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Analyse II — Série 5

Exercice 1. (L’adhérence)

Pour chaque sous-ensemble £ C R”, trouver son adhérence et sa frontiere.

i) E={2=(r1,29,...,2,) ER" n>2:2;,=0,i=2,...n}
i) E={% = (21,29,...,2,) ER" n>1:|Z|]| <2,||z —al]| >1,a € R"}
iii) E={7 = (v1,29,...,2,) ER" n>1:21 #1,}

Exercice 2. (QCM: Sous-ensembles compacts de R™)

Trouver le seul sous-ensemble compact parmi les sous-ensembles de R™ suivants

a) E={z = (z1,22,...,2,) € R n>1:||Z]| <2,||z—a|]| > 1,a € R"}
b) E={%=(1,22,...,2,) ER"n>1:2, £ 1,|]7]| < 5.}

c) E=A{z2 = (v1,29,...,2,) ER" n>1:29=0,]||z|| <5}
d)E={z=(x1,29,...,2,) ER" n>2:2,=0,i=2,...n}

Exercice 3. (Ouvert, fermé, ni ouvert ni fermé)

Pour chaque sous-ensemble £ C R”, déterminer s’il est
a) Ouvert,

b) Fermé,

¢) Ni ouvert ni fermé.

i) A={(z,y) eR* : /(& +y)* -5z +y)+6 <2}

i) S={(z,y) eR? : >0, v <y<2?}

Exercice 4. (VF: Sous-ensembles dans R™)

Soient E, F, A C R", n > 1 trois sous-ensembles non vides avec les complémentaires non vides.
Pour chaque des propositions suivantes, déterminer si elle est vraie ou fausse:

iYVECF = ECF.

i) ECF = A\FCA\E.
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i) ECF = E\ACF\A.
)
)

OF Cco0F =— FECPF.



Exercice 5. (Fonctions réelles des deux variables réelles)

Trouver l'image et esquisser le graphique des fonctions f: [—1,1] x [—1,1] — R suivantes:

i) fle,y) =1 it) f(z,y) = ii) f(z,y) =y w) flr,y) =z+y
v) flry)=z-y v flry)=-2r-y-1 vii) [f(x,y) = a?

viii) f(x,y) = 2? + y?

Exercice 6. (Limites)

Calculer les limites suivantes si elles existent:

. . z? — 3y g . 20 — 3y , sin(z? + y?)

i) lim > it)  lim @ ———— i) lim  ——t
(zy)—(21) T + 2y (z.9)—(0,0) 5|z| + 2|y (@y)—(00) 124y

Exercice 7. (Limites non-existantes)

Pour chaque limite lim, ,—(0,0) f(Z) trouver deux suites {a,} et {b,} d’éléments de R* conver-
gentes vers (0,0) et telles que

lim f(an) # lim f(by).

Conclure que la limite lim, 40,0y f(Z) n’existe pas.
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Exercice 8. (Démonstrations directes: topologie dans R™)

Démontrez les propositions suivantes en utilisant les astuces données. Essayez d’écrire votre
argument avec clarté et concision, sous forme de phrases completes:

i) Soit n,p € N*, et @y, as, ... a, les éléments distincts de R™.
Alors 'ensemble A = {ay, as,...a,} C R™ est compact.

Astuce: (a) Trouver M > 0 tel que A C B(0, M), (b) Démontrer que A est réunion finie
des sous-ensembles fermés.

i) Soit t € [0,7] et E = {(z,y,2) € R® : x = cos(t), y = sin(t),z = t}. (Graphique d'une
hélice circulaire).

(a) Démontrer que [0, 7] est un sous-ensemble fermé de R.

(b) Démontrer que F est un sous-ensemble fermé de R3. Astuce: Utiliser la car-
actérisation d’un sous-ensemble fermé: E C R™ est fermé si et seulement si E
contient les limites des toutes les suites convergentes d’éléments de E.



iii) Soit B = {(z,y) eR*:0< 2,y <1, 2€Q, y € R\ Q}. Montrer que E = {(z,y) € R?:
0<zxy<1}.
Astuce: Soit S = {(z,y) € R?* : 0 < z,y < 1}. Montrer que tout (a,b) € S est la limite
d’une suite d’éléments de E, et que toute suite convergente d’éléments de E converge vers
un élément de S. Utiliser que Q et R\ Q sont denses dans R.



