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Analyse II — Série 1

Exercice 1. (Intégration)

Quelle est la solution générale de chacune des équations suivantes?

i) y =2z i) y' =a, ola€R iii) y" = 3sinw

Exercice 2. (Séparation des variables)
Trouver la solution générale de chacune des équations suivantes :

i) Y=y, ou AeR it) v =2y(5—1y) iii) v =y +1

w) ¥y =y+1, v) y’+%:0 vi) xy —y =1y

Exercice 3. (Intégration: conditions initiales, solutions maximales)

Pour les équations différentielles données trouver (a) la solution générale et (b) la solution
maximale satisfaisant les conditions initiales données.

i) y = 2e” — 4z + 1, condition initiale y(1) = 2e.
i1) y" = sinx cos z, conditions initiales y (g) =0, y(0)=1

i1i) y" = sinx cos x, conditions initiales y(0) = 1, 3'(0) = 0.

Exercice 4. (Séparation des variables: conditions initiales, solutions maximales)

Pour les équations différentielles données trouver (a) la solution générale et (b) la solution
maximale satisfaisant les conditions initiales données, si une telle solution existe.
/
i) L —sinz, condition initiale y(0) =
Y

i1) yy =1, condition initiale y(0) = 0.
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iii) yy = z, condition initiale y(0) = 0.

Exercice 5. (Equation linéaire a coefficients constants)

i) Vérifier que pour w € R\ {0}, les fonctions y: R — R, y(z) = C; cos(wz) + Cy sin(wx)
avec (', Cy € R satisfont 1’équation

y' +wly=0. (1)

i) Quelle est la solution générale de (1) pour w =07

i1) Siw = 7, donner les valeurs de C} et Cy pour les conditions initiales y(1) = 3 et y'(1) = 2.

1 Ex. 6, 7 et 8 au verso.



Exercice 6.

Vérifier que les fonctions y données ci-dessous satisfont I’équation

/ 2y(I — 1)

| +log(y* +1)=0.

i) y(x) =0 pour z € R.
i) y(z) = £/ e(351) — 1, pour, respectivement, x > 1 et C' > 0,oux < 1et C <O0.

Déterminer la valeur de C' pour chacune des conditions initiales y(2) = —3 et y (—%) =2.
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Exercice 7. (Démonstration directe)

Démontrer les propositions suivantes. Essayez d’écrire votre argument avec clarté et concision,
sous forme de phrases completes:

i) Soit x € R tel que 0 <z < 2. Alors —2® + 4z +1 > 0.

ii) Soit n € N4. Alors logy; n est un entier ou un nombre irrationnel.
Astuce: Utiliser le théoreme fondamental de 'arithmétique: tout entier positif possede
une unique décomposition en produit de facteurs premiers, a I’ordre pres des facteurs.

Exercice 8. (Faux arguments)

Trouver les fautes dans les arguments suivants:

i) Soit S =7 (—1)". Alors on a
S=1-1+1-1+1-1+... = (I-D)+(1-D)+(1-1)+... = i((—1)2i+(—1)2i+1) = io = 0.

Donc la série Y ;= (—1)" converge vers 0.
ii) Sia,b € R sont tels que a = b, alors a =0 :
a=b = a=ab = -V =ab-b = (a—b)la+b)=(a—0b)b
= a+b=0b0b = a=0.

iii) Soient P, @, R des propositions tels que P = @) = R, et R est une proposition vraie.
Alors P est vraie.

Astuce: Est-ce possible de dériver une conclusion vraie d’une proposition fausse? Essayez
de dériver une conclusion vraie de la proposition “y/3 est un nombre rationnel”.



