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Analyse II
Résumé: Calcul intégral des fonctions des plusieurs variables.

Définitions et résultats.

1. Un pavé fermé P ⊂ Rn est un produit cartésien de n intervalles fermés bornés

P = [a1, b1, ]× [a2, b2]× . . .× [an, bn].

2. Une subdivision D(σ) d’un pavé fermé P est un decomposition de P en pavés plus petits
engendrée par la subdivision de chaque intervalle [ai, bi] en sous-intervalles.

3. (Sommes de Darboux). Soit P ⊂ Rn un pavé fermé et f : P → R une fonction bornée.
Soit D(σ) une subdivision de P . On pose

Sσ(f) =
∑

Q∈D(σ)

m(Q)|Q|, Sσ(f) =
∑

Q∈D(σ)

M(Q)|Q|,

où m(Q) est l’infimum et M(Q) le supremum de f sur le pavé Q, et |Q| est le volume de
Q. Alors on définit les sommes de Darboux de f comme

S(f) = sup(Sσ(f)), S(f) = inf(Sσ(f))

où le supremum et l’infimum sont calculés par rapport aux toutes les subdivisions de P .

4. (Intégrale de Riemann). Soit P ⊂ Rn un pavé fermé et f : P → R une fonction bornée
sur P . Alors f est intégrable sur P si et seulement si S(f) = S(f). Dans ce cas l’intégrale
de f sur P est définie par ∫

P

f(x̄) dx̄ = S(f) = S(f).

5. (Théorème de Fubini pour les pavés). Soit P = [a1, b1, ]× [a2, b2]× . . .× [an, bn] ⊂ Rn, et
f : P → R une fonction continue. Alors f est intégrable sur P et on a

∫
P

f(x̄) dx̄ =

bn∫
an

 bn−1∫
an−1

. . .
 b1∫
a1

f(x̄) dx1

 . . . dxn−1

 dxn

 .

6. (Théorème de Fubini pour les pavés, cas n = 2). Soit P = [a, b]×[c, d] ⊂ R2, et f : P → R
une fonction continue. Alors f est intégrable sur P et on a

∫
P

f(x, y) dx dy =

b∫
a

 d∫
c

f(x, y) dy

 dx =

d∫
c

 b∫
a

f(x, y) dx

 dy.
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7. (Intégrale sur un sous-ensemble borné). Soit E ⊂ P ⊂ Rn un sous-ensemble borné. Soit
f : E → R une fonction bornée, et posons

f̂(x̄) =

{
f(x̄) x̄ ∈ E
0 x̄ ∈ P \ E

La fonction f est intégrable sur E si f̂ est intégrable sur P et on pose∫
E

f(x̄) dx̄ =

∫
P

f̂(x̄) dx̄.

8. Soit E ⊂ Rn un sous-ensemble compact telle que la frontière ∂E est assez régulière (de
mesure nulle), et soit f : E → R une fonction borné et continue sur E. Alors f est
intégrable sur E.

9. (Théorème de Fubini pour les domaines réguliers verticaux, cas n = 2). Soit [a, b] ∈ R un
intervalle fermé, et φ1, φ2 : [a, b] → R deux fonctions continues telles que φ1(x) < φ2(x)
pour tout x ∈]a, b[. Soit D = {(x, y) ∈ R2 : a < x < b, φ1(x) < y < φ2(x)}. Alors pour
toute fonction continue f : D → R on a∫

D

f(x, y) dx dy =

b∫
a

 φ2(x)∫
φ1(x)

f(x, y) dy

 dx.

10. (Théorème de Fubini pour les domaines réguliers horizontaux, cas n = 2). Soit [c, d] ∈ R
un intervalle fermé, et ψ1, ψ2 : [c, d]→ R deux fonctions continues telles que ψ1(y) < ψ2(y)
pour tout y ∈]c, d[. Soit D = {(x, y) ∈ R2 : c < y < d, ψ1(y) < x < ψ2(y)}. Alors pour
toute fonction continue f : D → R on a∫

D

f(x, y) dx dy =

d∫
c

 ψ2(y)∫
ψ1(y)

f(x, y) dx

 dy.

11. (Théorème de Fubini pour les domaines régulièrs, cas n = 3). Soit [a, b] ∈ R un intervalle
fermé, et φ1, φ2 : [a, b] → R deux fonctions continues telles que φ1(x) < φ2(x) pour
tout x ∈]a, b[. Soit D = {(x, y) ∈ R2 : a < x < b, φ1(x) < y < φ2(x)}. Soient
G,H : D → R continues, telles que G(x, y) < H(x, y) pour tout (x, y) ∈ D. Soit
E = {(x, y, z) ∈ R3 : (x, y) ∈ D,G(x, y) < z < H(x, y)}. Alors pour toute fonction
continue f : E → R on a∫

E

f(x, y, z) dx dy dz =

b∫
a

 φ2(x)∫
φ1(x)

 H(x,y)∫
G(x,y)

f(x, y, z) dz

 dy

 dx.

Selon la géometrie du domaine, on applique le Théorème de Fubini aux variables conven-
ables.

12. (Additivité de l’intégrale). Soit D ⊂ Rn un domaine compact à frontière réguliére, et
{Di}ki=1 une famille finie des domaines réguliers disjoints tels que D = ∪iDi. Alors pour
toute fonction continue f : D → R on a∫

D

f(x̄) dx̄ =
k∑
i=1

∫
Di

f(x̄) dx̄.
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13. (Linéarité de l’intégrale). Soit D ⊂ Rn un domaine régulier, et f, g : D → R deux
fonctions continues. Alors pour tout couple des nombres réels α, β ∈ R on a∫

D

(αf(x̄) + βg(x̄)) dx̄ = α

∫
D

f(x̄) dx̄+ β

∫
D

g(x̄) dx̄.

14. (Bornes pour une intégrale). Soit D ⊂ Rn un domaine régulier, et f : D → R une fonction
continue telle que 0 ≤ m ≤ f(x̄) ≤M pour tout x̄ ∈ D. Alors on a les inégalités :

m|D| = m

∫
D

dx̄ ≤
∫
D

f(x̄) dx̄ ≤M

∫
D

dx̄ = M |D|,

où |D| est le volume du domaine D.

15. (Changement des variables). Soit E ⊂ Rn un domaine régulier et G : E → Rn une
fonction de classe C1 telle que G : E → G(E) est bijective et JG(x̄) inversible pour
x̄ ∈ E. Soit f : D → R une fonction continue, où D = G(E). Alors on a∫

D

f(x̄) dx̄ =

∫
E

f(G(ū)) |det(JG(ū))| dū.

16. (Changement des variables, coordonnées polaires). Soit G(r, ϕ) = (r cos(ϕ), r sin(ϕ))T .
Alors pour toute fonction continue f : D → R sur un domaine régulier D ⊂ R2 on a∫

D

f(x, y) dx dy =

∫
G−1(D)

f(r cos(ϕ), r sin(ϕ))r dr dϕ.

17. (Coordonnées sphériques). Soit

G(r, ϑ, ϕ) =


r sin(ϑ) cos(ϕ) = x
r sin(ϑ) sin(ϕ) = y
r cos(ϑ) = z

Alors |det(JG(r, ϑ, ϕ)| = r2 sin(ϑ).

18. (Coordonnées cylindriques). Soit

G(r, ϕ, z) =


r cos(ϕ) = x
r sin(ϕ) = y
z = z

Alors |det(JG(r, ϕ, z)| = r.
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