) est fausse pour tout n naturel.

)
)
iv)
)
)

vi) Il existe n, m naturels tels que P(3n) est vraie et P(3m) est fausse.



