
Analyse II — Démonstrations CHAPITRE 2. DÉMONSTRATIONS À CONNAÎTRE

Idée de la
preuve

Nous partons de notre équation :

g(y) dy

dx
= f(x)

Et, notre théorème nous dit que c’est plus ou moins équivalent à :

f(y)dy = g(x)dx →↑ F (y) = G(x)

Proposition

pour les EDL1

Soient p, f : I ↓↔ R des fonctions continues. Supposons que v0 : I ↓↔ R est une
solution particulière de l’équation suivante :

y
→(x) + p(x)y(x) = f(x)

Alors, la solution générale de cette équation est :

v(x) = v0(x) + Ce
↑P (x)

, ↗C ↘ R

où P (x) est une primitive de p(x) sur I.

Preuve Nous allons montrer que toute solution de cette équation est de la
forme v0(x) + Ce

↑P (x).
Soit v1(x) une solution de y

→(x) + p(x)y(x) = f(x). On a aussi que
v0(x) est une solution de la même équation.
Alors, d’après le principe de superposition de solutions, la fonction
v1(x) ≃ v0(x) est une solution de l’équation :

y
→(x) + p(x)y(x) = f(x) ≃ f(x) = 0

Ainsi, v1(x) ≃ v0(x) est une solution de l’équation homogène :

y
→(x) + p(x)y(x) = 0

Cependant, c’est une EDVS, donc nous savons que la solution
générale de cette équation homogène est :

v(x) = Ce
↑P (x)

, C ↘ R arbitraire

où P (x) est une primitive de p(x) sur I.
On en déduit qu’il existe une valeur de C ↘ R telle que v1(x) ≃
v0(x) = Ce

↑P (x). Ainsi, on obtient que la solution v1(x) est de la
forme :

v1(x) = v0(x) + Ce
↑P (x)

Puisque v1(x) était une solution arbitraire, nous obtenons que l’en-
semble de toutes les solutions de l’équation y

→(x) + p(x)y(x) = f(x)
est :

v(x) = v0(x) + Ce
↑P (x)

, C ↘ R, x ↘ I

Donc, par définition, v(x) est la solution générale.

↭

Proposition

pour le Wrons-

kien

Soient v1, v2 : I ↓↔ R deux solutions de l’équation y
→→(x) + p(x)y→(x) + q(x)y(x) = 0

(EDL2 homogène).
v1(x) et v2(x) sont linéairement indépendants si et seulement si W [v1, v2](x) ⇐= 0
pour tout x ↘ I.

Preuve →=
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Notes par Joachim Favre

Démontrons ce point par la contraposée. Nous voulons donc montrer
que les solutions sont linéairement dépendantes implique qu’il existe
x ∈ I tel que W [v1, v2](x) = 0.
Puisque nos deux solutions sont linéairement dépendantes, nous
pouvons prendre sans perte de généralité qu’il existe c ∈ R tel
que v1(x) = cv2(x) (si plutôt v2(x) = cv1(x), nous pourrions juste
échanger les noms, d’où le “sans perte de généralité”).
Ainsi, nous avons :

W [v1, v2](x) = det
(

v1(x) cv1(x)
v′

1(x) cv′
1(x)

)
= cv1(x)v′

1(x) − cv1(x)v′
1(x)

= 0, ∀x ∈ I

Nous avons donc trouvé que le Wronskien est nul pour tout x sur
cet intervalle, donc il existe bien un x pour lequel il est égal à 0.

Preuve =⇒ Prouvons aussi cette affirmation par la contraposée. Nous voulons
donc montrer que, s’il existe x0 ∈ I tel que W [v1, v2](x0) = 0, alors
v1(x) et v2(x) sont linéairement dépendantes.
Puisqu’il existe un tel x0 ∈ I, nous savons que :

det
(

v1(x0) v2(x0)
v′

1(x0) v′
2(x0)

)
= 0

Ainsi, le kernel de cette matrice est est non-trivial (il n’est pas de
dimension 0), donc il existe un vecteur non nul

(
a
b

)
∈ R2 tel que :(

v1(x0) v2(x0)
v′

1(x0) v′
2(x0)

