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Analyse II — Série 7

Exercice 1. (Dérivées partielles, dérivabilité)

Soit la fonction f:R? — R définie par

.4
ysin®(x)
1, 1 > ) 07 0
Fany) =4 2t 1y (z,y) # (0,0)
0, z,y) = (0,0)
i) Montrer que f est continue sur R2.
g e : of of : .
i) Calculer les dérivées partielles 8_<O’ 0) et @—(0, 0), si elles existent.
z Y
iii) Est-ce que f est dérivable en (0,0)7
Exercice 2. (Dérivabilité)
Soit la fonction f: R* — R définie par
ﬂa (x7y>7é(0’0)
fl@y) = 22+
0, (z,y) = (0,0)

i) Montrer que f est continue sur R?.

0 0
Montrer que les fonctions —f et —f sont définies sur R2.

)
)
or Oy
i11) Montrer que f est dérivable en tout (x,y) # (0,0).
)
)

1
iv) Montrer que f n’est pas dérivable en (z,y) = (0,0).

.0 :
v) Est-ce que les fonctions of et == sont continues en (z,y) = (0,0)?
€ Y

Exercice 3. (Dérivabilité)

Soit f: R? — R la fonction définie par

o) = ryln(z? +v%), (z,y) # (0,0)
f(z,y) {07 o

i) Montrer que f est de classe C'.
i1) Calculer les dérivées partielles secondes de f. Est-ce que f est de classe C??

ii1) Est-ce que f est dérivable sur R??

1 Ex. 5, et 6 au verso.



iv) Calculer les dérivées directionnelles de f en @ = (0,0) et b = (—1,1) suivant le vecteur
U = (v1,v3) € R?, © # 0. Trouver tous les vecteurs unitaires 7 € R?, ||o]] = 1 tels que
Df(a,v) = Df(b,v) = 0.

Exercice 4. (Plan tangent)

i) Déterminer I'équation du plan tangent a la surface z = 23y + 22 + y* au point (1,1, 3).

ii) Trouver 'équation du plan tangent a la surface z = f(z,y) ou f(z,y) est définie dans
I'Exercice 3, au point (—1,1, f(—1,1)).

iii) Soit g : R — R une fonction de classe C* sur R, et posons f(x,y) =xg (Q) Démontrer
T

que pour tout couple (g, yo) € R? tel que zg # 0, le plan tangent & la surface z = f(z,y)
au point (xg, Yo, f(x0, yo)) passe par 'origine (0,0,0).

Exercice 5. (Questions vrai/faux)

QO1 : Soit une fonction f: D — R, (z,y) — f(z,y), et soit (zg,yo) € D ou D C R? est ouvert.
Si f est dérivable en (xg,yo), alors

0 0
8_£($0’ Yo) et 8—5(350, Yo)

existent.

QO02 : Soit une fonction f: D — R, (z,y) — f(z,y), et soit (zo,yo) € D ou D C R? est ouvert.
Si les dérivées directionnelles D f((xg, o), ?) existent pour tout v € R?, alors f est dérivable
en (o, Yo)-

QO3 : Soit une fonction f: D — R, (z,y) — f(x,y), et soit (zo,yo) € D ot D C R? est
ouvert. Si les dérivées directionnelles D f((x,y),v) existent dans un voisinage de (xo, o) et
sont continues en (xg, o) pour tout v € R?, alors f est dérivable en (zg, yo).

Q04 : Soit une fonction f: D — R, (z,y) — f(x,y), et soit (zo,y0) € D on D C R?
est ouvert. Si les dérivées partielles g—i(x,y) et g—g(x,y) existent et sont continues dans un
voisinage de (xg,yo), alors toutes les dérivées directionnnelles D f((z,y),v) existent dans un
voisinage de (zo, yo) et sont continues en (xg,yo) pour tout v € R

QO05 : Soit une fonction f: D — R, (z,y) — f(z,y), et soit (zo,yo) € D ou D C R? est ouvert.
Si f est dérivable en (zg,y0) et v € R?, ||0]| = 1 est tel que D f((xo,%0),0) = ||V f (0, y0)|l,
alors v est unique.
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Exercice 6. (Démonstrations par récurrence)
Démontrez les propositions suivantes par récurrence. Essayez d’écrire votre argument avec

clarté et concision, sous forme de phrases completes:

i) Pour tout n € N*

n

S (kk)=(n+1)! -1

k=1
i) Soit a, = 25" — 19", n € N*. Alors a,, est divisible par 6 pour tout n € N*.
iii) Supposons que dans un certain pays les seules monnaies en circulation sont de 3 et 5

centimes. Montrer que pour tout n > 8 naturel, il est possible de payer n centimes en
utilisant des monnaies disponibles.