)(
a
b

)
=
(

0
0

)
Ainsi : {

av1(x0) + bv2(x0) = 0
av′

1(x0) + bv′
2(x0) = 0

Soit v(x) = av1(x)+bv2(x). Alors, v(x) est une solution de l’équation
donnée par la superposition des solutions. De plus, par le système
d’équations que nous venons de trouver, nous avons v(x0) = 0 et
v′(x0) = 0. Par le théorème de l’existence et unicité d’une solution
de l’équation y′′(x)+p(x)y′(x)+q(x)y(x) = 0, cette équation admet
une seule solution satisfaisant y(x0) = 0 et y′(x0) = 0. Puisque la
solution triviale y(x) = 0 ∀x ∈ I satisfait l’équation et les conditions
initiale, alors nécessairement :

v(x) = av1(x) + bv2(x) = 0, ∀x ∈ I

Puisque a et b ne sont pas les deux nuls, soit nous avons v1(x) =
−b
a v2(x) pour tout x ∈ I, soit nous avons v2(x) = − a

b v1(x) pour
tout x ∈ I (soit les deux).
Nous avons donc bien trouvé que v1(x) et v2(x) sont linéairement
dépendantes sur I.

□

Idée de la
preuve

On démontre que Q =⇒ P et P =⇒ Q par la contraposée car P
et Q sont des propositions “négatives” : il est beaucoup plus simple
d’avoir une fonction qui est parfois égale à 0, ou deux fonctions qui
sont linéairement dépendantes.
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Théorème :
Forme des solu-
tions aux EDL2
homogènes

Soient v1, v2 : I 7→ R deux solutions linéairement indépendantes de l’équation
y′′(x) + p(x)y′(x) + q(x)y(x) = 0.
Alors, la solution générale de cette équation est de la forme :

v(x) = C1v1(x) + C2v2(x), C1, C2 ∈ R, x ∈ I

Preuve Soit ṽ(x) une solution quelconque de l’équation donnée, et soit
x0 ∈ I. Soient aussi a0 ∈ R et b0 ∈ R tels que ṽ(x0) = a0 et
ṽ′(x0) = b0.
Par hypothèse, nous avons deux solutions linéairement indépen-
dantes v1, v2 : I 7→ R. Ainsi, par la caractérisation, nous sa-
vons que W [v1, v2](x) ̸= 0 pour tout x ∈ I, ce qui implique que
W [v1, v2](x0) ̸= 0.
Or, quand le déterminant d’une matrice est non-nul (la matrice est
dite non-dégénérée), nous savons qu’une équation l’utilisant a une
solution unique. Ainsi, nous savons qu’il existe d’uniques constantes
C1, C2 ∈ R telles que :{

C1v1(x0) + C2v2(x0) = a0

C1v′
1(x0) + C2v′

2(x0) = b0

Considérons la fonction v(x) = C1v1(x) + C2v2(x). Nous pouvons
voir deux informations. La première est que v(x) est une solution de
l’équation (puisque v1(x) et v2(x) sont des solutions). La deuxième
est que v(x0) = a0 et v′(x0) = b0.
Par le théorème de l’existence et unicité d’une solution des EDL2
homogènes satisfaisant des conditions initiales données v(x0) = a0
et v′(x0) = b0, on a ṽ(x) = v(x) pour tout x ∈ I. Nous avons donc
bien montré que notre solution de départ est de la bonne forme.

□

Proposition :
Inégalité de
Cauchy-Schwarz

Pour tout −→x , −→y ∈ Rn, nous avons :∣∣〈−→x , −→y
〉∣∣ ≤

∥∥−→x
∥∥ ·
∥∥−→y

∥∥
Preuve Soit λ ∈ R. Considérons la somme

∑n
i=1(λxi + yi)2.

Nous savons que
∑n

i=1(λxi + yi)2 ≥ 0, puisque c’est une somme de
termes positifs :

0 ≤
n∑

i=1
(λxi + yi)2 =

n∑
i=1

(
λ2x2

i + 2xiyi + y2
i

)
Et donc :

0 ≤

(
n∑

i=1
x2

i

)
︸ ︷︷ ︸

a

λ2 + 2
(

n∑
i=1

xiyi

)
︸ ︷︷ ︸

b

λ +
(

n∑
i=1

y2
i

)
︸ ︷︷ ︸

c

, ∀λ ∈ R

Nous avons obtenu une équation quadratique selon λ qui est toujours
positive. Ainsi, on remarque qu’il est impossible que cette équation
ait deux racines, sinon, par le théorèmes des valeurs intermédiaires,
elle serait négative en certains points. Nous savons donc qu’elle a
un discriminant négatif :

b2 − 4ac ≤ 0 =⇒ 4
(

n∑
i=1

xiyi

)2

︸ ︷︷ ︸
=⟨−→x ,−→y ⟩2

−4
(

n∑
i=1

x2
i

)
︸ ︷︷ ︸

=∥−→x ∥2

(
n∑

i=1
y2

i

)
︸ ︷︷ ︸

=∥−→y ∥2

≤ 0
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